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FROBENIUS SYMBOLS AND THE GROUPS S,,
GL(n), O(n) AND Sp(n)

Y. J. ABRAMSKY, H. A. JAHN, AND R. C. KING

1. Introduction. Frobenius [2; 3] introduced the symbols
(a *b)s = (alaz. . .(l,*blbz. . b,)

to specify partitions and the corresponding irreducible representations of the
symmetric group S;. In terms of these symbols an interesting theorem has
been proved [10, p. 49] which takes the form:

THEOREM 1.
(@xb); = |(a; %)),

where (a; * b;) is the (if)th element in a determinant to be expanded in accordance
with the outer product multiplication rules signified by the notation | |

From this theorem it is easy to derive the formula: [10, p. 44]
(1.1) f(a*h)8 = s!/H(a «b),

for the degree of the representation (a *b); of Sy, in terms of the hook length
factor, H(a x b),, associated with the corresponding Young tableau.

Using the well-known duality between the symmetric group, S;, and the
general linear group, GL(n), one can immediately write down a theorem
analogous to Theorem 1, but which applies to irreducible representations
of GL(n), namely [7, p. 112]:

THEOREM 2.
faxb}, = |{a,*b;}],

where the notation | | indicates the use of the Kronecker product multiplication
rules appropriate to GL(n) in the expansion of the determinant.

From this theorem it is once again easy to derive a dimensionality formula,
this time for the dimension of the irreducible representation {a * b}, of GL (n).
This takes the form [10, p. 60]:

(12) Dn{a * b}s = Nn{a * b}s/H(a *b)sy

where N,{a * b}, is a factored polynomial in # of degree s.
The aim of this paper is to show that the Kronecker product multiplication
rules appropriate to the orthogonal group, O(n), and the symplectic group,
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Sp(n), are such that the corresponding irreducible representations of these
groups satisfy the theorems:

THEOREM 3.
[a % b]s = |[a; x bj]|¥
and

THEOREM 4.
(@xb)s = [(a; *by)*

respectively, where the notation | |¥ indicates the use of the Kronecker product
multiplication rules appropriate to O (n) and Sp (n).

Just as the brackets ( ) and { } are used to denote irreducible representations
of S; and GL(n), so the brackets [ ] and ( ) are used to denote irreducible
representations of O(n) and Sp(n) respectively.

From these theorems dimensionality formulae completely analogous to (1.2)
are derived, i.e.,

(1.3) D,[a xb], = N,[a «b],/H(a *b),
and
(14) Dn<a *b>s = Nn<a *b>S/H<a *b)sy

where N,[a *xb], and N,(a xb), are once more factored polynomials in
n of degree s. These formulae represent a considerable improvement on the
only n-dependent formulae obtained previously [5] in which the expressions
obtained for N,[a *b]; and N,(a *b), took the form of quotients of factored
polynomials, in which the pattern of cancellation of the factors common to
both numerator and denominator was by no means obvious in the general
case.

In the following section the notation is established more precisely and
Theorems 1 and 2 together with their important corollaries (1.1) and (1.2)
are discussed. In Section 3, Theorem 3 is proved by induction. Since the
Kronecker product multiplication rules appropriate to O(z) and Sp(n) are
identical [6; 8; 9] the validity of Theorem 4 then follows immediately. In
Section 4 expressions for the numerators of the formulae (1.3) and (1.4) are
derived and an illustrative example of their use is given.

2. Frobenius symbols and the groups S; and GL(%n). A regular partition
of the integer s into p parts can be denoted by

(2.1) MN)s = Ay Ay o ooy Np)

with Mi+ XN+ ...+ X =sand My =X = ... 2\, > 0. This partition
may be represented by a regular Young tableau with p rows, such that the kth
row contains )\; boxes or nodes. The weight of the partition and the corre-
sponding tableau is said to be s.
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Alternatively, the partition and the tableau may both be specified by means
of the Frobenius symbol [2; 3]

(2.2) (@axb); = (a1as...a, xbidy...0b;)
witha; +a2+...+a,+01+b2+...+0b,+7 =5 and
ar>a>...>a¢, =0 and b;>b:>...>0,20.

The quantities a; and b, denote the numbers of boxes in the Young tableau
to the right of and below, respectively, the box at the intersection of the kth
row and the kth column. The rank of the Frobenius symbol and the corre-
sponding tableau is said to be r, which is clearly the number of boxes in the
principal diagonal of the tableau.

The relationship between (A\); and (a *b); is such that a¢; = N\, — & and
by =N —Fk for k=1,2,...,r, where (X); = (A1, Xz, ...) is the partition
conjugate to (\)s, i.e. the partition specifying the tableau obtained from that
specified by (\); by interchanging the rows and columns.

There is a one-to-one correspondence between partitions

MN)s = A Ay ooy M)

and the irreducible representations of the symmetric group, S;, denoted by
the same symbol, and also with the irreducible representations of the general
linear group, GL (%), denoted by {A}s = {A1, A2, . . ., \,}. The basis of such an
irreducible representation of GL(z) is a tensor whose index symmetry is
specified by the partition (\)s.

In Frobenius notation the representations (\), and {A}; are denoted by
(a *b); and {a *b},.

Using the raising operator techniques developed by Young, Robinson
[10, p. 44] proved Theorem 1, which written out in full takes the form:

(a1 *b1) (a1 *bs) ... (a1xb,)
((l2 * b]_) ((12 * b2) .

(23) (alaz v oAy ¥ b1b2 SN by) =

(a, * by) . ve. (a,xb,)

where the notation | |* indicates that the determinant is to be evaluated using
the outer product reduction rules appropriate to the symmetric group. Each
element, (a;*b;), of the determinant is a Frobenius symbol of rank 1, and
corresponds to a tableau consisting of a single hook. In the more conventional
notation for partitions

(2.4) (@i*b;) = (14 ay 1%).
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Earlier, using the algebra of S-functions, Littlewood [7, p. 112] proved
Theorem 2, i.e.

(2.5) {aas ... a; xbibs... b} = |{a; % b}

where, in this case, the notation | | indicates that the determinant is to be
evaluated using the multiplication rules appropriate to the reduction of
Kronecker products of representations of GL(n). These rules are the well-
known rules [4; 7] which give the coefficients m,, » in the product:

(2.6) {l"}a : {V}b = z)\: mm',)‘{}‘}cr

where the summation is over all irreducible representations {\}, of weight
¢ = a + b. Of course these same coefficients m,, » also appear in the reduction
formula appropriate to symmetric group representations i.e.,

(27) (I‘)a : (V)b = 2)\: muv,)\()\)c-

Thus the multiplication rules involved in Theorems 1 and 2 are identical and
the validity of one of these theorems implies the validity of the other.

A very beautiful application of Theorems 1 and 2 is to the determination
of the dimensions of the irreducible representations of S; and GL(»). From
these theorems it is clear that

(2 8) f @b _ al- f (ai*byj) ‘

' N +o,+ il
and
(2.9) D,{a xb}; = |D,{a,; xb,},
since in general [10, p. 53] for an outer product:
(2.10) Fweon _ (aa‘;!b)!f(mfw)b’

and for a Kronecker product:

(2.11) D,({ula - 1v}s) = DuludeDolvle.

The dimensions of the irreducible representations of S; and GL (%) corre-
sponding to a given Young tableau are given by the number of distinct ways in
which the numbers 1,2,...,sand 1,2, ..., n may be inserted into the boxes
of the tableau in a standard fashion. In the case of S; the arrangement of
numbers is standard if the numbers, all distinct, increase from left to right
in each row and from top to bottom in each column [4, p. 199] whilst for
GL(n) the corresponding restriction is that the numbers, not necessarily all
distinct, are non-decreasing from left to right in each row and are increasing
from top to bottom in each column [4, p. 384]. It is then simply a combina-
torial problem to show that for a tableau taking the form of a single hook:

(@i*bj) _ (a; +b))!
(2'12) f - al'bj' ’
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and
_ (m4ay)! 1
- (n'— bj - 1)! (ai+bj+ l)ai!b]‘!.

Using (2.12) and (2.13) in (2.8) and (2.9) respectively and taking out {actors
common to every element of a row or a column of the determinants yields [2]

(2.13) Dufa; b))

(2.14) A=l hi / [T (@b
ij k=1

and

! ('ﬂ + ak)! 1 1
N _ A
(2.15) Dalaxble = AL o el iy,
where
(2.16) hi; = a;+b; + 1.

Clearly the determinant with elements 1/%,; vanishes if either a¢; = a; or
b; = b; for any ¢ # j, for then two rows or two columns, respectively, of the
determinant would be identical. Moreover, the common denominator of the
expanded determinant must be IIj ,_;%,; whilst the numerator contains
factors linear in a; and b; to a maximum total power of (> — r). The leading
term in this numerator is given by I17_; (¢,/~%,—%) and this term can arise
in one and only one way from the expansion of the determinant, in fact from
the term I17_; (1/h,;). These considerations are sufficient to prove that:

T T

= H (ai—'a]‘)(bi_bj)/ Hl(ai+bj+1)-

1, j=1;1<j T j=

1

B
It is then not difficult to see that

(2.17)

7} /kH1 bl = 1/H(a » b),,
ij =

where H(a *b), is the product of the hook lengths [1; 10, p. 44] associated
with each box of the tableau corresponding to {\}; and {a * b},. The (¢j)th
hook of this tableau consists of the box in the 7th row and jth column of the
tableau, together with the (A, — j) boxes to the right and the (A; — 7) boxes
beneath this box. (Note the misprints in [10, p. 44].) The length of the hook is
then:

This is consistent with the notation of (2.16) if both ¢ = » and j < r, but in
other cases represents a generalization of (2.16). The denominator of (2.17) is
the product of just 7> hook lengths whilst H(a * b); is the product of the s hook
lengths associated with the s boxes of the tableau, i.e.
(2.20) H(as+b), =[] hy

)

(€2¥)

(2.18)
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where, in this case, the product is taken over all pairs of values of < and j
specifying the position of a box of the tableau. It is then a trivial matter to
write down H(a = b), as a product of an array of s numbers. For example,

(2.21)  H(310 % 420)5; =8 6] 4] 1]
4] 2
3
1

1

[l—lC»DC.ﬂCDOO

=8-62-5-4%-32.2.1¢ = 414, 720.

The validity of (2.18) may be checked by using (2.17) in the left hand side
of (2.18) to give in this case:

/ 11 axlby!
k=1

=2.3-1.2-4.2./8.6-4-6-4-2-5-3-1-3110141210!
=1/8.6"-5-4".3%.2

in agreement with (2.21).

It is unquestionably simpler to calculate the right hand side of (2.18) using
(2.20), rather than the left hand side using (2.17). However, using (2.17) in
(2.14) yields a result due to Frobenius [2], rederived as above by Littlewood
[7, p. 112], whereas the use of (2.18) in (2.14) and (2.15) yields the formulae
(1.1) and (1.2), i.e.

1
]’Iutj

(2.22) ‘

(2.23) F@®Ps = s1/H(a *b),,
and
d + a,)!
(2.24) Dyfaxbj, =1 (—n%zk“f)l-)! /H(a *b),.

These formulae were first established in essentially these forms by Frame,
Robinson and Thrall [1], and by Robinson [10].

3. Frobenius symbols and the groups O(z) and Sp(n). In order to prove
Theorems 3 and 4 it is necessary to consider in some detail the relationship
between the Kronecker products of irreducible representations of O(#n) and
Sp(n) and the Kronecker products of irreducible representations of GL (n)
defined by (2.6). It has been shown [6] that

(3.1) wle X ]y = ; 7ur [N
and
(3-2) <.“'>a X <V>b = Z sw'y)\()\)c

A
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where the summations are over all irreducible representations [A], of O(n)
and (\), of Sp(n) of weight ¢ = @ + b — 2¢, where ¢ is an integer which can
take all values from zero up to the minimum value of ¢ and 5. The coefficients
appearing in (3.1) and (3.2) are identical, and are given by:

(33) Yuy X = Spp N = Z Mpe,uMpr, Mgz \
PO, T
where m,, is defined by (2.6) and the summation is carried out over all
possible {p};, {¢}s—s and {7},
It follows firstly, that any proof of Theorem 3 automatically implies the
validity of Theorem 4, and secondly that:

(34) wle X Bl = 22 [w/plaee - /00y

P
where, as in (3.3), the summation is over all possible {p},, whilst the division
symbol [7, p. 110] is such that

(35) [/‘/p]u-t = ; mpa.u[o']a—t-

The operation on the right hand side of (3.4) signified by the dot, -, is
associated with the factor m,, in (3.3), and corresponds to the reduction of
a Kronecker product of irreducible representations of GL (n). This operation, -,
is defined by the regular addition of boxes to a Young tableau, whereas the
operation, /, is defined by the regular removal of boxes from a Young tableau,
i.e., - and / denote mutually inverse operations.

The term in (3.4) corresponding to {p}, = {0}, corresponds to the mutual
symmetrisation of the tensor indices associated with [u], and [»],, whilst all
the other terms correspond to the mutual symmetrisation of tensors obtained
from [u], and [v], after contractions have been carried out to produce a trace-
less tensor [6]. This provides the clue to the derivation of Theorems 3 and 4,
for if it can be proved that in the expansion of the determinants

lla; % b,]% and [{a; % bj)[¥

the sum of all terms involving contractions is zero, then these theorems follow
immediately from Theorem 2.

All the elements of the first of these determinants are representations of
the form [a * b] where the use of ordinary rather than bold-face type and
the absence of the subscript s indicates that this symbol is a rank 1 Frobenius
symbol rather than a shorthand notation for a general rank r Frobenius
symbol. It is necessary to consider the possible divisors of [a¢ * b]. Such a
divisor must necessarily be a representation [¢ # d] corresponding to a tableau
consisting of a single hook, whilst the quotient [a * /¢ * d] must itself consist,
when fully reduced, of representations corresponding to tableaux consisting
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of single hooks. In general it is found that

([a—c*b——d~1]+[a—c—1*b—d],
ifa>candbd> d

_J0xb —d —1], ifa=candd> d
(3.6) faxbfexdl = 0 4,0 ifa>candb=d
1, ifa=candb=4d
\ 0, ifa<c or b<d.
This result is exactly equivalent to the statement:
3.7) [axb/cxd] = fJla —c]-[1>%,ifa=cand b =d
0, ifa<cor b<d

where of course in Frobenius notation [¢ —¢] = [e¢ — ¢ — 1 %x0] and

(1> =[0%b —d — 1].

The result (3.6) may be generalized to include successive divisions. Thus

(3.8) [a*xb/c*d/exfl=[a —c*xb—d—1/exf]
+la—c—1xb—d/exfl=[a—c—exb—d—f—2]
+2a—c—e—1%xb—d—f—1]
+le—c—e—2xb—d—f].

Clearly

(3.9) [axb/cxd/exf] =laxblexf/cxd] =[axb/c+exd+ f+ 1]

+laxb/ct+e+1xd 4[]

Further generalization gives:

(3.10) [a*xb/cixdifcaxds/ ... [Cm *dy)

m!
- ;m[a—c—k*b—d_m_{_k]
S =Dl et hed b — k1)
T Rl(m— k= 1) ,

wherec =¢+c+...+cpandd =d; +do+ ...+ dp.

Now it is convenient to return to the statement of Theorem 3 which will
be proved by induction on the variable r, which gives the rank of the Fro-
benius symbol.

In the case r = 1 the theorem is just an identity involving no Kronecker
products. In the case » = 2 it is necessary to evaluate the determinant:

[ay * b1] [ag * ba] | %
[dg * bl] [Cl2 * bg] .

Clearly this determinant is given by

(8.11) [a1 * b1] X [as * b2] — [a1 * bs] X [as # b1]
= [a1 * b1] - [az * b2] — [a1 * D] - [as * b1]
—I—Zd {lar * b1/c xd] - [ae ¥ bo/c *d] — [a1 * ba/c *d] - [as % b1/c % d]}.
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Using (3.7)
(8.12) [a1 *by/c *d] - [az % by/c xd] — [a1 * by/c xd] - [as * b1/c * d]
= lox = ¢ - [0 oy — o] - (199 — [ — ] - [12]
“laz — ] - [179]

= 0.
Thus every term in the double summation of (3.11) vanishes identically so
that:
[ay * b1]  [a1 * bo] | X [a1 % 01] [a1 % 02]|"
(3.13) = = [a1as * b1bs],

[a2 * bl] [112 * b2] [az * b1] [(12 * bz]

where the last step involves the application of Theorem 1 or 2. This proves
the validity of Theorem 3 in the rank 2 case.

At this stage it is convenient to assume that this result generalises to the
rank (m — 1) case, i.e.

(314:) l[a1 * b]‘]ix = [[ai * b]]l = [(ll(lQ ce e Q1 * blbg oo bm—l]y

where once again the second equality is true by virtue of Theorem 1 or 2,
whilst the complete equation corresponds to the rank (m — 1) statement of
Theorem 3.

Expanding the corresponding determinant with respect to the elements in
the pth row gives in the rank m case:

A

(3.15) |[a, % b,1[* = Zl (=1 a, xb,] X [a1...84p...anxbr...b,...by
=

where the notation is such that the Frobenius symbol on the right hand side
is obtained from the minor of the pgth element, [a, * b,], of the determinant
by the use of (3.14). The product appearing in (3.15) is such that

(3.16) |lai*xb,]X =3 (=1)""ap %b,] - [ar...4p...an*bs...b,...by)
g=1
+2 > (=) a, xby/cxd] [ar...Gp...An*bi... by... by/cxd].
c,d ¢=1

The first term involves no contractions whilst the second term corresponds
to the sum of all possible contractions between the single hook representations,
[a, * b,], and those corresponding to Frobenius symbols of rank m — 1. To
enumerate these contractions in more detail it is helpful to use (3.14) to write

(3.17) [a1az...8p ... aw*bibs... bg... byl = |las*0]]
= 2 €hka + oo By v kml@1 % Dgy] - (@2 % D) oL [am x By,

(k)

where the summation is taken over all possible permutations (&1, k2. . . E,, coky)
of the numbers (1,2,...¢,...m).
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With this notation it is clear that the divisions of [a, x b,] by [c¢ * d] arises
through multiple contractions of [a, * b,] with the set of representations
[a; % by,). For each representation [c * d] all possible sets of such contractions
need to be considered. These contractions may be classified as being single,
double, triple . . . contractions involving the factors:

(3.18) [ap * by/cs xdy] - [as * by,/cs x d]
[a, * by/cs % dofc, % d,] - [as % by/cs xd] - [a, * by, /c, % d]
[ap % bg/cs *dsfcixdy/cy % dy] - [as % br/cs xd] - [a, % by, /c, * d ]
“ @y * by, /cu % di]

respectively. In the notation of (3.16) it follows from (3.10) that

3.19) ¢ = ¢, d =d,
c=c¢cs+c,+k d=ds+d,+1—k% E=0,1
c=c¢it+c,+e+Fk d=d,+d,+d,+2— k% k=012

It should be stressed that for each given pair of values for ¢ and 4 in (3.16)
a summation will extend over all possible values of ¢y, ¢4, ¢y, . . ds, dy, dy, . . ., E,
and of course over all possible combinations of s, ¢, %, ... . Fortunately the
restrictions (3.19) lead to a very great simplification. This can be seen most
easily by observing that:

(3.:20) [0, by /ey %] - [0, % by fec, )]
= oy = e] - (1% - [a, — ¢] - [1%Re=0],

where use has been made of (3.7). Clearly, therefore, all contractions other
than single contractions give rise to contributions whose explicit dependence
on b, and by, is given by

(3.21) [ap %by/cs + co4 .. wdy +dy + .. ] - [10ke=ds] - [10ki—0],

If d; = d, this expression is symmetric under the interchange of by, and by,
The antisymmetry under the interchange of k2, and %k, implied by (3.17) is
then sufficient to prove that all terms containing the factor (3.20) give no
contribution to (3.16). Furthermore if d; # d, the fact that all possible
contractions have to be included in the summation implies that for every
term with a factor (3.21) there exists another, otherwise identical, containing
the factor

(3.22)  [ay % bgfcs+ ci+ ... xd,+dy+ .. ][I0 . [100=44],

The sum of (3.21) and (3.22) gives a factor which is symmetric under the
interchange of b, and b;,, and which therefore gives no contribution to (3.16).
This then rules out any contribution from the sums of all possible double,
triple, . . . contractions.
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Slightly adapting the notation of (3.18) for the single contractions, and
expanding the determinant of (3.17) with respect to the row containing the
terms in a, gives for these single contractions:

(3.23) Zl (—1)”+"t ;#)nfi Z‘; tla, xby/c % d] - [a, % b,/c % d]
q= =1, (t7#¢q €,
N U S N Ay SU S SO W |

where 7% is a phase factor dependent upon the relative values of p and s,

g and ¢ as well as the explicit values of s and ¢. In fact

(=1, ifp2sandgq 2 ¢,
(=)t if p 2 sandqg S &

(3.24) 2= {

The overall phase factor in (3.23) is therefore

(—=1)pterstt if p 2 sand ¢ 2 ¢,

1)t P —
(3.25) (—=1)Ptog {(_1)p+q+s+t—1’ ifp>sandg St

This factor is clearly antisymmetric under the interchange of ¢ and ¢. However
the dependence of the remainder of the expression (3.23) on ¢ and ¢ is just

(3.26) (1%a=9] - [17¢7],

where use has again been made of (3.7). This term is symmetric under the
interchange of ¢ and ¢, so that the double summation of (3.23) gives zero.
Thus the sum of all possible single contractions gives no contribution to (3.16).

This same conclusion may also be reached without examining the phase
factors (3.24) in such detail, by reordering the rows of the determinant of
(3.15) so that the p and sth rows become the first and second respectively,
and then making a Laplace expansion into a sum of products of 2 X 2 and
(m — 2) X (m — 2) determinants. The result (3.13) then ensures that the
single contractions all vanish.

Whichever argument is used it follows that the sum of all the possible
contractions in (3.16) vanishes identically, leaving

A

3.27) |l +b,][< = i (=1 a, 5 b,] - [ar. .. 8y .. am % br. . By bn]

[la: *b;]|" = [a1as . .. Qy * bibs . . . by]

where the last step involves the use of Theorem 2. This result is just the
statement of Theorem 3 appropriate to the case of a rank m Frobenius symbol.
To summarize: the validity of Theorem 3 has been derived in the case
r = m from the assumption of its validity for » = m — 1. Moreover the
theorem has been proven in the case » = 2, so that Theorem 3 is valid for all
values of 7, the rank of the Frobenius symbol.
To illustrate the cancellation of the contracted terms it is useful to consider
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the following rank 3 example associated with [310 % 420]. The corresponding
determinant is:

X

[3%x4] [3%2] [3%0]
(3.28) [la; *b]% = |[1x4] [1%2] [1%0]
[0x4] [0x2] [0=x0]

Expanding this determinant with respect to the third row, i.e. taking p = 3
in (3.15), gives
(3.29) |[as *bj]|* = [0 %4] X [31 %20] — [0 % 2] X [31 * 40]
+ [0 % 0] X [31 = 42]

where, for example, as in (3.13):

[31%20] = [3%2]-[1%0] — [3%0]-[1x2],
since all contractions of the form:
B%2/cxd]-[1%x0/c*xd] —[3%0/c*d]-[1x2/cx*d]

= (8= [1 = d - ({17 - [1974] — [10-4] - [13~4]
vanish as in (3.12).
A typical double contraction contribution to (3.29) is then given by:

(3.30) Z [0%4/cy xdi/coxds] - {[83%2/c1xd1] - [1 %0/ce xds)

c1,c2,d1,d2
—_ [3 * 0/61 *d1] . [1 * 2/62 *dz]},
so that in the notation of (3.16)

[0%4/cxd] =[0%4/c1 *di/c2 * ds].

Such a term vanishes unless ¢ = 0 and d < 4 by virtue of (3.7), i.e. unless
ci+c2+k=0and di+d.+1— %k =<4 in the notation of (3.10). The
only non-vanishing contributions then arise when k2 =0, ¢; = ¢o = 0 and

(dly d2) = (3v 0)) (2y 1)! (11 2)1 (Oy 3)y (2y O)v (17 1)! (Oy 2)1 (]-y O)y (Ov 1) and
(0, 0). As emphasized before these values are such that either d; = d» or both
(d1, d2) and (ds, d1) are included in the list. That such terms will mutually
cancel can be seen in this example by taking, for instance, (di, d2) = (2, 0)
and (0, 2) and adding to give
[0%4/0%2/0%0] - {[3%2/0%2]-[1%x0/0%0] —[3%0/0%2]-[1x%2/0x0]}
+[0%4/0%0/0%2]-{[3%2/0%0]-[1%x0/0%2] —[3+0/0*0]-[1%2/0%2]}
=[0%4/0%x2/0%0]-[3 —0]-11 —0]-{[12?] - [10-] — [1°-2] . [1270]

+ [120] - (102 — [10-0] - (1277
= 0.

In the same way it is clear that all the double contractions (3.30) sum to
give zero.
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Finally in the notation of (3.23), taking » = 3 and s = 2 in a typical
example involving a single contraction gives:

[0x4/cxd)-[1%0/c*d]-[3%2] —[0x4/c*d]-[1%2/cxd]-[3%0]
—[0%2/c«xd]-[1%0/c*xd]-[3x4] 4+ [0%2/c*d]-[1*x4/cxd]-[3%0]
+ [0%0/c*d]-[1%x2/c*d]-[3x4] —[0x0/c*d]-[1x4/cxd]-[3%2].

Taking the first and last terms together since these have a common factor
yields

{[0%x4/cxd]-[1%0/c*d] —[0%0/c*d]-[1x4/cx*d]}-[3x*2]
= (342010 ] [1 = c] - {[1+4] - [19] — [10-4] - [1+9)
= 0.

Similarly for the other pairs of terms, so that all the single contractions of
(3.29) sum to give zero.
Thus in (3.29) the symbol X may be replaced by . , so that using Theorem 2
[[a; * b;]]< = [310 % 420],
as required.

4. Dimensions of irreducible representations of O(z) and Sp(n). From
Theorem 3 it follows that:

(4.1) D,[a xb]; = an[ai * b]]l

Application of a known formula [5] for the dimensions of an irreducible
representation of O(n) to the special case of a representation specified by a
tableau consisting of a single hook yields:

_ (m+a;—1)! (n + 2a;) 1
@.2) Dlaex b)) = o G g = b, — 1) (@ b, F Dadbl’

which may be written in the form

_(m4a -1 1 (L 1)
(4.3) D"[az * b]] - (n —_ bj — 2)! ai!b]'! hij + ni]‘ !
where
hiy=a;+0b;+1,
and

n,-j=n—l—ai—b,—-1.

Hence taking out the factors common to every element in each row and each
column of the determinant (4.1) gives the formula

(4.4) D,la  b], = H {EZ j_L Zf - ;;: akllbk!} ” + 1

r=1 hig ~ myj

https://doi.org/10.4153/CJM-1973-100-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-100-2

954 Y. J. ABRAMSKY, H. A. JAHN, AND R. C. KING

The determinant appearing in this expression may be evaluated by noting
that either a row or column will consist entirely of zeros, or two rows or two
columns of the determinant will be proportional, and the determinant will
therefore vanish, if any one or more of the following conditions is satisfied:
(1) hy = —mnyy for all 7,
(i1) hy = —mnyy for all ¢,
(iii) #;; = hy and ny; = ny for all © with j # &,
(iv) hij = ny and ny; = by for all 2 with j # &,
(v) ki = hyy and ny; = nyy for all j with ¢ # &,
(vi) by = —mnyyand ny; = —hy; for all j with 7 == k.
In terms of #, a; and b; these conditions correspond to:
(i) (m + 2a;) = 0 for all j,
@i1) (m + 2a;) = 0 for all 7,
(iii) (b; — bx) = 0 for all ¢ with j = &,
@iv) (m — b; — by — 2) = 0 for all 2 with j # k&,
(v) (a; — ax) = 0 for all j with ¢ # &,
(vi) (m 4+ a; + a;) = 0 for all j with ¢ # k.
In addition

1 1 (n + 2a;)
4.5 - = L
( ) hn‘ T Nij h”n“
so that
@6) |2+ =k T1 2 IT (0 + 200
' hij ~ i ai=1Rhimey =1 !

T

(@i —a)bi— b))+ ai+a))(n — by — b; — 2).

1, j=1;i<j

It is easy to see that K is independent of # since the numerator of the expres-
sion on the right hand side of (4.6) is then a polynomial in % of degree 72, as
is required by the facts that the n-dependence of each element (4.5) of the
determinant is just (# 4+ 2a,)/n,; and that each quantity #z,; appears in the
denominator on the right hand side of (4.6).

Furthermore, taking the limit as # becomes large in (4.6) gives

1.t

~ L
Jrij

4.7) lim

T 1 T
=K H o H ' (@i — a;) (b — by).
1,j=1Mij i,j=1;i<j

Comparison with (2.17) then gives

(4.8) K = 1.
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Using this result, (4.8), and (4.6) in (4.4) together with (2.18) gives the
formula

g Jeta =D (n+2a)
(49) Dyaxbl, =[] {(n_b,.—z)! (m+a;—bi—1)

i—1
! (mtaita)m—0,—10b,—2) }/

o ohte o Dta =5, =1/ Haxbd).
It is possible to calculate D,{a * b), in the same way from Theorem 4. However
it is more convenient to use the conjugacy relationship [5] between O () and
Sp(n) which implies that
(4.10) D,{axb), = (—1)*D_,[b xa].,.
Using this relationship and the identities:

EZ:I_—Z::%‘))—:: ﬁ (n +a; — x),

r=1

el =1 o -vto,

r=1

and
(— 1)2i=1 hii
in (4.9) yields the formula:

i+ a,+ D! (n — 2b,)
(4.11) D,{a=b), = LII { m—0) m+a;—0b,+1)

7 mn—>b,—bj)mn+a;+a;,+2) }/
'jgl(wra,-—bji1>(n—b1-+a,-+1> H(a «b),,

- (-1y

since
(4.12) H(@xb), = H( xa),.

It was claimed in the introduction that formulae would be obtained of the
type (1.3) and (1.4) in which N,[a = b]; and N,{(a *b), were factored poly-
nomials in # of degree s. The formulae (4.9) and (4.11) are not manifestly of
this type. However it is clear that each of the denominator factors
appearing within the curly brackets of (4.9) and (4.11), also appears in the
series of terms (n +a;, — 1)!/(n — b, — 2) and (n + a; + 1)!/(n — b;)!,
respectively. Thus unlike the formulae obtained previously [5] these formulae
(4.9) and (4.11) are such that the pattern of cancellations which lead to the
required result is quite clear. To be precise:

T

(4.13) Dyaxbl,=[[ {(w+a;— )(n+a;—2)

i=1

oonta;i—b,—1—hy)...m4+a;,—b,_1—1—hy)
eotnta;—bya—1—hy)...n+a;—b;— 1+ hyy)
veontagr—bi—1+hy)...n+a_1—0b;—14+hy)
eotnta, —bi—14hy)...n—b)n—b;,— 1)} /H(axb),,
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and
T

(4.14) Di{axb), =[] {(n+a:+ 1)+ a,)

i=1

...(n-}-a,-—-b,-l—l—h“)...(n—l-ai—br_l‘l“l—h“)

oonta—bg+1—hy)...m+a;—b;+1—hy)
oontag—bi+1+hy)...n+a1—bi+ 14 hyy)
coonFa,—bi+ 1+ hy)
n—=b;+2)(mn—b;+ 1)} /H(a x by,.
For each value of 7 the series in these formulae (4.13) and (4.14) contain
exactly %,; factors, which, apart from the addition and subtraction of the
number %;;, are consecutive integers. The additions occur in each term a
distance (a¢; + 1) from the end of the series, and the subtractions in each term
a distance (b; + 1) from the beginning of the series. If the series are presented
as arrays in the shape of the 7th hook of the appropriate Young tableau, with
an arm length of a; and a leg length of b;, then » — 7 additions of %;; appear in
the arm and 7 — ¢ subtractions of %,; in the leg of the hook, whilst an extra
addition or subtraction occurs in the diagonal element of the hook according
as the group in question is O(z) or Sp(n) (see Figure 1). It is understood that
in these arrays the numbers, apart from the additions and subtractions,
decrease in steps of one up the leg and along the arm from left to right.
By way of illustration, the application of (4.13) to the case [a xb], =
[310 * 420] yields:

n—2+8.n—3_n—4+8.n—5+8

(4.15)  D,[310 % 420] =

8 6 4 1
_n—l_n——2+4'n—3+4
6 4 2
.n+0—8.n—1.n—1—|—1
5 3 1
'n+1.n+0~4
3 1
_11,+2——_8
1

where the crucial role played by the diagonal element hook lengths 8, 4 and 1
is made clear. Thus

(4.16) D,[8310%x420] = n +6)(mn+4)(n +3)(n + 2)(n + 1)n(n — 1)2
c(n—3)(n —4)(n — 6)(n — 8)/414720.

Then the use of (4.10) gives:

(417) D,(420 % 310) = n + 8)(n +6)(n +4)(n + 3)(n + 1)n(n — 1)?
c(n—2)(n — 3)(n — 4)(n — 6)/414720.
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i Y | v | | G | [r=br] w-o [a-s-1]
bi f ! :
ay ! 1 '
- ) : i '
—hy LTr— '
o i
a, g
\—,_\/\/
— (r — 1 additions of &, in the arm of the hook)
—hi
by
— (one extra addition of &, at the corner of the hook)
—his
b,
n+a;—2
n+a;—1
JRPUR DRDR I
(r — 7 subtractions of k;; in the leg of the hook)
FiGure 1 (a). Orthogonal Group.
i +h e i [n=bir2]n =]
7 | :
- V
—h; i‘u,,, i
i
e ———— ar
— (r — ¢ additions of k,; in the arm of the hook)
—hii
A (one extra subtraction of ,; at the corner of the hook)
—hi
b,
n+ta;,—1
n4+a;
nAa;+ 1
RO DR (RN P
(r — i subtractions of %, in the leg of the hook)

F1Gure 1 (b). Symplectic Group.

FIGURE 1. The arrays of numbers associated with (a) N,ia * b]; and (b) N,*(a * b),,
where

D,[a xb], = I:TII N,'[a = b],/H(a * b),

and
D,(axb), =[] N, axb),/H(axb),
i=1

illustrating the scheme for additions and subtractions of ki; to the hq; consecutive integers
inserted in the boxes of the 7th hook of the Young tableau specified by (a * b), for (a) the
orthogonal group and (b) the symplectic group. The £;; are added and subtracted to particular
members of a set of k;; consecutive integers which decrease by unity from box to box up the
leg and along the arm from left to right. The symplectic case, (b), differs from the orthogonal
case, (a), only in the replacement of —1 by +1 at the starting position and in the replacement
of +h;; by —hi; at the corner of each hook.
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This same result can of course be obtained from (4.14) which yields an array
such that:

n+2—8'n+1_n+0+8'n—l.n——‘z—l—S
8 6 5 3 1

(4.18) D,(420 % 310) =

.n+3'n+2——4.n+1_n+0+4
6 4 3 1

_n+4—8.n—l—3—4.n+1—1
4 2 1

.n+5—8
1

in agreement with (4.17).

It is worth pointing out that just as the dimensionality formula (4.2)
appropriate to a single hook representation of O (z) can be derived directly
from a previously known formula, so also can the general formula (4.9) or
(4.13) be derived from a known expression. This can be done directly without
the use of Theorem 3, and this fact serves to check the validity of this theorem.
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