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ABSTRACT. We describe and apply a quantitative measure of the topology 
of large scale structure: the genus of density contours in a smoothed 
density distribution. For random phase (gaussian) density fields, the 
mean genus per unit volume exhibits a universal dependence on threshold 
density, with a normalizing factor that can be calculated from the 
power spectrum. The topology of the observational sample is consistent 
with the random phase, cold dark matter model. 

Recent deep redshift surveys by de Lapparent, Geller and Huchra (1986) 
and Haynes and Giovanelli (1986) have renewed interest in the topology 
of large scale structure in the universe. 

If we look at a distribution of galaxies we see a series of points 
distributed in 3-dimensional space. We would like to know the smooth 
underlying distribution from which the points could have been obtained 
by a sampling process. To begin,2therefore, we smooth the data with a 
gaussian smoothing window W = e~ r '^ where r is the distance and λ is 
a smoothing length picked to be larger than the mean galaxy-galaxy 
separation. Information about the topology is then carried in the 
density contour surfaces of this smoothed density distribution. 

The topology of an object is mathematically specified by its 
genus. We may define the genus of a contour surface as 

g g = (no. of holes) - (no. of isolated regions) (1) 

where Thole T means Thole T like a donut has (Gott, Melott, Dickinson 
1986). Suppose we have a density contour that shows 50 isolated 
spherical clusters, then g g = - 50. A contour may also have a multiply 
connected, sponge-like topology, in which case its genus is positive. 
In what follows we stμdy g g as a function of threshold density (Gott, 
Weinberg, Melott 1986; Weinberg, Gott, Melott 1986). 

An important advantage of this method of looking at topology is 
that in the standard big bang - inflationary model we can relate the 
topology seen today to that present in the initial conditions. Imagine 
looking at the small-amplitude density fluctuations present at a red-
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shift of ζ = 25. These fluctuations arise from random quantum fluctua-
tions that are gaussian with random phases with a power spectrum P(k) 
which can be calculated directly from the primordial ZelMovich infla-
tionary spectrum. We now smooth the data with a smoothing length λ, 
and construct density contours. Hamilton, Gott, and Weinberg (1986) 
and Bardeen et al. (1986) have shown that the mean genus per unit 
volume of these surfaces will be given by 

g g = N(l - v 2)e" v 2/ 2. (2) 

1/2 

Here ν = δα/ξ(0) is the number of standard deviations by which the 
contour threshold density 6Q departs from the mean density. And 
Ν = [ <k2>/3] 3/2/4π2 -̂g a n appropriate moment of the smoothed power 
spectrum. The amplitude of the g g(v) curve depends on Ν and therefore 
on P(k), but the form g s(v)

a(l - v2)e"~v /2 is completely independent of 
the initial power spectrum. Ν is positive definite so that g s is posi-
tive (sponge-like topology) for v=0, f=0.5 (the median density con-
tour) regardless of P(k). If we make a cut where the fraction of the 
volume in the high density region is less than f = 16% (v > 1) then 
g g < 0 and we encounter isolated clusters. If we choose a contour such 
that the fraction of volume in the high density region is greater than 
f = 85% (v < -1) then g g < 0 and we find isolated voids. 

Now we evolve the model to the present epoch, and generate biased 
subsets of the mass distribution in the usual way (Melott and Fry 1986). 

Figure 1 plots the g (ν) curves for the initial, final, and biased 
conditions (averaged results of four simulations) together with the 
theoretical curve g (ν) = N(l - v 2)e~ v /2 expected for the CDM initial 
conditions. Since S is determined from P(k), which is known for the 
CMD model, there are no free fitting parameters for this at all. The 
agreement is remarkable. 

Why is this so? As long as the fluctuations stay in the linear 
regime they just grow in place increasing in amplitude, and the 
topology changes not at all. In the cold dark matter model the scale 
at which the mass covariance function goes to unity, r m = 3.6 Mpc, is 
considerbly smaller than our smoothing length λ = 10 Mpc, so we are 
mainly looking at fluctuations that are just now beginning to come out 
of the linear regime and whose topology remains unchanged from the 
initial conditions. Biasing increases the 'contrast' of the picture, 
but it basically leaves the luminosity density a monotonie function 
of the underlying mass density. Thus contours of constant luminosity 
density are contours of constant mass density — just the values are 
shifted. If we draw contours as a function of the volume enclosed we 
find that the biased and unbiased data sets are essentially identical. 

Figure 2 shows results from a volume limited sample of the 
northern CfA redshift survey. It is a cube with a side length of 58 
Mpc and includes galaxies brighter than 0.72 L Ä out to a maximum red-
shift of 5000 km/s (see GMD for details). As in the analysis of the 
N-body simulations, we use a periodic boundary condition for smoothing. 
The smoothing length λ = 10.8 Mpc Given the small volume of the 
region surveyed, we would like to see results from larger observa-
tional samples before drawing any firm conclusions. Nonetheless, the 
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data as they stand are remarkably consistent with the random phase 
model and with the amplitude expected for a CDM power spectrum. 

This work was partially supported by NASA Grant NAGW-765. 
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Figure 1. Cold Dark Matter Simulation Results 
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Figure 2. CfA Survey Results 
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DISCUSSION 

PECKER: In what sense does your technique differ from that of 
Mandelbrot in building either cheese and bubbles, - or sponges, using 
various 3-dimensional fractal distributions? 

GOTT: Mandelbrot has modeled galaxy distributions by starting with a 
uniform high density region and excising random spherical voids from 
it. With just a few voids excised this gives a swiss cheese topology, 
but if enough voids are excised so that they percolate and the voids 
form one connected low density network then this will make a sponge. 
Mandelbrot has also done models where galaxies are laid down on a 
random walk. In the sponge-like topology produced by random phase 
perturbations clusters are linked to each other by a network of 
filaments and voids are linked to each other by a network of tunnels. 
It is important to note that the topology is a three dimensional issue. 
A thin slice of swiss cheese and a thin slice of a sponge can look 
identical, both showing holes. The question is how the low density 
regions are connected up in three dimensions. In this regard it is 
interesting to note that the Ω = 1, cold dark matter, biased models 
(by our group and also by White et al.) which are known to have a 
sponge-like topology in three dimensions, do reproduce remarkably well 
in thin slices the cellular appearance seen in the thin slices of the 
de Lapparent, Geller and Huchra survey. 
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