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Estimates of Hausdorff Dimension for
Non-wandering Sets of Higher
Dimensional Open Billiards
Paul Wright

Abstract. This article concerns a class of open billiards consisting of a finite number of strictly convex,
non-eclipsing obstacles K. The non-wandering set M0 of the billiard ball map is a topological Cantor
set, and its Hausdorff dimension has been previously estimated for billiards in R2 using well-known
techniques. We extend these estimates to billiards in Rn and make various refinements to the estimates.
These refinements also allow improvements to other results. We also show that in many cases, the non-
wandering set is confined to a particular subset of Rn formed by the convex hull of points determined
by period 2 orbits. This allows more accurate bounds on the constants used in estimating Hausdorff
dimension.

1 Introduction

A billiard is a dynamical system in which a single pointlike particle moves at constant
speed in some domain Q ⊂ RD,D ≥ 2 and reflects off the boundary ∂Q according to
the classical laws of optics [Ch]. We describe a particle in the billiard by xt = (qt , vt ),
where qt ∈ Q is the position of the particle and vt ∈ SD−1 is its velocity at time t .
Then for as long as the particle stays inside Q, it satisfies

(qt+s, vt+s) = ϕs(xt ) = (qt + svt , vt ).

Collisions with the boundary are described by

v+ = v− − 2〈v−, n〉n,

where n is the normal vector (into Q) of ∂Q at the point of collision, v− is the velocity
before reflection, and v+ is the velocity after reflection.

Open billiards are a class of billiard in which the domain Q is unbounded. We
consider open billiards in which Q = RD\K, where K = K1 ∪ · · · ∪ Ku is a union of
pairwise disjoint, compact and strictly convex sets with C2 boundary for some integer
u ≥ 3. The Ki are called obstacles. We assume that the no-eclipse condition (H) holds.
That is, for any nonequal i, j, k, the convex hull of Ki ∪ K j does not intersect Kk.
This condition ensures that the non-wandering set (defined later) does not include
trajectories that are tangent to the boundary.

Received by the editors January 31, 2012.
Published electronically August 10, 2013.
AMS subject classification: 37D20, 37D40.
Keywords: dynamical systems, billiards, dimension, Hausdorff.

1384

https://doi.org/10.4153/CJM-2013-030-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-030-0


Estimates of Hausdorff Dimension 1385

We denote by n = nK (q) the outward normal vector of ∂K at q. Let

Q̂ = {(q, v) ∈ Q× SD−1|q ∈ int(Q) or 〈n, v〉 ≥ 0}

be the phase space of the billiard flow ϕt , with canonical projection π : Q̂ → Q. Let
M = {(q, v) ∈ ∂K × SD−1|〈n, v〉 ≥ 0} be the boundary of Q̂.

Let t j(x) ∈ [−∞,∞] denote the time of the j-th reflection of x ∈ Q̂, and let

d j(x) = t j(x)− t j−1(x). Let Q̂ ′ = t−1
1 (0,∞); this is the set of trajectories that collide

with the billiard at least once in the forward direction. Let M ′ = M ∩ Q̂ ′ and define
the billiard ball map as B : M ′ → M, x 7→ ϕt1(x)(x). Then B is invertible and C2 (in
general B is at least as smooth as the boundaries of the obstacles), except where the
direction v is tangent to K at Bx.

The non-wandering set Ω(ϕ) of the flow is the set of points whose trajecto-
ries never escape to infinity i.e., the set of points x such that the full trajectory
{ϕt (x) : t ∈ R} is bounded. Its restriction to the boundary M0 = Ω ∩ (∂K × SD−1)
is the non-wandering set of the billiard ball map, that is, M0 = {x ∈ Q̂ ′ : B jx ∈
Q̂ ′ for all j ∈ Z}. The restriction of B to M0 is a bijection. M0 is the non-wandering
set of the billiard ball map; this non-wandering set is the main focus of this paper.

2 Main Theorem

The main result of this paper is in three parts.

Theorem 2.1 Let K = K1 ∪ · · · ∪ Ku ⊂ RD be disjoint, compact, and strictly convex
sets with smooth boundary satisfying the condition (H) for some integer u ≥ 3. Let B be
the billiard ball map in Q = RD\K. Let λ−1

1 = 1 + dmaxgmax and µ−1
1 = 1 + dmingmin,

where dmin, dmax, gmin, and gmax are constants depending on the billiard, defined in
Sections 3 and 11. Then the Hausdorff dimension of the non-wandering set M0 of B
satisfies the following inequalities:

(i) If D = 2, then

(2.1)
−2 ln(u− 1)

lnλ1
≤ dimH M0 ≤

−2 ln(u− 1)

lnµ1
.

(ii) If D ≥ 3, and the obstacles Ki are sufficiently far apart that λdmax
1 < µ2dmin

1 , then
(2.1) holds.

(iii) We always have

α
−2 ln(u− 1)

lnλ1
≤ dimH M0 ≤ α−1−2 ln(u− 1)

lnµ1
,

where α = 2dmin ln µ1

dmax ln λ1
is a particular Hölder constant, calculated in Section 10.

Remark 2.2 The billiard constants gmin and gmax are calculated differently in the
higher dimensional case. This affects the dimension estimates and the condition that
λdmax

1 < µ2dmin
1 .
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Remark 2.3 Hassleblatt and Schmeling present a conjecture in [HS] that would
imply that α = 1 for any billiard, making the above theorem much stronger. This
will be discussed in Section 9.

Part (i) was essentially proved in [Ke], except that the improvements to estimates
in Section 11 can be applied. We deal with the higher dimensional case here.

3 Properties of Open Billiards

The following lemma is well known (see, for example, [Sto1]).

Lemma 3.1 If K satisfies the no-eclipse condition (H), then for any finite sequence of
indices 1 ≤ i1, . . . , in ≤ u (n ≥ 3) such that i j 6= i j+1 for all j, let

F : Ki1 × · · · × Kin → R, (q1, . . . , qn) 7→
n∑

j=1

‖q j − q j+1‖,

where we denote qn+1 = q1. Then F achieves its unique (strict) minimum at some
(p1, . . . , pn) such that p j ∈ ∂Ki j for all j. Specifically, the p j are the successive reflection
points of a periodic billiard trajectory in Q with p j+1 = Bp j and p1 = Bpn.

3.1 Billiard Constants

Definition 3.2 At each point on a hypersurface M, the shape operator or second
fundamental form (s.f.f.) Sq : Tq(M) → Tq(M) is defined by Sq(v) = −∇vnM(q).
The curvature of M at q in the direction of a unit vector û ∈ Tq(M) is kq(û) =
Sq(û) · û.

Every billiard has several associated constants that can be useful in various esti-
mates. The s.f.f. Sq(∂K) of ∂K at q has n − 1 eigenvalues or principle curvatures.
Let κmin(q), κmax(q) denote the smallest and largest eigenvalues respectively at q.
The billiard has minimum and maximum curvatures κ− = minq∈πM0 κmin(x) and
κ+ = maxx∈M0 κmax(x). We denote

dmin = min{d−i j : 1 ≤ i, j ≤ u} and dmax = max{d−i j : 1 ≤ i, j ≤ u},

where d−i j and d+
i j are the respective minimum and maximum of the set {d(p, q) : p ∈

Ki ∩πM0, q ∈ K j ∩πM0}. For a point x = (q, v) ∈ M, we call φ(x) = arccos〈v, n(q)〉
the collision angle, the acute angle that the j-th reflected ray makes with the outer
normal to K. We denote φ j(x) = φ(B jx). The collision angle can be bounded above
by some constant φ+ = max{φ(x) : x ∈ M0}. It can easily be shown that φ+ ≤
arccos(b−/dmax), where b− = mini, j,k d(K j ,Cvx(Ki ,Kk)).

4 Convex Fronts

Let X be a smooth, stricly convex D − 1 dimensional surface in int Q with outer
normal field v(q), let X̂ = {(q, v(q)) : q ∈ X}, X̂0 = X̂ ∩ Ω, and X0 = πX̂0, where
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π is the canonical projection. We call X̂ a convex front, and X̂0 is the non-wandering
part of the front. Let X̂t = ϕt X̂; after a collision X̂t will not necessarily be convex. Let
J denote the tangent space Tq(X) of the convex front at q. This is simply the codim 1
hyperplane normal to v containing q. The s.f.f. of X at q is given by B(q) : J → J,
B(q)dv = Sq(dv).

4.1 Evolution of Fronts

With no collisions, the s.f.f. of a convex front X after time t is given by the well-known
formula (see, e.g., [S2])

B(qt (s)) = (B(q)−1 + tI)−1.

Fix a point x = (q, v) at which the front X̂t collides with ∂K at time t . Note that v
is the reflected direction. Let T denote the tangent space of ∂K at q and let J be the
tangent space Tq(Xt ) of the front just after reflection at q. Again J is the hyperplane
normal to v containing q.

At a collision point, let B− be the s.f.f. just before the collision and let B+ be the
s.f.f. just after the collision. These are related by the well-known formula (again see
[BCST, S2])

B+ = B− + 2Θ = B− + 2〈n, v〉V ∗KV,

where V : J→ T is the projection V dv = dv − 〈dv,n〉
〈n,v〉 v ∈ T, K : T → T is the s.f.f. of

∂K at q, V ∗ : T → J is the projection V ∗dq = dq − 〈dq,v〉
〈n,v〉 n ∈ J, and 〈n, v〉 = cosφ,

where φ ∈ [0, π2 ) is the collision angle. Note in these projections that while 〈n, v〉 is
always positive, 〈dv, n〉 and 〈dq, n〉may be positive or negative.

4.2 Estimating Θ

Lemma 4.1 If the dimension n is greater than 2, let κmin, κmax be the smallest and
largest eigenvalues of the s.f.f. K at q, so that κmin|dq| ≤ ‖Kdq‖ ≤ κmax|dq|. Then

κmin cosφ ≤ ‖Θ‖ ≤ κmax

cosφ
.

Proof If n = v, then 〈n, v〉 = cosφ = 1 so Θ = 〈n, v〉V ∗KV = K, and the
inequality holds. Henceforth we assume n 6= v. Let S = J ∩ T. Any vector dv ∈ J

can be written in the form dv = |dv|(â cos θ + ŝ sin θ), where ŝ ∈ S and â ∈ J are unit
vectors, â is perpendicular to S, and 〈â, n〉 ≥ 0. Then â is in the plane containing by
n and v, so the angle between â and n is π

2 − φ. Using dv ⊥ v we get

‖V dv‖ = ‖dv − 〈|dv|ŝ sin θ, n〉
〈n, v〉

v − 〈|dv|â cos θ, n〉
〈n, v〉

v‖

= ‖dv −
(
|dv| tanφ cos θ

)
v‖ =

√
1 + tan2 φ cos2 θ|dv|
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Similarly, write dq ∈ T as dq = |dq|(b̂ cos θ ′+ŝ ′ sin θ ′) for some unit vectors ŝ ′ ∈ S

and b̂ ∈ T with b̂ ⊥ S and 〈b̂, v̂〉 ≥ 0. Then ‖V ∗dq‖ =
√

1 + tan2 φ cos2 θ ′|dq|.
Combining these operator norms and using 0 ≤ cos2 θ, cos2 θ ′ ≤ 1, we get

κmin cosφ ≤ cosφ
√

1 + tan2 φ cos2 θκmin

√
1 + tan2 φ cos2 θ ′

≤ ‖Θ‖ ≤ cosφ
√

1 + tan2 φ cos2 θκmax

√
1 + tan2 φ cos2 θ ′

≤ cosφκmax(1 + tan2 φ) ≤ κmax

cosφ

as required.

Note that in the two dimensional case θ = θ ′ = 0, since S = T ∩ J = {q}, and
κmin = κmax = κ at every point. So ‖Θ‖ = κ

cos φ in this case.

4.3 Estimating k j

Let Y : q(s), s ∈ [0, 1] be a C3 curve on X with outer normal field parametrised by
v(s) = v(q(s)). Let Y0 = Y ∩ X0, X̂t = ϕt (X̂), Xt = πX̂t , Ŷt = ϕt (Ŷ ), Yt = πŶt , and
t j(s) = t j(q(s), n(s)). Where defined, let q j(s) = πB j(q(s), v(s)) be the j-th reflection
point of (q(s), v(s)), then let d j(s) = t j(s) − t j−1(s), and φ j(s) = φ j(q(s), v(s)).
This section follows the definitions in [Sto3]. Let u j(s) = limτ↓t j (s)

d
dsϕτq(s) and let

û j(s) =
u j (s)
‖u j (s)‖ be the unit tangent vector of Yt at q(s). Let B j be the s.f.f. of ϕt j (s)X at

q j(s). Define ` j(s) > 0 by

[1 + d j(s)` j(s)]2 = ‖û j(s) + d j(s)B j û j(s)‖2.

Then set δ j(s) = 1
1+d j (s)` j (s) .

Proposition 4.2 Fix a point x0 = (q0, v0) ∈ X̂, a positive integer m and some τ
with tm(x0) < τ < tm+1(x0). Let Y : [0, a] → X be a C3 curve with q(0) = q0 with
a small enough that for every s ∈ [0, a] we have tm(x(s)) < τ < tm+1(x(s)), where
x(s) = (q(s), νX(q(s))), and that for all j = 1, . . . ,m the points q j(s) ∈ ∂Ki j for all
s ∈ [0, a]. Then p(s) = πϕt (x(s)) is a C3 curve on Xt . For all s ∈ [0, 1] we have

‖q ′(s)‖ =
‖p ′(s)‖

1 + (τ − tm(s))km(s))
δ0(s)δ1(s) . . . δm(s).

Proof See [Sto3, Sto2]. The same result can be derived from [BCST] and is also
proved for completeness (in two dimensions only) in [Ke].

Now the curvature of the convex front after j reflections in the direction û j is
k j = 〈B j û j , û j〉, so

1/δ j(s)2 = 1 + 2d j(s)k j(s) + d j(s)2‖B j û j(s)‖2.

Let q ∈ X and let x = (q, νX(q)). Let µ j(s) and λ j(s) be the minimum and
maximum eigenvalues of B j(q(s)) respectively.

https://doi.org/10.4153/CJM-2013-030-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-030-0


Estimates of Hausdorff Dimension 1389

Recall that B j+1 = B−j+1 + 2Θ = (B−1
j + d jI)−1 + 2Θ. Now B j is always positive

definite, so µ j and λ j are always positive. Note that if λ is an eigenvalue of B(q(s)),
then λ

1+tλ is an eigenvalue of B(qt (s)). So we have

λ j+1 =
λ j

1 + d jλ j
+

2κmax(x j)

cosφ j(x)
and µ j+1 =

µ j

1 + d jµ j
+ 2κmax(x j) cosφ j(x).

For all j ≥ 0, µ j(s) ≤ k j(s) ≤ λ j(s), so we get that k j+1(s) belongs to the interval

(4.1)
[ k j(s)

1 + d j(s)k j(s)
+ 2κmin(x j(s)) cosφ j(s),

k j(s)

1 + d j(s)k j(s)
+

2κmax(x j(s))

cosφ j(s)

]
.

5 Coding M0 and X0

For each x ∈ M0 we have a bi-infinite sequence of indices α = {αi}∞i=−∞, αi ∈
{1, . . . , u} such that πBix ∈ ∂Kαi . Since each Ki is convex, αi 6= αi+1 for all i, so
define the symbol spaces Σ and Σ+ as

Σ =
{

(αi)
∞
i=−∞ : αi ∈ {1, . . . , u}, αi 6= αi+1 for all i ∈ Z

}
,

Σ+ =
{

(αi)
∞
i=1 : αi ∈ {1, . . . , u}, αi 6= αi+1 for all i ≥ 0

}
.

Let f : M0 → Σ, x 7→ α denote the representation map. The two-sided subshift
σ : Σ→ Σ, αi 7→ αi+1 is continuous under the following metric dθ for any θ ∈ (0, 1):

dθ(α, β) =

{
0 if αi = βi for all i ∈ Z

θn if n = max{ j ≥ 0 : αi = βi for all |i| < j}.

We define a similar metric on Σ+:

dθ(α, β) =

{
0 if αi = βi for all i ≥ 0

θn if n = max{ j ≥ 0 : αi = βi for all 0 ≤ i ≤ j}.

Lemma 5.1 ([Ke, Theorem 2.3]) If u ≥ 2 and θ ∈ (0, 1), then f is a homeomor-
phism of M0 (with the topology induced by M) onto (Σ, dθ), and the shift σ is topologi-
cally conjugate to B; that is B = f−1 ◦ σ ◦ f .

Assuming u ≥ 3, M0 is a compact topological Cantor set; B is topologically tran-
sitive on M0, and its periodic points are dense in M0. Then B is hyperbolic on M0,
and M0 is a basic set for B [KH].

Given the convex front X, the intersection X0 = X ∩ Ω can also be coded by
sequences. Define the representation map Υ : X0 → Σ+ in the same way as f : M0 →
Σ. Define an equivalence relation ∼m (m ≥ 0) by α ∼m β ⇔ αi = βi for all
1 ≤ i ≤ m, and α ∼0 β for any α, β ∈ Σ+. We call the equivalence classes [α]m

cylinders. Define another relation (not an equivalence relation) ≈m by α ≈m β if
α ∼m β and αm+1 6= βm+1.

The following lemma on Hausdorff dimension dimH and upper packing dimen-
sion dimp is the result of direct calculations (see, for example, [Ed, Ke]).
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Lemma 5.2 For any α ∈ Σ+ and N ∈ N,

dimp([α]N , dθ) = dimH([α]N , dθ) =
− ln(u− 1)

ln θ
.

We find upper and lower bounds gmin and gmax such that for some N ∈ N, k j(s) ∈
[gmin, gmax] for all j ≥ N.

6 Estimating δ j(s)

Section 4.1 of [Ke] contains a significant improvement to the dimension estimate
(2.1) using the continued fraction for k j(s). We can do the same using the bounds in
(4.1).

The map fγ,θ : (0,∞)→ R, x 7→ x
1+θx + 2γ has one positive fixed point g(γ, θ) =

γ +
√
γ2 + 2γ/θ. This function is non-decreasing in γ and strictly decreasing in θ.

The natural domain for g is [κmin cosφ+, κmax
cos φ+ ] × [dmin, dmax] for the arguments

of g. On this domain, the minimum and maximum values of g are g(κmin, dmax)
and g( κmax

cos φ+ , dmin) respectively. While this domain is an obvious choice, it is not the
strictest or most useful domain. We will use a smaller domain D defined in Sec-
tion 11.

We write gmin = max(γ,θ)∈D g(γ, θ) and gmax = max(γ,θ)∈D g(γ, θ). The values that
maximise and minimise g are denoted (γmax, θmin) and (γmin, θmax) respectively.

Parametrise the surface X by q(t) = q(t1, . . . , tD−1), where each ti ∈ [0, 1] and D
is the dimension of the billiard. Let

U T(X) =
{

(q, û) : q ∈ X, ‖û‖ = 1, û tangent to X at q
}

denote the unit tangent bundle of X, and parametrise U T(X) by x(s) = x(t, û), where
s ∈ S = [0, 1]D−1 × SD−2. Consider any s = (t, û) ∈ S such that q(t) ∈ X0. Let
k0(s) = B0(t)(û) · û be the curvature of X at q(t) in the direction û, and inductively
define k j+1(s) = fγ j ,θ j (k j(s)) for 0 ≤ j ≤ n− 1. Then let θ j = d j(s) and

γ j = k j+1 −
k j(s)

1 + d j(s)k j(s)
∈
[

2κmin(x j(s)) cosφ j(s),
2κmax(x j(s))

cosφ j(s)

]
.

Then the sequence (γ j , θ j)∞1 is contained in D.

Lemma 6.1 Let a < gmin and b > gmax. Then there exists n(X) > 0 such that for all
s and j ≥ n(X) we have k j(s) ∈ [a, b].

Proof If kN (s) ≤ gmax for some s and some N ≥ 0, then inductively

k j+1(s) = fγ j ,θ j (k j(s)) ≤ fγmax,θmin (k j(s)) ≤ fγmax,θmin (gmax) = gmax

for all j ≥ N. Similarly if kN (s) ≥ gmin for some N, then k j(s) ≥ gmin for all
j ≥ N. For each s, define k−j and k+

j by k−0 = k0, k
−
j+1 = fγmin,θmax (k−j ) and k+

0 =

k0, k+
j+1 = fγmax,θmin (k+

j ). Then for all j ≥ 0 and s ∈ S we have k−j (s) ≤ k j(s) ≤ k+
j (s),
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lim j→∞ k−j (s) = gmin and lim j→∞ k+
j (s) = gmax. There must be some integer j0(s) ≥

0 such that k j(s) ∈ [a, b] for all j ≥ j0(s).
Since TX is compact, k0(s) has an infimum k0,min = k0(smin) and a supremum

k0,max = k0(smax). Let n(X) = max{ j0(smin), j0(smax)}. Then for j ≥ n(X),

a ≤ k j(smin) ≤ k j(s) ≤ k j(smax) ≤ b,

so j0(s) ≤ n(X) for all s ∈ S. Thus we have k j(s) ∈ [a, b] for all j ≥ n(X) as
required.

For any τ ≥ 0, n(X) ≥ n(ϕτX). So by taking a finite number of convex fronts
Xi whose image under ϕτ covers Ω, we can get a global constant n0 = n(a, b) =
max{n(Xi) : M ⊂

⋃
i Xi} that depends only on a, b and the billiard itself.

Now k j(s) ∈ (a, b) for all s ∈ q−1(X) and j > n0. So for these values,

δ j(s) ∈
( 1

1 + dmaxb
,

1

1 + dmina

)
.

Define λ = 1/(1 + dmaxb) and µ = 1/(1 + dmina) for now. For 0 ≤ j < n0, we
can still find bounds for δ j(s), and k j(s) is always bounded below by 0, and we can
assume k0(s) is bounded above by some k+

0 [S1]. So δ j(s) ∈ [δ−, 1] where δ− =
1/(1 + dmaxk+

0 ). Furthermore, we have

2κ− cosφ+ ≤ k j(s) ≤ 1

dmin
+

2κ+

cosφ+

for 1 ≤ j < n0. Thus, δ j(s) ∈ [λ0, µ0], where λ−1
0 = 1 + dmax( 1

dmin
+ 2κ+

cos φ+ ) and

µ−1
0 = 1 + 2dminκ

− cosφ+.

7 Hausdorff Dimension of X̂0

Proposition 7.1 Let [a, b] ⊃ [gmin, gmax], λ = 1/(1 + dmaxb), µ = 1/(1 + dmina),
and n0 = n(a, b) as defined above and let X̂0 be the non-wandering part of X̂. There
exist constants c,C depending only on the billiard, such that for any integer n ≥ n0 and
x1, x2 ∈ X̂0 such that x1 ≈n x2, we have

cλn−n0 ≤ ‖πx1 − πx2‖ ≤ Cµn−n0 .

Proof Let n ≥ n0 and let x1, x2 ∈ X̂0 with x1 ≈n x2. Without loss of generality
assume that tn(x1) < tn(x2) and let τ = tn(x2). Let y1 = ϕτx1, y2 = ϕτx2. Now
let p(s) parametrise (by arc length) the shortest curve Γ ⊂ ϕτX between y1 and y2.
Let q(s) = ϕ−τ (p(s)) paramatrize the curve Y = ϕ−τΓ. This curve will not be the
shortest curve between its endpoints x1 and x2, in fact for large n it can be much
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longer. We have

‖πx1 − πx2‖ =

∥∥∥∥∫
Y

q ′(s)ds

∥∥∥∥ ≤ ∫
Y
‖q ′(s)‖ds

=

∫
Γ

‖p ′(s)‖
1 + (τ − tn(s))kn(s)

( n−1∏
j=0

δ j(s)
)

ds

≤ µn−n0µn0
0

∫
Γ

ds ≤ Cµn−n0 .

Here we used Proposition 4.2, (τ − tn(s))kn(s) ≥ 0, δ j(s) < µ0 for 0 ≤ j ≤ n0,
δ j(s) < µ for j > n0. Since the curve Γ is the shortest curve between two points
on a surface with bounded curvature (see [S1]) and is confined to a bounded set
(e.g., a ball containing K), its arc length

∫
Γ

ds can be bounded above by a constant
independent of X. Then µ, µ0, and n0 all depend only on the billiard.

Now we find an estimate for ‖x1 − x2‖ from below using different curves. Let q(s)
parametrise the shortest curve Y in X between x1 and x2. Now let [s1, s2] ⊆ [0, 1]
such that s = s1, s2 are the only values for which (q(s), n(s)) has an (n+1)-st reflection.
Let y1 = qn+1(s1), y2 = qn+1(s2). Without loss of generality assume tn+1(s1) <
tn+1(s2) and let τ = tn+1(s1), z = ϕτ (q(s2)). Then p(s) = ϕτq(s) parametrises the
curve ϕτŶ .

Since Y has bounded curvature, we have constants C1 and C2 depending only on
the billiard such that

‖πx1 − πx2‖ ≥ C1

∫
X
‖q ′(s)‖ds ≥ C1

∫ s2

s1

‖q ′(s)‖ds

= C1

∫ s2

s1

‖p ′(s)‖
1 + (τ − tn(s))kn(s)

( n−1∏
j=0

δ j(s)
)

≥ C1C2λ
n0
0 λ

n−n0

∫ s2

s1

‖p ′(s)‖ds.

Clearly z is in the convex hull of the two obstacles containing qn(s2) and y2 re-
spectively, and y1 is in a third obstacle. Thus we have

∫ s2

s1
‖p ′(s)‖ ≥ ‖y1 − z‖ ≥ b−,

where b− is the minimum distance between Kk and Cvx (Ki ∪ K j) for any nonequal
i, j, k. Letting c = C1C2λ

n0
0 b− (these factors all depend only on the billiard), we have

cλn−n0 ≤ ‖πx − πy‖ ≤ Cµn−n0 as required.

Proposition 7.2 Let 0 < n0 ≤ n. Suppose there are constants c,C > 0 such that
cλn−n0 ≤ ‖πx − πy‖ ≤ Cµn−n0 whenever x, y ∈ Ŷ0 with x ≈n y. Then Υ : Ŷ0 → Σ+

is injective and a Lipschitz homeomorphism from Ŷ0 to the metric space (Υ(Ŷ0), dλ),
and Υ−1 is a Lipschitz homeomorphism from (Υ(Ŷ0), dµ) onto Ŷ0.

Proof For any x ∈ X0 with sufficiently large n ≥ n0, there is some z ∈ X0 such that
z ≈n x, so if Υ(x) = Υ(y), then ‖x − y‖ ≤ ‖x − z‖ + ‖y − z‖ ≤ 2Cµn → 0 as
n→∞. So Υ−1 is well defined and Υ is injective.
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Let x ≈n y ∈ X0. Then dλ(Υx,Υy) = λn ≤ 1
c ‖x − y‖, so Υ is Lipschitz.

Similarly, for distinct α, β ∈ Υ(X0), x ∈ Υ−1(α), y ∈ Υ−1(β), and n such
that x ≈n y ∈ X0, we have ‖Υ−1(α) − Υ−1(β)‖ ≤ Cµn = Cdµ(α, β). Finally,
since the identity I : (Υ(X0), dλ) → (Υ(X0), dµ) is continuous, the maps Υ : X0 →
(Υ(X0), dµ) and Υ−1 : (Υ(X0), dλ)→ X0 are also continuous.

The following theorem is well known (see [Fa]).

Theorem 7.3 Let f : A → B be a Lipschitz map and let F ⊂ A. Then dimH f (F) ≤
dimH F.

For some α ∈ Σ+ and sufficiently large n ≥ n0 the cylinder [α]n ⊂ Υ(Ŷ0). It
follows that dimH(Υ(Ŷ0), dλ) ≤ dimH Ŷ0 ≤ dimH(Υ(Ŷ0), dµ).

8 Hausdorff Dimension of M0

We now relate dimH X0 to dimH M0. Let x ∈ M0 and let X̂ = ϕτ (W (u)
θ (x)) be the

image of the local unstable manifold W (u)
θ (x) under ϕt . Let X0 = X ∩ M0. Define

d(s) = dimH(W (s)
θ (x)∩M0) and d(u) = dimH(W (u)

θ (x)∩M0). Then using Lemma 5.2
and Proposition 7.2, we get

d(u) = dimH X0 ∈
[ − ln(u− 1)

lnλ
,
− ln(u− 1)

lnµ

]
.

We can use the same estimate for d(s), since W (u)
θ = Refl W (s)(Refl(x)), where

Refl: Q̂→ Q̂ is a bi-Lipschitz involution given by

Refl(q, v) =

{
(q,−v) for q ∈ int(Q),

(q, 2〈nK (q), v〉nK (q)− v〉) for q ∈ ∂K.

If E, F are Borel sets, the following inequalities are well known (see [Fa]):

dimH E + dimH F ≤ dimH(E × F) ≤ dimH E + dimpF.

Lemma 5.2 gives dimp(Σ+, dθ) = dimH(Σ+, dθ). Let V be a neighbourhood of
M0 and let U ⊂ V be a neighbourhood of x. Let ε be small enough that W (u)

ε (x),
W (s)

ε (x) ⊂ U , and let h : W (u)
ε (x) ×W (s)

ε (x) → R be the usual local product map,
where R is an open neighbourhood of x. The local product map is at least Hölder
continuous. Let α be the Hölder constant of h, then using basic properties of Haus-
dorff dimension [Fa] we have

(8.1) α(d(s) + d(u)) ≤ dimH(R ∩M0) ≤ α−1(d(s) + d(u)).

If α = 1, we have

(8.2) dimH(R ∩M0) = d(s) + d(u).
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Theorem 8.1 λ1 = 1/(1 + dmaxgmax), µ1 = 1/(1 + dmingmin). Assume that α = 1.
Then

(8.3)
−2 ln(u− 1)

lnλ1
≤ dimH M0 ≤

−2 ln(u− 1)

lnµ1
.

Proof For any a < gmin and b > gmax, letting

λ(b) =
1

(1 + dmaxb)
, µ(a) =

1

(1 + dmina)

we have

dimH M0 = dimH(R ∩M0) = d(s) + d(u) ∈
[ −2 ln(u− 1)

lnλ(b)
,
−2 ln(u− 1)

lnµ(a)

]
.

Taking limits a→ gmin and b→ gmax, we get the result.

9 Dimension Product Structure

In this section we discuss what is currently known about the local product map h.
The map is always Lipshitz if the diffeomorphism B is conformal on both the stable
and unstable manifolds (see [B] and [P, §7]). This is the case for the billiard ball map
B in R2 but not in higher dimensions. To see this, suppose one of the obstacles is the
unit sphere centered on the origin, and consider an unstable manifold containing the
points (0, 0, 10), ( 1

2 , 0, 10), (0, 1
2 , 10), each with a ray in a direction sufficiently close

to (0, 0,−1) that the rays collide with the sphere. These points form a right angle,
but their image under B does not, so B does not always preserve angles on unstable
manifolds and is not conformal.

However Stoyanov [Sto3] showed that a class of billiards satisfy a pinching con-
dition, which would imply that the stable and unstable manifolds are C1. In the
notation of this paper, a billiard satisfies the 1

4 -pinching condition if λdmax
0 < µ2dmin

0 ,
where

λ−1
0 = 1 + dmax

( 1

dmin
+

2κ+

cosφ+

)
and µ−1

0 = 1 + 2dminκ
− cosφ+.

In fact we will show that it holds when λ(a)dmax < µ(b)2dmin .
Hasselblatt and Schmeling [HS] proposed the conjecture that equation (8.2) holds

generically or under mild hypotheses, even for non-conformal diffeomorphisms and
non-Lipschitz local product maps. They proved this conjecture for a class of Smale
solonoids. If the conjecture is shown to be true, at least in the case of dynamical
billiards, then we recover equation (8.3). If not, then the result still holds for the class
of billiards in [Sto3]. We now calculate the constant α to get an estimate in terms of
constants related to the billiard.
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10 Calculating the Hölder Constant

A combination of arguments from [Sto3, H] and Section 11 can be used to calculate
the Hölder constant α for the local product map. The open billiard flow ϕt is an
example of an Axiom A flow, with hyperbolic splitting into TM = Esu ⊕ Ess ⊕ ES.
These are the strong stable manifold, strong unstable manifold, and the direction of
the flow S respectively. That is, for some 0 < η < 1 we have ‖dϕt (u)‖ ≤ Cηt‖u‖ for
all u ∈ Es(t) and t ≥ 0, and ‖dϕt (u)‖ ≤ Cη−t‖u‖ for all u ∈ Eu(t) and t ≤ 0.

For each point x there exist αx < βx < 0 < α ′x < βx such that for v ∈ Ess(x),
u ∈ Esu(x), and t > 0 we have

1

C
eαxt‖v‖ ≤ ‖dϕt (x) · v‖ ≤ Ceβxt‖v‖, and

1

C
e−α

′
x t‖u‖ ≤ ‖dϕ−t (x) · u‖ ≤ Ce−β

′
x t‖u‖.

In the case of billiards, the reflection property W (u)
θ = Refl W (s)(Refl(x)) implies

that αx = −α ′x and βx = −β ′x . The Hölder constant α is then given by the bunching
constant

α = Bu(ϕ) = inf
x∈M0

βx − β ′x
αx

= inf
x∈M0

2βx

αx
,

see [H]. The system is said to satisfy the 1
4 -pinching condition if there exist 0 < α0 ≤

β0 such that 0 ≤ α0 ≤ α ′x ≤ β ′x ≤ β0 and 2αx − βx ≥ α0 for all x ∈ M0.

Let X̂ = ϕτ (W (u)
θ (x)) for some small τ , let t > d1(x) + · · · + dn(x) and let δ j(s) be

defined as in Section 4.3. Then from [Sto3], there are constants c1, c2 such that

c1

c2

‖u‖
δ1(0)δ2(0) · · · δn(0)

≤ ‖dϕt (x) · u‖ ≤ c2

c1

‖u‖
δ1(0)δ2(0) · · · δn(0)

,

c1

c2

‖u‖
µn0

0 µ
n−n0

≤ ‖dϕt (x) · u‖ ≤ c2

c1

‖u‖
λn0

0 λ
n−n0

,

c1

c2

( µ

µ0

) n0

µ−t/dmax‖u‖ ≤ ‖dϕt (x) · u‖ ≤ c2

c1

( λ

λ0

) n0

λ−t/dmin‖u‖,

Ae−t ln µ/dmax‖u‖ ≤ ‖dϕt (x) · u‖ ≤ Be−t ln λ/dmin‖u‖,

where λ = λ(b) = 1
1+dmaxb , µ = µ(a) = 1

1+dmina , while A = A(a, b) and B = B(a, b)
are new global constants that exist for all a < gmin and b > gmax (these are not
necessarily bounded above). This inequality holds for all t ≥ t0 with t0 sufficiently
large that m > n0, but there must be constants A ′ and B ′ such that the same in-
equality holds for all 0 < t ≤ t0. Taking C large enough that C > max{B,B ′}
and 1

C < min{A,A ′}, we now have αx = − lnµ/dmax and βx = − lnλ/dmin, so
the bunching constant is Bu(ϕ) = 2dmin lnµ/dmax lnλ. This argument improves
[Sto3, Proposition 1.2] by replacing [µ0, λ0] with the smaller interval [µ, λ] for any
a < gmin and b > gmax.
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Proposition 10.1 Let a < gmin and b > gmax. Assume that λ(b)dmax < µ(a)2dmin ,
and the boundary ∂K is C3. Then the open billiard flow in the exterior of K satisfies
the 1

4 -pinching condition on its non-wandering set M0. For any x ∈ M0 we can choose

αx = α0 = ln µ(a)
dmax

and βx = β0 = ln λ(b)
dmin

.

We cannot take the limit as a → gmin, b → gmax for this proposition, since the
constants A and B may not be bounded above. However, when λdmax < µ2dmin we
have α = 1, so equations (8.2) and (8.3) hold. Taking limits we can extend this to
λdmax

1 < µ2dmin
1 , which proves part 2 of the main theorem. If (8.2) does not hold, then

we have the following general estimate using (8.1):

−4dmin lnµ1 ln(u− 1)

dmax(lnλ1)2
≤ dimH M0 ≤ −

dmax lnλ1 ln(u− 1)

dmin(lnµ1)2
.

11 Improvement of Estimates

11.1 Convex Hull Conjecture

We propose a conjecture that restricts the non-wandering set to a smaller area. This
allows some relaxation of conditions.

Definition 11.1 For any i 6= j, let (pi j , p ji) ∈ Ki × K j denote the minimum of
F : Ki × K j → R, (q1, q2) 7→ ‖q1 − q2‖. Then each pi j is on the boundary ∂Ki and
the vector p ji − pi j is normal to ∂Ki at pi j .

Conjecture 11.2 Denote the convex hull Cvx{pi j : 1 ≤ i, j ≤ n, i 6= j} by H. Let
1 ≤ α1, . . . , αn ≤ u (n ≥ 3) be a finite sequence of indices and let (q1, . . . , qn) be a
periodic billiard trajectory such that q j ∈ Kαk for each j. Then each q j is contained in
H. Furthermore, the non-wandering set M0 is contained in H.

We prove this conjecture for the case of a 3-dimensional billiard in which the
obstacles are spheres. A very similar proof will work for all two-dimensional billiards
and higher dimensional billiards with hyperspherical obstacles. The general case in
higher dimensions may be more difficult.

Proof of the conjecture for spherical obstacles If the obstacles are spheres, then
H ∩ Q is simply the convex hull of the centres of the spheres intersected with Q.
Suppose that (q1, . . . , qn) is a periodic trajectory, but that at least one point is out-
side H. Without loss of generality we can number the points and obstacles such that
q1 /∈ H and α1 = 1. Then H is bounded by a number of planes, so q1 ∈ K1 is on the
outside (i.e., the side not containing H) of one such plane, say Π = Π123, determined
by the centres of obstacles K1,K2,K3. Let ν be the outward normal vector of Π and
denote v j =

q j+1−q j

‖q j+1−q j‖ , (with the convention that q0 = qn). Without loss of generality,

assume that v0 · ν > 0.
For each k ≥ 1 we have qk+1 = qk + dkvk and vk = vk−1 − 2〈vk−1, nK (qk)〉nK (qk).

We also have 〈vk−1, nK (qk)〉 < 0. We show by induction that qk · ν > q1 · ν and
vk−1 · ν > v0 · ν for all k > 1.
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Suppose qk ∈ ∂Kαk is on the outside of Π and vk−1 · ν > v0 · ν. The centre of
∂Kαk is on the inside of Π, so the normal vector n(qk) must point away from Π, i.e.,
nK (qk) · ν > 0. So

vk · ν = vk−1 · ν − 2
〈

vk−1, nK (qk)
〉

nK (qk) · ν > vk−1 · ν > v0 · ν.

Then qk+1 · ν = qk · ν + dkvk · ν > qk · ν. So qk+1 is also on the outside.
For the orbit to be periodic we must have q1 = qn+1 for some n. So by contra-

diction, all periodic points must be contained in H. Since H is a closed set and the
periodic points are dense in M0, we have M0 ⊂ H.

Corollary 11.3 Given a billiard for which the above conjecture is true, the non-
wandering set M0 is entirely contained in H, which means any change to the billiard
outside of H will not have any effect on the non-wandering set, unless it introduces a
new periodic point. This means all results in this paper (and perhaps others) apply to
billiards that are not smooth or convex, or that violate the no-eclipse condition (H),
provided that the intersection K ∩H still satisfies these conditions.

Corollary 11.4 In cases where the conjecture is true, we can use the set H to find
better estimates for billiard constants. For example, we can estimate dmax ≤ diam H.
The minimum and maximum curvatures over M0 can be estimated by

κ− ≤ min
q∈∂K∩H

κmin(q) and κ+ ≤ min
q∈∂K∩H

κmax(q).

11.2 Adjusted Domain of g

Recall that the natural domain for the function g is [κ− cosφ+, κ+

cos φ+ ]× [dmin, dmax].

This applies for billiards in RD with D > 2; when D = 2 the natural domain is
[κ−, κ+

cos φ+ ]× [dmin, dmax] (see the end of section 4.2). To cover both cases at once, we
let ι = 0 if D = 2 and ι = 1 if D > 2, so that cosι φ is 1 if D = 2 and cosφ otherwise.
Define the adjusted domain by

D =
⋃
i, j

[
κ−i cosι φ+

i j ,
κ+

i

cosφ+
i j

]
× [d−i j , d

+
i j],

where κ−i , κ
+
i are the minimum and maximum curvatures on ∂Ki ∩ H, d−i j ≥

|pi j − p ji |, d+
i j ≤ maxk,l |pik − p jl| are the minimum and maximum distances be-

tween Ki ∩ H and K j ∩ H, and φi j = max{φ(x) : x ∈ Ki ∩ H,Bx ∈ K j ∩ H} is the
maximum collision angle over trajectories from Ki to K j . These φi j can be estimated
by cosφi j ≥ b−i j /dmax where b−i j = mink d(Ki ,Cvx(K j ,Kk)).

The minimum and maximum values of g over the natural domain may be outside
of the adjusted domain. The minimum and maximum values in the adjusted domain
are given by

gmin = min{g(γ, θ) : (γ, θ) ∈ D} = min{g(κ−i cosι φi j , d
+
i j), 1 ≤ i, j,≤ u},

gmax = max{g(γ, θ) : (γ, θ) ∈ D} = max
{

g
( κ+

j

cosφi j
, d−i j

)
, 1 ≤ i, j,≤ u

}
.
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Figure 1: The billiard used in Example 11.6.

Figure 2: The adjusted domain displayed over the natural domain.

https://doi.org/10.4153/CJM-2013-030-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-030-0


Estimates of Hausdorff Dimension 1399

Lemma 11.5 For any x = (q, v) ∈ M0, we have( κ(q j)

cosφ j(x)
, d j(x)

)
∈ D and

(
κ(q j) cosι φ j(x), d j(x)

)
∈ D

for all j ∈ Z.

Proof Assume D > 2. Since q j = πB jx ∈ M0 for all j ∈ Z, we have κ(q j) ∈
[κ−i j

, κ+
i j

], φ(B jx) ∈ [0, φ+
i j i j+1

], and d(q j , q j+1) ∈ [d−i j i j+1
, d+

i j i j+1
]. Hence there exist

some integers 1 ≤ a, b,≤ u such that

κ(q j) cosφ(B jx) ≥ κ−a cosφ+
ab and

κ(q j)

cosφ(B jx)
≤ κ+

a

cosφ+
ab

.

For the same a, b we have d(q j) ∈ [d−ab, d
+
ab]. The proof for D = 2 is analogous.

Example 11.6 Consider the billiard displayed in Figure 1, consisting of three disks
arranged in an isoceles triangle of height 10 and base length 8. The disks K1,K2,K3

have radii 1, 2, and 3 respectively. The solid lines give the distances d−i j and the dashed
lines give the distances d+

i j . Figure 2 displays the adjusted domain over the natural
domain, with contour lines of the function g(γ, θ). The following calculations were
obtained using the programs Geogebra and Mathematica.

Using the adjusted domain rather than the natural domain means that the interval
[gmin, gmax] is reduced from [0.760, 7.34] to [0.762, 3.41]. Using the natural domain
we have the estimate 0.326 ≤ dimH M0 ≤ 1.167, but with the adjusted domain we
get 0.396 ≤ dimH M0 ≤ 1.165.
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