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RINGS ALL OF WHOSE PIERCE STALKS ARE LOCAL 

BY 

W. D. BURGESS* AND W. STEPHENSON 

The aim of this paper is to give a number of characterizations of the rings of 
the title. In particular, these turn out to be precisely those exchange rings 
whose idempotents are all central. They are also those rings in which every 
element is the sum of a unit and a central idempotent. 

1. Preliminaries. The reader is referred to [3] or [4] for undefined ring 
terminology. In addition, familiarity with the basic properties of the Pierce 
sheaf is assumed (see, for example [8] or [1] for details). For a ring R (always 
with 1) we let X = SpecBCR) where B(R) is the Boolean algebra of central 
idempotents of R. For xeX, the Pierce stalk at x is denoted by Rx = R/Rx and 
the image of r e R in JRX by rx. Throughout a local ring means a ring with a 
unique maximal left ideal. 

In [2] a decomposition of any ring JR as a subdirect product of its maximal 
indecomposable factors (mi-factors) was introduced. This was achieved by 
iterating the Pierce sheaf construction to obtain a set of ideals M where the 
ideals I e M are minimal with respect to the property that R/I is indecompos­
able (i.e., without non-trivial central idempotents). Then R is a subdirect 
product of the £ / ! = JÇr, IeM and many properties "lift" from the RT to R. In 
case the Pierce stalks of R are indecomposable, M={Rx\xeX}. 

PROPOSITION 1.1. The following are equivalent for a ring JR. 
(i) Every idempotent of R is central. 

(ii) For each xeX, Rx has no non-trivial idempotents. 
(iii) For each IeM, Rt has no non-trivial idempotents. 
When these conditions are satisfied, the Pierce stalks and the mi-factors coincide. 

Proof. (i)=>(ii). If rl = rx for some reR, xeX, then ( r 2 - r ) e = 0 for some 
eeB(jR), e£x. Hence (re)2=re and so reeB(R). But rx = rxex = (re)x = 0X or 
lx . (ii)=>(iii). Since the Pierce stalks are indecomposable they coincide with the 
mi-factors. (iii)=>(i). If e is an idempotent of R then eT is 0 or 1 in each Rl9 

IeM. Hence e is a central idempotent since R isa subdirect product of the i?r. 
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PROPOSITION 1.2. The following are equivalent for a ring R. 
(i) Every reR can be written r = u + e where u is a unit and eeB(R). 

(ii) JRX is a local ring for all x G X. 
(iii) Rt is a local ring for all IeM. 

Proof. (ii)<£>(iii), This follows from 1.1. (i)=>(ii). Suppose that r = u + e, u a 
unit and eeB(JR). Then for x G X, rx = ux + ex. But ex = 0 or 1 so that rx is a unit 
or 1 - rx is a unit. 

( i i ) ^ (i)- Let r e R. For x e X, rx or 1 — rx is a unit so there exists a clopen set 
(closed and open) in X, Ux with x e Ux, such that for all y e Ux, ry is a unit or 
for all y e Ux, 1 — ry is a unit. Using the standard tool of Pierce sheaves, there 
exist disjoint clopen sets C and D with C U D = X such that rx is a unit for all 
xeC and 1 - rx is a unit for xeD. Let e 6 B(JR) be such that ex = 1 for all x G D 
and ex = 0 for all x G C. Then r — e is a unit giving the result. 

EXAMPLES. Any direct product of local rings satisfies the conditions of 1.2 as 
does C( Y, L), the ring of continuous functions from a topological space Y to a 
discrete local ring L. 

REMARK. If we denote by Max(l?) the set of maximal left ideals of R then 
a :Max(R)-*X, given by a(M) = MUB(K) , is a surjection. This mapping is a 
bijection if and only if R satisfies the conditions of 1.2. 

2. Some general considerations. In this section we develop some tools in 
order to study the rings of 1.2 in more detail. For a ring R the nil and Jacobson 
radicals are denoted by N(JR) and 3(R), respectively. 

Let ^ be a property of rings. A ring is said to be homomorphically a ^-ring 
(an H^-ring for short) if every homomorphic image of R, including R, is a 
^-ring. We note that Levitzki used the terminology "faithful ^-ring" in a 
number of particular cases (see [5]). 

Recall that a ring R is (left) fully idempotent if I 2 = I for every (left) ideal of 
R. It is readily seen that R is fully idempotent if and only if it is a homomor­
phically semiprime ring. 

LEMMA 2.1. For a ring R, R left fully idempotent implies R homomorphically 
semiprimitive which implies R fully idempotent. 

Proof. The second implication follows from the above remarks. Suppose 
that R is left fully idempotent and TGJ(JR). Then Rr Rr-Rr giving r = l<xiryir 
for some xi9 yf G R. Hence (1 - S ^ r y ^ r = 0 which implies r = 0. The property of 
being left fully idempotent is preserved by homomorphic images giving the 
result. 

REMARK. It can be shown that neither of the converses of the above lemma 
hold in general. 
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We now consider the relationships between i(R), i(Rx), xeX and JCRj), 
le M. The inverse images of J(.RX) and J(i?r) in R are denoted by J'(RX) and 
I'(#i), respectively. We have that I ' tRJ = fl {-P^ 2 #x and P is a left primitive 
ideal of £ } and I '(« r) = fl {P|P 2 1 and P is a left primitive ideal of JR}. For 
any IeM there exists a unique x e l with x ç J ([2, 1.4]) so that I(JR)ç fl 
{J ' (£ x ) |xeX}ç n { J ' ( ^ i ) | J e ^ } . However for any left primitive ideal P of R 
there exist Ie.i< such that I^P ([2, 1.7]). Hence, 

PROPOSITION 2.2. For any ring R, i(R)= Ç}{l'(Rx)\xeI} = OQ'iR^IeM}. 
In particular R/1(R) is a subdirect product of the rings {RJJ(Rx)\x e X} and of 
{RJJ(Ri)\leM}. 

We always have that J(R)X^J(RX) and 3(R)I^J(RI) but equality, that is, 
J(RX) = 3(R) + Rx or J(KI) = Ï(JR) + I, need not hold in general. We next 
investigate a case where it does hold. 

PROPOSITION 2.3. Let M he a set of ideals of a ring R such that 1 = 
H U + K \ K e si} for every ideal I such that 1(R) ç I Then putting R/K = RK, the 
following are equivalent 

(i) R/3(R) is homomorphically semiprimitive. 
(ii) RK/J(RK) is homomorphically semiprimitive and J ( J R ) K = J ( K K ) for all 

KeM. 

Proof. Assume (i) then, since RK/3(RK) is a homomorphic image of R/i(R), 
it is homomorphically semiprimitive. Further, JCR) + K ç J0RK) a n d since 
JR/J(JR) + K is semiprimitive, equality follows. 

Now assume (ii). Let I be an ideal containing J(R). Then 1 = 
fl U + K \ K e si}. Since R/I+K is semiprimitive for K e si, it follows that R/I is 
semiprimitive. 

REMARK. By 1.7 of [8] and 1.9 of [2], 2.3 applies to si ={Rx\x eX} and to 

si = M. 

COROLLARY 2.4. The following are equivalent for a ring R. (i) R is homomor­
phically semiprimitive, (ii) Rx is homomorphically semiprimitive for all xeX. (iii) 
Rx is homomorphically semiprimitive for all IeM. 

3. Further characterizations. Firstly recall that a ring R is reduced if it 
contains no non-zero nilpotent elements. Secondly, a ring is an I-ring (see [3, 
p. 210]) if every non-nil left ideal contains a non-zero idempotent. We 
generalize this and call a ring R a JI-ring if every left ideal not contained in 
J(jR) contains a non-zero idempotent. As for I-rings it is easy to show that the 
definition of a //-ring is, in fact, left-right symmetric. It is also immediate that 
R is an I-ring if and only if it is a JI-ring such that N(R) = I(R). We shall 
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consider HI and HJI-rings (recall the definition preceding 2.1). In [5], HI-rings 
were called FI-rings. 

EXAMPLE. If R/i(R) is regular and J(JR) is nil then R is an HJT-ring. 

THEOREM 3.1. The following are equivalent for a ring R. 
(i) R satisfies the conditions of 1.2. 

(ii) (a) Every idempotent is central (b) Every maximal left ideal is two-sided. 
(c) Idempotents can be lifted modulo every ideal. 

(iii) (a) Every idempotent is central, (b) R is an HJI-ring. Further, in such a 
ring, R/3(R) is reduced, B(R) = B(R/3(R)) and identifying SpecB(jR/J(£)) with 
X, (RIJ(R))x=RI(f(R) + Rx). 

Proof. (i)=>(ii). Parts (a) and (b) follow directly from the fact that the Rx9 

xeX, are local. Now suppose that a2 - a e I for some aeR and ideal I. Now 
a = u + e where eeB(R) and u is a unit (by 1.2). Then a2 — a = 
(u + e)2- (u + e) = u(u + 2e -1) e I. Therefore u + 2e — 1 e I and so a = u + e = 
l - e + (u + 2 e - l ) giving that a + I lifts to 1-e modulo I. 

(ii)^>(iii). Let I be an ideal maximal with respect to the property that it 
contain no idempotents other than 0. If I^JCR) there is a maximal left ideal 
M, which is an ideal by (ii) (b), with I£M. Then R/InM = R/IxR/M. Lift the 
idempotent corresponding to (0,1) modulo IHM to an idempotent e e R. 
Then e^O and eel. This contradiction shows that I = J(R). 

(iii)=>(i). Since the idempotents of R are all central, the Pierce stalks of R 
are indecomposable //-rings. Such rings are local. 

Finally if R satisfies the conditions (i), (ii) and (iii), R/1(R) is a subdirect 
product of the diversion rings KX/J(KX) by 2.2. By (ii) (c), the map a iB^)—» 
B(R/J(R)) defined by a(e) = e+J(JR) is onto. Suppose for e, feB(R) that 
e+JCR) = /+JCR). Then the idempotents e-fe and f-fe are in J(JR). Hence 
e = ef = fe = / , so that a is a bijection. Using a to identify B(JR) with b(£/J(jR)) 
we see that (R/J(R))X = (RI3(R))/C3(R) + Rx/J(R)) = R/Q(R) + Rx). 

EXAMPLES, (i) The conditions in 3.1 (ii) cannot be weakened. That is, there 
are rings satisfying two of (a), (b) and (c) but not the third. The ring of upper 
triangular 2 x 2 matrices over a field satisfies (b) and (c), but not (a). The ring Z 
satisfies (a) and (b) but not (c). A simple domain which is not a division ring 
satisfies (a) and (c) but not (b). 

(ii) Looking at 3.1 might suggest that rings R satisfying the conditions of 3.1 
would be such that R/1(R) is strongly regular. This is not the case. Let S be a 
commutative local domain and Q its field of quotients and suppose Q^S. As 
in [1, Corollary 3], a ring .R can be constructed so that X = SpecB(l?) is 
NU{o°}, the one-point compactification of the discrete space N and such that 
the stalks at the discrete points are Q and at o° the stalk of R is S. (R is the 
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ring of sequences from Q which are eventually constant with the constant value 
in S.) It is easily shown that R is a commutative ring in which every non-zero 
ideal contains a non-zero idempotent. Hence i(R) = 0 but R is not regular. 
However the ring T constructed similarly with all stalks S (the ring of all 
eventually constant sequences from S) is such that T/J(T) is the regular ring of 
all eventually constant sequences from S/J(S). The situation is clarified by the 
following. 

PROPOSITION 3.2. Let R be a ring whose Pierce stalks are local Then the 
following are equivalent. 

(i) R/i(R) is strongly regular. 
(ii) R/1(R) is biregular. 

(iii) 1R/J(JR) is homomorphically semiprimitive. 

Proof. (i)=>(ii) and (ii)=>(iii) are obvious. To prove (iii)=>(i) we have, by 
2.3, that J(R)X=J(R) + Rx. By 3.1, (K/I(JR))X =R/J(R) + Rx = W(RX) = 
RJJ(RX) which is a division ring. A ring whose stalks are division rings is 
strongly regular. 

A ring R is said to be left n -regular if for a e R there is x e R, n eN, such 
that an = xan+1. Left ir-regular rings are HI-rings. Note also that a local ring R 
is left 7r-regular if and only if N(1R) = J(JR) if and only if R is an I-ring. 

PROPOSITION 3.3. The following are equivalent for a ring R. 
(i) R is an HI-ring all of whose idempotents are central. 

(ii) JR is a left ir-regular ring all of whose idempotents are central. 
(iii) Rx is a local left ir-regular ring for all xeX. 

Proof. (i)=>(iii). This follows from 1.1 which shows that the stalks of R are 
/-rings with no non-trivial idempotents. Such rings are local, (iii)^(ii). This 
follows from 1.1 and the fact that "left TT -regular" lifts from the stalks to R be 
the standard Pierce sheaf argument. (ii)=>(i). This is obvious. 

A reduced local I-ring is a division ring, which implies the following remark. 
A ring R is a reduced HI-ring if and only if JR is a reduced left TT -regular ring 
if and only if R is strongly regular. 

Finally we observe the connections between the class of rings whose Pierce 
stalks are local and a class of rings, called exchange rings, studied by Monk in 
[6]. The original definition need not concern us here but exchange rings are 
characterized by the following: R is an exchange ring if given a G JR there exist 
b, ceR such that b = bab and c ( l - a ) ( l - b a ) = l-ba. It can be seen that this 
is equivalent to: If I and / are left ideals of R such that I+J = R, then there 
exists an idempotent eel such that Re + J = JR. (private communication from 
Goodearl to Monk). For any left ideal I not contained in J(R) there is a left 
ideal J^JR such that 1 + 7 = JR. Hence we see that an exchange ring is an 
HJI-ring. 
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The exact connection between HJI-rings and exchange rings is not clear. 
Our next result generalizes from the commutative case Theorem 3 of [6]. 

THEOREM 3.4. The following are equivalent for a ring R. 
(i) The Pierce stalks of R are local. 

(ii) R is an exchange ring all of whose indempotents are central. 

Proof. (ii)=^>(i). This follows from 3.1 (iii) since an exchange ring is an 
HJI-ring. (i)^(ii) . This follows since any local ring is an exchange ring and the 
characterization of exchange rings in terms of elements is one which lifts from 
the Pierce stalks to the ring by the "standard" Pierce sheaf argument. 

If R is a ring all of whose idempotents are central then the equivalence of 
"JR is an exchange ring" and "every element is the sum of a unit and an 
idempotent" was proved by Nicholson in [7, Proposition 1.8] using quite 
different techniques. However as we have seen the assumption that idempo­
tents be central is only necessary in the first statement. 
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