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Spaces of Whitney Functions on
Cantor-Type Sets

Bora Arslan, Alexander P. Goncharov and Mefharet Kocatepe

Abstract. 'We introduce the concept of logarithmic dimension of a compact set. In terms of this magni-
tude, the extension property and the diametral dimension of spaces E(K) can be described for Cantor-
type compact sets.

1 Introduction

We introduce a concept of logarithmic dimension as the following generalization of
the Hausdorff dimension: take the function ¢ (r) = @, r > 0, corresponding to

the logarithmic measure; then for any compact set K C R there exists a critical value
Ao = Ao(K) € [0, 00] (called the logarithmic dimension of K) such that for A < Ay
the 1)*-measure of K is 0o, for A > ), it is zero.

The aim of this article is to show that for the class £(K) of Whitney functions
defined on generalized Cantor sets the logarithmic dimension is highly suitable for
the investigation of the following two problems.

The problem of geometric characterization of the extension property of K (that
is the existence of a continuous linear extension operator L: E(K) — C*°(R")) was
posed by Mityagin [11, Section 8.5]. Some particular results were given by Stein
[16], Bierstone [2], Pawlucki and Plesniak [13] and others. In [17] Tidten suggested
to consider perfect sets of class («) (see [18], [6] for definition) and proved that the
condition K € (1) is sufficient for the extension property of K whereas “K € («a) for
some «” is necessary. In particular he showed that the classical Cantor set C (clearly
Ao(C) = 00) has the extension property. Here we show that the generalized Cantor
set K has the extension property if Ag(K) > 1 and it has not if Ao(K) < 1. Examples
of perfect sets of finite class without extension property can be given easily (compare
this with [6]).

On the other hand, the diametral dimension of the space £(K) in our case can be
described in terms of the logarithmic dimension of K (Chapter 4) and what is more,
we have complete (up to the case of equal logarithmic dimensions) isomorphic clas-
sification of given spaces €(K) (Theorem 3). Examples of continua of pairwise noni-
somorphic spaces of considered type appear directly (compare with [8]). It should be
noted that the diametral dimension can not be applied to distinguish nuclear spaces

of type C*°(2) or &(K) with K # @. In fact, all these spaces contain a subspace
which is isomorphic to the space s of rapidly decreasing sequences and thus their di-
ametral dimension I'(X) is not larger than I'(s) (see for example [11, Proposition 7]).
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On the other hand, the space s has the smallest diametral dimension in the class of
nuclear spaces and we get I'(X) = I'(s).

2 Logarithmic Dimension

We consider the following generalization of the Cantor ternary set. Let ([,){° be a
sequence of positive numbers and (N,,){° be a sequence of integers, N,, > 2 for all n.
Then K = K((I,),(N,)) = (2 En» where Eg = Iy = [0,1] and E,, n > 1,isa
union of N|N; - - - N, disjoint closed intervals I,  of length [, and E,,, is obtained by
replacing each interval by N, disjoint subintervals I,,;, ; of length [, with N;,;; — 1
gaps of length h,,.;. The intervals I, x that make up the set E,, are called basic intervals.
The set K is well-defined if for all n we have [,_; > N,l, with [, = 1. Then h, =
l’l\lln;_Nll We will restrict ourselves to the case l, < h,,, since otherwise K is uniformly
perfect and has the extension property.

Let «; = 1 and for n > 2 let o, satisfy I, = Io" . Forn > 2set \, = llzggl(\[
We will analyze two regular cases: N, = N forallnand N, / oo asn — oo. The
corresponding compact set of finite type will be denoted by Ky; K stands for the
infinite case. If in particular o, = av, n > 2, then we will write K& and K@,

Let us introduce a parameter which can be applied in classifying such rarefied sets
as K¢ ) Lety(r) = @, r > 0. Here and subsequently, log denotes the natural loga-

rithm, [x] denotes the greatest integer in x. For 0 < A < oo consider the ¢)*-measure
of a compact set K (see e.g. [12, V.6.2] or [3], [15]): let m (K, ") = inf > ¢ (r;)
where the greatest lower bound is taken over all covers | J B; of K by balls B; with
diam B; = r; < ¢ then m(K,¢") = lim._om.(K, ™). As in the definition of the
Hausdorff dimension (see e.g. [15, 10.1], [3, 1.2]) we see that there exists a criti-
cal value Ny = M(K), 0 < A¢ < o0, such that m(K,¢*) = oo for A < )¢ and
m(K,1*) = 0 for A > ). Since the function v corresponds to the logarithmic
measure we will say that the value )\ is the logarithmic dimension of K.

Proposition 1 Suppose that for K = K( (L), (Nn)) the limit \y = lim,, \,, exists in the
set of extended real numbers. Then )\, is the logarithmic dimension of K. In particular,
Mo(KY) = 153

loga*

Proof For A > )\ consider m,(K,4"). Notice that o, - 1. In fact, otherwise we
would have Ay = co. For € = I, we have the covering of K by N|N; - - - N,, intervals
I,  of length e. Thus

m(K, w)\) < NiN,---N, log—A (%) .

Since [, = I'*"“ and N,, = )" we get

1
m(K, ") < a ™t a M og ™ (l_) :
1

which tends to 0 as n — oo since A > lim )\, and o, - 1. Thus, m(K, ) = 0.
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Suppose now that A < Ag. Then we can modify the arguments in [3, 2.3]. For ¢ >
0 there exists a finite covering Uf\il U, of K by open intervals U;, diam U; = r; < 2¢
such that 3" 9 (r;) < 2m(K,4"). For each r; fix n = n(i) € Nwith [, < r; <1, ,.
Let ny = min;<p n(i), n; = max;<p n(i). To simplify calculations we set I, = 1/e.
Then
PA(ri) = (1) > (o - o) TN
Let € be so small that \,, > A\ for n > ny. Then
(- ay) = (o - ..ano_l)/\ . (0‘1/1\0 . ~-o¢,’1\)
)\?X
< (- ome—1)t - (o -+ - )

= (al o 'anofl))\ 'Nno o 'Nn-

We decompose the sum ) Y \(r;) into two parts. Let Z/ be the sum over all i such
thatl, <r < l;\,” ,and E” be the sum over the remaining 7’s. Since IN;‘ < l,+h,, for

any i in the sum 3", the interval U; can intersect at most two basic intervals of E,.. By
construction, it can intersect at most 2N,,,1 basic intervals of E4 15 - - 52Ny41 - - - Ny,
basic intervals of E,,,. Then

2N+ Ny < 2Ny -+ - Ny - (@ - ) -9 (1)

S 2Ny, - Ny, - (an -+ g™ - 9 ().

For i in the second sum Z”, fix j, j =1,2,...,N, — 1, such that Niln,l <rn<

%ln,l. Then the interval U; can intersect at most j + 2 basic intervals of E, and thus
(j +2)Np41 - - - Ny, basic intervals of E,, . Here

. —A
PAr) > (Lln—l> > (Oq <oy +log &> .
N, j

Iflog NT >aq--- oy, thenl <22 log’\(%)w’\(ri) < Cg%ﬂﬂ(n). Therefore
(j+2)Nps1 -+ Ny, < CYNuNyy1 -+ Ny th (1))
S CYNyy -+ Ny - (@ -+ 1) ().

On the other hand, if log NT <oq--au_q,thenl < 2Moy - - - ay_1) Y (17), there-
fore

(j+2)Nps1 - Npy < (N + DNy - Ny, (g -+ - 1) 2290 (1)

< 2N, - Ny (@ -+ 1) 9 ().
Thus any interval U;, i < M can intersect at most

C)\Nno e an (al e O‘no—l)/\w)\(ri)
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basic intervals of E,,,. Here C) = max{C}’, 2**1}. Since the covering | J U; intersects
all basic intervals of E,, , we have

Ni--N,, <C\N, - Ny (- .ano_l)A Z¢A(r,-)

and so
Z YAr) > CINjay 042:0—711_/\-

This bound implies that the sum of type >_ 1/*(r;) must be arbitrarily large for small
enough ¢, that is m(K, 1*) = oo.

In fact, for o, - 1 it is obvious as A, > A for large n. Clearly, ¢ — 0 gives
ny — oo. If a, — 1, then ™ =2 > 2 — 2.asn — o0 and the result follows.

|

The value Ay = 11is critical in Potential Theory: if A\o(K) < 1, then the logarithmic
measure of K is 0 and the set K is exceptional. We show that this bound is crucial as
well for the extension property of Cantor-type sets.

3 Extension Property

Let £(K) denote the space of Whitney functions on a perfect compact set K with the
topology defined by the norms

1£llg = flg+sup{|(RIAHV ()| |x—y[I T :x,y EK,x £y, j < q}, q=0,1,...,

where |f|, = sup{|fV(x)| : x € K,j < q} and R} f(x) = f(x) — T} f(x) is the
Taylor remainder. Each function f € £(K) is extendable to a C*°-function on the
line. If there exists a linear continuous extension operator L: E(K) — C*°(R), then
we say that the compact set K has the extension property. In [17] Tidten showed that
the extension property of K and the property DN of the space £(K) are equivalent.

A Fréchet space X with a fundamental system of seminorms (|| - ||) is said to have
the property DN [21] (see also the class D; in [23]) if

C
Apvq3nC >0y <tl-lp+ Il >0

Here p,q,r € Ng = {0,1,2,... }.

Proposition 2 For X = E(K), the following statements are equivalent to DN:
(@) 3p3IR>0VqIr,C:|- |, <R |, + t%|| At > 0;

(b) IpVe>0vgIr,C: |- <Cll- |,

Proof In [10, Lemma 29.10] and in [5] it was shown that DN is equivalent to the
conditions (a), (b) with || - ||; instead of | - |;. Frerick [4] and Tidten [19] proved that
we can replace || - [|; by | - |4

We first generalize Theorems 2 and 3 in [6].

Theorem 1 If lima, > N, then Ky does not have the extension property. If limay, <
N, then Ky has the extension property.
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Proof Let 3 be such that lima, > 3 > N and find iy such that o; > (3,1 > i,. Fix

0<e< % and M € N such that M > % We want to show
Wl Nfalls
| ful g

0 as n— oo.

Vp3edq:Vr>q3(f.) € E(Kn):

For arbitrary p € Nlet g = Mp. For any r > g take s € N with N* > é > N1, Fix

a natural number n, n > s + iy and consider first N* intervals of E,,.. Let c; denote the

midpoint of I, j, j = 1,2,...,N*. Set f,(x) = g1(x) where g(x) = Hlj\il(x — ¢;) for

x € Ky N [0,1,—;] and g(x) = 0 otherwise on Ky. Let us estimate the norms of f,,.
Fixke N,k < pandx e U7:1 I, j. By Lemma 1 in [6], we have

(1) 1P (x)] < Cprlgl))*

where C, , = (Ns'q)l)! < (N - r)? does not depend on n.

(Ns-q—k
By the structure of Ky we have |g(x)| < ,7N "' where 7 = [,_;/N ,--- "' Thus

2) fulp < Cp (N1,

Next we estimate

R P ()]
Ap = W, kﬁp,x#y,x,yEKN.

If [x — y| < hy, then x, y belong to the same I, ; for some j. Hence applying the
Lagrangian form for Taylor’s remainder we find { € I,, ; such that

(k) ) _ 7(p M
(RE ) = 17O = 1P 60T =

andso A, < 2C, (L, 7N"1)17P,
If |x — y| > h,, then by (1), (2)

i—k)!

l . TN*I p—k p 1 l . TN71 p—i
< . N=hya=p " " ]
=~ CP,r(ln T ) [( hn ) + ; (l — k)' ( hn )

Since I, - T™N~! < h, we get

P i
- i x—y|'?
I e DI e
i=k

A, <Cpr(1+e)l, - 7N=ha=r  and 1 fllp < Cpr(2+e)ly cpN=ha-p,
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Clearly

[fula = [F 9| = q! g’ ()] %

N I, N—1 I N’—N I N —N*!
’ s n— n— n—s
g(cl)|:Hj—2(cj_Cl)><N> <N> <N)

_ NS
_TN 1'N1 N.

Thus,
[fly 2 NN N0,

Analogously, || ful- < C..

Finally, we conclude for some D independent of # that

[T

[ fal™

i _ et s—1._ (N
_ Dl,(fils an—sr1)(q p)[l:‘n_—sl Qp—st1 l,(,:ﬁl;z n—ss1)N ‘lﬁl_s ] (N 1)(6q+p).

Let us now show that

w= (- aps1)(q — p)
—(N=1)(eq+ p)l(an—1--ansr1) + N(y—z - ysp1) + - + Ns_l]

which is the exponent of [,_, is positive and bounded away from zero. Indeed for
the expression in the square brackets we have

[l <an1aposr b <Oén"'01n_5+1-;=2W1,
= G-N= 3-N

therefore

w>w - [(B—=N)(q—p)— (N—1)(eg+p)]
=w -p-{M[B-—N—-e(N=-1)]—F+1}>w -p

due to the choice of M and e.
Sow > F ﬁ from which it follows that

i Wl Il _

h—0o0 ‘fnuﬂ

0.

Therefore the condition (b) is not fulfilled and the compact set Ky does not have the
extension property.

The second statement of the theorem can be proved quite similarly to Theorem 3
in [6], so we omit it. [ |

Corollary For a compact set Ky, let the limit o = lim «, exist and be not equal to N.
Then Ky has the extension property if and only if \o(Kyn) > 1.
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Remark The set KI(\? ), a > N, gives us an example of a perfect set of finite class
without extension property (for the definition and details see [18], [6]).

We now turn to the case N, co. The compact set K, loses its Cantor-type set
nature in the following sense: topologically the space E(K) is closer to the space
E(K) with K having the form of a sequence of intervals tending to a point than to
E(Ky). Compare the next statement with Theorem 2 in [7].

Theorem 2 The set K., has the extension property if and only if there exists a constant
M such that
I, > hf‘f ,  Vn.

Proof Assume the space £(K,) has the property DN. Let us fix p in the condi-
tion (b) of Proposition 2. For ¢ = 1 and g = p + 1 we find r and C such that (b) is
fulfilled.

Defining
PU
) = {a ifx € KN1[0,1,]

0 otherwise

we obtain the estimates
Ifulg = 1, M fullp <4luy ([ full, < 4RI

Now, Proposition 2 (b) gives 1 < 16C - I, - hi ", from which the necessity follows.
In order to prove the sufficiency we use a simplified version of Lemma 2 in [7]
(see also [8]):

Lemma Let K C R be a compact set containing r + 1 distinct points xo, X1, . . . , X, such
that for some h and a constant N
h<|xi—xj|<N-h, i,j=0,1,....r, i#j.
Then for all k < rand f € E(K),
[P0 <C ¥ flo+C- ¥ ]I,

where C depends only on r and N.
We will show that

C
3) 3pYa3nCi [y < CO |yt Sl 1> 0,
which is equivalent to (a) and hence to the property DN. The constant M here is the
same as the one in the statement of the theorem.

Let p = 0. Given g, let r = 2g. Let ny be such that

to =1/1,,—1. Givent > ty, find n > ng such that

Nu

> > rforn > ng. Let

1
I, < . <Ul_i.
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Let xo € K. Then xy € I,, ;, where without loss of generality we may assume that
1 < jo £ N,. Leta = a4 be the left endpoint of I, ,4;. Suppose that j, < NT
and co?sider the interval [xg, xo + %]. (If jo > %, then similar arguments apply to
[x0 — 2 xo].)

Case 1: % > a. Let ] be such that the interval [xg, xy + %] intersects J + 1 basic

intervals of the set E,. Then J > r due to the choice of t and Ef(l,1 +h,) < % <
2J(l, + hy), as is easy to check. Then S := []/r] > 1, the points x; = xo +iS(l, + h,,),
i=1,...,r,belong to K and for i # j, [x; — x;| > S(I, + h,) > ﬁ since [%] > 2_]r

for J > r. On the other hand, |x; — x;j| < rS(l, + h,) < %, so by the Lemma

|90 < C - 1M flo+C- I f]lr-

Case 2: 3. < a. Now we choose the points x;, i = 1,...,rin the interval I, ;, ina
similar way such that % < xi — x5 < % fori # j. Sincea = r(I, + h,) < 2rh, <
1
2r - 13", by the condition, we can apply the Lemma with h = % > (4r) M- =M
and h < (4rt)~ 1
[fOG) < C- M flo+C I f]lr

We have this estimate for any xy € K and k < g, thus (3) is proved. [ |

We observe that the logarithmic dimension is not related to the extension prop-
erty of compact sets Ko, of infinite type as seen by the following proposition and
example. But in the finite case we can use it as well for isomorphic classification of
corresponding spaces.

Proposition 3 If K, has the extension property, then \o(Koo) = 00.

Proof Iflima, < oo, then clearly lim, A\, = oco. So we consider the case of lima, =
o0o. By the previous theorem there is M > 1 such that [, > KM forall n. Let I = {n €
N:a, >2M}, J =N\ I Thenlim,c; A\, = co. Forn € I,

] L1
B/ =y <2Nghy S2NB/M = Sl <Ny = logN,

LN LI P AL log [ L) = &
“o\M " w, ) 8\ ) T am s "

_ logN, S log(I;!) Qo

= > — 00 asn — 00.
log o, 4M log avy

But the converse of the above proposition is not true as the following example shows:

Example 1 Letl, = exp(—n!) and N, = [#°8" + 1]. Then o, = nand \, > log n.
Thus A\g = co. But
L 1 1
> (N, — 1) 2 ogagr DT~ el — b M2 M0

for every € > 0 which means that K, does not have the extension property.
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4 Diametral Dimension of &(K)

Approximative and diametral dimensions, introduced by Kolmogorov [9], Petczynski
[14] and Bessaga, Pelczynski and Rolewicz [1], were the first linear topological invari-
ants applicable to isomorphic classification of nonnormed Fréchet spaces. We follow
the notation of [11].

Let X be a Fréchet space with a fundamental system of neighborhoods (U,), let
d,(Uy, Up) denote the n-th Kolmogorov diameter of U, with respect to U,,. Then

I'Xx) = {('Yn 1?0:0 2Vp3q: Y- dn(ULpUp) — Oasn — OO}
We will consider the counting function corresponding to the diametral dimension
B(t) = B(U,, Uy, t) = min{dimL:t-U, CU, +L}, t>0.

It is easy to see that 3(t) = [{n : d,(U,,U,) > }}|, where | Z| denotes the cardinality
of the set Z. If X is a Schwartz space and p, q are sufficiently apart, then the function
0 takes finite values. Clearly, the diametral dimension can be characterized in terms
of (3 in the following way.

Proposition 4 (v,) € I'(X) < Vpdq:YCIny : B(Uy, Uy, Cvy) < 1 forn > ny.

But we will directly compare asymptotic behavior of counting functions of iso-
morphic spaces. The proof of the following proposition is straightforward.

Proposition 5 If Fréchet spaces X and Y are isomorphic, then
vpl Hpvqaqla €>0: ﬁY(Vp”Vqlvet) S ﬁX(UlN Uq7t)a t > 0.

An analogous condition holds after interchanging Bx and By. Here (Vi)§° is a funda-
mental system of neighborhoods of Y.

Theorem3 LetX = E(K) withK = K((ln), (Nn)), let pand q, p < q be fixed natural
numbers. Ift < élﬁ_q, then B(U,,Uy,t) < (@ + )Ny --- Ny Ift > 5(q — p)! =4
then 3(U,,Ug,t) > Ny --- N,

Proof: Upper bound of 3 If for some subspace L we have t - U; C U, + L, then
B(t) < dimL. Let us fix n such that 5t < I57%. Set M = N ---N,,. In the union
E, = Ui\illﬂ,k let I,k = [ak, bi] briefly. For k = 1,2,...,Mand j = 0,1,...,q,
let e ;(x) = ("7]#)] ifx € KN1I,xand ¢ ;j(x) = 0 otherwise on K. We take L =
Span(ek,j)ii?_j:o. Then dimL = (g + 1)M and it is enough to show that for any
function f with || f||; < ¢ there exists a function ¢ € L such that || f —g]|, < 1. Given
fetUjletg = Zi\il Z?:O F9(ay) - exj. Clearly, if x € I, then (f — g)(x) =
R, f(x). Since |x — ar| < 1, we get

4) ((F =@ < fllg- |x—al™ <t 17, i<p.
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P(f_ o))
Letnow A, = W,x,y eK,x#y,i<p.
If x,y € I, for some k, then as in [7, p. 569] we can use the following represen-
tation

1 _ m
RE(f —g)(x) = RIf(x)+ Y (RLH™(y)- %

m=p+1

Therefore

| ‘mfi

ST

<fllg-le=yl"™ o=y 7P+ Z 1fllg -y — al™™ =

m=p+1

Here |x — y| < I,, hence A, <t -Ii~ P(1+E ,)<(e+1)t 1=r,
On the other hand, if the points x, y are 51tuated on different basic 1ntervals of E,,
then |x — y| > h, > I, by assumption. For this case

Ay < |(f =) - |x— y[i” P+Z|(f l)fy>l| I

From (4) it follows that A, < t - L7 +¢- 7730 . Thus, ||f — gll, <
t- 1777 (2 + e) < 1, by condition and this establishes the upper bound of (.

Lower bound of 5 In order to find a lower estimate for Kolmogorov diameters we
use the Tikhomirov theorem [20] (see also [11, Proposition 6]): ifd - U, N L C U,
with dim L = n + 1, then d,(U,, U,) > d.

Therefore, 5(t) > dimLif U, NL C (1 — )t - U, with some ¢y > 0. Let us
take L = Span(ekq)M1 and fix f = Eﬁilck “erg € LNU,. Since 1 > ||f][, >
[P (by)| > |Ck\ G we have |Ci| < (q — p)!5 " for all k. Let x € Iy k. Then

fOw)] < |Gl U 51 < g, hence |fly < (q — p) Y.

Ifx,y € Ik thenR 5 f(x) = 0. Otherwise, |[x—y| > h, > I, and arguing as before,
we obtain

(RO @) - [x =y~ < | FO@)] - b Z( %)' By

|Crl = [C| _
< (g—p)P—1 )
_1)l+;(m_l)| —(q P) ln (1+€)

T (q

If we take €y with 2 + e < 5(1 — ), then || f|; < (g9 — PNETI2+e) <t-(1—¢)
and G(t) > dimL = M. [ |

Now we can easily find the diametral dimension of £(K) for concrete compact set
. . __log2 .
K. In particular for classical Cantor set we have 3(U,, Uy, t) ~ t@»m3, that is the
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diametral dimension of £(K) is the same as I'(s). Here and subsequently, F ~ G
means that for some C, t;, we have

1 t
— — ) < < . .
CF (C) < G(t) <C-FCt), t>t

The most interesting case we have is for K = K. Let Ay denote as before the
logarithmic dimension of K.

Corollary 1 Let X = S(KI(\?)). Then 3(U,, Uy, t) ~ logA‘) t,t — 00.
Corollary 2 F(S(Kﬁ}}))) ={(y) : Y- exp(—n%) — O0asn — oo}

Corollary 3 If spaces of the type E(Kl(q“) ) are isomorphic, then the corresponding com-
pact sets have the same logarithmic dimension.

Corollary 4 If o < N, then the space E(K )) is isomorphic to a complemented sub-
space of s, but is not isomorphic to s.

Proof Corollary 1 is the result of a simple computation. Corollary 2 follows from
Proposition 4, and Corollary 3 does so from Proposition 5.

By definition, E(Kﬁ}”) is a quotient space of s. If @ < N, then according to Theo-
rem 1, the space E(K 1(\,“)) has the property DN. Thus, due to Vogt’s characterization
(see, e.g. [22]) it is a complemented subspace of s. But since F( 8(K](V“))) # I'(s), they
are not isomorphic.

5 Isomorphic Classification

First we shall generalize Corollary 3 to Theorem 3 for compact sets of finite type.

Let Ky = K( (1), N) , Ky = K( (L), M) . Without loss of generality we can take
I =Ly =1/e. Thenl, = exp(—ay - - ap), Ly = exp(—a -+ - a),).
Theorem 4 Let X = E(Ky), Y = E(Ky). Suppose that the corresponding limits

log N T log M
log av,” Ay = hmm_"x’ log a),

and are not equal. Then the spaces X and Y are not isomorphic.

Ax = lim,_, exist in the set of extended real numbers

Proof To be definite, assume that Ax < Ay. If Ax = 0, then o, — o0 and «], » <.
By Theorem 1 in [8], it follows that the space Y has the property DN (for definition
see e.g. [10]) whereas X does not. So they are not isomorphic.

Consider now the case 0 < Ay < Ay < o0. Suppose, contrary to our claim, that
X =~ Y. Then by Proposition 4, for p; = 0 there exists p € N such that forq = p +1
one can find q; € N, € > 0 with

By Vo, Vg, et) < Bx(Up, Upsr,t), t>0.
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Assume n and m are large enough and are such that
11 <« €1
(5) 5oL, < b

Then by taking t = 11! and using Theorem 3, we obtain

1
5
M" S ﬁY(VOqunet) S BX(U}‘M Up+lat) S (p +2)Nn

Set @ = limay, @' = lima). Clearly, 1 < «a, o’ < co. Take p > 0 with Ay =
(1 —2p)Ay and 6 > 0 such that

log(a — §) loga’

1—p.
log(a’ +46) loga P

For this 0 one can take ng, my such that |a,, — a| < 6, log 2531! < S5 forn > ng
and |a), — a’| < 8, m > my.

Let now
Cr = 1 oaray, (@ +0)™ _ logCy
172q1a{-~-a,’no (a—38)m " > logla’+46)’
_ _ log(ax — 9)
m=m(n) = |n log(a’ +9) +C, .
Then

(@’ +6)" < Ci(a—9)",

and so for n > ny, m > mg we get

qul' ’

(6) log +q1-0

/
c méal...an.

This is equivalent to (5) and so we have
M" < (p+2)N" or m-Ay-loga’ <log(p+2)+n-A\x-loga.

But this contradicts the choice of § and m(#n), as it is easy to check. Thus the spaces
X,Y are not isomorphic.

It remains to consider the case A/, — Ay = 00,0 < Ax < oo. Since (afn)Arln =M
for all m, we see that there exists mg such that o, < 1 + log;M
0 < a—1andforn > nylet a, > @ — §. As before the ineqyzlality (6) implies the
boundedness of .

If now ] - - -}, -» 00 as m — o0, then we have (6) for some n; and all m, a

for m > my. Let

contradiction. Otherwise let C; = 261;:”7”0""’ - (v —§)™. For (6), it is enough to have
1Oy
log2M\ ™™™
(7) Cs- <1+ ek ) < (a—d)".
)\m
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If now the sequence (m/\),) is bounded, then (7) is valid for an arbitrary m and some
fixed n which is a contradiction. If limy7 = oo, then we take large n, m withn — 1 <
2 log 2M m—my "

log(a—9) A

(nj) but the ratio 2 together with Afnj are unbounded. This contradiction completes
]

the proof. ]

< n. Here we have (7) and therefore (6) for some subsequences (),

The situation with compact sets of infinite type is much more complicated. By
similar arguments we can distinguish now the spaces corresponding to different

types. Let Koo = K((Lm)7(Mm)) , M, // 00, Ly = 1/e and hence as before

_ A / _ L1 —Mp-Ln
Ly =exp(—aj---«a,,). Set Hy,, = Y

Theorem5 LetX = E(K\"), Y = &(Kao) and assume the limit Ay = lim,,_, o log Mu,

log o/,
exists in the set of extended real numbers. Then the spaces X and Y are not isomorphic.

Proof We may assume that there exists a constant C; > 1, such that L,, > H,% , Vm.
Otherwise by Theorem 3 in [8] the space Y does not have the property DN and the
result follows. Then we get

1
Ly_1 <2M,, - L}

and

a/
(8) 2Mm2exp<a{~~~a,’ﬂ_l(’"l)).

Ci
Suppose that the spaces X, Y are isomorphic. Arguing as above, we see that if m and
n satisfy

25 - q;!
9) log—ql+q1~a{--~a,'ﬂ§a”
€

then
(10) MM, <(p+2)N".

Consider the case \y < oco. Here o/, — oo, with m — oo and M,, < (a/,)? for
large enough m. This contradicts (8).

Let now \y = co. If o, — 1, then we take m = n in (9) and obtain a contra-
diction in (10) as M,, ,/* ooc. It suffices to consider the case A\y = oo, o/, - 1. For

large m let us take n = C, + %, where C, is fixed such that n € N satisfies the
condition (9).

From (10) we deduce that

log N

(DM ()Y < (p+2)NC - (ol - o)) ) e

which is impossible as A/, — Ay = o0, ), - 1. [ |

Question Does the space £(K,) have a basis?

https://doi.org/10.4153/CJM-2002-007-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-007-3

238 Bora Arslan, Alexander P. Goncharov and Metharet Kocatepe
References

[1]  C.Bessaga, A. Pelczynski and S. Rolewicz, On Diametral approximative dimension and linear
homogeneity of F-spaces. Bull. Acad. Pol. Sci. 9(1961), 677-683.

[2]  E.Bierstone, Extension of Whitney-Fields from Subanalytic Sets. Invent. Math. 46(1978), 277-300.

[3] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications. John Wiley & Sons,
1990.

[4] L. Frerick, Extension operators for spaces of infinitely differentiable Whitney functions. Habilitation
thesis, 2001.

[5]  A.Goncharov, A compact set without Markov’s property but with an extension operator for
C*°-functions. Studia Math. (1) 119(1996), 27-35.

[6] , Perfect sets of finite class without the extension property. Studia Math. (2) 126(1997),
161-170.

[7]  A. Goncharov and M. Kocatepe, Isomorphic classification of the spaces of Whitney functions.
Michigan Math. J. 44(1997), 555-577.

[8] , A continuum of pairwise nonisomorphic spaces of Whitney functions on Cantor-type sets.
Linear Topol. Spaces Complex Anal. 3(1997), 57-64.

[9]  A.N.Kolmogorov, On the linear dimension of topological vector spaces. Dokl. Akad. Nauk SSSR
120(1958), 239-341 (Russian).

[10] R. Meise and D. Vogt, Introduction to functional analysis. Clarendon Press, Oxford, 1997.

[11] B.S. Mityagin, Approximate dimension and bases in nuclear spaces. Russian Math. Surveys (4)
16(1961), 59-127 (English translation).

[12] R. Nevanlinna, Analytic Functions. Springer-Verlag, Berlin-New York, 1970.

[13] W. Pawlucki and W. Ple$niak, Extension of C°° functions from sets with polynomial cusps. Studia
Math. 88(1988), 279-287.

[14] A. Pelczynski, On the approximation of S-spaces by finite dimensional spaces. Bull. Acad. Polon. Sci.
5(1957), 879—881.

[15] Ch. Pomerenke, Boundary Behavior of Conformal Maps. Springer-Verlag, Berlin-Heidelberg, 1992.

[16] E.M. Stein, Singular integrals and differentiability properties of functions. Princeton Univ. Press,
1970.

[17] M. Tidten, Fortsetzungen von C° -Funktionen, welche auf einer abgeschlossenen Menge in R definiert
sind. Manuscripta Math. 27(1979), 291-312.

[18] , Kriterien fiir die Existenz von Ausdehnungoperatoren zu E(K) fiir kompakte Teilmengen K
von R. Arch. Math. 40(1983), 73-81.

[19] , A geometric characterization for the property (DN) of E(K) for arbitrary compact subsets K
of R. Arch. Math. 77(2001), 247-252.

[20] V.M. Tikhomirov, On n-th diameters of compact sets. Dokl. Akad. Nauk SSSR (4) 130(1960),
734-737.

[21] D. Vogt, Characterisierung der Unterrdume von (s). Math. Z. 155(1977), 109-117.

[22] D. Vogt and M. J. Wagner, Characterisierung der Quotientriume von s und eine Vermutung von
Martineau. Studia Math. 67(1980), 225-240.

[23] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale’s

centers. Izv. Severo-Kavkaz. Nauchn. Centra Vyssh. Shkoly 4(1974), 62-64 (in Russian).

Bilkent University
Department of Mathematics
06533 Bilkent

Ankara

Turkey

email: barslan@firstlinux.net

goncha@fen.bilkent.edu.tr
kocatepe@fen.bilkent.edu.tr

https://doi.org/10.4153/CJM-2002-007-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-007-3

