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Spaces of Whitney Functions on
Cantor-Type Sets
Bora Arslan, Alexander P. Goncharov and Mefharet Kocatepe

Abstract. We introduce the concept of logarithmic dimension of a compact set. In terms of this magni-
tude, the extension property and the diametral dimension of spaces E(K) can be described for Cantor-
type compact sets.

1 Introduction

We introduce a concept of logarithmic dimension as the following generalization of
the Hausdorff dimension: take the function ψ(r) = 1

log 1
r
, r > 0, corresponding to

the logarithmic measure; then for any compact set K ⊂ R there exists a critical value
λ0 = λ0(K) ∈ [0,∞] (called the logarithmic dimension of K) such that for λ < λ0

the ψλ-measure of K is∞, for λ > λ0 it is zero.
The aim of this article is to show that for the class E(K) of Whitney functions

defined on generalized Cantor sets the logarithmic dimension is highly suitable for
the investigation of the following two problems.

The problem of geometric characterization of the extension property of K (that
is the existence of a continuous linear extension operator L : E(K) → C∞(Rn)) was
posed by Mityagin [11, Section 8.5]. Some particular results were given by Stein
[16], Bierstone [2], Pawłucki and Pleśniak [13] and others. In [17] Tidten suggested
to consider perfect sets of class (α) (see [18], [6] for definition) and proved that the
condition K ∈ (1) is sufficient for the extension property of K whereas “K ∈ (α) for
some α” is necessary. In particular he showed that the classical Cantor set C (clearly
λ0(C) = ∞) has the extension property. Here we show that the generalized Cantor
set K has the extension property if λ0(K) > 1 and it has not if λ0(K) < 1. Examples
of perfect sets of finite class without extension property can be given easily (compare
this with [6]).

On the other hand, the diametral dimension of the space E(K) in our case can be
described in terms of the logarithmic dimension of K (Chapter 4) and what is more,
we have complete (up to the case of equal logarithmic dimensions) isomorphic clas-
sification of given spaces E(K) (Theorem 3). Examples of continua of pairwise noni-
somorphic spaces of considered type appear directly (compare with [8]). It should be
noted that the diametral dimension can not be applied to distinguish nuclear spaces

of type C∞(Ω) or E(K) with
◦
K 6= ∅. In fact, all these spaces contain a subspace

which is isomorphic to the space s of rapidly decreasing sequences and thus their di-
ametral dimension Γ(X) is not larger than Γ(s) (see for example [11, Proposition 7]).
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On the other hand, the space s has the smallest diametral dimension in the class of
nuclear spaces and we get Γ(X) = Γ(s).

2 Logarithmic Dimension

We consider the following generalization of the Cantor ternary set. Let (ln)∞1 be a
sequence of positive numbers and (Nn)∞1 be a sequence of integers, Nn ≥ 2 for all n.
Then K = K

(
(ln), (Nn)

)
=
⋂∞

n=0 En, where E0 = I0,1 = [0, 1] and En, n ≥ 1, is a
union of N1N2 · · ·Nn disjoint closed intervals In,k of length ln and En+1 is obtained by
replacing each interval by Nn+1 disjoint subintervals In+1, j of length ln+1 with Nn+1−1
gaps of length hn+1. The intervals In,k that make up the set En are called basic intervals.
The set K is well-defined if for all n we have ln−1 > Nnln with l0 = 1. Then hn =
ln−1−Nnln

Nn−1 . We will restrict ourselves to the case ln ≤ hn, since otherwise K is uniformly
perfect and has the extension property.

Let α1 = 1 and for n ≥ 2 let αn satisfy ln = lαn
n−1. For n ≥ 2 set λn = log Nn

log αn
.

We will analyze two regular cases: Nn = N for all n and Nn ↗ ∞ as n → ∞. The
corresponding compact set of finite type will be denoted by KN ; K∞ stands for the
infinite case. If in particular αn = α, n ≥ 2, then we will write K(α)

N and K(α)
∞ .

Let us introduce a parameter which can be applied in classifying such rarefied sets
as K(α)

N . Let ψ(r) = 1
log 1

r
, r > 0. Here and subsequently, log denotes the natural loga-

rithm, [x] denotes the greatest integer in x. For 0 < λ <∞ consider the ψλ-measure
of a compact set K (see e.g. [12, V.6.2] or [3], [15]): let mε(K, ψλ) = inf

∑
ψλ(ri)

where the greatest lower bound is taken over all covers
⋃

Bi of K by balls Bi with
diam Bi = ri ≤ ε; then m(K, ψλ) = limε→0 mε(K, ψλ). As in the definition of the
Hausdorff dimension (see e.g. [15, 10.1], [3, 1.2]) we see that there exists a criti-
cal value λ0 = λ0(K), 0 ≤ λ0 ≤ ∞, such that m(K, ψλ) = ∞ for λ < λ0 and
m(K, ψλ) = 0 for λ > λ0. Since the function ψ corresponds to the logarithmic
measure we will say that the value λ0 is the logarithmic dimension of K.

Proposition 1 Suppose that for K = K
(

(ln), (Nn)
)

the limit λ0 = limn λn exists in the
set of extended real numbers. Then λ0 is the logarithmic dimension of K. In particular,
λ0(K(α)

N ) = log N
log α .

Proof For λ > λ0 consider mε(K, ψλ). Notice that αn 9 1. In fact, otherwise we
would have λ0 = ∞. For ε = ln we have the covering of K by N1N2 · · ·Nn intervals
In,k of length ε. Thus

mε(K, ψλ) ≤ N1N2 · · ·Nn log−λ
(

1

ln

)
.

Since ln = lα1α2···αn
1 and Nn = αλn

n we get

mε(K, ψλ) ≤ αλ1−λ
1 · · ·αλn−λ

n log−λ
(

1

l1

)
,

which tends to 0 as n→∞ since λ > limλn and αn 9 1. Thus, m(K, ψλ) = 0.
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Suppose now that λ < λ0. Then we can modify the arguments in [3, 2.3]. For ε >
0 there exists a finite covering

⋃M
i=1 Ui of K by open intervals Ui , diam Ui = ri < 2ε

such that
∑
ψλ(ri) ≤ 2mε(K, ψλ). For each ri fix n = n(i) ∈ N with ln ≤ ri < ln−1.

Let n0 = mini≤M n(i), n1 = maxi≤M n(i). To simplify calculations we set l1 = 1/e.
Then

ψλ(ri) ≥ ψλ(ln) ≥ (α1 · · ·αn)−λ.

Let ε be so small that λn > λ for n ≥ n0. Then

(α1 · · ·αn)λ = (α1 · · ·αn0−1)λ · (αλn0
· · ·αλn)

≤ (α1 · · ·αn0−1)λ · (αλn0
n0 · · ·αλn

n )

= (α1 · · ·αn0−1)λ · Nn0 · · ·Nn.

We decompose the sum
∑
ψλ(ri) into two parts. Let

∑ ′ be the sum over all i such

that ln ≤ ri <
ln−1

Nn
, and

∑ ′ ′ be the sum over the remaining i’s. Since ln−1

Nn
< ln+hn, for

any i in the sum
∑ ′, the interval Ui can intersect at most two basic intervals of En. By

construction, it can intersect at most 2Nn+1 basic intervals of En+1; · · · ; 2Nn+1 · · ·Nn1

basic intervals of En1 . Then

2Nn+1 · · ·Nn1 ≤ 2Nn+1 · · ·Nn1 · (α1 · · ·αn)λ · ψλ(ri)

≤ 2Nn0 · · ·Nn1 · (α1 · · ·αn0−1)λ · ψλ(ri).

For i in the second sum
∑ ′ ′, fix j, j = 1, 2, . . . ,Nn − 1, such that j

Nn
ln−1 ≤ ri <

j+1
Nn

ln−1. Then the interval Ui can intersect at most j + 2 basic intervals of En and thus
( j + 2)Nn+1 · · ·Nn1 basic intervals of En1 . Here

ψλ(ri) ≥ ψλ
(

j

Nn
ln−1

)
≥
(
α1 · · ·αn−1 + log

Nn

j

)−λ
.

If log Nn
j ≥ α1 · · ·αn−1, then 1 ≤ 2λ logλ( Nn

j )ψλ(ri) ≤ C ′λ
Nn

j ψ
λ(ri). Therefore

( j + 2)Nn+1 · · ·Nn1 ≤ C ′ ′λ NnNn+1 · · ·Nn1ψ
λ(ri)

≤ C ′ ′λ Nn0 · · ·Nn1 · (α1 · · ·αn0−1)λψλ(ri).

On the other hand, if log Nn
j < α1 · · ·αn−1, then 1 ≤ 2λ(α1 · · ·αn−1)λψλ(ri), there-

fore

( j + 2)Nn+1 · · ·Nn1 ≤ (Nn + 1)Nn+1 · · ·Nn1 (α1 · · ·αn−1)λ2λψλ(ri)

≤ 2λ+1Nn0 · · ·Nn1 (α1 · · ·αn0−1)λψλ(ri).

Thus any interval Ui , i ≤ M can intersect at most

CλNn0 · · ·Nn1 (α1 · · ·αn0−1)λψλ(ri)
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basic intervals of En1 . Here Cλ = max{C ′ ′λ , 2λ+1}. Since the covering
⋃

Ui intersects
all basic intervals of En1 , we have

N1 · · ·Nn1 ≤ CλNn0 · · ·Nn1 (α1 · · ·αn0−1)λ
∑

ψλ(ri)

and so ∑
ψλ(ri) ≥ C−1

λ N1α
λ2−λ
2 · · ·αλn0−1−λ

n0−1 .

This bound implies that the sum of type
∑
ψλ(ri) must be arbitrarily large for small

enough ε, that is m(K, ψλ) =∞.
In fact, for αn 9 1 it is obvious as λn > λ for large n. Clearly, ε → 0 gives

n0 → ∞. If αn → 1, then αλn−λ
n = Nn

αλn
≥ 2

αλn
→ 2 as n → ∞ and the result follows.

The value λ0 = 1 is critical in Potential Theory: if λ0(K) < 1, then the logarithmic
measure of K is 0 and the set K is exceptional. We show that this bound is crucial as
well for the extension property of Cantor-type sets.

3 Extension Property

Let E(K) denote the space of Whitney functions on a perfect compact set K with the
topology defined by the norms

‖ f ‖q = | f |q +sup{|(Rq
y f )( j)(x)|·|x− y| j−q : x, y ∈ K, x 6= y, j ≤ q}, q = 0, 1, . . . ,

where | f |q = sup{| f ( j)(x)| : x ∈ K, j ≤ q} and Rq
y f (x) = f (x) − Tq

y f (x) is the
Taylor remainder. Each function f ∈ E(K) is extendable to a C∞-function on the
line. If there exists a linear continuous extension operator L : E(K) → C∞(R), then
we say that the compact set K has the extension property. In [17] Tidten showed that
the extension property of K and the property DN of the space E(K) are equivalent.

A Fréchet space X with a fundamental system of seminorms (‖ · ‖q) is said to have
the property DN [21] (see also the class D1 in [23]) if

∃ p ∀q∃ r,C > 0 : ‖ · ‖q ≤ t‖ · ‖p +
C

t
‖ · ‖r, t > 0.

Here p, q, r ∈ N0 = {0, 1, 2, . . . }.
Proposition 2 For X = E(K), the following statements are equivalent to DN:

(a) ∃ p ∃R > 0∀q∃ r, C : | · |q ≤ tR·q‖ · ‖p + C
tq ‖ · ‖r, t > 0;

(b) ∃ p ∀ε > 0∀q∃ r, C : | · |1+ε
q ≤ C‖ · ‖p ‖ · ‖εr .

Proof In [10, Lemma 29.10] and in [5] it was shown that DN is equivalent to the
conditions (a), (b) with ‖ · ‖q instead of | · |q. Frerick [4] and Tidten [19] proved that
we can replace ‖ · ‖q by | · |q.

We first generalize Theorems 2 and 3 in [6].

Theorem 1 If limαn > N, then KN does not have the extension property. If limαn <
N, then KN has the extension property.
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Proof Let β be such that limαn > β > N and find i0 such that αi > β, i ≥ i0. Fix
0 < ε < β−N

2(N−1) and M ∈ N such that M ≥ 2β
β−N . We want to show

∀p ∃ ε∃ q : ∀r > q∃ ( fn) ∈ E(KN ) :
‖ fn‖p.‖ fn‖εr
| fn|1+ε

q

→ 0 as n→∞.

For arbitrary p ∈ N let q = M p. For any r > q take s ∈ N with N s ≥ r
q > N s−1. Fix

a natural number n, n ≥ s + i0 and consider first N s intervals of En. Let c j denote the
midpoint of In, j , j = 1, 2, . . . ,N s. Set fn(x) = gq(x) where g(x) = ΠN s

j=1(x − c j) for
x ∈ KN ∩ [0, ln−s] and g(x) = 0 otherwise on KN . Let us estimate the norms of fn.

Fix k ∈ N, k ≤ p and x ∈
⋃N s

j=1 In, j . By Lemma 1 in [6], we have

(1) | f (k)
n (x)| ≤ C p,r|g(x)|q−k

where C p,r = (N s·q)!
(N s·q−k)! < (N · r)p does not depend on n.

By the structure of KN we have |g(x)| < lnτN−1 where τ = ln−1lNn−2 · · · lN
s−1

n−s . Thus

(2) | fn|p ≤ C p,r(lnτ
N−1)q−p.

Next we estimate

Ap :=
|(Rp

x fn)(k)(y)|
|x − y|p−k

, k ≤ p, x 6= y, x, y ∈ KN .

If |x − y| < hn, then x, y belong to the same In, j for some j. Hence applying the
Lagrangian form for Taylor’s remainder we find ξ ∈ In, j such that

(Rp
x fn)(k)(y) = [ f (p)(ξ)− f (p)(x)]

(y − x)p−k

(p − k)!

and so Ap ≤ 2C p,r(lnτN−1)q−p.
If |x − y| ≥ hn, then by (1), (2)

Ap ≤ | f (k)
n (y)| · |x − y|k−p +

p∑
i=k

| f (i)
n (x)| · |x − y|i−p

(i − k)!

≤ C p,r(ln · τN−1)q−p

[(
ln · τN−1

hn

)p−k

+

p∑
i=k

1

(i − k)!

(
ln · τN−1

hn

)p−i
]
.

Since ln · τN−1 < hn we get

Ap ≤ C p,r(1 + e)(ln · τN−1)q−p and ‖ f ‖p ≤ C p,r(2 + e)(ln · τN−1)q−p.
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Clearly

| fn|q ≥ | f (q)(c1)| = q! |g ′(c1)|q;

|g ′(c1)| = ΠN s

j=2(c j − c1) >

(
ln−1

N

)N−1

·
(

ln−2

N

)N2−N

· · ·
(

ln−s

N

)N s−N s−1

= τN−1 · N1−N s

.

Thus,
| fn|q ≥ q! N−r·N · τ (N−1)q.

Analogously, ‖ fn‖r ≤ Cr.
Finally, we conclude for some D independent of n that

‖ fn‖p ‖ fn‖εr
| fn|1+ε

q

≤ Dlq−p
n τ−(N−1)(εq+p)

= Dl(αn···αn−s+1)(q−p)
n−s [lαn−1···αn−s+1

n−s l(αn−2···αn−s+1)N
n−s · · · lN

s−1

n−s ]−(N−1)(εq+p).

Let us now show that

w := (αn · · ·αn−s+1)(q− p)

− (N − 1)(εq + p)[(αn−1 · · ·αn−s+1) + N(αn−2 · · ·αn−s+1) + · · · + N s−1]

which is the exponent of ln−s, is positive and bounded away from zero. Indeed for
the expression in the square brackets we have

[· · · ] ≤ αn−1 · · ·αn−s+1 ·
β

β − N
≤ αn · · ·αn−s+1 ·

1

β − N
=: w1,

therefore

w ≥ w1 · [(β − N)(q− p)− (N − 1)(εq + p)]

= w1 · p · {M[β − N − ε(N − 1)]− β + 1} ≥ w1 · p

due to the choice of M and ε.
So w ≥ βs p

β−N from which it follows that

lim
n→∞

‖ fn‖p ‖ fn‖εr
| fn|1+ε

q

= 0.

Therefore the condition (b) is not fulfilled and the compact set KN does not have the
extension property.

The second statement of the theorem can be proved quite similarly to Theorem 3
in [6], so we omit it.

Corollary For a compact set KN , let the limit α = limαn exist and be not equal to N.
Then KN has the extension property if and only if λ0(KN ) > 1.
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Remark The set K(α)
N , α > N, gives us an example of a perfect set of finite class

without extension property (for the definition and details see [18], [6]).
We now turn to the case Nn ↗ ∞. The compact set K∞ loses its Cantor-type set

nature in the following sense: topologically the space E(K∞) is closer to the space
E(K) with K having the form of a sequence of intervals tending to a point than to
E(KN ). Compare the next statement with Theorem 2 in [7].

Theorem 2 The set K∞ has the extension property if and only if there exists a constant
M such that

ln ≥ hM
n , ∀n.

Proof Assume the space E(K∞) has the property DN. Let us fix p in the condi-
tion (b) of Proposition 2. For ε = 1 and q = p + 1 we find r and C such that (b) is
fulfilled.

Defining

fn(x) =

{
xq

q! if x ∈ K ∩ [0, ln]

0 otherwise

we obtain the estimates

| fn|q ≥ 1, ‖ fn‖p ≤ 4ln, ‖ fn‖r ≤ 4hq−r
n .

Now, Proposition 2 (b) gives 1 ≤ 16C · ln · hq−r
n , from which the necessity follows.

In order to prove the sufficiency we use a simplified version of Lemma 2 in [7]
(see also [8]):

Lemma Let K ⊂ R be a compact set containing r + 1 distinct points x0, x1, . . . , xr such
that for some h and a constant N

h ≤ |xi − x j | ≤ N · h, i, j = 0, 1, . . . , r, i 6= j.

Then for all k ≤ r and f ∈ E(K),

| f (k)(x0)| ≤ C · h−k| f |0 + C · hr−k‖ f ‖r,

where C depends only on r and N.

We will show that

(3) ∃ p ∀q∃ r,C : | · |q ≤ CtMq · ‖ · ‖p +
C

tq
‖ · ‖r, t > 0,

which is equivalent to (a) and hence to the property DN. The constant M here is the
same as the one in the statement of the theorem.

Let p = 0. Given q, let r = 2q. Let n0 be such that Nn
2 ≥ r for n ≥ n0. Let

t0 = 1/ln0−1. Given t ≥ t0, find n ≥ n0 such that

ln <
1

t
≤ ln−1.
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Let x0 ∈ K. Then x0 ∈ In, j0 where without loss of generality we may assume that
1 ≤ j0 ≤ Nn. Let a = an,r+1 be the left endpoint of In,r+1. Suppose that j0 ≤ Nn

2

and consider the interval [x0, x0 + 1
2t ]. (If j0 >

Nn
2 , then similar arguments apply to

[x0 − 1
2t , x0].)

Case 1: 1
2t ≥ a. Let J be such that the interval [x0, x0 + 1

2t ] intersects J + 1 basic
intervals of the set En. Then J ≥ r due to the choice of t and J

2 (ln + hn) < 1
2t <

2 J(ln + hn), as is easy to check. Then S := [ J/r] ≥ 1, the points xi = x0 + iS(ln + hn),
i = 1, . . . , r, belong to K and for i 6= j, |xi − x j | ≥ S(ln + hn) > 1

8rt since [ J
r ] > J

2r
for J ≥ r. On the other hand, |xi − x j | ≤ rS(ln + hn) < 1

t , so by the Lemma

| f (k)(x0)| ≤ C · tk| f |0 + C · tk−r‖ f ‖r.

Case 2: 1
2t < a. Now we choose the points xi , i = 1, . . . , r in the interval In, j0 in a

similar way such that ln
4r ≤ |xi − x j | ≤ ln

2 for i 6= j. Since a = r(ln + hn) ≤ 2rhn ≤
2r · l

1
M
n , by the condition, we can apply the Lemma with h = ln

4r > (4r)−M−1 · t−M

and h < (4rt)−1:
| f (k)(x0)| ≤ C · tk·M | f |0 + C · tk−r‖ f ‖r.

We have this estimate for any x0 ∈ K and k ≤ q, thus (3) is proved.

We observe that the logarithmic dimension is not related to the extension prop-
erty of compact sets K∞ of infinite type as seen by the following proposition and
example. But in the finite case we can use it as well for isomorphic classification of
corresponding spaces.

Proposition 3 If K∞ has the extension property, then λ0(K∞) =∞.

Proof If limαn <∞, then clearly limn λn =∞. So we consider the case of limαn =
∞. By the previous theorem there is M ≥ 1 such that ln ≥ hM

n for all n. Let I = {n ∈
N : αn ≥ 2M}, J = N \ I. Then limn∈ J λn =∞. For n ∈ I,

l1/αn
n = ln−1 ≤ 2Nnhn ≤ 2Nnl1/M

n ⇒ 1

2
l

1
αn
− 1

M
n ≤ Nn ⇒ log Nn

≥ 1

2

(
1

M
− 1

αn

)
log

(
1

ln

)
≥ 1

4M
αn · · ·α2 log

(
1

l1

)
⇒ λn

=
log Nn

logαn
≥ log(l−1

1 )

4M
· αn · · ·α2

logαn
→∞ as n→∞.

But the converse of the above proposition is not true as the following example shows:

Example 1 Let ln = exp(−n!) and Nn = [nlog n + 1]. Then αn = n and λn ≥ log n.
Thus λ0 =∞. But

hn >
ln−1

e · (Nn − 1)
≥ 1

nlog ne(n−1)!+1
>

1

eε·n!
= lεn, n ≥ n0

for every ε > 0 which means that K∞ does not have the extension property.
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4 Diametral Dimension of E(K)

Approximative and diametral dimensions, introduced by Kolmogorov [9], Pełczyński
[14] and Bessaga, Pełczyński and Rolewicz [1], were the first linear topological invari-
ants applicable to isomorphic classification of nonnormed Fréchet spaces. We follow
the notation of [11].

Let X be a Fréchet space with a fundamental system of neighborhoods (Uq), let
dn(Uq,U p) denote the n-th Kolmogorov diameter of Uq with respect to U p. Then

Γ(X) = {(γn)∞n=0 : ∀p ∃ q : γn · dn(Uq,U p)→ 0 as n→∞}.

We will consider the counting function corresponding to the diametral dimension

β(t) = β(U p,Uq, t) = min{dim L : t ·Uq ⊂ U p + L}, t > 0.

It is easy to see that β(t) = |{n : dn(Uq,U p) > 1
t }|, where |Z| denotes the cardinality

of the set Z. If X is a Schwartz space and p, q are sufficiently apart, then the function
β takes finite values. Clearly, the diametral dimension can be characterized in terms
of β in the following way.

Proposition 4 (γn) ∈ Γ(X)⇔ ∀p ∃ q : ∀C ∃ n0 : β(U p,Uq,Cγn) ≤ n for n ≥ n0.

But we will directly compare asymptotic behavior of counting functions of iso-
morphic spaces. The proof of the following proposition is straightforward.

Proposition 5 If Fréchet spaces X and Y are isomorphic, then

∀p1 ∃ p ∀q∃ q1, ε > 0 : βY (V p1 ,Vq1 , εt) ≤ βX(U p,Uq, t), t > 0.

An analogous condition holds after interchanging βX and βY . Here (Vk)∞0 is a funda-
mental system of neighborhoods of Y .

Theorem 3 Let X = E(K) with K = K
(

(ln), (Nn)
)

, let p and q, p < q be fixed natural

numbers. If t ≤ 1
5 lp−q

n , then β(U p,Uq, t) ≤ (q + 1)N1 · · ·Nn. If t ≥ 5(q − p)! lp−q
n ,

then β(U p,Uq, t) ≥ N1 · · ·Nn.

Proof: Upper bound of β If for some subspace L we have t · Uq ⊂ U p + L, then

β(t) ≤ dim L. Let us fix n such that 5t ≤ lp−q
n . Set M = N1 · · ·Nn. In the union

En =
⋃M

k=1 In,k let In,k = [ak, bk] briefly. For k = 1, 2, . . . ,M and j = 0, 1, . . . , q,

let ek, j(x) = (x−ak) j

j! if x ∈ K ∩ In,k and ek, j(x) = 0 otherwise on K. We take L =

Span(ek, j)
M,q
k=1, j=0. Then dim L = (q + 1)M and it is enough to show that for any

function f with ‖ f ‖q ≤ t there exists a function g ∈ L such that ‖ f −g‖p ≤ 1. Given

f ∈ tUq let g =
∑M

k=1

∑q
j=0 f ( j)(ak) · ek, j . Clearly, if x ∈ In,k, then ( f − g)(x) =

Rq
ak f (x). Since |x − ak| ≤ ln we get

(4) |( f − g)(i)(x)| ≤ ‖ f ‖q · |x − ak|q−i ≤ t · lq−i
n , i ≤ p.
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Let now Ap =
|(Rp

y ( f−g))(i)(x)|
|x−y|p−i , x, y ∈ K, x 6= y, i ≤ p.

If x, y ∈ In,k for some k, then as in [7, p. 569] we can use the following represen-
tation

Rp
y ( f − g)(x) = Rq

y f (x) +

q∑
m=p+1

(Rq
ak

f )(m)(y) · (x − y)m

m!
.

Therefore

Ap ≤ ‖ f ‖q · |x− y|q−i · |x− y|i−p +

q∑
m=p+1

‖ f ‖q · |y− ak|q−m · |x − y|m−i

(m− i)!
· |x− y|i−p.

Here |x − y| ≤ ln, hence Ap ≤ t · lq−p
n (1 +

∑ 1
(m−i)! ) < (e + 1)t · lq−p

n .
On the other hand, if the points x, y are situated on different basic intervals of En,

then |x − y| ≥ hn ≥ ln by assumption. For this case

Ap ≤ |( f − g)(i)(x)| · |x − y|i−p +

p∑
m=i

|( f − g)(m)(y)|
(m− i)!

|x − y|m−i+i−p.

From (4) it follows that Ap ≤ t · lq−p
n + t · lq−p

n
∑p

m=i
1

(m−i)! . Thus, ‖ f − g‖p ≤
t · lq−p

n (2 + e) < 1, by condition and this establishes the upper bound of β.

Lower bound of β In order to find a lower estimate for Kolmogorov diameters we
use the Tikhomirov theorem [20] (see also [11, Proposition 6]): if d ·U p ∩ L ⊂ Uq

with dim L = n + 1, then dn(Uq,U p) ≥ d.
Therefore, β(t) ≥ dim L if U p ∩ L ⊂ (1 − ε0)t · Uq with some ε0 > 0. Let us

take L = Span(ek,q)M
k=1 and fix f =

∑M
k=1 Ck · ek,q ∈ L ∩ U p. Since 1 ≥ ‖ f ‖p ≥

| f (p)(bk)| ≥ |Ck| lq−p
n

(q−p)! , we have |Ck| ≤ (q − p)! lp−q
n for all k. Let x ∈ In,k. Then

| f (i)(x)| ≤ |Ck| lq−i
n

(q−i)! , i ≤ q, hence | f |q ≤ (q− p)! lp−q
n .

If x, y ∈ In.k then Rq
y f (x) = 0. Otherwise, |x− y| ≥ hn ≥ ln and arguing as before,

we obtain

|(Rq
y f )(i)(x)| · |x − y|i−q ≤ | f (i)(x)| · hi−q

n +

q∑
m=i

f (m)(y)

(m− i)!
hm−q

n

≤ |Ck|
(q− i)!

+

q∑
m=i

|Ck1 |
(m− i)!

≤ (q− p)! lp−q
n (1 + e).

If we take ε0 with 2 + e < 5(1− ε0), then ‖ f ‖q ≤ (q− p)! lp−q
n (2 + e) < t · (1− ε0)

and β(t) ≥ dim L = M.

Now we can easily find the diametral dimension of E(K) for concrete compact set

K. In particular for classical Cantor set we have β(U p,Uq, t) ∼ t
log 2

(q−p) log 3 , that is the
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diametral dimension of E(K) is the same as Γ(s). Here and subsequently, F ∼ G
means that for some C , t0 we have

1

C
F
( t

C

)
≤ G(t) ≤ C · F(Ct), t > t0.

The most interesting case we have is for K = K(α)
N . Let λ0 denote as before the

logarithmic dimension of K.

Corollary 1 Let X = E(K(α)
N ). Then β(U p,Uq, t) ∼ logλ0 t, t →∞.

Corollary 2 Γ
(
E(K(α)

N )
)

= {(γn) : γn · exp(−n
1
λ0 )→ 0 as n→∞}.

Corollary 3 If spaces of the type E(K(α)
N ) are isomorphic, then the corresponding com-

pact sets have the same logarithmic dimension.

Corollary 4 If α < N, then the space E(K(α)
N ) is isomorphic to a complemented sub-

space of s, but is not isomorphic to s.

Proof Corollary 1 is the result of a simple computation. Corollary 2 follows from
Proposition 4, and Corollary 3 does so from Proposition 5.

By definition, E(K(α)
N ) is a quotient space of s. If α < N, then according to Theo-

rem 1, the space E(K(α)
N ) has the property DN. Thus, due to Vogt’s characterization

(see, e.g. [22]) it is a complemented subspace of s. But since Γ
(
E(K(α)

N )
)
6= Γ(s), they

are not isomorphic.

5 Isomorphic Classification

First we shall generalize Corollary 3 to Theorem 3 for compact sets of finite type.
Let KN = K

(
(ln),N

)
, KM = K

(
(Lm),M

)
. Without loss of generality we can take

l1 = L1 = 1/e. Then ln = exp(−α1 · · ·αn), Lm = exp(−α ′1 · · ·α ′m).

Theorem 4 Let X = E(KN ), Y = E(KM). Suppose that the corresponding limits
λX = limn→∞

log N
log αn

, λY = limm→∞
log M
log α ′m

exist in the set of extended real numbers

and are not equal. Then the spaces X and Y are not isomorphic.

Proof To be definite, assume that λX < λY . If λX = 0, then αn →∞ and α ′n 9∞.
By Theorem 1 in [8], it follows that the space Y has the property DN (for definition
see e.g. [10]) whereas X does not. So they are not isomorphic.

Consider now the case 0 < λX < λY < ∞. Suppose, contrary to our claim, that
X ' Y . Then by Proposition 4, for p1 = 0 there exists p ∈ N such that for q = p + 1
one can find q1 ∈ N, ε > 0 with

βY (V0,Vq1 , εt) ≤ βX(U p,U p+1, t), t > 0.
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Assume n and m are large enough and are such that

(5) 5 · q1! L−q1
m ≤ ε

5
l−1
n .

Then by taking t = 1
5 l−1

n and using Theorem 3, we obtain

Mm ≤ βY (V0,Vq1 , εt) ≤ βX(U p,U p+1, t) ≤ (p + 2)Nn.

Set α = limαn, α ′ = limα ′n. Clearly, 1 < α, α ′ < ∞. Take ρ > 0 with λX =
(1− 2ρ)λY and δ > 0 such that

log(α− δ)

log(α ′ + δ)
· logα ′

logα
> 1− ρ.

For this δ one can take n0, m0 such that |αn − α| < δ, log 25q1!
ε ≤

α1···αn
2 for n ≥ n0

and |α ′m − α ′| < δ, m ≥ m0.
Let now

C1 =
1

2q1

α1 · · ·αn0

α ′1 · · ·α ′m0

(α ′ + δ)m0

(α− δ)n0
, C2 =

log C1

log(α ′ + δ)
,

m = m(n) =
[

n · log(α− δ)

log(α ′ + δ)
+ C2

]
.

Then
(α ′ + δ)m ≤ C1(α− δ)n,

and so for n ≥ n0, m ≥ m0 we get

(6) log
25 · q1!

ε
+ q1 · α ′1 · · ·α ′m ≤ α1 · · ·αn.

This is equivalent to (5) and so we have

Mm ≤ (p + 2)Nn or m · λY · logα ′ ≤ log(p + 2) + n · λX · logα.

But this contradicts the choice of δ and m(n), as it is easy to check. Thus the spaces
X,Y are not isomorphic.

It remains to consider the case λ ′m → λY =∞, 0 < λX <∞. Since (α ′m)λ
′
m = M

for all m, we see that there exists m0 such that α ′m < 1 + log 2M
λ ′m

for m ≥ m0. Let

δ < α − 1 and for n ≥ n0 let αn ≥ α − δ. As before the inequality (6) implies the
boundedness of m

n .
If now α ′1 · · ·α ′m 9 ∞ as m → ∞, then we have (6) for some n1 and all m, a

contradiction. Otherwise let C3 =
2q1α

′
1 ···α

′
m0

α1···αn0
· (α− δ)n0 . For (6), it is enough to have

(7) C3 ·
(

1 +
log 2M

λ ′m

)m−m0

≤ (α− δ)n.
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If now the sequence (m/λ ′m) is bounded, then (7) is valid for an arbitrary m and some
fixed n which is a contradiction. If lim m

λ ′m
=∞, then we take large n, m with n− 1 <

2 log 2M
log(α−δ) ·

m−m0
λ ′m
≤ n. Here we have (7) and therefore (6) for some subsequences (m j),

(n j) but the ratio
m j

n j
together with λ ′m j

are unbounded. This contradiction completes

the proof.

The situation with compact sets of infinite type is much more complicated. By
similar arguments we can distinguish now the spaces corresponding to different
types. Let K∞ = K

(
(Lm), (Mm)

)
, Mm ↗ ∞, L1 = 1/e and hence as before

Lm = exp(−α ′1 · · ·α ′m). Set Hm = Lm−1−Mm·Lm

Mm−1 .

Theorem 5 Let X = E(K(α)
N ), Y = E(K∞) and assume the limit λY = limm→∞

log Mm

log α ′m
exists in the set of extended real numbers. Then the spaces X and Y are not isomorphic.

Proof We may assume that there exists a constant C1 ≥ 1, such that Lm ≥ HC1
m , ∀m.

Otherwise by Theorem 3 in [8] the space Y does not have the property DN and the
result follows. Then we get

Lm−1 < 2Mm · L
1

C1
m

and

(8) 2Mm ≥ exp

(
α ′1 · · ·α ′m−1

( α ′m
C1
− 1
))

.

Suppose that the spaces X, Y are isomorphic. Arguing as above, we see that if m and
n satisfy

(9) log
25 · q1!

ε
+ q1 · α ′1 · · ·α ′m ≤ αn

then

(10) M1 · · ·Mm ≤ (p + 2)Nn.

Consider the case λY < ∞. Here α ′m → ∞, with m → ∞ and Mm < (α ′m)2λY for
large enough m. This contradicts (8).

Let now λY = ∞. If α ′m → 1, then we take m = n in (9) and obtain a contra-
diction in (10) as Mm ↗ ∞. It suffices to consider the case λY = ∞, α ′m 9 1. For

large m let us take n = C2 + log(α ′1 ···α
′
m)

log α , where C2 is fixed such that n ∈ N satisfies the
condition (9).

From (10) we deduce that

(α ′1)λ
′
1 · · · (α ′m)λ

′
m ≤ (p + 2)NC2 · (α ′1 · · ·α ′m)

log N
log α ,

which is impossible as λ ′m → λY =∞, α ′m 9 1.

Question Does the space E(K∞) have a basis?
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