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AND FINITE DEPTH ON THE DISTRIBUTION OF SOLAR 
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ABSTRACT. It is shown that anisotropic scattering with a strong forward peak can give reasonable agree­
ment with angular reflectance data for snow. As a result of the forward peak, solar radiation penetrates 
deeper into the medium, when measured in terms of photon mean free paths, than it does for isotropic 
scattering. The radiation transmitted directly through finite slabs can be seen to an optical depth of scven, 
and dccreases much more rapidly with optical depth than does the diffusely transmitted (scattered) radiation. 

REsuME. L'4Jet de la distribution aliatoire anisotrope et a profondeur limitee de la radiation solaire dans la neige. 
On montre que la dispersion aleatoire anisotrope du rayonnement avcc un fort maximum dans le prolonge­
ment de la direction des rayom incidents peut ctre en accorci raisonnable avec lcs donnees connues sur la 
reflectance angulaire cians la neige. Conlormement au maximum de pene tration constate dans la direction 
d'incidence, la radiation solaire penetre plus profonciement dans Ic milieu quand elle est mesuree en chemin 
moyen libre de photon, qu'clle ne le ferait pour une dispersion aleatoire. La radiation transmise directemcnt 
a travers des plaques finics peut ctrc vue jusqu'a une prolondeur optique de sept, et decroit beaucoup plus 
rapidement que ne fait la radiation transmisc par diffusion (au hasard). 

ZUSAMMENf'ASSUNG. Der Einj/~ss von anisotroper Strel/ung und endlicher Tiife atif die Verteilung der SOImenstrahlung 
in Sclmet. Es wird gezeigt, dass die Annahme anisotroper Streuung mit eincr ausgepragten, nach vorwarts 
gerichteten Spitze in annehmbarcr Obereinstimmung mi~ den Werten der richtungsabhangigen Reflcxion 
von Schnec steht. Inlolge der gerichtetcn Strcuung dringt Sonnenstrahlung, gemessen durch die Lange der 
mittleren freien Photonenbahnen, tiefer in das Medium ein als bei isotroper Streuung. Die Strahlung, die 
direkt durch Scheiben endlicher Dickc dringt, kann bis zu ciner optischen Tiefe von siebcn wahrgenommcn 
werden und nimmt vie! schnellcr ab als dic sich diffus ausbreitende (ges treute) Strahlung. 

INTRODUCTION 

In a previous paper by one of the authors (Barkstrom, '972, hereafter referred to as paper 
I) it was shown that multiple scattering in snow could be modelled with considerable success 
by solving the phenomenological equation of transfer with isotropic scattering. However, as 
Middleton and Mungall (1952 ) and Salomonson and Marlatt ( 1968) have shown, the light 
"reflected" from snow is directed in the forward scattering direction, particularly for low solar 
altitudes. This phenomenon cannot be explained by isotropic scattering. The purpose of this 
paper is to refine the results in I by modelling the optical properties of snow including the 
effects of anisotropic scattering in finite layers . In this model the tl·ansport equation is solved 
by an algorithm that gives the optical properties of a multiply scattering layer composed of 
two stacked layers of known properties. With this algorithm it is possible to infer a phase 
function that will result in a layer whose surface albedo and angular reflectance is in good 
accord with experimental measurements . The modelling procedure is sufficiently general 
that vertically inhomogeneous layers can be constructed which closely simulate stratified 
layers with different scattering properties. Moreover, the reflectance properties of the 
"ground" underlying the "snow" layer can be realistically included. 

Numerical results of the modelling procedure are given that compare well with Middleton 
and Mungall 's ( 1952) measurements on " new snow fall en in calm". The computations 
indicate that inclusion of anisotropy causes the flux divergence to maximize deeper in the 
snow than for isotropic scattering (in terms of optical depth) and that layers of optical depth 
less than five will exhibit a flux "extinction coefficient" three to five times that observed 
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deep within "semi-infinite" layers (for the same extinction coefficient). The success of the 
anisotropically scattering model in predicting layer albedo and angular surface reflectance 
for the above snow suggests that it would be both possible and useful to characterize other 
types of snow layers by "effective" phase functions. Although no simple ana1ytic procedures 
are found for deducing these phase functions, they are readily formed by comparing observa­
tions of surface albedo and angular reflectance with the results of calculations. A physical 
theory for the phase function will be found elsewhere (Bohren and Barkstrom, 1974). 

FORMULATION OF THE PROBLEM 

In paper I the equation of transfer, equation (1-1 I) was solved with an isotropic phase 
function, equation (1-14), to obtain an analytic expression for specific intensity (spectral 
radiance) 1( T, p., 4» within and at the surface of a vertically semi-infinite medium. In this 
paper we use an alternate, but equivalent, method of solving the transfer equation to obtain 
the specific intensities within and emerging from the top and bottom of a laterally infinite, but 
vertically finite, plane-parallel slab containing anisotropic scatterers. The method of solution 
is sufficiently general that a wide variety of scatterers can be incorporated in the slab, so that 
realistic, vertically inhomogeneous slabs such as snow packs can be modelled fairly easily. 
The solution algorithm is well known in the study of stellar and planetary atmospheres, but 
because it is less well known elsewhere and because it appears to be a useful tool in charac­
terizing the optical properties of snow, the algorithm is discussed in some detail in the text 
and in the Appendix. 

As in paper I, 1( T, p., 4» is the specific intensity of radiation in a laterally infinite, plane­
parallel slab at an optical depth T travelling in the direction specified by the azimuth 4> and 
the cosine of the polar angle p. = cos 8 where 8 is measured from the downward normal to 
the slab. The optical depth is the dimensionless product T = Xd of the volume extinction 
coefficient X and the vertical distance d. It is measured downward from the top of the slab. 
It is convenient to set p. = Icos 81 and explicitly prefix p. with the proper sign so that +p. 
denotes radiation travelling downward and -p. denotes radiation travelling upward. It is 
usual (but not necessary) to assume that no sources are present within the slab so that the only 
radiation sources are the intensities 1(0, +p., 4» and l(To, -p.,4» respectively incident at the 
top and bottom of a slab of total optical depth To' 

The direct problem is to find the intensities 1( T, ±f', 4» within the slab and the emergent 
intensities 1(0, -p., 4» and l (To, +p., 4» given the properties ofthe scatterers and the incident 
intensities. The algorithm used to find the internal and emergent intensities is variously 
known as the method of addition of layers (Sobolev, Ig63), and doubling method (Van de 
Hulst, 1963), and the star-product algorithm (Redheffer, 1962; Grant and Hunt, 1 g6g[a] , 
[b]), but it is formally identical to that given by Stokes (1862) for the transmission and re­
flection from a pile of glass plates. The essence of the method is that if the reflection and 
transmission properties of one or more scattering layers are known, then the same properties 
of a stack of two such layers can be found in terms of those of the individual layers. Thus it is 
possible to compute the properties of a multiply scattering layer by repeated doubling of an 
initial, optically thin, single-scattering layer of known properties. It is also possible to combine 
successively layers of dissimilar properties to obtain a vertically inhomogeneous stack with 
known properties. The algorithm also makes it possible to add arbitrary reflecting boun­
daries within and at the surface of the slab. 

The related inverse problem is to infer the properties of the scatterers given the incident 
and emergent intensities. The solution to the inverse problem is not as straightforward as 
that of the direct problem. At present there is no well established procedure for inferring 
scattering properties when intensities incident upon and emergent from a scattering slab are 
given. The numerical example given later used an iterative procedure which proceeded from 
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initial estimates of the single scattering properties of the slab with isotropic scattering to a 
model which produced emergent intensities which compared well with experimental measure­
ments. Fortunately the procedure converged quickly to the results given below. 

METHOD OF SOLUTION: THE ADDITION ALGORITHM 

The addition algorithm assumes that there exist reflection and transmlSSlOn operators 
which linearly transform intensities incident from above and below into intensities emerging 
from the slab. Assume that the slab is of optical depth 7, and that it is illuminated by either 
collimated or diffuse radiation from above and below. For brevity let the intensity incident 
on the top of the slab 1(0, +1-',4» be given by Io! where the down arrow denotes the direction 
of travel and the subscript denotes the level 7 = o. Let the intensity incident from below be 
I, t where the subscript denotes 7 = 71' The emergent intensities are 

10 t = RIo! + T* I, t, (I) 

I,! = Tlo!+R*I,t, (2) 

where R, T, R* and T* are the reflection and transmission operators. When the slab is 
homogeneous or symmetric about the median plane, R = R* and T = T*. When the slab is 
inhomogeneous or when polarization properties are included, R :F R* and T:F T*. In the 
text which follows, but not in the appendix, it will be assumed that R* = Rand T* = T . 

Suppose that reflection and transmission operators R, and T, are known for a slab of 
optical depth 7, and that the corresponding operators RI and TI are known for a slab of 
optical depth 7 1 , If the two slabs are stacked with the slab of optical depth 7, on top, there 
will be operators Rand T for the stack. In terms of these operators the intensities emerging 
from the stack are 

lot = RIot. 

lIt = TIot. 
where the subscript 2 denotes the bottom of the stack. These intensities can also be related 
to the intensities at the (fictitious) interface between the top and bottom slabs 

lot = TJ,t+RJot. (5) 

II! = TII,!. (6) 

The intensities at the interface are related to one another and to Io! by 

I,! = R,I,t+T,Iot , (7) 

I, t = RII,! . (8) 

The equations may be solved for explicit expressions for the interface intensities 

I,! = [1-R,Rz] - 'T,Io!, (9) 

I,t = Rz[I -R,Rz] - 'TJo! . (10) 

The inverse operator [I - R,Rz] - ' is assumed to exist, and, as is made clear in the appendix, 
it may be represented by a simple matrix inversion. Substitution of Equations (9) and (10) 
into Equations (5) and (6) and comparison with Equations (3) and (4) gives the expressions 
for Rand T: 

R = R, + T,Rz[I - R,Rz] - 'T" 

T = Tz[I - R,Rz] - 'T, . 

(11 ) 

( 12) 

The Rand T operators also may be defined in terms of analogous scattering and trans­
mission functions S+ and T+ given by Chandrasekhar (1950). For diffuse incident radiation 
they are defined by 
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." , 
/(0, -p.,.p) = -I-f f S+(To; p.,.p; p.', .p') /(0, +p.', .p') dp.' d.p', (13) 

41TP. 
o 0 

." , 

o 0 

These operators give only the diffuse emergent radiation. Accordingly a term 
exp (-TO/P.) /(0, p./, .p') o"p.o",,,,. must be added to Equation (14) to give that portion of 
/(0, p.', .p') already travelling in the (+ p., .p) direction which is transmitted and attenuated 
by the slab. The Kronecker deltas 0pp" 0",,,, . serve as a reminder that the term is added only 
for the p. = p.', .p = .p' component of /(0, p.', .p'). The definitions for Rand T thus become 

." I 

R( To; p., .p; p.', .p') = _1-f f S+h; p., .p; p./, .p') .. . dp.' d</>" 
41TP. 

o 0 

." I 

T(TO; p.,.p; p./, .p') = _1- f f Ph; p.,.p; p./, </>') .. . dp.' d</>,+ 
41TP. 

( 15) 

o 0 +exp (-To/P.) 0pp.o",,,, .. (16) 

The analogy between Equations (15) and (16) and Equations (3) and (4) becomes somewhat 
clearer when the incident radiation is collimated. In that case the incident intensity in the 
direction (+ p'o, .po) is 

where <1>0 is the net flux (spectral irradiance) and o(p.-p.o) and o(.p-.po) are Dirac delta 
functions. The emergent intensities are 

<1>0 
/ (0, -p.,.p) = -4 S+h; p.,.p; P.o, .po) (18) 

17P. 

<1>0 <1>0 
= - Ph; p.,.p; P.o, .po)+- exp (-TO/P.) 0pp .o",,,,. (19) 

417P. 417 

and the expression for Rand T, Equations (15) and (16) remain the same without the integrals. 
Although the fundamental procedure for finding Rand T from given R" Rz, T, and T z 

has been given, explicit equations for the operators RI and TI or Rz and T1, have not been 
given. Initial values for Rand T operators may be obtained in either of two ways. Since the 
Rand T operators are simply related to the single-scattering phase function in the limit 
T --* 0, optically thin layers (T ;:::: 10- 6), can be doubled repetitively to obtain Rand T 
operators for thicker layers. Alternatively, integro-differential equations given by Chandrase­
khar (1950) can be solved numerically with reasonable ease to reach depths of T ;:::: 10-3 in 
one integration step with doubling or addition used thereafter. The method used is panly 
a matter of taste, but should more properly be dictated by the computational economics of 
the problem to be solved. 

Starting values for Rand T are doubled from the phase function p using Chandrasekhar's 
(1950) small T limits 

S+( To; p., .p; P.o, .po) = /L~~/( - p" .p; P.o, .po) [I -exp { - To (p,;.:o) }] , (20) 

T+(TO; /L,.p ; P,o, .po) = /L/Lo p(p" 4>; P.o, .po) [exp (-To//Lo)-exp (-TO/p,)]. (21) 
/Lo-/L 
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These equations reduce to 

S+(TO; /L, </>; 1-'0' </>0) = F(TO) p( -I-', </>; /Lo, </>0)' 

T+ (TO; /L, </>; 1-'0' 4>0) = F(TO) P(I-', </>; /Lo, </>0) ' 
for small To. The factor F ( To) is 

F(TO) = To [1- :0 (/L~:)] . 

11 I 

The procedure for converting S+ and T + functions for small TO to the corresponding Rand T 
is evident from Equations ( 15) and (16), but it is discussed in detail in the appendix. The 
discussion of the initialization via integro-differential equations is also given in the appendix. 

The effects of the albedo of the ground underlying a slab of snow can also be accommo­
dated in the addition algorithm by treating the reflecting layer as if it were a scattering layer. 
For example, the scattering function S+ for a Lambert surface (a Lambert surface has a 
diffuse reflectance which is equal in all directions) with albedo A is 4/Ll-'oA so that the reflection 
operator is /LoA/TT. Fresnel reflections at, for example, an ice-snow interface can be included 
by using the usual Fresnel reflection factors with the appropriate change in the sign of /L, 
i.e. I-' -7 -/L upon reflection. Since reflections are not included in the numerical example 
no further mention of them is made. 

REFLECTANCE OF A SNOW COVER 

Middleton and Mungall ( 1952) have given measurements of the angular reflectance for 
several types of snow layers. The measurements share the property that the layer reflectance 
increasingly diverges from that of a Lambert surface with decreasing solar elevation angles. 
This is consistent with the anisotropy present in scattering of light by large particles. We 
suggest that this behavior can be successfully modelled by multiple scattering in a plane 
parallel layer containing scatterers with an effective (or fictitious) single-scattering albedo 1IT 

and phase function p. 
The single-scattering albedo is the fraction of photons incident on a particle which are 

scattered rather than absorbed. The angular dependence of the scattering is given by the 
phase function p (cos 0) which explicitly depends on the scattering angle 0. When the 
phase function has the normalization 

1 . .. 

4~ J J p (cos 0) d (cos 0) d" = I 

- I 0 

the product =p (cos 0) dO/4TT is the probability that a photon interacting with the particle 
will be scattered through an angle 0 into an element of solid angle dO = d (cos 0) d</>. 
The anisotropy of the scattering is characterized by the asymmetry parameter g given by 

1 ... 

g = <p (cos 0 ) cos 0 ) = 4~ J J cos 0 p (cos 0) d (cos 0) d</>. (26) 
- I 0 

It is convenient to expand the phase function in a Legendre series 
N 

whose coefficients are 

p (cos 0 ) = LflPI (cos 0 ) 
I ~ 0 

1 

11 = _[2 Jp (cos 0) PI (cos 0) d (cos 0) 
2 +1 

- I 
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in which the P, (cos 0) are Legendre polynomials. Equations (25)-(28) give 10 == 1 and 
g =1./3· 

We have attempted to model the angular reflectance data of Middleton and Mungall 
(1952) shown replotted in Figure 1 for "new snow fallen in calm". The single-scattering 
albedo largely determines the level of the curves and is expected (see paper I) to be about 
0.99 for isotropic scattering. The shape of the curves is determined by the phase function, 
with g playing the major role. The angular reflectance for near grazing incidence and reflec­
tion (IL,p.o ;:::: 0) is sensitive to the higher terms. However, the properties important for the 
energy balance, the albedo and the flux extinction, are extremely insensitive to 12,13, ... , 
(Bohren and Barkstrom, in press; Van de Hulst, 1970). Accordingly, we have searched fOf 

1.0 ,----r-_,.----,-_,.----y---,---,----r---y----, 

ILo=1.00 

0 .5 

I 0.1 

0 .26 

0.01~-~--L---~--~--~--~---L--~--~--~ 

0 .0 1.0 0.0 

4>=1800 

IL 
Fig. I. Plot of the angular dependence of the reflected intensity I from snow new-fallen in calm weather. Data are tdenfram 

Middleum and Mungall (1952). The azimuthal angle is denoted by t/>, with t/> = 0° being the direction in which the 
solar radiation is travelling, t/> = 180

0 being the direction in which light back-scattered from the surface is travelling. lA 
is the sine of the altitude at which the light is travelling or, equivalent{)I, the cosine of the zenith angle. /Ao denous the sW 
of the solar altitude. 
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values of'tU and g that give reasonable agreement between the data and the transfer computa­
tions. The higher termsjz,jJ' .. . , have been given arbitrary, but physically plausible values. 

Our early attempts to reproduce Figure I used a Henyey-Greenstein phase function (see 
for example Van de Hulst, 1970) 

P (cos 8) 
_ I_g2 

- (I -2g COS 8+g2)1 

which has an infinite Legendre expansion with coefficients 

Ji = (2l+ I) gl 

which depend only on land g. For values of g greater than 0.4 or 0.5 these coefficients decrease 
very slowly with increasing l and it is necessary to retain many terms in the Legendre expan­
sion of Equation (29) to avoid truncation problems. This makes it necessary to use large 
matrices for Rand T (see the Appendix) to preserve numerical stability and accuracy. It is 
also possible to ignore truncation problems and use too small an order of quadrature to 

J 0.0 r---,.---,---,---,---,---,--....,..---,---,,..----, 

p(cos8) 

O.J~-~-~-~-~--L--L--L-~-~_~ 

-1.0 0 .0 

cose 
1.0 

Fig. 2. Plot of the phase function p for single scattering, as a function of cos 0, where 0 is the angle through which the light 
is scattered. 
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estimate an appropriate value of g. This procedure suggested that 'ID" = 0.94 and g = 0.5 
should be approximately correct. A search then began for an alternate, finite phase function 
with g ~ 0.5. 

The alternate phase function, shown in Figure 2, has g = 0.506 and was found by a Mie 
calculation for a polydispersion of spheres (Querfeld and others, 1972) distributed according 
to a zeroth order logarithmic distribution (Kerker, 1969, p. 356) with modal diameter 
0.245 (Lm, width parameter Go = 0.07, and real refractive index n = 1.20 at an incident 
wavelength of 0.62 (Lm. The significant Legendre coefficients for this phase function are 
given in Table 1. This phase function with 'Ill" = 0.996 was used to compute the intensities 
emerging upward from a slab with 'To = 128, shown in Figure 3. The lower slab boundary 
was assumed to be completely absorbing, but this has no effect on the intensities at the upper 

1.0 r--.--.--..----.'---y-----,--~-___r--.______, 

I 0 .1 

o.o~--~--~--~--~--~~--~--~--~--~--~ 

0 .0 1.0 0.0 

Fig. 3. Plot of tire angular dependence of the light intensity I reflectedfrom a very thick layer of anijotropic scal/erer with a phaJe 
june/ion aJ Jhown in Figure 2. Notation is aj in Figure I. 
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TABLE I. LEGENDRE EXPANSION 

COEFF[C[ENTS OF THE PHASE 

FUNCTION 

L Lth coefficien t 

0 [ .00000 E 00 
[ 1.5 18 45 E 00 
2 1.01998 E 00 
3 4. 246 71 E - 01 
4 1.10795 E - 01 
5 J.784 "9 E - 02 
6 1.919 07 E - 03 
7 1.480 92 E - 04 
8 8.622 57 E - 06 

boundary. Apart from small differences in incident angles the computed intensities in Figure 
3 are direct ly comparable to the measured intensities in Figure I. Comparison of the two 
figures shows that the calculated intensities agree remarkably well in spite of differences in 
detail. The agreement is the more remarkable since the phase function in Figure 2 is for a 
polystyrene latex of very uniform properties and the microstructure of a snow cover is probably 
chaotic by comparison. The integration of phase functions of scatterers of quite diverse sizes, 
shapes, refractivities, and orientations yields an effective albedo and phase function of a rela­
tively simple character. It would be interesting to characterize this and other types of snow 
with greater care and perhaps greater attention to higher order terms in the phase function . 
At this point the authors can only ask for more high-quality observations. 

The emergent upward intensities in Figure 3 can be integrated (see the Appendix) to 
obtain a surface albedo /l (jLo). Figure 4 shows the albedo A(jLo) computed with the phase 
function in Tablc I and Figure 2 using 71T = 0.996. The isotropic scattering computations 
from paper I are also included with the Antarctic data of Liljequist (1956) and Rusin (1961) 
as well. The anisotropic albedo lies above the isotropic curve because the higher single 

1.0 

0.9 
/' 

_/ 

0.8 t~f~0 0 
a o 0 

0.7 

0.6 

0 .5 
1.0 0.8 0 .6 0 .4 0 .2 0 .0 

""0 Fig. ~. Plot of clear-sky albedo A versus the sine of the solar altitude 1-'0' Data are from Antarctic expeditions (Liijequist, 
1956; RUS;II, 196r), as noted in paper I. Solid line is the albedo from a very thick layer qf anisotropic scatterer with the 
phase function shown in Figure 2; dashed line is the albedo from a semi-infinite layer of isotropic scatterer. 
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scattering albedo used (111 = 0.996 compared with 0.99) , but is otherwise very similar. Surface 
albedos calculated with a variety of anisotropic phase functions with 111 near 0.99 reproduce 
the variation of a with P-o for isotropic scattering to about o. I %. If measurements of the 
surface albedo alone are available, it seems reasonable to estimate 111 using isotropic scattering 
theory. !fit is important one can estimate the effects of ani sot ropy on the asymptotic intensity 
extinction and flux divergence, noting that an eigenvalue about twice the isotropic discrete 
eigenvalue will give a reasonable first approximation. 

BEHAVIOR OF THE RADIATION WITHIN THE SNOW LAYER 

It was shown in paper I that the flux divergence in an isotropic scattering atmosphere has 
a maximum beneath the surface for certain angles of incidence. The flux divergence in an 
"atmosphere" with a forward-scattering phase function, such as snow, exhibits a similar 
behavior, except that the maximum of the flux divergence lies deeper in the snow than the 
maximum in the isotropic scattering case when the distance is measured in photon mean free 

O.I...----..---r---,.----,,---,--,----, 

O .OI....---~ 

0.001 

0 .359--_ ---
0.122--_ ---

0.0001 L-_-1 __ -L __ ...l...-_---I __ ~ __ ..-J......_----' 

0.0 2.0 4.0 6 .0 8.0 10.0 12.0 14.0 

T 

Fig. 5. Plot of the flux divergence -d{ q»/ q»O}/dT versus the optical depth T for various solar altitudes, using the anisotropic 
scatterer with a phase function shown in Figure 2. 
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paths (i.e. in terms of optical depth T = X<:). This behavior is shown in Figure 5. Again, we 
see that for small solar altitudes, the Sun heats the top few centimeters of the snow with respect 
to the snow further down in the layer. However, the flux divergence is much flatter than was 
the flux divergence for isotropic scattering. 

We also observe that the non-exponential behavior of the flux extends deeper into the 
snow than it did in the case of isotropic scattering. Using Figure 5, we find that the flux 
divergence becomes exponential below T ~ 5. Thereafter 

d<D/<Do 
-~ ~ Cexp ( - T/VO'), 

where we measure vo' to be 13.1 from the graph. This in turn implies that the extinction 
coefficient is now X = 190 m- I so that T = 1 corresponds to about 0.526 cm. Since T = 1 

corresponds roughly to the optical depth at which one can distinguish objects through a 

I 

I . 0 r--,.----.-----r----r----,-----r----,-----,r---~___, 

0.1 

..L 
--1.0 
------2.0 
---3.0 
----5.0 
'H 7.0 

· --9.0 

0.01~--L---L---L---L---L---~--~--~--~--~ 

0 .0 1.0 0 .0 

po 

Fig. 6. Plot of the angular depentknce of the intensity of light I transmitted through slabs of various optical depths T Jor near 
normal incidence (1-'0 = 0.995) on the top of the slab. 
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layer, the new value of the extinction coefficient gives a more accurate idea of the thickness a 
layer of snow must have to be "opaque" to an underlying surface. The estimate of the physical 
depth corresponding to 7" = I was incorrectly given in paper I as 0.851 cm, and should have 
been X-I = (0.851 cm- I) - I = 1.175 cm. This would require a rather thick layer to blanket 
the ground so that it could not be seen. The new value of X appears to bring the theoretical 
predictions of dll>/dz into better agreement with the observations of Ambach and Mocker 
(1959). The volume melting rate given in Equation (42) of the first paper is changed as a 
result of anisotropic scattering to 0.569 kg cm-I S-I. However, the melting rate per unit area 
is unchanged. We have also calculated the asymptotic ratio of upward to downward fl4X 
deep in the medium. We find Il>ias/<l>!as = 0.815 for the phase function given by Table I. 

TRANSMISSION OF LIGHT THROUGH A FINITE SLAB OF SNOW 

The transmission of light through a finite layer of snow is of considerable importance 
because it is one of the ways in which the "extinction coefficient" of snow is determined. 
Figure 6 shows the intensity transmitted by a thin layer of snow under nearly normal incidence 
for the phase function given by Table I. It is clear that thin layers of snow (0.025 m thick or 
less) may give an entirely erroneous impression of the character of the flux extinction. Such 
an effect was reported by Giddings and LaChapelle (1961), and indeed, was predicted by 
them on the basis of a diffusion theory for radiation. The steep portion of the curve of extinc­
tion coefficient versus optical depth is caused by the extinction of light transmitted directly 
through the slab without being scattered. It is clear that as the slab becomes thicker, the 
relative contrast between the directly transmitted light and the diffusely transmitted light 
decreases, until by 7" = 7, only the diffuse light is coming through the slab. The strong 
directionality of the transmitted light for slabs up to about 3 cm thickness means that one 
may have to make special care in measuring the flux extinction, since detectors are often 
strongly direction dependent (Gillham, 1970). 

CONCLUSIONS 

We have extended the computations done in paper I to include anisotropic scattering by 
finite layers of snow. In doing so, the single scattering albedo and the phase function were 
adjusted until the calculated angular reflectance of a deep snow layer gives reasonable agree­
ment with the observed reflectances. It has been shown that the flux divergence may be 
expected to peak slightly further beneath the surface than was the case for isotropic scattering 
(as measured in photon mean free paths). Finally, it has been suggested that measurements 
of the flux extinction coefficient using the light transmitted through finite layers of snow 
(under 2.5 cm thick) may lead to serious errors if extrapolated to effectively semi-infinite 
layers below the boundary layer in the latter. 
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APPENDIX 

In the text the addition algorithm and its initialization were discussed in relatively general terms, although 
enough information was included for the preparation of numerical codes. In this appendix we discuss the algorithm 
and initialization more fully and give the complete reduction of the integral reflection and transmission operators 
to their equivalent matrix forms. In addition we include procedures for calculating intensities and flux diver­
gences within the slab, as well as both the surface and the Bond albedo of the slab. As in the text, polarization 
is omitted, but that omission should be of little importance in this context. 

In the text the term specific intensity or spectral radiance is used without explicitly mentioning that the 
intensity (units: W m- 1 S- I Hz- I, for example) is measured with respect to a unit area normal to the direction 
of propagation. In optics it is frequently customary to measure the radiance of a surface with respect to a unit 
area parallel to the surface (we denote such a radiance by 1). This is the reason for the statement in the text that 
a Lambert surface radiates isotropically. Often a Lambert surface is thought to show a cosine intensity depen­
dence 

1(1-') = I (o)p.. (A.I) 

The use of the reflection operator for p.o /'" for a Lambert surface illuminated by intensity 10 (per unit area normal 
to the incoming direction of propagation) gives 

21T 1 

I (p.,4» = .; f f 1-'010 dp.o d4>o = 10 (A.2) 

o 0 
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because of the different definition of the intensity. If 1 denotes an intensity measured per unit area parallel to a 
surface and I per unit area normal to itself, the two are related by 

1(,.,., </» = ,.,./(,.,., </». (A.3) 
Similar problems arise in the use of the term net flux. This is the spectral irradiance or "exitance" found in 
optics and is related to the specific intensity by 

2". , 

cl> = I I 1(,.,., </»,.,.d,.,. d</> 
o - , 

where,.,. = I is the normal to the area under discussion. This definition and that of the specific intensity is given 
in the hope that it will reduce confusion of the discussion of flux divergence and surface albedo which follows. 

In the text the intensities emerging from a scattering slab illuminated from above and below were given as 
Equations (I) and (2) 

lot = Rlot+T*I,t, (A·S) 
I,t = TIoHR*I,t. (A.6) 

As was stated in the text, these equations are merely an abbreviated form of the full equations 
2 .. , 

1(0, -,.,., </» = f f R('T,;,.,., </>; ,.', </>') 1(0, ,.,.', </>') d,.' d</>'+ 

° 0 
2 .. , 

+ I f T*(7",;,.,., </>; ,.,.*, </>*) 1(7"h -,.,.*, </>*) d,.,.* d</>*, 
o 0 

2 .. , 

1(7" .. +,.,., </» = f I T(7",;,.,., </>; p.', </>') 1(0, ,.,.', </>') dp.' d</>'+ 
o 0 2.. , 

+ I fR*(7",;,.,.,</>;,.,.*,</>*)/(7"h-,.,.*,</>*)d,.,.*d</>*. (A.8) 

o 0 

It is the intension of this section to show that the two forms are numerically equivalent if we interpret the inten­
sities lot, lot, I,t and I,t as column vectors (here written as row vectors, but with curly brackets to denote column 
vectors) of the form 

lot = {/(o, -,.,." </>0)' 1(0, - p.., </>0) . . . ,/(0, -p'n, </>o)} (A.g) 
where the ,.,. .. P." ••. , P.7I and </>0' </> ... . . , </>n form a discrete grid,... and </>. As m and n = 00, we expect to recover 
exactly Equations (A.7)-(A.8). It might appear that 10 should be interpreted as a rectangular matrix with rows 
indexed on ,.,. and columns indexed on </>, but it will become evident that this can be avoided. The operato~ 
R, R*, T, and T* are evidently square matrices whose rows are indexed on the exit angle,.,. and whose columns 
are indexed on the incident angle p.' or p.*. 

As the first step in the reduction of Equations (A.7) and (A.8) to Equations (A.S) and (A.6) we recall from 
Equations (22)-(24) that the single-scattering (small 7") forms for Chandresekhar's S+ and T+ functions were 
proportional to the phase function p(p., </>; 1-'0, </>0)' In Equation (27) the phase function was given as a Legendre 
series 

N 

P (cos 8) = LfiP, (cos 8). 
1 = 0 

The scattering angle 8 is related to the slab coordinates through the relation 

cos 8 = p.1-'o+(I-,...')I(I-I-'o')1 cos (</>-</>0)' 
The addition theorem of spherical harmonics (Hobson, 1955) gives the replacement 

1 

P, (cos 8) = P,(p.) P,(,.,..) +2 L p,m(,.,.) p,m(l-'o) cos m(</>-t/>o) 
m=J 

when the associated Legendre functions p,m(,...) have the normalization 
, 

f p,m(,.,.) p"m(p.) = _2_ 8, ,'. 
2/+1 ' - , 

(A. 10) 

(A.II) 

(A.12) 

The numerical implication of this normalization will be discussed below. The substitution of Equation (A.12) 
into Equation (A.IO) and the interchange of the two summations gives 

N N 

p(,.,., </>; ""0' </>0) = L Eom { Lfi p,m(,...) p,m(l-'o) } cos m(</>-</>o) (A.14) 
m = O I = m 
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N 

= L>m(/L' 1'0) cos m("' - </>o) (A. IS) 

m = 0 

in which 
' om = I if m = 0 , (A.16) 

= 2 if m ¥ o. (A.li) 
The superscript on pm(/L, /Lo) should not be taken as an exponent . Equations (A.14)-(A.17) provide the means 
for computing small T values of Rand T in terms of the single-scattering phase function and suggest that Rand T 
also be expressed as a Fourier series. 

The Fourier expansions for the reflection and transmission functions are 
N 

Rh; p., "' ; 1'0, </>0) = L Rm (T,; /L, /Lo ) cos m("' ·- "'o) (A.18) 
m = O 

and 
N 

T(T,; p., "' ; 1'0, </>0) = L T m(T, ; /L , 1'0) cos m("'-"'o) (A.19) 

m = O 

with analogous equations for R* and T* when they are needed. The utility of these expansions becomes more 
apparent if we restate Equations (11 ) and (12) which give the reflection and transmission functions 

R = R, + T,*R.[I - R,*R,]- ' Th 
T = T,[I - R,*R,] T,. 

These expressions contain products of the form T, * R, and R, * R. which in general appear as follows: 
2.. , 

T,*R. = 4~ f f T* (T,; /L, "'; p.', "" ) Rh; /L', </> ' ; /Lo, "'0) d/L' d</>' 
o 0 

2" , N N 

= 4
1
" f f L T*m(/L, p.' ) cos m(</> - </>' ) L Rm'(/L' , /Lo) cos m'W -"'0) d/L' d</>' 

o 0 m = 0 rn' = 0 

,N N 2 .. 

= 4
1
" f L 2: T*m (p., p.') Rm' (/L', /Lo) d/L' f cos m(</>-</>' ) cos m' W-</>o) d</>' 

o m = 0 rn' = 0 0 

N , 

= "_1_ f T*m(/L, p.' ) Rm (p.', 1'0) d/L' cos m("'-</>o). 
L2€om 

m = 0 0 

(A.20) 
(A.21) 

(A.22) 

(A.24) 

(A.26) 

The result of the Fourier expansion is that azimuthal integrals in the products can be evaluated explicitly and 
moreover that cross-products of Fourier terms vanish because of the orthogonality of the cosines. Products of 
operators thus have the same form as the operators themselves. This also is true of the inverse operator since it 
can be shown both formally and physically that the inverse operator can be expanded as 

[I-R,*R,]-' = I+R,*R. + (R,*R.)'+ . .• (A.27) 
with an infinite number of terms. The conventional doubling procedure (Hansen, 1969; Van de Hulst, 1963) 
evaluates the right-hand side of Equation (A.27) explicitly by calculating powers of R,*R. until the ratio of 
successive terms becomes constant and then the remainder of the terms are summed as a geometric series. The 
star-product algorithm calculates the inverse directly and thereby achieves great computational economy. 

The /L' integral in Equation (A .26) must be evaluated numerically as part of the calculation. This is custo­
marily done by using Gauss- Legendre quadrature which permits the exact replacement of the integral by a 
sum provided that the integrand meets certain requirements. The quadrature formula (Abramowitz and Stegun. 
1964) is 

b L 

f f ey) dy = b-;;a L Wd(y,) (A.28) 

a i = I 

with 
b- a b+ a 

YI = -2-X1+-2-' 
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The WI are quadrature weights and the XI are abscissas which are tabulated (Abramowitz and Stegun, J 964, 
for example). TheYI are shifted abscissas which lie in the interval (a, b) rather than in the interval (- J, J) in 
which the XI are given. The sum will be exact as long as the integrandf(y) can be represented as a polynomial 
of degree less than 2L. Computationally this is fulfilled by requiring that the order of quadrature L be greater 
than 2N where N is the number of terms in the phase function (A. J 0) and in the operators Rand T. 

The use of the quadrature formula transforms Equation (A.26) into 
N L 

T,*R. = L 4f~m ( L T*m(p" p,k) Rm(p,It, /Lo) Wit) cos m(</>- </>0) ' (A·30 ) 

m = o k = 1 

It should be apparent that the sum in parentheses is nothing more than a matrix product since both incoming 
and outgoing values of p, in T* and R assume only discrete values which are determined by the quadrature 
abscissas. If we label incident angles with aj subscript and exit angles with an i subscript then the (i,j)th element 
of the ma trix T, * R. will be 

N L 

[T,*R.hl = L 4f~m ( L T, lk*mR.klm W,,) cos m(q,-</>o) . (A·3 J) 
m = O k = ' 

It should a lso be evident that the decoupling of the Fourier terms in Equation (A.26) and therefore in Equations 
(A.20) and (A.21) allows the computation of each Fourier component separately. Thus if we omit the common 
cosine factors in Equations (A.20) and (A.21 ) we have the following expressions for Equations (A.3J), (A.20) 
and (A.21) 

[T,*R.lflm = _ 1 - ( T,*mR.m hl = ( T,*mR.mhl, 
4 f om 

Rm = R,m +T,*mR.m[I - R,*mR.m]-' T,"', 

Tm = T.m[I - R,*mR.m] - , T,m . 

The corresponding matrix equations for th:! mth Fourier matrices for R* and T* are 

R*rn = R.*"' + T.mR,*m[I - R."'R,*mJ-' T.*"', 

T*rn = T,* "' [I - R."'R,*m] - , T.*m . 

(A·32 ) 

(A·33) 

(A·34) 

The inverse operators in Equations (A.33)-(A.36) may be obtained by any matrix inversion method. 
The initialization of the Rand T functions (or matrices) can be accomplished using Equations (22)-(24) for 

S+ and T + and the Fourier expansion for the phase function, Equations (A.14)-(A. 16) . The expressions for the 
mall To (TO ~ 2- .0 ) values of the R and T Fourier coefficients are 

N 

Ril'" = ~ [I -- !TO(UI + UI )] W1Ui Lli ( - I )l+ mplm (p,tl p,m (p,} ) 

I =m 

N 

T i}'" = ~ [1 -!TO (Ui + U} )] WIUi LliP,»I(P,i ) P,m(P,J) + exp (-TOU.) Ilil (A·38) 

1 = m 

where we have used the replacement Ui = I /P, I. As usual Il is the Kronecker delta so that the exponential term 
occurs only on the main diagonal of the T matrix. The factor ( -- I )l+m results from p,m( - f'i) = (- I )I+",p,m(~) 
which occurs in Equation (22 ). Matrix elements for larger values of To are obtained by doubling or addition 
using Equation (A.33)-(A.36) . The Legendre functions in Equations (A.37) and (A.38) are computed by forward 
recursion from the Legendre polynomials (m = 0) 

Po(P,i ) = I, (A.39) 

and the recursion relations 

IP, (p,i) = (21-1)~P,_,(p,i)- (I-I) p,_.(p,,), 

p"p,m+r(p,, ) = G~:! :r [(l-m)p"p,m(p,, ) - {(l+m)(l-m)}1 p,_,m(p,,)], 

and 

(A'43) 

These recursion relations differ from those usually found for associated Legendre functions because of the 
normalization (A.13). 

An alternate method for finding initial values of Rand T is to integrate integro-differential equations for 
S+ and T+ given by Chandrasekhar (1950, p. 169). The equations for the derivatives are 
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N 

SI}+m = -(a, + aj ) SIj+m+ <Om.2: (-I ) m+ ~/i 
1 = m 

N 

Tlj+11I = - a,T,j+m+ <o", 2/1 
I = m 

1 

[ P1"' (l'tl +(- I )m+l "" Slk+mPlm(l'k) Wkak] X 
4<0"' L 

k = I 

1 

X [exp ( - Toaj ) P1m(I'J ) + _1- "" PI"'(l'k ) Tkl+m Wkak] 
4Eom ~ 

k =, I 

123 

These equations are easily integrated through one or more steps f).T <: t min 1'1 from TO = 0 using the initial 
conditions Slj+m = T ij+m = 0 and the usual fourth-order Runge- Kutta integration scheme. The constraint 
on f).T insures numerical stability. Although this initialization may appear more cumbersome than doubling 
thin layers, it may well be faster since d epths of TO = 0 .0025 (for.N = 16) are reached in one step. The Rand T 
functions are related to the S+ and T + functions through th e equations 

The reflection and transmission functions used in Equations (A.7) and (A.S) are the Fourier sums (A. 18) 
and (A. lg) whose coefficients are the Rljm and Tijrn. These coefficients contain multiplicative fac tors and an 
additive term which requires some modification prior to constructing the Fourier sum. The diagonal term 
exp ( - ToOl) 31j in the Tum should be subtracted before the summation. The term is needed as a source in the 
calculation of terms with m # 0, but is included in the Fourier sum only in the III = 0 term. Indeed the term 
may be omitted from the m = 0 term when the direc t, a ttenuated, beam is of 110 interest. After subtraction of the 
diagonal term (from all m) the Rlj" and T 11"' coefficients should be multiplied by (o"'/7rWj to obtain properly 
normalized coefficients which when summed in Equations (A . IS) and (A. lg) will be normalized properly for use 
in the integra ls (A .7) a nd (A.S), but not necessarily so for use in the matrix form (A'5) and (A.6). When the 
incident beam is collimated, the Rand T functions so obtained are properly norma lized, but when the incident 
beam is diffuse with a distribution both in 1'0 and rfoo, the integrals must be evaluated with some suitable (e.g. 
Gauss- Legendre) quadrature scheme and the appropriate weights and normalizing factors from Equations 
(A.28) and (A.2g) must be reinserted in the R and T fun ctions. When Gauss- Legendre quadrature i5 used for 
either the I' or rfo integration or both, the problems revert to the discrete matrix form. When the rfo d ependence 
of the incident beam is suitable, the rfo integrat ion can be done analyt ically using the Fourier expansion (A. IS) 
and (A.lg) and the integration becomes the more usua l product of Rand T matrices indexed on incoming and 
outgoing 1" and the inciden t beam in column vector form. 

The reflection function can be used to compute a surface angular a lbedo A (l'o) which gives the fraction of 
light reflected from a surface illumina ted by a collimated incident beam 1(0, + 1'0, rfoo) . Let the incident beam be 
<1>03 (1" - /'0 ) 3(rfo' ·- rfoo) so that its net flux (measured per unit area parallel to the surface) is 

, ." J J 1" <1>03(1" -' 1'0) 3(rf>' - rfoo) dl" drfo ' = 1'0 <1>0' 

o 0 

The net flux refl ec ted from tte surface is 

I 211' I 21T I 211 

J J 1'/ (0, - 1', rfo ) ell' drfo = J J I J I'R( TO ; 1', rfo; 1", rfo ') <1>0 3(1" - 1'0) 3(</>' -- rfoo):dl" drfo ' dfL drfo· (A·49) 
o 0 o 0 0 0 

After performing the integrations over the incident beam, the surface angular albedo is 

, ." 
A (fLo ) = ~ J J I'R(TI; 1', rfo; 1'0, rfoo) dl' d</>. 

o 0 

The Fourier expansion (A.18) enables an explicit integration over </>, 

2.". 2 71' N 

I R(T,; 1', rfo ; /'0, rfoo) d</> = J 2 Rm (fL, fLo ) cos m(rfo - rfoo) d</> = 27rR"(1',1'0)' 
o o m = 0 

https://doi.org/10.3189/S0022143000013447 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013447


124 JOURNAL OF GLACIOLOGY 

Gauss-Legendre quadrature is used to evaluate the I-' integral 
L 

A(I'1) = ~ "'" R<>(p.j, 1'1) W'I-" 
I'o .~ .= I 

1-" = /010. 

The albedo is thus just a weighted sum over the azimuth independent Fourier coefficient R.f. The Bond albedo 
A, the ratio of the net flux reflected by a spherical surface to that incident in a collimated beam, is simply related 
to the surface angular albedo by 

ILL 

A = 2 f A(,...,) ,..., d/olo = ., L L R,!"W,Wlp.j· 
o i = I j= I 

The Bond albedo is also the albedo under isotropic incident radiation. 
In the text the run of flux divergence and thus of heating rate within the slab is given. Chandrasekhar (1950) 

defines the flux divergence in and normal to a plane parallel layer as 
I 2,.. 

dd~1 = -(1-1IT)f fI('Th"', 4»dl-'d4>. 
T' .,.. - 1'. 

-, 0 

The flux divergence can be calculated within a layer of depth 'T2 at a depth 'T, by computing reflection and 
transmission functions for layers of depth 'T, and 'T2-1'" the intensities I,t and I,t as in Equations (9) and (10), 
and the integral in (A'54) using the value of 1IT appropriate to each layer. 

It is hoped that this Appendix is sufficiently complete that working numerical routines can be prepared 
directly from it. The routines used here will be included in the Radiative Transfer Library now being assembled 
at the High Altitude Observatory for use in the computer at the National Center for Atmospheric Research 
(NCAR) . Although the library is designed and optimized for the NCAR computer, some of the routines, including 
those described here, are reasonably portable. Correspondence regarding availability of numerical codes should 
be directed to one of us (C.W.Q.). 
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