ellipsoid and cylinder. If $x / \lambda=y / \mu=z / \nu$ is a perpendicular, the tangent plane is $\lambda x+\mu y+\nu z=\sqrt{a^{2} \lambda^{2}+b^{2} \mu^{2}+c^{2} v^{2}}$, and r, the length of the perpendicular, is given by

$$
r^{2}=\frac{a^{2} \lambda^{2}+b^{2} \mu^{2}+c^{2} z^{2}}{\lambda^{2}+\mu^{2}+\nu^{2} .}
$$

We have also

$$
\begin{equation*}
l \lambda+m \mu+n \nu=0 \tag{4}
\end{equation*}
$$

since the perpendicular lies in the plane $l x+m y+n z=0$. Consider now the semi-diameter of the ellipsoid when equations are

$$
\frac{x}{a^{\lambda}}=\frac{y}{b \mu}=\frac{z}{\overline{c \bar{v}}}\left(=\frac{r_{1}}{\sqrt{a^{2} \lambda^{2}+b^{2} \mu^{2}+c^{2} v^{2}}}\right) .
$$

Its length is given by $r_{1}{ }^{2}=\frac{a^{2} \lambda^{2}+b^{2} \mu^{2}+c^{2} \nu^{2}}{\lambda^{2}+\mu^{2}+\nu^{2}}$, and by (4) it lies in
the plane

$$
\begin{equation*}
\frac{l x}{a}+\frac{m y}{b}+\frac{n z}{c}=0 . \tag{5}
\end{equation*}
$$

Therefore the semi-diameters of the normal section of the cylinder are equal to the semi-diameters of the section of the ellipsoid by the plane (5), and the sections are equal ellipses.

If the tangent at \mathbf{P} to the ellipse (Fig. 1) is parallel to $x / l=y / m$, the equations of CN and CR are $l x+m y=0$, $\frac{l x}{a}+\frac{m y}{b}=0$, and thus the results for the ellipse and ellipsoid are exactly analogous.

R. J. T. Bell.

A Construction by Ruler and Dividers.

1. The following method of cutting off an $n^{\text {th }}$ part of a given straight line requires besides a ruier only a pair of dividers or other means of laying off on a given straight line a segment equal to the distance between two given points. In other words, we assume that, besides using a ruler in the usual way, we can mark off from a given straight line $A X$ a segment $A B$, which shall be equal to the distance between two given points C and D.
2. The construction is as follows:-

Let $A B$ be the given straight line.
Draw any other straight line $A X$ from A, and cut off from $A X$ a succession of equal parts, the $n-1^{\text {th }}$ ending at D , and the $n+1^{\text {th }}$ at C .

Join CB , and produce it to E , making $\mathrm{BE}=\mathrm{CB}$.

Mathematical notes.

Let $D E$ cut $A B$ in F.
Then $F B=\frac{1}{n} A B$.
This may be proved by Menelaus' Theorem, or by joining \mathbf{B} to the point K on $A X$ intermediate between D and E, so that $B K$ is $\|$ to $D F$. Therefore $\frac{\mathrm{FB}}{\mathrm{AB}}=\frac{\mathrm{DK}}{\overline{\mathrm{AK}}}=\frac{1}{n}$.

3. To divide AB into n equal parts by a similar method, we may produce CB to γ and cut off from $\mathrm{B} \gamma n-1$ parts each equal to CB , and join these points to the corresponding points in KA so that $A B$ becomes divided into n equal parts. In fact, if $A D_{1}$, $D_{1} D_{2}, D_{2} D_{3}$, etc., are the successive equal segments cut off from AX , and $\mathrm{BE}_{1}, \mathrm{E}_{1} \mathrm{E}_{2}$, etc., the successive equal segments cut off from $B \gamma$, the straight line $D_{r} \mathrm{E}_{n-r}$ cuts AB in a point F_{r} such that $\mathrm{AF}_{r}=\frac{r}{n} \mathrm{AB}$.
4. Of course the n points of division required in AB could be got by first constructing $F B=\frac{1}{n} A B$ as in the first construction, and then laying off segments equal to it along AB. But, though this construction would be geometrographically simpler than the last, it would have the disadvantage of multiplying the initial error in FB by $n-1$, which might result in the later points of division in the process of dividing AB being affected by two great errors.

Query-What is the relation between the probable errors in the positions of E_{r} in the two cases?
5. Returning to the construction in 3, we may note that it gives a means of constructing a point F_{r} in $A B$ such that $\mathrm{AF}_{r}=r . \frac{\mathrm{AB}}{n}$.

There is nothing to prevent r from being greater than n in this construction, or less than zero. If r be greater than $n+1$, then D_{r} will be beyond D_{n+1}, and F_{r} will be in AB produced.

If r be negative, then D_{r} will be in DA produced, while $\mathrm{E}_{n \rightarrow r}$ will be in $\mathrm{B} \gamma$, so that F_{r} will lie in BA produced.

Thus we can by ruler and dividers alone divide a segment of a line internally or externally so that the parts are in any commensurable ratio to one another.
6. A modification of the construction of Art. 3 would be got by interchanging the roles of the lines AD_{n+1} and AB . But this, though requiring fewer points of division, has the disadvantage of failing to give immediately the last dividing point required.
R. F. Muirhead.

Elementary proof of the formula for $\alpha^{n}+\beta^{n}$ in terms of $\alpha+\beta$ and $\alpha \beta$.*-The proof given by Chrystal uses infinite series, but by a simple modification it may be put in an elemphentary form.

Write

$$
\begin{aligned}
\alpha+\beta & =s, \\
\alpha \beta & =p . \\
\alpha^{n}+\beta^{n} & =s_{n} . \\
s x-p x^{2} & =u .
\end{aligned}
$$

[^0]
[^0]: * Chrystal's Algebra, lst Edition, Chap. 27, Art. 7.

