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In a recent publication (Toler et al., J. Plasma Phys., vol. 89, issue 2, 2023, p. 905890210),
we demonstrated that for axisymmetric geometries, the Kapur–Rokhlin quadrature
rule provided an efficient and high-order accurate method for computing the normal
component, on the plasma surface, of the magnetic field due to the toroidal current flowing
in the plasma, via the virtual-casing principle. The calculation was indirect, as it required
the prior computation of the magnetic vector potential from the virtual-casing principle,
followed by the computation of its tangential derivative by Fourier differentiation, to
obtain the normal component of the magnetic field. Our approach did not provide the
other components of the virtual-casing magnetic field. In this letter, we show that a more
direct and more general approach is available for the computation of the virtual-casing
magnetic field. The Kapur–Rokhlin quadrature rule accurately calculates the principal
value integrals in the expression for all the components of the magnetic field on the plasma
boundary, and the numerical error converges at a rate nearly as high as the indirect method
we presented previously.
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1. Introduction

The virtual-casing principle (Shafranov & Zakharov 1972; Zakharov 1973; Hanson
2015) is an effective tool for computing the magnetic field due to the currents flowing in the
plasma, since it reduces the dimensionality of the integrals involved in this computation,
from volume to surface integrals for non-axisymmetric geometries (Lazerson, Sakakibara
& Suzuki 2013; Malhotra et al. 2019; Kappel, Landreman & Malhotra 2023) and
from surface to line integrals for axisymmetric settings (Zakharov 1973; Zakharov &
Pletzer 1999; Toler, Cerfon & Malhotra 2023). Computing the magnetic field with the
virtual-casing principle is nevertheless challenging when the evaluation point is on the
plasma boundary, because it involves the evaluation of integrals with singular integrands.
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Singularity subtraction schemes have often been used by the plasma physics community
to address this difficulty (Drevlak et al. 2018). They are robust, but are typically low-order
accurate schemes (Malhotra et al. 2019), which are also tedious to implement. In contrast,
there exist quadrature weights and abscissae in the applied mathematics literature which
are specifically designed to give high accuracy for the singularities encountered in
plasma physics applications, and are simple to implement. In recent work (Toler et al.
2023), we demonstrated that for axisymmetric geometries, the Kapur–Rokhlin quadrature
scheme (Kapur & Rokhlin 1997) provided high-order accuracy for the computation
of the normal component on the plasma surface of the virtual-casing magnetic field.
Since the Kapur–Rokhlin scheme is designed for integrable singularities with known
asymptotic behaviour, we constructed this calculation in two steps. We first computed
the virtual-casing vector potential, which can be expressed in terms of an integral with a
known logarithmic singularity. Then, we calculated the normal component of the magnetic
field on the plasma surface by computing the tangential derivative of the vector potential,
by Fourier differentiation.

In the present letter, we show that the Kapur–Rokhlin quadrature scheme can be used
in a more direct and more general way for the virtual-casing principle in axisymmetric
geometries. Specifically, we demonstrate that the Kapur–Rokhlin scheme accurately
computes the Cauchy principal value integrals arising in the expressions for the magnetic
field in the virtual-casing principle, allowing us to compute all components of the magnetic
field directly anywhere on the plasma boundary, via line integrals that are straightforward
to implement and do not require any manipulation of the integrand.

Our previous article and the present letter address different needs associated with
different applications. In certain situations, only the virtual-casing vector potential, or
equivalently the virtual-casing poloidal magnetic flux function, is required (Lao et al.
2005; Marx & Lütjens 2017; Pustovitov & Chukashev 2021), in which case the method we
presented in our first article is the most appropriate method. In other situations, knowledge
of the component of the magnetic field normal to the plasma surface is desired (Landreman
& Boozer 2016; Landreman 2017). In these cases, both our previous article and the present
letter offer satisfactory solutions, although the approach presented here has the advantage
of yielding the normal component of the magnetic field directly, bypassing the Fourier
differentiation of the vector potential. Finally, there exist situations in which the tangential
component of the magnetic field on the plasma surface is required, for example, as a
Neumann boundary condition for the poloidal magnetic flux function (Zaitsev et al. 2011;
Blum, Boulbe & Faugeras 2012; Ricketson et al. 2016). The method we present here is
uniquely well suited for these situations.

The letter is structured as follows. In § 2, we review the virtual-casing principle for
axisymmetric settings and highlight the relevant line integrals for computing the magnetic
field due to the plasma, evaluated on the plasma boundary. Section 3 describes numerical
quadrature schemes for evaluating the principal value integrals that appear in these line
integrals. In § 4, we illustrate the performance of the quadrature schemes on an example
determined by an analytic Grad–Shafranov equilibrium, and demonstrate the high order
convergence and excellent accuracy of the Kapur–Rokhlin scheme. We conclude in § 5.

2. Axisymmetric virtual-casing principle
2.1. Cylindrical coordinates for toroidally axisymmetric surfaces

Throughout the letter, we will be concerned with plasmas with toroidally axisymmetric
boundaries. We shall therefore make use of the standard, right-handed cylindrical
coordinates (r, φ, z) naturally associated with the toroidal geometry, where the z-axis is
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the axis of revolution. At a point with toroidal angle φ, we write the orthonormal unit
vectors as er(φ), eφ(φ) and ez. With this notation, we emphasize the fact that the radial
and azimuthal unit vectors depend on the toroidal angle.

Let γ be the simple closed curve in the (r, z) plane such that by rotating γ about the
z-axis for φ ∈ [0, 2π], we obtain the closed surface of revolution Γ corresponding to the
plasma boundary. The generating curve γ is parametrized by a single variable t, which we
assume has period L. We denote the components of γ in the (r, z) plane by (r(t), z(t)),
and we identify a point y ∈ Γ by its toroidal revolution angle φ and its generating curve
parameter t. Correspondingly, we often write y = y(φ, t) to stress this parametrization.
Moreover, we assume that γ is a C1 curve which does not intersect the z-axis, in the sense
that the derivatives r′(t) and z′(t) are continuous on [0,L] and there exists Rmin > 0 for
which r(t) ≥ Rmin on [0,L].

2.2. Virtual-casing principle for axisymmetric plasmas
Consider an axisymmetric plasma confined by external coils in equilibrium. Let B denote
the total magnetic field. The poloidal field Bpol = B − Bφeφ at any location is the sum of
the poloidal field Bpol

ext , due to the external coils, and of the poloidal field Bpol
V , due to the

plasma current. The field Bpol
V is given for all x ∈ R

3 by the Biot–Savart law:

Bpol
V (x) = μ0

4π

∫∫∫
Ω

Jtor
V (y)eφ(φ(y))× x − y

‖x − y‖3
dy, (2.1)

where μ0 is the permeability of free space, the integration volumeΩ is the plasma domain
and Jtor

V is the toroidal current density in the plasma. The vector eφ(φ(y)) is the unit vector
in the toroidal direction at y, where the argument φ(y) is the toroidal angle of the point y.

Equation (2.1) is a volume integral, which is expensive to evaluate numerically. The
virtual-casing principle gives a formula for Bpol

V that depends only on the full field Bpol at
the plasma boundary and only requires the evaluation of a surface integral (i.e. line integral
for axisymmetric domains) (Shafranov & Zakharov 1972; Zakharov 1973; Hanson 2015).
Specifically, the virtual-casing principle states that if Γ is the flux surface bounding the
plasma, then Bpol

V can be written in terms of a field generated by the toroidal surface current
J tor

S such that μ0J tor
S = −n × Bpol, where n is the outward unit normal vector to Γ . This

relation is given according to Hanson (2015):

Bpol
V (x) = 1

4π

∫∫
Γ

[
(n(y)× Bpol(y))× (x − y)

‖x − y‖3

]
dΓ (y)+

⎧⎪⎨
⎪⎩

Bpol(x) x ∈ Ω,
Bpol(x)/2 x ∈ Γ,
0 x /∈ Ω̄.

(2.2)

In this letter, we are interested in the most common application of the virtual-casing
principle, in which we want to compute the magnetic field due to the plasma currents
on the plasma boundary, i.e. for x ∈ Γ . That motivates why we focus on the poloidal
magnetic field. Indeed, for axisymmetric plasma boundaries and magnetic fields, the
toroidal magnetic field on the plasma boundary is entirely generated by external coils.
To see this, let Cr,z be any circle of radius r in a plane perpendicular to the z-axis, at
altitude z, that is tangent to the axisymmetric plasma boundary. Applying Stokes’ theorem
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along this circle, we can write

∮
Cr,z

Bφ(r, z)r dφ = 2πrBφ(r, z) = μ0

∫∫
Dr,z

J · dS = μ0Icoils, (2.3)

where Dr,z is the flat disc perpendicular to the z-axis bounded by the circle Cr,z, and Icoils
is the total coil-induced current. In the last equality, we have used the fact that the plasma
currents are divergence free. We obtain the well-known expression for the vacuum toroidal
field, Bφ(r) = μ0Icoils/(2πr), which holds all the way to the plasma boundary and confirms
that for axisymmetric plasmas, plasma currents do not contribute to the toroidal magnetic
on the plasma boundary.

2.3. Reduction of the virtual-casing principle to line integrals
Since we are considering an axisymmetric surface Γ , the surface integral in (2.2) can be
expressed in terms of a line integral by integrating over the toroidal angle analytically.

The poloidal magnetic field Bpol at any point y(φ, t) ∈ Γ can be expressed in terms of
its poloidal flux function ψ(r, z) and the parametrization (φ, t) �→ y(φ, t) by (Freidberg
2014)

Bpol(y(φ, t)) = ∇ψ(r(t), z(t))× ∇φ
= − 1

r(t)
∂ψ

∂z
(r(t), z(t))er(φ)+ 1

r(t)
∂ψ

∂r
(r(t), z(t))ez. (2.4)

Inserting this expression in (2.2) and integrating it analytically with respect to the
toroidal angle, we may evaluate Bpol

V directly through the remaining univariate integral.
Presently, we consider evaluating on the plasma boundary Γ . Without loss of generality,
we assume that the evaluation point lies on the cross-section of the plasma boundary with
azimuthal angle φ = 0, which has cylindrical coordinate unit vectors that align with the
rectangular unit vectors {ex, ey, ez}. We denote such an evaluation point as (R, 0,Z) in
cylindrical coordinates.

Upon integrating the toroidal angle, the univariate expression for Bpol
V on the plasma

boundary is

Bpol
V (R,Z) = 1

4π

∫ L

0
f (t) dt + 1

2
Bpol(R,Z), (R, 0,Z) ∈ Γ, (2.5)

where (Toler et al. 2023)

f (t) = 2
r(t)

√
α + β

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

] {
Z − z(t)

R

(
−K(k2)+ α

α − β
E(k2)

)
ex

+
(

K(k2)+ r(t)2 − R2 − (Z − z(t))2

α − β
E(k2)

)
ez

}
. (2.6)

Here, the functions K and E are the complete elliptic integrals of the first and second
kind, primes denote derivatives with respect to the parametrization variable t, and we have
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introduced the quantities⎧⎪⎪⎨
⎪⎪⎩
α = α(t; R,Z) = R2 + r(t)2 + (Z − z(t))2,
β = β(t; R,Z) = 2Rr(t),

k2 = k(t; R,Z)2 = 2β
α + β

.

(2.7)

Since we are evaluating on the plasma boundary, the evaluation point can be identified
by its generating curve parameter t, say t0, so r(t0) = R and z(t0) = Z. There are two
sources of singularity in f (t) near t0. The mapping t �→ K(k(t)2) is O(log |t − t0|) near t0
(Gradshteyn & Ryzhik 2014; Toler et al. 2023), and the errors from Taylor series for r(t)
and z(t) yield 1/(α − β) = O(1/(t − t0)

2).

3. High-order principal value quadrature for the axisymmetric virtual-casing
principle

Previously (Toler et al. 2023), we showed that the integral in (2.5) is not convergent.
That means that this integral must be interpreted in the Cauchy principal value sense for
all components of Bpol

V (R,Z) in (2.5) to be well defined. Since the observation point (R,Z)
lies on the plasma boundary, we may identify this point with a value of the boundary
parameter t, say t0.

To evaluate all the components of Bpol
V (R,Z) via (2.5), we must evaluate the integral in

this expression with the following substitution:∫ L

0
f (t) dt −−−→ lim

ε→0+

(∫ t0−ε

0
f (t) dt +

∫ L

t0+ε
f (t) dt

)
, (3.1)

where f is given in (2.6). (If t0 = 0, the integration interval within the limit should be
[ε,L − ε].) Let us discuss two quadrature rules to do so: the alternating trapezoidal rule
and the periodic Kapur–Rokhlin rule (Kapur & Rokhlin 1997; Toler et al. 2023).

We begin by considering the alternating trapezoidal rule. We recall that the standard
N-point periodic trapezoidal rule for the integral

∫ L
0 g(t) dt for an L-periodic integrand g is

defined by equispaced quadrature nodes with uniform weights h = L/N. The alternating
trapezoidal rule for the case when g has a singularity at t0 is a specific case of the
trapezoidal rule, where the quadrature nodes {si}N

i=1 are placed to straddle t0. That is,
the nodes are si = t0 + (i − 1

2)h for i = 1, . . . ,N. The alternating trapezoidal rule for
some types of Cauchy principal value integrals is supported by mathematical theory.
In particular, it is known to converge spectrally accurately for principal value integrals
of the form

∫ 1
−1(q(t)/t) dt when q is an analytic function (Kress & Martensen 1970;

Trefethen & Weideman 2014). Additionally, if q ∈ CP[0,L] but is not analytic, then
the quadrature converges with order P (Sidi & Israeli 1988). By staggering quadrature
nodes with equal weights on each side of the singularity, the alternating trapezoidal rule
captures the cancellation that is necessary for a well-defined Cauchy principal value. For
our application, we note that the asymptotic behaviour of the integrand is not q(t)/t,
but q1(t)/t + q2(t) log |t| + q3(t) for bounded functions q1, q2, q3. As a result of the
logarithmically singular term, we do not expect high-order convergence of the quadrature
error. Rather, we expect low-order convergence, as we will verify numerically in the next
section.

In contrast, the Kapur–Rokhlin rule is precisely designed to integrate logarithmic
singularities with high-order accuracy (Toler et al. 2023). We recall that the (N − 1)-point
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rule for the periodic setting of interest in our context can be written as

∫ t0+L/2

t0−L/2
g(t) dt =

(N−1)/2∑
j=−(N−1)/2

j	=0

wjgj + O(hn), (3.2)

where g is logarithmically singular at t0, with

wj =
{
(1 + γj + γ−j)h, 1 ≤ |j| ≤ n,
h, otherwise,

(3.3)

and gj ≡ g(t0 + jh). The convergence order n may be chosen by the user and the weights
{γj} may be read from a table of values (Kapur & Rokhlin 1997). The spacing h = L/N
between quadrature points is uniform (except for the doubled space between nodes −1
and 1), and we are using notation so that the meaning of h is the same for both the
alternating trapezoidal rule and the Kapur–Rokhlin rule. In (3.2), we assume that N is odd
to simplify notation. If N is even, the points may be indexed by j = ±1, . . . ,±(N/2 −
1),N/2.

Like the alternating trapezoidal rule, the periodic Kapur–Rokhlin rule staggers nodes
around the singularity with equal weights, so it also captures the principal value
cancellation when integrating f . Indeed, the weights in (3.3) satisfy wj = w−j. However,
the quadrature error converges much faster than for the alternating trapezoidal rule, since
the quadrature rule was also designed for the logarithmic singularity of f . We next
discuss practical performance of these numerical methods in the context of a virtual-casing
principle calculation.

4. Numerical results

To compare and verify the numerical methods for calculating the principal value of
the integral in (2.5), we use the same reference data as Toler et al. (2023) on the
same geometry. Specifically, the axisymmetric plasma boundary is given by the level set
{ψ = 0} of the poloidal flux function given by

ψ(r, z) = κFB

2R3
0q0

[
1
4
(r2 − R2

0)
2 + 1

κ2
r2z2 − a2R2

0

]
, (4.1)

which solves the Grad–Shafranov equation with the Solov’ev profiles μ0p(ψ) =
−[FB(κ + 1/κ)/(R3

0q0)]ψ and F(ψ) = FB, where p(ψ) is the plasma pressure profile, and
F(ψ) = rBφ , with Bφ the toroidal magnetic field (Lütjens, Bondeson & Sauter 1996; Lee &
Cerfon 2015). The parameters R0 and q0 may be interpreted as the major radius and safety
factor at the magnetic axis, and κ and a as the elongation and minor radius of the plasma
boundary, respectively. Throughout, we use the fusion relevant values FB = R0 = q0 = 1,
and κ = 1.7 and a = 1/3. The level set {ψ = 0} may be parametrized by the functions
(Lütjens et al. 1996; Lee & Cerfon 2015)

(r(t))2 = R2
0 + 2aR0 cos t and z(t) = κa

R0

r(t)
sin t (4.2a,b)

for t ∈ [0,L] with L = 2π.
We take as ground truth the plasma-induced magnetic field from a high-resolution

computation by the approach of Malhotra et al. (2019). The method used in that
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FIGURE 1. Reference solution for the Solov’ev profiles of § 4. Colours represent ‖B‖ on the
plasma surface.

implementation is different from the one-dimensional integral approach presented here
in several ways, making it appropriate for our verification. Specifically, the code presented
by Malhotra et al. (2019) views the plasma equilibrium as a fully three-dimensional
equilibrium and does not assume axisymmetry. Furthermore, Malhotra et al. (2019) obtain
Bpol

V on the plasma boundary directly by evaluating the virtual-casing principle as a surface
integral, as opposed to first reducing to a univariate integral by axisymmetry. Finally, the
Cauchy principal value of the surface integral is numerically evaluated via a partition
of unity scheme to handle the singularity of the integrand. The reference solution was
computed on a fine grid with 1,580 toroidal angle values and 1,200 poloidal points on
each cross-section. In a self-convergence comparison with a solution from finer resolution,
these data were found to be accurate to 11 digits of precision. Figure 1 illustrates the
geometry and reference solution for this problem. This approach by Malhotra et al. (2019)
is more robust by treating fully three-dimensional volumes with two-dimensional surfaces,
but axisymmetric specializations like those we present here require discretization of one
less dimension and result in faster runtimes.

With these reference values, we shall assess the numerical accuracy of the alternating
trapezoidal rule and the Kapur–Rokhlin rule, which we discussed in the previous section.
For each quadrature scheme, we compute both the radial component Bpol

V,R of Bpol
V and the

vertical component Bpol
V,Z at 1,200 points on the plasma boundary which are equispaced

in the generating curve parameter t. We measure the relative quadrature error for each
component as the maximum of the pointwise absolute difference between the computed
field component and the reference values. We normalize both errors by the maximum
absolute value of the 2,400 reference values for Bpol

V,R and Bpol
V,Z .

Figure 2 illustrates that the alternating trapezoidal rule indeed converges to the same
values found with the scheme presented by Malhotra et al. (2019), but does so with a low
order of convergence. The convergence rates are O(h3) for the radial component Bpol

V,R and
O(h) for the vertical component Bpol

V,Z . The radial component converges quicker because

https://doi.org/10.1017/S0022377824000527 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000527


8 E. Toler, A.J. Cerfon and D. Malhotra

(b)(a)

FIGURE 2. Maximum pointwise error using the alternating trapezoidal rule to compute Bpol
V,R

and Bpol
V,Z via principal value.

its integrand has more regularity due to the following asymptotic behaviour. Recall from
§ 2.3 that t �→ K(k(t)2) is O(log |t − t0|) near t0. Hence, in the integrand f of (2.6), the
product (Z − z(t))K(k2) has only a removable discontinuity at t0 and not a logarithmic
singularity. The only singularity in the radial component is the principal value singularity
of (Z − z(t))/(α − β). No such product dampens the singularity of K in the vertical
component. Nevertheless, the convergence rates for both components of Bpol

V are better
than those guaranteed by the quadrature theory we discussed in § 3.

We next consider the periodic Kapur–Rokhlin rule for the principal value quadrature.
We view each component of the integrand f as the sum of a logarithmically singular term
and a remainder term: {

ex · f (t) = pR(t) log |t − t0| + qR(t),
ez · f (t) = pZ(t) log |t − t0| + qZ(t).

(4.3)

In particular, we have

pR(t) log |t − t0| = 2
r(t)

√
α + β

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
Z − z(t)

R
(−K(k2)) (4.4)

and

pZ(t) log |t − t0| = 2
r(t)

√
α + β

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
K(k2), (4.5)

and we set qR and qZ to be the remaining corresponding terms in (2.6). In figures 3, 4 and 5,
we show the results of applying the second-, sixth- and tenth-order Kapur–Rokhlin rules,
respectively. These are the theoretical convergence rates guaranteed for smooth coefficient
functions pR, pZ, qR, qZ . In this example, however, we see convergence rates that deviate
slightly from these values. The sixth-order rule converges at the expected rate of O(h6).
However, the second-order rule converges faster than predicted at rates of approximately
O(h2.71) and O(h2.52) for the radial and vertical components, respectively. Additionally,
the tenth-order rule converges at approximate rates of O(h8.74) and O(h8.73). We compute
these approximate rates by performing an ordinary least squares line of best fit to the data
measurements in the asymptotic regime of convergence.
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(b)(a)

FIGURE 3. Maximum pointwise error using the second-order Kapur–Rokhlin rule to compute
Bpol

V,R and Bpol
V,Z via principal value.

(b)(a)

FIGURE 4. Maximum pointwise error using the sixth-order Kapur–Rokhlin rule to compute
Bpol

V,R and Bpol
V,Z via principal value. We compare the Kapur–Rokhlin (KR) error with the

alternating trapezoidal (AT) error of figure 2.

Notably, the tenth-order scheme converges slightly slower than predicted. We offer
two potential explanations for this phenomenon. First, the smoothness assumptions of
Kapur–Rokhlin are violated, as we explain presently. Similar to the alternating trapezoidal
rule, the Kapur–Rokhlin rule requires that all of {pR, pZ, qR, qZ} are sufficiently smooth
to guarantee the theoretical convergence rate (Kapur & Rokhlin 1997). However, both qR
and qZ include the elliptic integral E. The mapping t �→ E(k(t)2) is continuous, but its first
derivative is not. This is readily seen by the identity of Gradshteyn & Ryzhik (2014) that

∂E(k2)

∂k2
= E(k2)− K(k2)

2k2
. (4.6)

The first derivative of t �→ E(k(t)2), and hence the first derivatives of qR and qZ , are
logarithmically singular at t0 due to the appearance of K. Second, very high orders of
the Kapur–Rokhlin rule have weight corrections {γj} which are large in magnitude and
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(b)(a)

FIGURE 5. Maximum pointwise error using the tenth-order Kapur–Rokhlin rule to compute
Bpol

V,R and Bpol
V,Z via principal value. We compare the Kapur–Rokhlin (KR) error with the

alternating trapezoidal (AT) error of figure 2.

are sign-indefinite. This introduces numerical instability as a price to pay for the higher
convergence order (Martinsson 2019).

We hypothesize that the instability from the weight corrections also explains the
observation that the quadrature error saturates at approximately nine digits of accuracy
in figures 4 and 5. It is numerically common for algorithmic instabilities to raise the
error floor from machine precision. The instability is known to worsen as the theoretical
convergence order increases, so we see this phenomenon earlier and more markedly for
the tenth-order rule compared with the sixth-order rule. In contemporary plasma physics
applications relevant to this work, however, accuracy at the level of eight or nine digits
is typically not a limiting factor in overall calculations, so we do not explore the error
saturation further.

Though the second- and sixth-order rules have agreed with or exceeded the theoretical
baselines in our experiment, we emphasize that we cannot guarantee such performance
in general. The behaviour of all of the Kapur–Rokhlin schemes in this setting are less
predictable, but nevertheless promising in practice.

When we directly compare the performance of the Kapur–Rokhlin scheme and the
alternating trapezoidal scheme in figures 4 and 5, we see that both methods are competitive
for computing Bpol

V,R, whose virtual-casing integrand contains a less severe singularity. The
Kapur–Rokhlin rule is asymptotically faster to converge, but the alternating trapezoidal
rule has better accuracy when the number of quadrature points is small. However,
the Kapur–Rokhlin rule more clearly outperforms the alternating trapezoidal rule for
computing Bpol

V,Z , whose virtual-casing integrand contains the more severe singularity. In
this case, the alternating trapezoidal rule only has higher accuracy when the number of
quadrature points is very limited: less than approximately 50.

Finally, we consider a third quadrature scheme which directly combines the alternating
trapezoidal rule and the Kapur–Rokhlin rule. Returning to the decomposition (4.3),
we integrate the logarithmically singular terms with pR and pZ of (4.4) and (4.5) via
the periodic Kapur–Rokhlin rule, and we integrate the remaining terms qR and qZ via
the alternating trapezoidal rule. One might imagine that this scheme would outperform
both the pure Kapur–Rokhlin rule and the pure alternating trapezoidal rule, since this
combined scheme uses each constituent quadrature on the term for which it is specialized.
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(b)(a)

FIGURE 6. Maximum pointwise error using a combination of the tenth-order Kapur–Rokhlin
rule and the alternating trapezoidal rule to compute Bpol

V,R and Bpol
V,Z . We compare the error with

the alternating trapezoidal (AT) error of figure 2.

However, figure 6 reveals that the lack of smoothness in the integrand again stalls
convergence. For few quadrature nodes, the Kapur–Rokhlin corrections considerably
improve convergence, but for more than approximately 100 nodes, the slower convergence
of the alternating trapezoidal rule dominates. We observe that the limiting asymptotic
convergence rate appears to be third-order convergence in this experiment for both the
radial and vertical components of Bpol

V . This improves the asymptotic rate from the
pure alternating trapezoidal rule for Bpol

V,Z , indicating that the alternating trapezoidal rule
originally achieved only O(h) convergence because it ignored the logarithmic singularity.

We additionally note that the asymptotic rates for the second- and tenth-order
Kapur–Rokhlin rules in figures 2 and 4 experimentally appear to agree with rates of
O(h3 log h) and O(h9 log h), respectively, though this is our hypothesis and we are not
aware of quadrature theory that would imply the presence of a log h factor in the
convergence rate in this context. However, convergence orders with log h factors are known
to appear when ill-suited quadrature rules, like the alternating trapezoidal rule, are used to
integrate a function with a purely logarithmic singularity (Martinsson 2019). We display
this feature for the tenth-order rule in figure 6.

The pure Kapur–Rokhlin method remains the most efficient quadrature scheme
discussed for this principle value application. It empirically displays high-order
convergence and accuracy close to the theorized rates. The tenth-order rule achieves a
maximal accuracy of approximately nine digits with approximately 400 quadrature nodes.

5. Conclusion

We have shown that both the alternating trapezoidal rule and the Kapur–Rokhlin rule
are convergent schemes for the computation of all the components of Bpol

V expressed
as one-dimensional Cauchy principal value integrals of the virtual-casing principle for
axisymmetric equilibria. However, the convergence of the alternating trapezoidal rule is
limited to very low order, which can be as low as one, because of the lack of smoothness
of the integrand. In contrast, high-order Kapur–Rokhlin schemes, which are nearly as easy
to implement as the alternating trapezoidal rule, provide high-order convergence for this
calculation because the schemes are specifically designed for the singularities encountered
in this application.
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We therefore recommend the direct implementation of high-order Kapur–Rokhlin rules
for the computation of the axisymmetric virtual-casing principle as presented in this letter,
since it is easier to use than the method originally proposed by us in Toler et al. (2023), it
provides all the components of the magnetic field and the loss of accuracy is negligible as
compared to the results obtained by us in Toler et al. (2023) for the normal component of
the magnetic field only.
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