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On the absolute Norlund summability

factors of Fourier series

Yasuo Okuyama

The object of this paper is to give a general theorem which

implies Izumi's Theorem and Kanno's Theorem on the absolute

Horlund summability factors of Fourier series and deduce to

several known and new results from the theorem.

1.

Let [ a be a given infinite series with the sequence of partial

sums {s } . Let {p } be a sequence of constants, real or complex, and

let us write
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defines the Norlund means of the sequence {s } generated by the sequence

of constants [p } .

The series £ a is said to be absolutely summable [N, p ) , or

summable \N, p \ , if the series
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is convergent.

In the special cases in vhich p = r(n+a)/r(a)r(n+l) , a > 0 , and

p = l/(n+l) , summability \N, p | are the same as the summability

|C, a| and the absolute harmonic summability, respectively.

2 .

Let /(*) tie a periodic function with period 2ir and integrable (L)
over (-IT, IT) . We assume without any loss of generality that the Fourier
series of f(t) is given by

00 00

(2.1) I [a c o s n t + b s i n n t ) = I A { t )
n=l n n «=1 n

f11
and f(t)dt = 0 . We write » ( t ) = <p(t) = %{f(ar*t)+.f(x-t)} ,

'-•n X

\{n) = \n , and

Dealing with the absolute Norlund summability of Fourier series, Izumi
and Izumi [3] proved the following theorem, which is a generalization of
theorems due to Bosanquet [f] and Mohanty [6, 7].

THEOREM A. Let {p } be non-negative and non^increasin'g and X(t) ,

t > 0 , be a positive non-decreasing function such that {X /(«+!)} is

non-i.ncreasvng ,

(2.2)

and

(2.3)

OO

I
k=n

h
(k+i)Pk

= 0
n'

\(C/t)\d<p(t)

Then the series

I \AJ*)
n=0 n n

is swrmabie \N, p \ , at t = x .
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Summabi l i ty f a c t o r s II

Generalizing the theorem of Varshney 181, Kanno [4] proved the

following theorem.

THEOREM B. Let \p } be non-negative and non-increasing. Let

\(t) , t > 0 3 be a positive, non-deoreasing function satisfying the

condition {X IP } is non-increasing.

If the conditions

(2.10 I ~^=0\-f\ , n = 0, 1, 2, . . .
k=n v\ \-n>

and

fir

'0

for some constant C > 0 hold, then the series

00 (n+1 )p

i""1

is sunrndbte \N, p \ at t = x .

Also see Oikshit [2] for the proofs of these theorems.

We generalize these theorems in the following form.

THEOREM. Let {p } be non-negative and non^increasing. Suppose that

•sX > is a positive bounded sequence and X (t) , t > 0 , is a

positive non-decreasing function such that \\ X /(n+l)> is non-

increasing,

00 xk H
(2.6) I K

yj>
k =0

k=n k

and

P
n '

n = 1 , 2 , . . .

(2.7) \ '(C/t)\dp{t)\ < °° , for a constant C (> 2TT) .

Then the series
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is ewrmable \N, p \ 3 at t = x .

If Â  = 1 and \> - n * o u r t h e o r e m reduces to Theorem A. If

we put A = (n+l)p IP and \ = A , we easily see that, under the

same assumptions as those of Theorem B, the condition (2.6) is satisfied

and the sequence <A A /(n+l)r is non-increasing because

fc=n k=n

and

n+1

Therefore our theorem includes Theorem B.

3.

We shall require the following lemmas to prove the theorem.

LEMMA 1 [2], Let fp } be a given sequence, then for any x , we

have

where m and n are integers suoh that n > m 2 0 .

This lemma is easily obtained.

LEMMA 2 [5] . If {p } is non-negative, non-increasing, then for

0<aSb<c°, 0 S t i n , and for any n > we have

b

k=a
pkexp(i(n-k)t) < AF

ll/t] '
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Summability factors 13

where A is a positive constant and [x] denotes the integral part of

x .

4.

Proof of the Theorem. By (l.l) we have

t 1 I P,X{lh^h n At)n Pn A^ k n-k n-k n+l-k

where

= - (f(t)cosktdt .

Hence,

Thus, to prove the theorem, it is enough to show that

I \t -t i
Z, ' n n-Vn=i

k*l

n=l n n-l fc=l

.(2) sd^
Kk k+l

= 0(1)

Considering the condition (2.7). it suffices for our purpose to prove

that uniformly in 0 < t - n ,

M=l
I
k=l

p p
n n-l

Let us write T = [C/2t] , so we have
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2 T + 1
1 - L

n=X

( l ) , (2)
L

k=l P P
n n

fc+1

n=2x+2

T
n=2T+2

&+1

P " P
n n

( 2 )

J 3 '

say.

Since [p } i s non-negative and non-increasing, <\ > i s bounded,

•\X > is non-decreasing and | sin(fe+l)t | 5 (?:+l)£ , we have

2 T + 1

n=l

= 0{Xi2)(C/t)) .

Also, since \P V/P } i s monotonic non-decreasing and bounded for
rl~K. ft

each fixed k > 0 , we have

I.SAt
n=2x+2 l w

I
k=l

= 0{\{Z)(C/t)) ,

by virtue of the hypotheses that \\ \ is bounded and is non-

decreasing.

In order to prove that J_ = 0[\ (C/t)) , we consider the sum

r n-k w-fc-1 ,(1),!* = I
3 n=2T+2

Then it is enough to prove that

J3 =

How, we observe that

Pn-1

exp(ikt)
fe+1

t
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If

I
n=2x+2

irT+1 -̂

Pn-k Pn-fe-ll,(l).(2) exp(ifct)
" — ' A , A. "'"'*

N

n=2T+2 w-1 k=m+l

L p p
n=2T+2 n n -1

( l ) j ( 2 ) exp(ifct)

= J* + J* + X*
31 32 33

say, where m = [n/2] .

Since ^w_fc/^n} i s non-decreasing for each fixed k 2 0 and

| l - e x p ( i t ) | = 0\t J , we obtain by an application of Lemma 1,

m
I n-K ;

n-1

N

I
n=2T+2 fe=x+l

Pn-k Pn-fc-ll,(l),-(2) exp(ifct)
p

n
N

£ AT
W-T-1 Pw-T-2K(l),(2) [expfi(T+l)t]

+ AT

+ AT

n=2T+2

A?

I
n=2x+2

iV

n=2x+2

T+2

n-m n-m-l) -, ( l)- , (2) [exp[ i (w+l) t ) |

X, ( l ) X , ( 2 ) wP

fe+l

m+1

w-fe-1

Since for each fixed k , {p ,/P } is non-increasing while

[P , /P } is non-decreasing, we obtain
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N
A\{2)(C/t) I

( 2 )

n=2T+2

N A, A, Y}~
r* K+~\ lf+1 *-K

as ff -»• °° , t y v i r tue of the hypotheses (2.6) and that

i s non-increasing.

Since i\~ X. /(fe+l)> i s non-increasing, we have by Abel's Lemma

and Lemma 2 ,
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N
I

n=2x+2 n-1

n

k=m+i

x £ 4
k kn-k

expUkt)

5 A
N
I

A (1) A (2)
m+l m+l

«=2T+2 n-1

N ^h

m+2 max I p vexp(ikt)
k=m+l

,(l),(2) ,(2)
A A A

/ — — < AP • -1—

niT nPn ~
APr PT= o{\{2\c/t))

as N •* °° , by v i r t u e of t h e hypothesis ( 2 . 6 ) .

Ey a s i m i l a r method, we have

J 3 3 =
" Pn

n=2x+2 n n-1

X( 1 )X( 2 )

Pn-k

N
I • n

P P
n=2T+2 n n-1

n
I n-k pn-k

pn-k exp(ikt)

S A
N
I • n m tn m

n=2T+2 n n-1

N ,(2)

^ Ap
- T

JL
M=T+1

nPnPn - A T P

Collecting the above estimations Ji. , J*? , and J* , we prove that

uniformly in 0 < t S ir , I* = o(X^2'(C/t)) and a fortiori that

J = 0[y2'(C/t)) . Therefore, by I , I , and I , we have

This completes the proof of the theorem.

5.

In this section, we consider some applications of our theorem.

Using a result of Das and Srivastava {of. [4], Theorem B), it is shown
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by Kanno [4] that i t is possible to deduce the following four corollaries
from his theorem. However, if we apply our theorem, we need not appeal to
the result of Das and Srivastava {of. [4], Theorem B) for proofs of their
corollaries.

COROLLARY 1 [ 6 ] . If

r
In

then the series £ n A it) is summble \C, g| at t = x , where
w=l n

0 < a < g < 1 .

COROLLARY 2. If 0 < o < l , 8 > 0 , and

f
}0

8then the series 2 (logn) A it) is swmable \c, a| at t = x .
n=l n

T h i s c o r o l l a r y c o i n c i d e s t o Bosanquet [ J ] f o r B = 0 , and Mohanty [ 7 ]

f o r 3 = 1 , r e s p e c t i v e l y .

COROLLARY 3 . If l > a > 0 , P > 0 , a + 6 < 1 , and

f] | d p { * ) | < - ,
0

then the series

AAt)
I —H- is svmmdble \S, l/(n+2){log(n+2)} |

n=0 (logCn+S)}4-"13

For a = 6 = 0 , t h i s corollary i s due to Varshney [S3.

COROLLARY 4. If

log log T- \3y{t)\ <
i 0 I *;

T \ \ o r 0 < 8 < l ,

0 I *;

then the series
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°= A (t)
I T-R i s Bimmable \N, l/(n+2)log(n+2) |

n=0 log(n+2){log log(n+2)}

at t = x .

As these corollaries are analogously proved, we shall prove here only

Corollary h.

Proof of Corollary 4. In our theorem, we put p. = l/(fe+2)log(fe+2) ,

\^ = l/log(fe+2)log log(fc+2) , x£2 ) = {log log(fc+2)}8 . Then

y k Ak _ JilQK lozin+2)f} _

^ ~ i log l o e ( " + 2 ) J "

P = I l/(fc+2)log(fc+2) ^ log log(n+2) .
n k=0

Moreover i t is easy to see that

k=n
l o g P

n

Hence all assumptions of our theorem hold. Therefore the proof is

complete. Further, by our theorem, we obtain the following Corollaries 5

and 6, which correspond to Corollaries 3 and h for 3 = 1 , respectively.

COROLLARY 5. If

then the series

oo

I A {t) is etawnable \N, log(w+2)/(n+2) |
n=0

at t = x .

Proof. Putting

p, = log(fe+2)/(fe+2) , Ap-5 = l/log(k+2) , A^2) =
ft K K

then we have

P. -
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On the other hand, we have

1 _ f log(n+2) 1 „

n '

Therefore, by our theorem, we see that Corollary 5 holds.

By a similar method, we can prove the following corollary.

COROLLARY 6. If

fir / _A

log IOR j\\dip{t)\ < °° ,

then the series

I A (*)/log(«+2) i s swmable \N, log log(n+2)/(n+2)log(n+2)|
n=0 n

at t = x .
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