A NEW RESULT ON COMMA-FREE CODES OF EVEN WORD-LENGTH

BETTY TANG, SOLOMON W. GOLOMB AND RONALD L. GRAHAM

1. Introduction. Comma-free codes were first introduced in [1] in 1957 as a possible genetic coding scheme for protein synthesis. The general mathematical setting of such codes was presented in [3], and the biochemical and mathematical aspects of the problem were later summarized and extended in [4].

Using the notation of [3], a set D of k-tuples or k-letter words, $\left(a_{1} a_{2} \ldots a_{k}\right)$, where

$$
a_{i} \in \mathbf{Z}_{n}=\{0,1,2, \ldots, n-1\}
$$

for fixed positive integers k and n, is said to be a comma-free dictionary if and only if, whenever $\left(a_{1} a_{2} \ldots a_{k}\right)$ and $\left(b_{1} b_{2} \ldots b_{k}\right)$ are in D, the "overlaps"

$$
\left(a_{i} a_{i+1} \ldots a_{k} b_{1} \ldots b_{i-1}\right), \quad 2 \leqq i \leqq k
$$

are not in D. This precludes codewords having a subperiod less than k; and two codewords which are cyclic permutations of one another cannot both be in D. Therefore at most one member from the non-periodic cyclic equivalence class of $\left(a_{1} \ldots a_{k}\right)$, i.e., from the set

$$
\left\{\left(a_{j} \ldots a_{k} a_{1} \ldots a_{j-1}\right) \mid 1 \leqq j \leqq k\right\}
$$

can be in D. The maximum number of codewords, $W_{k}(n)$, in the comma-free dictionary D therefore cannot exceed the number of non-periodic cyclic equivalence classes of sequences of length k formed from an alphabet of n letters. Denoting the latter number by $B_{k}(n)$, we have formally,

$$
W_{k}(n) \leqq B_{k}(n)
$$

where

$$
B_{k}(n)=\frac{1}{k} \sum_{d \mid k} \mu(d) n^{k / d}
$$

The summation is extended over all divisors d of k, and $\mu(d)$ is the Möbius function.

[^0]Golomb, Gordon and Welch [3] proved that $W_{k}(n)$ attains the upper bound $B_{k}(n)$ for arbitrary n if $k=1,3,5,7,9,11,13,15$, and conjectured that this is indeed the case for all odd k. The conjecture was proved by Eastman [2], who gave a construction for the maximal comma-free dictionaries. A simpler construction for these dictionaries was found by Scholtz [6].

The results for even integers k were less complete. Golomb, Gordon and Welch [3] were able to prove that $W_{k}(n)$ cannot attain the bound $B_{k}(n)$ for $n>3^{k / 2}$; and in particular,

$$
W_{2}(n)=\left[\frac{n^{2}}{3}\right]
$$

where $[x]$ is the integral part of x, whereas

$$
B_{2}(n)=\frac{n^{2}-n}{2} .
$$

It was also mentioned that for $k=4$, we in fact have $W_{4}(n)<B_{4}(n)$ if $n \geqq 5$, while $W_{4}(n)=B_{4}(n)$ if $n=1,2,3$. The case for $n=4$ was later solved in [5] by exhaustive computer search, which found $W_{4}(4)=$ $57<B_{4}(4)=60$.

An improvement on the relation between k and n such that $W_{k}(n)<$ $B_{k}(n)$ for even k was given by Jiggs [5]:

$$
W_{k}(n)<B_{k}(n) \text { if } n>2^{k / 2}+\frac{k}{2} .
$$

We present a further improvement based on Jiggs' proof, which in turn gives rise to a very interesting combinatorial problem. We first present Jiggs' result (attributed by Jiggs to R. I. Jewett) with some modifications of notation.

We consider only the simpler problem of forming a comma-free dictionary D with $\binom{n}{2}$ codewords of length $k=2 l$, with one representative from each cyclic class of the type $(a 00 \ldots 0 b 00 \ldots 0)$, with $0 \leqq$ $a<b \leqq n-1$ and $l-1 \quad 0$'s between a and b. Clearly if these $\binom{n}{2}$ classes cannot be simultaneously represented in a comma-free dictionary, the full set of $B_{k}(n)$ classes cannot be so represented.

A half-word in D is an l-tuple which is either the initial half or final half of some word in D. For each $d \in Z_{n}$ and $1 \leqq r \leqq k / 2$, let $u(d, r)$ denote the half-word with d at the r-th position and 0 everywhere else. We assign a sequence

$$
x^{d}=x_{1}^{d} x_{2}^{d} \ldots x_{l}^{d}
$$

to each $d \in \mathbf{Z}_{n}$ where x_{r}^{d} is defined in the following way:

$$
x_{r}^{d}= \begin{cases}2 & \text { if } u(d, r) \text { is both initial and final } \\ 1 & \text { if } u(d, r) \text { is final only } \\ 0 & \text { if } u(d, r) \text { is initial only } \\ * & \text { if } u(d, r) \text { is neither initial nor final. }\end{cases}
$$

Jiggs showed that the sequences x^{d} have the following two properties:
(1) If $d \neq b$, then x_{r}^{d} and x_{r}^{b} cannot both be 2 , for any $1 \leqq r \leqq l$. Thus at most l of the sequences x^{d} can contain the symbol 2 .
(2) Among the sequences in which the symbol 2 does not occur, if $d \neq b$, there exists $1 \leqq r \leqq l$ such that either $x_{r}^{d}=0$ and $x_{r}^{b}=1$, or $x_{r}^{b}=0$ and $x_{r}^{d}=1$. (In particular, distinct letters of the alphabet must have distinct sequences.)

We call two sequences, x^{d} and x^{b}, composed of 0,1 , and ${ }^{*}$, comparable if they have property (2). The two properties imply that the maximum number of distinct sequences x^{d} containing a 2 is l, and the maximum number of distinct sequences x^{d} containing no 2 is 2^{l}. Hence if $|D|=B_{k}(n)$, then $n \leqq 2^{k / 2}+k / 2$.

Our improvement on Jiggs' result is a consequence of the following observation.

THEOREM 1.1. If $d \neq b$ and $r \neq s$, we cannot have both $x_{r}^{d}=x_{s}^{b}=1$ and $x_{r}^{b}=x_{s}^{d}=0$.

Proof. Suppose there exist $r \neq s$ such that $x_{r}^{d}=x_{s}^{b}=1$ and $x_{r}^{b}=$ $x_{s}^{d}=0$. Then we will have words of the following form:

$$
\begin{aligned}
& w_{1}=(0 \ldots 0 p 0 \ldots 0 d 0 \ldots 0), \\
& w_{2}=(0 \ldots 0 b 0 \ldots 0 q 0 \ldots 0),
\end{aligned}
$$

where the non-zero letters appear at positions r and $l+r$, and

$$
\begin{aligned}
& w_{3}=(0 \ldots 0 x 0 \ldots 0 b 0 \ldots 0), \\
& w_{4}=(0 \ldots 0 d 0 \ldots 0 y 0 \ldots 0),
\end{aligned}
$$

where the non-zero letters appear at positions s and $s+l$. The overlaps of $w_{1} w_{2}$ and $w_{3} w_{4}$ therefore contain all members of the cyclic equivalence class of $(0 \ldots 0 b 0 \ldots 0 d 0 \ldots 0)$ and so D cannot contain a representative of this class and still be comma-free.
We will call two sequences x^{d} and x^{b} compatible if they satisfy the exclusion condition in Theorem 1.1. We will now address the combinatorial problem of determining the maximum size of a set S of sequences of length l, composed of ${ }^{*}, 0$, and 1 such that the sequences are pairwise comparable and compatible.
2. The minimal array. Let $t=t(l)$ be the maximum number of distinct l-tuples of 0 's, l's, and *'s which are pairwise comparable and compatible.

We will try to determine t indirectly. Suppose we have an array of empty boxes with t rows in the array. We must fill in each empty box with either *, 0 or 1 such that every two rows, taken as sequences, are comparable and compatible. We want to know the minimum number of distinct columns in the array when there are t rows. Let $f(t)$ be that minimum number, and call the array thus obtained the minimum array M_{t}. Obviously, $f(t) \leqq l$.

We define $t(1)=0$. The value of $f(t)$ for small t can be obtained without much difficulty. (See Table 1).

Table 1

$t=2, f(t)=1$	$t=5, f(t)=3$
$M_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$	$M_{5}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & * \\ 1 & * & 0 \\ * & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$
$t=3, f(t)=2$	
$M_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$	$t=6, f(t)=4$
$t=4, f(t)=3$	
$M_{4}=\left[\begin{array}{lll}0 & 1 & * \\ * & 0 & 1 \\ 1 & * & 0 \\ 1 & 1 & 1\end{array}\right]$	$M_{6}=\left[\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & * & 1 \\ 1 & * & 0 & 1 \\ * & 0 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$

Note that there can be more than one minimal array M_{t} for each t. Also, t as a function of l is simply the largest number s such that $f(s)=l$. From Table 1 we get the values of $t(l)$ for some l. (See Table 2.)

Table 2

l	$t(l)$
1	2
2	3
3	5
4	$\geqq 6$

We can immediately establish a few properties of $f(t)$.
Theorem 2.1. $f(t)$ is a monotonically non-decreasing function of t.
Proof. Let $s>t$. We can remove any $s-t$ rows from the minimal array M_{s} and the remaining array of t sequences will still be pairwise comparable and compatible. Therefore $f(t) \leqq f(s)$.

Theorem 2.2. $f(t+1) \leqq f(t)+1$.
Proof. From the minimal array M_{t}, construct a set of $t+1$ sequences and $f(t)+1$ columns in the following way. A 1 is added to the end of every sequence in M_{t}, and a sequence x^{t+1} of length $f(t)+1$ containing all 0 's is adjoined to the set. The sequences in the new set are still pairwise comparable and compatible, and so

$$
f(t+1) \leqq f(t)+1
$$

Theorem 2.3. $f(t) \leqq t-1$.
Proof. The sequences in the following array of $t-1$ columns are pairwise comparable and compatible, so $f(t) \leqq t-1$.

We now require the minimal array M_{t} to be such that the number of "comparison sites" between every two sequences is as small as possible. In other words, if $x_{r}^{d}=x_{s}^{d}=0$ and $x_{r}^{b}=x_{s}^{b}=1$ for some $r \neq s, 1 \leqq r$, $s \leqq f(t)$, we will replace either x_{s}^{d} or x_{s}^{b}, or both, by ${ }^{*}$ so long as the resulting array is still pairwise comparable and compatible.

Lemma 2.4. In a minimal array M_{t}, there exists some column which contains *.

Proof. If the first column contains *, we are done. If not, we can assume that $x_{1}^{d}=0, d=1, \ldots, s$, and $x_{1}^{d}=1, d=s+1, \ldots, t$. Let $1<r \leqq f(t)$ and consider the r-th column. If again $x_{r}^{d}=0, d=1, \ldots, s$, and $x_{r}^{d}=1, d=s+1, \ldots, t$, we can eliminate the r-th column and the resulting array is still pairwise comparable and compatible, and therefore M_{t} is not a minimal array. Suppose $x_{r}^{d}=1$ for some $1 \leqq d \leqq s$; then x_{r}^{d} must be either $*$ or 1 for all $s+1 \leqq d \leqq t$ or else we will have non-compatible sequences. Since the number of comparison sites between every two sequences has to be minimum, all the x_{r}^{d} 's, $s+1 \leqq d \leqq t$, in fact have to be ${ }^{*}$ because comparison sites already occur at the first column. The situation is similar if $x_{r}^{d}=0$ for some $s+1 \leqq d \leqq t$.

Theorem 2.5. $f(2 t)>f(t)$.

Proof. We prove this by induction. $f(2)=1>0=f(1)$. Assume $f(t-1)<f(2 t-2)$, but $f(2 t)=f(t)$. From Theorems 2.1 and 2.2, we must have

$$
f(2 t-2) \geqq f(t-1)+1
$$

and

$$
f(2 t)=f(t) \leqq f(t-1)+1,
$$

and therefore

$$
f(s)=f(t-1)+1, t \leqq s \leqq 2 t
$$

In particular,

$$
f(t+1)=f(t-1)+1
$$

Consider the minimal array $M_{2 t}$, and suppose the r-th column contains at least one ${ }^{*}$. The total number of entries which are not * in this column therefore cannot be more than $2 t-1$. Without loss of generality, assume the number of 0 's in this column is less than or equal to $t-1$. If we now remove all rows in $M_{2 t}$ with 0 at the r-th position and also remove the r-th column, the resulting array has at least $t+1$ rows and $f(t)-1$ columns since $f(2 t)=f(t)$. The $t+1$ rows are still pairwise comparable and compatible, whence $f(t+1) \leqq f(t-1)$, contradicting

$$
f(t+1)=f(t-1)+1
$$

We can now make a rough estimate of $f(t)$. From Table 1 and Theorem 2.5 , the best lower bound we can get is

$$
f\left(6 \cdot 2^{i}\right) \geqq 4+i, \quad i=0,1,2, \ldots
$$

Using the substitution $t=6 \cdot 2^{i}$, we get

$$
f(t) \geqq q(t), \quad t \geqq 6,
$$

where

$$
q(t)=4+\frac{\log t-\log 6}{\log 2}
$$

which gives

$$
t(l) \leqq 3 \cdot 2^{l-3}
$$

3. A graph structure on the minimum array. Given a minimal array M_{t}, define a graph G_{s}, for each $1 \leqq s \leqq f(t)$, on the vertex set $V=\{1,2, \ldots, t\}$ by assigning an edge between vertices b and $d, b \neq d$, if and only if either $x_{s}^{b}=0$ and $x_{s}^{d}=1$, or $x_{s}^{b}=1$ and $x_{s}^{d}=0$. Let

$$
A_{s}=\left\{b \mid 1 \leqq b \leqq t, x_{s}^{b}=0\right\}
$$

and

$$
B_{s}=\left\{b \mid 1 \leqq b \leqq t, x_{s}^{b}=1\right\}
$$

G_{s} is then a complete bipartite graph on the vertex sets A_{s} and B_{s}, and is non-empty by comparability and the minimality of M_{t}. We have the following observation.

Lemma 3.1. There do not exist s and $s^{\prime}, 1 \leqq s, s^{\prime} \leqq f(t)$, such that both

$$
A_{s} \cap B_{s^{\prime}} \neq \emptyset \quad \text { and } \quad A_{s^{\prime}} \cap B_{s} \neq \emptyset .
$$

Proof. Suppose there exist b and d such that

$$
b \in A_{s} \cap B_{s^{\prime}} \quad \text { and } \quad d \in A_{s^{\prime}} \cap B_{s^{\prime}} .
$$

Then

$$
x_{s}^{b}=x_{s^{\prime}}^{d}=0 \quad \text { and } \quad x_{s^{\prime}}^{b}=x_{s}^{d}=1
$$

which implies x^{b} and x^{d} are not compatible sequences.
Now construct a graph G on the vertex set $V=\{1,2, \ldots, t\}$ by assigning an edge between b and d if and only if x^{b} and x^{d} are comparable sequences. Since all the x^{b} s, $1 \leqq b \leqq t$, are pairwise comparable, G is a complete graph on V. Moreover, the G_{s} 's, $1 \leqq s \leqq f(t)$ are a minimal cover of G, that is,

$$
G=\bigcup_{s=1}^{f(t)} G_{s}
$$

since every edge in G is also an edge in some G_{s}, and $f(t)$ is the minimum number of columns in M_{t}.

Let $\lambda_{s}=\left|A_{s}\right| \cdot\left|B_{s}\right|$, which gives the number of edges in the graph G_{s}. Suppose

$$
\lambda=\lambda(t)=\max _{1 \leqq s \leqq f(t)} \lambda_{s}
$$

Lemma 3.2. $f(t) \geqq\binom{ t}{2} / \lambda$, where $\binom{t}{2}$ is the binomial coefficient.
Proof. Since G is a complete graph on a set of t vertices, there are $\binom{t}{2}$ edges in G. The minimal covering of G by all the G_{s} 's implies

$$
\binom{t}{2} \leqq \sum_{s=1}^{f(t)} \lambda_{s}<\lambda f(t)
$$

Lemma 3.3. There does not exist $1 \leqq s \leqq f(t)$ such that G_{s} has an edge between two vertices in both $A_{s^{\prime}}$ and $B_{s^{\prime}}$ for all $1 \leqq s^{\prime} \leqq f(t)$.

Proof. If G_{s} has an edge in $A_{s^{\prime}}$ and $B_{s^{\prime}}$, then there exist $b_{1}, b_{2}, d_{1}, d_{2}$ such that $b_{1}, d_{1} \in A_{s^{\prime}}$ with $b_{1} \in A_{s}$ and $d_{1} \in B_{s}$ and $b_{2}, d_{2} \in B_{s^{\prime}}$ with $b_{2} \in A_{s}$ and $d_{2} \in B_{s}$. This implies

$$
A_{s^{\prime}} \cap B_{s} \neq \emptyset \quad \text { and } \quad A_{s} \cap B_{s^{\prime}} \neq \emptyset
$$

In particular, let $s^{\prime}=r$ where $\lambda=\lambda_{r}$ and assume without loss of generality that $\left|A_{r}\right| \geqq\left|B_{r}\right|$. Lemma 3.3 asserts that in the complete graph G, the edges between vertices in A_{r} and those in B_{r} are covered separately. We therefore have

Lemma 3.4. $f(t) \geqq f\left(\left|A_{r}\right|\right)+f\left(\left|B_{r}\right|\right)$.
So far f is a function defined on the positive integers only. For convenience sake, extend f to a function \widetilde{f} defined on all nonnegative real numbers by the following:

$$
\bar{f}(t)= \begin{cases}f(t) & \text { if } t \text { is an integer } \\ f(\Gamma t\rceil) & \text { if } t \text { is not an integer }\end{cases}
$$

where $\lceil t\rceil$ is the smallest integer larger than or equal to t. Henceforth we will refer to $f(t)$ as a function defined on all $t \in[0, \infty)$ when we really mean $\widetilde{f}(t)$.
Lemma 3.5. $f(t) \geqq f(\sqrt{\lambda})+f\left(\frac{\lambda}{t}\right)$.
Proof. We have

$$
\lambda=\lambda_{r}=\left|A_{r}\right| \cdot\left|B_{r}\right| \leqq\left|A_{r}\right|^{2}
$$

or $\left|A_{r}\right| \geqq \sqrt{\lambda}$. Moreover,

$$
\left|B_{r}\right|=\frac{\lambda}{\left|A_{r}\right|} \geqq \frac{\lambda}{t} .
$$

We then have, from the last lemma and the monotonicity of f,

$$
f(t) \geqq f(\sqrt{\lambda})+f\left(\frac{\lambda}{t}\right)
$$

Corollary 3.6. $f(t) \geqq \max \left(\frac{t(t-1)}{2}, f(\sqrt{\lambda})+f\left(\frac{\lambda}{t}\right)\right)$.
This additional property of $f(t)$ helps establish a larger lower bound for it.

Theorem 3.7. There exists a constant $0<c_{0}<1$ such that

$$
f(t) \geqq \exp \sqrt{c_{0} \log (t)} \text { for } t \geqq a>0
$$

Note. We prove the theorem by actually taking $c_{0}=0.71$. It can be shown that

$$
q(t) \geqq \exp \sqrt{0.71 \log (t)} \quad \text { for } 6 \leqq t \leqq T_{0}
$$

where $q(t)$ is the bound in the last section and $T_{0}=208,562$ is the largest integer t such that

$$
q(t) \geqq \exp \sqrt{0.71 \log (t)}
$$

and hence

$$
f(t) \geqq \exp \sqrt{0.71 \log (t)} \quad \text { for } 6 \leqq t \leqq T_{0} .
$$

Proof of Theorem 3.7. We proceed by induction using Corollary 3.6. All we need show is

$$
f(t) \geqq \exp \sqrt{0.71 \log (t)} \text { for } t \geqq T_{0}+1
$$

Assume

$$
f(s) \geqq \exp \sqrt{0.71 \log (s)}
$$

for all $s \leqq t-1$ where $t \geqq T_{0}+1$. If

$$
\frac{t(t-1)}{2 \lambda(t)} \geqq \exp \sqrt{0.71 \log (t)},
$$

we are done. Otherwise

$$
\lambda(t)>\frac{t(t-1)}{2 \exp \sqrt{0.71 \log (t)}},
$$

and hence

$$
\begin{aligned}
f(\sqrt{\lambda(t)})+f\left(\frac{\lambda(t)}{t}\right) & \geqq f\left(\sqrt{\frac{t(t-1)}{2 \exp \sqrt{0.71 \log (t)}}}\right) \\
& +f\left(\frac{t-1}{2 \exp \sqrt{0.71 \log (t)}}\right)
\end{aligned}
$$

For convenience, let $u=\exp \sqrt{c_{0} \log (t)}$ where $c_{0}=0.71$ and

$$
G(t)=f\left(\sqrt{\frac{t(t-1)}{2 u}}\right)+f\left(\frac{t-1}{2 u}\right) .
$$

Also, let

$$
g(t)=\frac{t(t-1)}{2 u} \quad \text { and } \quad h(t)=\frac{g(t)}{t} .
$$

Simple calculus shows that both $g(t)$ and $h(t)$ are increasing functions, in particular for $t \geqq 6$. Moreover, we must have

$$
6<\sqrt{g(t)}<t-1 \quad \text { and } \quad 6<h(t)<t-1 .
$$

By the induction hypothesis,

$$
\begin{aligned}
G(t) & \geqq \exp \sqrt{c_{0} \log \sqrt{g(t)}}+\exp \sqrt{c_{0} \log h(t)}, \\
& =\exp \left(c_{0} \log t+\frac{c_{0}}{2} \beta(t)\right)^{1 / 2}+\exp \left(c_{0} \log t+c_{0} \beta(t)\right)^{1 / 2},
\end{aligned}
$$

where

$$
\beta(t)=\log \frac{t-1}{2 t}-\log u .
$$

Note that $(t-1) / 2 t$ is an increasing function of t, and larger than $1 / e$ for $t \geqq T_{0}$. Hence

$$
\beta(t)>-1-\log u \text { for } t \geqq T_{0}+1,
$$

and therefore

$$
\begin{aligned}
G(t) & \geqq \exp \left(c_{0} \log t-\frac{c_{0}}{2}(1+\log u)\right)^{1 / 2} \\
& +\exp \left(c_{0} \log t-c_{0}(1+\log u)\right)^{1 / 2} \\
& =\exp \left[\log u\left(1-\frac{c_{0}}{2(\log u)^{2}}(1+\log u)\right)^{1 / 2}\right] \\
& +\exp \left[\log u\left(1-\frac{c_{0}}{(\log u)^{2}}(1+\log u)\right)^{1 / 2}\right]
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{c_{0}}{(\log u)^{2}}(1+\log u)<1, \\
& \frac{1}{u} G(t) \geqq z^{2}+z
\end{aligned}
$$

where

$$
z=z(t)=\exp \left[-\frac{c_{0}}{2}\left(1+\frac{1}{\log u}\right)\right] .
$$

Note that for $t \geqq T_{0}+1$,

$$
z \geqq \exp \left[-\frac{c_{0}}{2}\left(1+\frac{1}{\sqrt{c_{0} \log \left(T_{0}+1\right)}}\right)\right]>\frac{\sqrt{5}-1}{2}
$$

and therefore $z^{2}+z>1$. Hence $G(t)>u$, or

$$
f(t)>\exp \sqrt{0.71 \log (t)}
$$

for $t>T_{0}$ also.
The constant $c_{0}=0.71$ is almost the best possible value, as $T_{0}(0.72)=$ 132, 284, and in this case

$$
z\left(T_{0}\right)<\frac{\sqrt{5}-1}{2}
$$

With

$$
l \geqq f(t) \geqq \exp \sqrt{0.71 \log (t)},
$$

we get

$$
t(l) \leqq l^{\log / / 0.71}
$$

and a comma-free dictionary will not have the maximum size $B_{k}(n)$ if

$$
n>\left(\frac{k}{2}\right)^{(\log k / 2) / 0.71}+\frac{k}{2}, \quad k \geqq 8
$$

Table 3 compares Jiggs' bound and the new bound on n. Asymptotically, the new lower bound for n is significantly smaller. However, we suspect that compatibility is so strong a constraint that the bound on n could be dramatically reduced, probably to a polynomial in k.

Table 3

k	Jiggs' bound $2^{k / 2}+k / 2$	New bound $[(k / 2) \exp (\log (k / 2) / 0.71)+k / 2]$
8	20	18
10	37	43
20	1034	1760
30	3.28×10^{4}	3.06×10^{4}
40	1.05×10^{6}	3.09×10^{5}
80	1.10×10^{12}	2.11×10^{8}
160	1.21×10^{24}	5.57×10^{11}
320	1.46×10^{48}	5.69×10^{15}

4. A lower bound for $t(l)$. As before, let $t=t(l)$ be the maximum number of l-tuples of 0 's, l's, and ${ }^{*}$'s which are pairwise comparable and compatible. In the previous section we obtained the upper bound

$$
t(l) \leqq l^{\log / / 0.71}=e^{\operatorname{cog}^{2} l}
$$

The lower bound which we found is

$$
t(l) \geqq 15 l+1 \quad \text { for all } l \equiv 0(\bmod 7)
$$

The basic construction here is for $l=7$, with $t(l)=16$.

0	0	0	0	0	0	0
1	0	0	$*$	0	$*$	$*$
$*$	1	0	0	$*$	0	$*$
$*$	$*$	1	0	0	$*$	0
0	$*$	$*$	1	0	0	$*$
$*$	0	$*$	$*$	1	0	0
0	$*$	0	$*$	$*$	1	0
0	0	$*$	0	$*$	$*$	1
0	$*$	$*$	1	$*$	1	1
1	0	$*$	$*$	1	$*$	1
1	1	0	$*$	$*$	1	$*$
$*$	1	1	0	$*$	$*$	1
1	$*$	1	1	0	$*$	$*$
$*$	1	$*$	1	1	0	$*$
$*$	$*$	1	$*$	1	1	0
1	1	1	1	1	1	1

It is no loss of generality to assume that the array A which achieves $t(l)$ rows with l columns includes an all-0's row, $\overrightarrow{0,}$, and an all-1's row, $\overrightarrow{1}$. Let R denote the reduced $(t(l)-2) \times l$ array when $\overrightarrow{0}$ and $\overrightarrow{1}$ and removed from A. Let Z be the $(t(l)-2) \times l$ matrix of all 0 's, and let J be the $(t(l)-2)$ $\times l$ matrix of all l's. Then for any multiplicity m, the following array (Table 4), which is $(m t(l)-m+1) \times(m l)$, clearly consists of rows which are pairwise comparable and compatible. This also yields the general result

$$
t(m l) \geqq m(t(l)-1)+1,
$$

for all $m \geqq 1, l \geqq 1$.
Table 4

$\overrightarrow{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$	\ldots	$\overrightarrow{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$
Z	Z	Z	\ldots	Z	Z	R
$\overrightarrow{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$	\ldots	$\overrightarrow{0}$	$\overrightarrow{0}$	$\vec{\imath}$
Z	Z	Z	\ldots	Z	R	J
$\overrightarrow{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$	\ldots	$\overrightarrow{0}$	$\vec{\imath}$	$\vec{\imath}$
Z	Z	Z	\ldots	R	J	J
$\overrightarrow{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$	\ldots	$\vec{\imath}$	$\vec{\imath}$	$\vec{\imath}$
\cdots	\cdots	\ldots	\ldots	\cdots	$\vec{\imath}$	
$\overrightarrow{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$	\ldots	$\vec{\imath}$	$\vec{\imath}$	$\vec{\imath}$
Z	Z	R	\ldots	J	J	J
$\overrightarrow{0}$	$\overrightarrow{0}$	$\vec{\imath}$	\ldots	$\vec{\imath}$	$\vec{\imath}$	$\vec{\imath}$
Z	R	J	\ldots	J	J	J
$\overrightarrow{0}$	$\vec{\imath}$	$\vec{\imath}$	\ldots	$\vec{\imath}$	$\vec{\imath}$	$\vec{\imath}$
R	J	J	\ldots	J	J	J
$\vec{\imath}$	$\vec{\imath}$	$\vec{\imath}$	\ldots	$\vec{\imath}$	$\vec{\imath}$	$\vec{\imath}$

Table 5
The construction by Collins, Shor and Stembridge to show that $t\left(n^{2}+n+1\right) \geqq n\left(n^{2}+n+1\right)$
+2 for all positive integers n. (Use all cyclic shifts for each of the n words of length $l=n^{2}+n$
+1 , and adjoin the vectors $\overrightarrow{0}$ and \vec{l} consisting of $l 0$'s and of $l l$'s respectively to obtain the
dictionary.)
$n=1, n^{2}+n+1=3, t(3)=5$

1	$*$	0

$n=2, n^{2}+n+1=7, t(7)=16$

1	0	0	$*$	0	$*$	$*$
1	$*$	1	1	0	$*$	$*$

$n=3, n^{2}+n+1=13, t(13) \geqq 41$

1	0	0	0	$*$	0	0	$*$	$*$	0	$*$	$*$	$*$
1	$*$	$*$	1	1	0	0	$*$	$*$	0	$*$	$*$	$*$
1	$*$	$*$	1	1	$*$	1	1	1	0	$*$	$*$	$*$

$n=4, n^{2}+n+1=21, t(21) \geqq 86$

5. Postscript. The results presented thus far were all obtained in time for inclusion in B. Tang's Ph.D. thesis in May, 1983. Several subsequent results on $\left\{0,1,{ }^{*}\right\}$-sequences are presented in [7], and include the following:
i) A simpler proof of the upper bound formula,

$$
t(l)<l^{\log l}
$$

attributed to C. L. M. van Pul;
ii) The constructions illustrating $t(1)=2, t(3)=5$, and $t(7)=16$ have been generalized. Three students at Eindhoven (F. Abels, W. Janse, and J. Verbakel) found three words of length 13, all of whose cyclic shifts can be used simultaneously in a dictionary, along with the "all 0's" and "all l's" words, to obtain $t(13) \geqq 41$. Three M.I.T. students (K. Collins, P. Shor, and J. Stembridge) found a general construction which yields

$$
t\left(n^{2}+n+1\right) \geqq n\left(n^{2}+n+1\right)+2
$$

for all positive integers n, from which the lower bound result

$$
t(l)>c l^{3 / 2}
$$

clearly follows. This construction is illustrated for $1 \leqq n \leqq 5$ in Table 5.

The large gap which still remains between the upper and lower bound formulas is a clear invitation to further research.

References

1. F. H. C. Crick, J. S. Griffith and L. E. Orgel, Codes without commas, Proc. Nat. Acad. Sci. 43 (1957), 416-421.
2. W. L. Eastman, On the construction of comma-free codes, IEEE Trans. on Information Theory, IT-1I (1965), 263-266.
3. S. W. Golomb, B. Gordon and L. R. Welch, Comma-free codes, Can. J. Math. 10 (1958), 202-209.
4. S. W. Golomb, L. R. Welch and M. Delbrück, Construction and properties of comma-free codes, Biol. Medd. Dan. Vid. Selsk. 23 (1958), 3-34.
5. B. H. Jiggs, Recent results in comma-free codes, Can. J. Math. 15 (1963), 178-187.
6. R. A. Scholtz, Maximal and variable word-length comma-free codes, IEEE Trans. on Information Theory, IT-15 (1969), 300-306.
7. J. H. van Lint, $\left\{0,1,{ }^{*}\right\}$ distance problems in combinatorics, Surveys in Combinatorics (1985), London Mathematical Society Lecture Note Series 103 (Cambridge University Press, 1985), 113-135.

University of Southern California,
Los Angeles, California,
AT\&T Bell Laboratories,
Murray Hill, New Jersey

[^0]: Received November 21, 1983, and in revised form February 12, 1986. This research was supported in part by the National Security Agency, under Contract No. MDA904-$83-\mathrm{H}-0004$.

