A NEW RESULT ON COMMA-FREE CODES OF EVEN WORD-LENGTH

BETTY TANG, SOLOMON W. GOLOMB AND RONALD L. GRAHAM

1. Introduction. Comma-free codes were first introduced in [1] in 1957 as a possible genetic coding scheme for protein synthesis. The general mathematical setting of such codes was presented in [3], and the biochemical and mathematical aspects of the problem were later summarized and extended in [4].

Using the notation of [3], a set D of k-tuples or k-letter words, $(a_1a_2...a_k)$, where

$$a_i \in \mathbf{Z}_n = \{0, 1, 2, \dots, n-1\},\$$

for fixed positive integers k and n, is said to be a *comma-free dictionary* if and only if, whenever $(a_1a_2...a_k)$ and $(b_1b_2...b_k)$ are in D, the "overlaps"

$$(a_i a_{i+1} \dots a_k b_1 \dots b_{i-1}), \quad 2 \leq i \leq k,$$

are not in *D*. This precludes codewords having a subperiod less than k; and two codewords which are cyclic permutations of one another cannot both be in *D*. Therefore at most one member from the non-periodic cyclic equivalence class of $(a_1 \ldots a_k)$, i.e., from the set

$$\{(a_i \ldots a_k a_1 \ldots a_{i-1}) | 1 \leq j \leq k\},\$$

can be in *D*. The maximum number of codewords, $W_k(n)$, in the comma-free dictionary *D* therefore cannot exceed the number of non-periodic cyclic equivalence classes of sequences of length *k* formed from an alphabet of *n* letters. Denoting the latter number by $B_k(n)$, we have formally,

$$W_k(n) \leq B_k(n)$$

where

$$B_k(n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{k/d}$$

The summation is extended over all divisors d of k, and $\mu(d)$ is the Möbius function.

Received November 21, 1983, and in revised form February 12, 1986. This research was supported in part by the National Security Agency, under Contract No. MDA904-83-H-0004.

Golomb, Gordon and Welch [3] proved that $W_k(n)$ attains the upper bound $B_k(n)$ for arbitrary *n* if k = 1, 3, 5, 7, 9, 11, 13, 15, and conjectured that this is indeed the case for all odd *k*. The conjecture was proved by Eastman [2], who gave a construction for the maximal comma-free dictionaries. A simpler construction for these dictionaries was found by Scholtz [6].

The results for even integers k were less complete. Golomb, Gordon and Welch [3] were able to prove that $W_k(n)$ cannot attain the bound $B_k(n)$ for $n > 3^{k/2}$; and in particular,

$$W_2(n) = \left[\frac{n^2}{3}\right]$$

where [x] is the integral part of x, whereas

$$B_2(n) = \frac{n^2 - n}{2}.$$

It was also mentioned that for k = 4, we in fact have $W_4(n) < B_4(n)$ if $n \ge 5$, while $W_4(n) = B_4(n)$ if n = 1, 2, 3. The case for n = 4 was later solved in [5] by exhaustive computer search, which found $W_4(4) =$ $57 < B_4(4) = 60$.

An improvement on the relation between k and n such that $W_k(n) < B_k(n)$ for even k was given by Jiggs [5]:

$$W_k(n) < B_k(n)$$
 if $n > 2^{k/2} + \frac{k}{2}$.

We present a further improvement based on Jiggs' proof, which in turn gives rise to a very interesting combinatorial problem. We first present Jiggs' result (attributed by Jiggs to R. I. Jewett) with some modifications of notation.

We consider only the simpler problem of forming a comma-free dictionary D with $\binom{n}{2}$ codewords of length k = 2l, with one representative from each cyclic class of the type $(a00 \dots 0b00 \dots 0)$, with $0 \le a < b \le n - 1$ and l - 1 0's between a and b. Clearly if these $\binom{n}{2}$ classes cannot be simultaneously represented in a comma-free dictionary, the full set of $B_k(n)$ classes cannot be so represented.

A half-word in D is an l-tuple which is either the initial half or final half of some word in D. For each $d \in Z_n$ and $1 \le r \le k/2$, let u(d, r) denote the half-word with d at the r-th position and 0 everywhere else. We assign a sequence

 $x^d = x_1^d x_2^d \dots x_l^d$

to each $d \in \mathbf{Z}_n$ where x_r^d is defined in the following way:

 $x_r^d = \begin{cases} 2 & \text{if } u(d, r) \text{ is both initial and final} \\ 1 & \text{if } u(d, r) \text{ is final only} \\ 0 & \text{if } u(d, r) \text{ is initial only} \\ * & \text{if } u(d, r) \text{ is neither initial nor final.} \end{cases}$

Jiggs showed that the sequences x^d have the following two properties: (1) If $d \neq b$, then x_r^d and x_r^b cannot both be 2, for any $1 \leq r \leq l$. Thus at most l of the sequences x^d can contain the symbol 2.

(2) Among the sequences in which the symbol 2 does not occur, if $d \neq b$, there exists $1 \leq r \leq l$ such that either $x_r^d = 0$ and $x_r^b = 1$, or $x_r^b = 0$ and $x_r^d = 1$. (In particular, distinct letters of the alphabet must have distinct sequences.)

We call two sequences, x^d and x^b , composed of 0, 1, and *, *comparable* if they have property (2). The two properties imply that the maximum number of distinct sequences x^d containing a 2 is *l*, and the maximum number of distinct sequences x^d containing no 2 is 2^l . Hence if $|D| = B_k(n)$, then $n \leq 2^{k/2} + k/2$.

Our improvement on Jiggs' result is a consequence of the following observation.

THEOREM 1.1. If $d \neq b$ and $r \neq s$, we cannot have both $x_r^d = x_s^b = 1$ and $x_r^b = x_s^d = 0$.

Proof. Suppose there exist $r \neq s$ such that $x_r^d = x_s^b = 1$ and $x_r^b = x_s^d = 0$. Then we will have words of the following form:

$$w_1 = (0 \dots 0p0 \dots 0d0 \dots 0),$$

 $w_2 = (0 \dots 0b0 \dots 0a0 \dots 0).$

where the non-zero letters appear at positions r and l + r, and

$$w_3 = (0 \dots 0x0 \dots 0b0 \dots 0),$$

 $w_4 = (0 \dots 0d0 \dots 0y0 \dots 0),$

where the non-zero letters appear at positions s and s + l. The overlaps of w_1w_2 and w_3w_4 therefore contain all members of the cyclic equivalence class of $(0 \dots 0b0 \dots 0d0 \dots 0)$ and so D cannot contain a representative of this class and still be comma-free.

We will call two sequences x^d and x^b compatible if they satisfy the exclusion condition in Theorem 1.1. We will now address the combinatorial problem of determining the maximum size of a set S of sequences of length l, composed of *, 0, and 1 such that the sequences are pairwise comparable and compatible.

2. The minimal array. Let t = t(l) be the maximum number of distinct *l*-tuples of 0's, 1's, and *'s which are pairwise comparable and compatible.

We will try to determine t indirectly. Suppose we have an array of empty boxes with t rows in the array. We must fill in each empty box with either *, 0 or 1 such that every two rows, taken as sequences, are comparable and compatible. We want to know the minimum number of distinct columns in the array when there are t rows. Let f(t) be that minimum number, and call the array thus obtained the minimum array M_t . Obviously, $f(t) \leq l$.

We define t(1) = 0. The value of f(t) for small t can be obtained without much difficulty. (See Table 1).

TABLE 1	
t=2, f(t)=1	t=5,f(t)=3
$M_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$	$M_5 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & * \\ 1 & * & 0 \\ * & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
t=3, f(t)=2	
$M_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$	$t = 6, f(t) = 4$ $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
t=4, f(t)=3	$M_6 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & * & 1 \\ 1 & * & 0 & 1 \end{bmatrix}$
$M_4 = \begin{bmatrix} 0 & 1 & * \\ * & 0 & 1 \\ 1 & * & 0 \\ 1 & 1 & 1 \end{bmatrix}$	$M_6 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & * & 1 \\ 1 & * & 0 & 1 \\ * & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

Note that there can be more than one minimal array M_t for each t. Also, t as a function of l is simply the largest number s such that f(s) = l. From Table 1 we get the values of t(l) for some l. (See Table 2.)

TABLE 2		
1	<i>t</i> (<i>l</i>)	
1	2	
2	3	
3	5	
4	≥ 6	

We can immediately establish a few properties of f(t).

THEOREM 2.1. f(t) is a monotonically non-decreasing function of t.

Proof. Let s > t. We can remove any s - t rows from the minimal array M_s and the remaining array of t sequences will still be pairwise comparable and compatible. Therefore $f(t) \leq f(s)$.

THEOREM 2.2. $f(t + 1) \leq f(t) + 1$.

Proof. From the minimal array M_t , construct a set of t + 1 sequences and f(t) + 1 columns in the following way. A 1 is added to the end of every sequence in M_t , and a sequence x^{t+1} of length f(t) + 1 containing all 0's is adjoined to the set. The sequences in the new set are still pairwise comparable and compatible, and so

$$f(t+1) \leq f(t) + 1.$$

THEOREM 2.3. $f(t) \leq t - 1$.

Proof. The sequences in the following array of t - 1 columns are pairwise comparable and compatible, so $f(t) \leq t - 1$.

			<i>t</i> -	- 1 colum	ns		_
t rows	0 0 0 0	0 0 0 0	0 0 0 0	· · · · · · · · · ·	0 0 0 1	0 0 1 *	0 1 *
	0 0 1	0 1 *	1 * *	···· ···	* * *	* * *	•• * *

We now require the minimal array M_t to be such that the number of "comparison sites" between every two sequences is as small as possible. In other words, if $x_r^d = x_s^d = 0$ and $x_r^b = x_s^b = 1$ for some $r \neq s$, $1 \leq r$, $s \leq f(t)$, we will replace either x_s^d or x_s^b , or both, by * so long as the resulting array is still pairwise comparable and compatible.

LEMMA 2.4. In a minimal array M_{i} , there exists some column which contains *.

Proof. If the first column contains *, we are done. If not, we can assume that $x_1^d = 0, d = 1, \ldots, s$, and $x_1^d = 1, d = s + 1, \ldots, t$. Let $1 < r \leq f(t)$ and consider the r-th column. If again $x_r^d = 0, d = 1, \ldots, s$, and $x_r^d = 1, d = s + 1, \ldots, t$, we can eliminate the r-th column and the resulting array is still pairwise comparable and compatible, and therefore M_t is not a minimal array. Suppose $x_r^d = 1$ for some $1 \leq d \leq s$; then x_r^d must be either * or 1 for all $s + 1 \leq d \leq t$ or else we will have non-compatible sequences. Since the number of comparison sites between every two sequences has to be minimum, all the x_r^d 's, $s + 1 \leq d \leq t$, in fact have to be * because comparison sites already occur at the first column. The situation is similar if $x_r^d = 0$ for some $s + 1 \leq d \leq t$.

THEOREM 2.5. f(2t) > f(t).

Proof. We prove this by induction. f(2) = 1 > 0 = f(1). Assume f(t-1) < f(2t-2), but f(2t) = f(t). From Theorems 2.1 and 2.2, we must have

$$f(2t-2) \ge f(t-1)+1$$

and

$$f(2t) = f(t) \leq f(t-1) + 1,$$

and therefore

$$f(s) = f(t - 1) + 1, t \le s \le 2t.$$

In particular,

$$f(t + 1) = f(t - 1) + 1.$$

Consider the minimal array M_{2t} , and suppose the *r*-th column contains at least one *. The total number of entries which are not * in this column therefore cannot be more than 2t - 1. Without loss of generality, assume the number of 0's in this column is less than or equal to t - 1. If we now remove all rows in M_{2t} with 0 at the *r*-th position and also remove the *r*-th column, the resulting array has at least t + 1 rows and f(t) - 1 columns since f(2t) = f(t). The t + 1 rows are still pairwise comparable and compatible, whence $f(t + 1) \leq f(t - 1)$, contradicting

f(t + 1) = f(t - 1) + 1.

We can now make a rough estimate of f(t). From Table 1 and Theorem 2.5, the best lower bound we can get is

$$f(6 \cdot 2^{i}) \ge 4 + i, \quad i = 0, 1, 2, \dots$$

Using the substitution $t = 6 \cdot 2^{i}$, we get

$$f(t) \ge q(t), \quad t \ge 6,$$

where

$$q(t) = 4 + \frac{\log t - \log 6}{\log 2}$$

which gives

$$t(l) \leq 3 \cdot 2^{l-3}$$

3. A graph structure on the minimum array. Given a minimal array M_t , define a graph G_s , for each $1 \le s \le f(t)$, on the vertex set $V = \{1, 2, ..., t\}$ by assigning an edge between vertices b and d, $b \ne d$, if and only if either $x_s^b = 0$ and $x_s^d = 1$, or $x_s^b = 1$ and $x_s^d = 0$. Let

$$A_s = \{b | 1 \leq b \leq t, x_s^b = 0\}$$

and

$$B_s = \{b | 1 \leq b \leq t, x_s^b = 1\}.$$

 G_s is then a complete bipartite graph on the vertex sets A_s and B_s , and is non-empty by comparability and the minimality of M_t . We have the following observation.

LEMMA 3.1. There do not exist s and s', $1 \leq s, s' \leq f(t)$, such that both

$$A_s \cap B_{s'} \neq \emptyset$$
 and $A_{s'} \cap B_s \neq \emptyset$.

Proof. Suppose there exist b and d such that

$$b \in A_s \cap B_{s'}$$
 and $d \in A_{s'} \cap B_s$.

Then

$$x_{s}^{b} = x_{s'}^{d} = 0$$
 and $x_{s'}^{b} = x_{s}^{d} = 1$,

which implies x^b and x^d are not compatible sequences.

Now construct a graph G on the vertex set $V = \{1, 2, ..., t\}$ by assigning an edge between b and d if and only if x^b and x^d are comparable sequences. Since all the x^{b} 's, $1 \le b \le t$, are pairwise comparable, G is a complete graph on V. Moreover, the G_s 's, $1 \le s \le f(t)$ are a minimal cover of G, that is,

$$G = \bigcup_{s=1}^{f(t)} G_s$$

since every edge in G is also an edge in some G_s , and f(t) is the minimum number of columns in M_t .

Let $\lambda_s = |A_s| \cdot |B_s|$, which gives the number of edges in the graph G_s . Suppose

$$\lambda = \lambda(t) = \max_{1 \leq s \leq f(t)} \lambda_s.$$

LEMMA 3.2. $f(t) \ge {t \choose 2}/\lambda$, where ${t \choose 2}$ is the binomial coefficient.

Proof. Since G is a complete graph on a set of t vertices, there are $\binom{t}{2}$ edges in G. The minimal covering of G by all the G_s 's implies

$$\binom{t}{2} \leq \sum_{s=1}^{f(t)} \lambda_s < \lambda f(t).$$

LEMMA 3.3. There does not exist $1 \leq s \leq f(t)$ such that G_s has an edge between two vertices in both $A_{s'}$ and $B_{s'}$ for all $1 \leq s' \leq f(t)$.

Proof. If G_s has an edge in $A_{s'}$ and $B_{s'}$, then there exist b_1 , b_2 , d_1 , d_2 such that b_1 , $d_1 \in A_{s'}$ with $b_1 \in A_s$ and $d_1 \in B_s$ and b_2 , $d_2 \in B_{s'}$ with $b_2 \in A_s$ and $d_2 \in B_s$. This implies

 $A_{s'} \cap B_{s} \neq \emptyset$ and $A_{s} \cap B_{s'} \neq \emptyset$.

In particular, let s' = r where $\lambda = \lambda_r$ and assume without loss of generality that $|A_r| \ge |B_r|$. Lemma 3.3 asserts that in the complete graph G, the edges between vertices in A_r and those in B_r are covered separately. We therefore have

LEMMA 3.4. $f(t) \ge f(|A_r|) + f(|B_r|)$.

So far f is a function defined on the positive integers only. For convenience sake, extend f to a function \tilde{f} defined on all nonnegative real numbers by the following:

$$\widetilde{f}(t) = \begin{cases} f(t) & \text{if } t \text{ is an integer} \\ f(\lceil t \rceil) & \text{if } t \text{ is not an integer} \end{cases}$$

where $\lceil t \rceil$ is the smallest integer larger than or equal to t. Henceforth we will refer to f(t) as a function defined on all $t \in [0, \infty)$ when we really mean $\tilde{f}(t)$.

LEMMA 3.5.
$$f(t) \ge f(\sqrt{\lambda}) + f\left(\frac{\lambda}{t}\right)$$
.

Proof. We have

$$\lambda = \lambda_r = |A_r| \cdot |B_r| \le |A_r|^2,$$

or $|A_r| \geq \sqrt{\lambda}$. Moreover,

$$|B_r| = \frac{\lambda}{|A_r|} \ge \frac{\lambda}{t}.$$

We then have, from the last lemma and the monotonicity of f,

$$f(t) \ge f(\sqrt{\lambda}) + f\left(\frac{\lambda}{t}\right).$$

COROLLARY 3.6.
$$f(t) \ge \max\left(\frac{t(t-1)}{2}, f(\sqrt{\lambda}) + f\left(\frac{\lambda}{t}\right)\right).$$

This additional property of f(t) helps establish a larger lower bound for it.

THEOREM 3.7. There exists a constant $0 < c_0 < 1$ such that

 $f(t) \ge \exp \sqrt{c_0 \log(t)}$ for $t \ge a > 0$.

Note. We prove the theorem by actually taking $c_0 = 0.71$. It can be shown that

$$q(t) \ge \exp\sqrt{0.71 \log(t)}$$
 for $6 \le t \le T_0$,

where q(t) is the bound in the last section and $T_0 = 208$, 562 is the largest integer t such that

$$q(t) \ge \exp\sqrt{0.71 \log(t)}$$

and hence

$$f(t) \ge \exp \sqrt{0.71 \log(t)}$$
 for $6 \le t \le T_0$.

Proof of Theorem 3.7. We proceed by induction using Corollary 3.6. All we need show is

$$f(t) \ge \exp \sqrt{0.71 \log(t)}$$
 for $t \ge T_0 + 1$.

Assume

$$f(s) \ge \exp\sqrt{0.71 \log(s)}$$

for all $s \leq t - 1$ where $t \geq T_0 + 1$. If

$$\frac{t(t-1)}{2\lambda(t)} \ge \exp\sqrt{0.71\,\log(t)},$$

we are done. Otherwise

$$\lambda(t) > \frac{t(t-1)}{2\exp\sqrt{0.71\log(t)}},$$

and hence

$$f(\sqrt{\lambda(t)}) + f\left(\frac{\lambda(t)}{t}\right) \ge f\left(\sqrt{\frac{t(t-1)}{2\exp\sqrt{0.71\log(t)}}}\right) + f\left(\frac{t-1}{2\exp\sqrt{0.71\log(t)}}\right).$$

For convenience, let $u = \exp \sqrt{c_0 \log(t)}$ where $c_0 = 0.71$ and

$$G(t) = f\left(\sqrt{\frac{t(t-1)}{2u}}\right) + f\left(\frac{t-1}{2u}\right).$$

Also, let

$$g(t) = \frac{t(t-1)}{2u}$$
 and $h(t) = \frac{g(t)}{t}$.

Simple calculus shows that both g(t) and h(t) are increasing functions, in particular for $t \ge 6$. Moreover, we must have

$$6 < \sqrt{g(t)} < t - 1$$
 and $6 < h(t) < t - 1$.

By the induction hypothesis,

$$G(t) \ge \exp\sqrt{c_0 \log \sqrt{g(t)}} + \exp\sqrt{c_0 \log h(t)},$$

= $\exp\left(c_0 \log t + \frac{c_0}{2}\beta(t)\right)^{1/2} + \exp(c_0 \log t + c_0\beta(t))^{1/2}.$

where

$$\beta(t) = \log \frac{t-1}{2t} - \log u.$$

Note that (t - 1)/2t is an increasing function of t, and larger than 1/e for $t \ge T_0$. Hence

$$\beta(t) > -1 - \log u$$
 for $t \ge T_0 + 1$,

and therefore

$$G(t) \ge \exp\left(c_0 \log t - \frac{c_0}{2}(1 + \log u)\right)^{1/2} + \exp(c_0 \log t - c_0(1 + \log u))^{1/2} = \exp\left[\log u\left(1 - \frac{c_0}{2(\log u)^2}(1 + \log u)\right)^{1/2}\right] + \exp\left[\log u\left(1 - \frac{c_0}{(\log u)^2}(1 + \log u)\right)^{1/2}\right].$$

Since

$$\frac{c_0}{(\log u)^2}(1 + \log u) < 1,$$
$$\frac{1}{u}G(t) \ge z^2 + z$$

where

$$z = z(t) = \exp\left[-\frac{c_0}{2}\left(1 + \frac{1}{\log u}\right)\right].$$

Note that for $t \ge T_0 + 1$,

$$z \ge \exp\left[-\frac{c_0}{2}\left(1 + \frac{1}{\sqrt{c_0 \log(T_0 + 1)}}\right)\right] > \frac{\sqrt{5} - 1}{2}$$

and therefore $z^2 + z > 1$. Hence G(t) > u, or

$$f(t) > \exp\sqrt{0.71 \log(t)}$$

522

for $t > T_0$ also.

The constant $c_0 = 0.71$ is almost the best possible value, as $T_0(0.72) = 132$, 284, and in this case

$$z(T_0) < \frac{\sqrt{5} - 1}{2}.$$

With

$$l \ge f(t) \ge \exp\sqrt{0.71 \log(t)},$$

we get

$$t(l) \leq l^{\log l/0.71},$$

and a comma-free dictionary will not have the maximum size $B_k(n)$ if

$$n > \left(\frac{k}{2}\right)^{(\log k/2)/0.71} + \frac{k}{2}, \ k \ge 8.$$

Table 3 compares Jiggs' bound and the new bound on n. Asymptotically, the new lower bound for n is significantly smaller. However, we suspect that compatibility is so strong a constraint that the bound on n could be dramatically reduced, probably to a polynomial in k.

TABLE 3	
---------	--

k	Jiggs' bound $2^{k/2} + k/2$	New bound [$(k/2)\exp(\log(k/2)/0.71) + k/2$]
8	20	18
10	37	43
20	1034	1760
30	3.28×10^{4}	3.06×10^{4}
40	1.05×10^{6}	3.09×10^{5}
80	1.10×10^{12}	2.11×10^{8}
160	1.21×10^{24}	5.57×10^{11}
320	1.46×10^{48}	5.69×10^{15}

4. A lower bound for t(l). As before, let t = t(l) be the maximum number of *l*-tuples of 0's, 1's, and *'s which are pairwise comparable and compatible. In the previous section we obtained the upper bound

$$t(l) \leq l^{\log l/0.71} = e^{c \log^2 l}.$$

The lower bound which we found is

$$t(l) \ge 15l + 1$$
 for all $l \equiv 0 \pmod{7}$.

The basic construction here is for l = 7, with t(l) = 16.

0	0	0	0	0	0	0
1	0	0	*	0	*	*
*	1	0	0	*	0	*
*	*	1	0	0	*	0
0	*	*	1	0	0	*
*	0	*	*	1	0	0
0	*	0	*	*	1	0
0	0	*	0	*	*	1
0	*	*	1	*	1	1
1	0	*	*	1	*	1
1	1	0	*	*	1	*
*	1	1	0	*	*	1
1	*	1	1	0	*	*
*	1	*	1	1	0	*
*	*	1	*	1	1	0
1	1	1	1	1	1	1

It is no loss of generality to assume that the array A which achieves t(l) rows with l columns includes an all-0's row, $\vec{0}$, and an all-1's row, $\vec{1}$. Let R denote the reduced $(t(l) - 2) \times l$ array when $\vec{0}$ and $\vec{1}$ and removed from A. Let Z be the $(t(l) - 2) \times l$ matrix of all 0's, and let J be the $(t(l) - 2) \times l$ matrix of all 0's, and let J be the $(t(l) - 2) \times l$ matrix of all 1's. Then for any multiplicity m, the following array (Table 4), which is $(mt(l) - m + 1) \times (ml)$, clearly consists of rows which are pairwise comparable and compatible. This also yields the general result

TABLE 4

$$t(ml) \ge m(t(l) - 1) + 1,$$

for all $m \ge 1, l \ge 1$.

I ABLE 4
 $\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{0}$
Z Z Z Z Z R
$\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{1}$
Z Z Z Z R J
$\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{1}$ $\vec{1}$
$Z Z Z \ldots R J J$
$\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{1}$ $\vec{1}$ $\vec{1}$
$\vec{0}$ $\vec{0}$ $\vec{0}$ $\vec{1}$ $\vec{1}$ $\vec{1}$
$Z Z R \ldots J J J$
$\vec{0}$ $\vec{0}$ $\vec{1}$ $\vec{1}$ $\vec{1}$ $\vec{1}$
$Z R J \dots J J J$
$\vec{0}$ $\vec{1}$ $\vec{1}$ $\vec{1}$ $\vec{1}$ $\vec{1}$
$R J J \dots J J J$
$\vec{1}$ $\vec{1}$ $\vec{1}$ $\vec{1}$ $\vec{1}$ $\vec{1}$

+ 2 for all positive integers *n*. (Use all cyclic shifts for each of the *n* words of length $l = n^2 + n + 1$, and adjoin the vectors $\vec{0}$ and $\vec{1}$ consisting of l0's and of l1's respectively to obtain the The construction by Collins, Shor and Stembridge to show that $t(n^2 + n + 1) \ge n(n^2 + n + 1)$ TABLE 5 dictionary.)

> 0 0 0 --------00-0 0 * _ -~ * * * 0 * ~ -

* * *

× × *

* ¥ *

*

*

*

0

0

 $n = 4, n^2 + n + 1 = 21, t(21) \ge 86$

ſ	*	*	*	*	*
	*	*	*	*	*
	*	*	*	×	*
	*	*	*	*	*
	*	*	*	*	*
	0	0	0	0	0
	*	*	*	*	
l	*	*	*	*	_
	*	*	*	*	_
1	*	*	*	*	
	0	0	0	Ő	
ł	0	0	0	_	*
	<u> </u>				
	*	*	*	-	-
	*	*	*	-	-
	*	*	*	-	-
	0	0	0	-	-
ł	0	0	0	*	*
	0	0	0	*	*
ŀ	*	*	-	-	-
	*	*	~	-	
	0	0	~	_	-
	0	0	*	*	*
	0	0	*	*	*
	0	0	*	*	*
ł	*			-	_
	0	_	-	-	-
	0	*	*	*	*
	0	*	*	*	*
	0	*	*	*	*
	0	*	*	*	*
	-	-		_	-

 $= 31, t(31) \ge 157$ -+ и + n^2 Ś. И 2

0 0

 $n = 3, n^2 + n + 1 = 13, t(13) \ge 41$

7, t(7) = 16

li

-

+ * ---

 $= 2, n^2 + n$

0

*

-

* *

*

0 -

• *

https://doi.org/10.4153/CJM-1987-023-7 Published online by Cambridge University Press

*

0 0

 $n = 1, n^2 + n + 1 = 3, t(3) = 5$

*

* *

× *

* * ×

* × ×

> * * _

0 0 0

0 0 0 0

* ----_ * _

*

-*

....

0 0 000 0

× *

*

0

0

*

0 000

0

0 c 0 * *

0

0

*

C

C C

0 0 * * *

0 0 × * *

0

c

0

_

* * × * ×

* * *

0 0 0 00* * *

0 00*

0000**

× 0 0

> * * *

× * ×

*

×

*

_

×

* *

*

* *

* *

_ _ _ _

5. Postscript. The results presented thus far were all obtained in time for inclusion in B. Tang's Ph.D. thesis in May, 1983. Several subsequent results on $\{0, 1, *\}$ -sequences are presented in [7], and include the following:

i) A simpler proof of the upper bound formula,

 $t(l) < l^{clogl}$

attributed to C. L. M. van Pul;

ii) The constructions illustrating t(1) = 2, t(3) = 5, and t(7) = 16 have been generalized. Three students at Eindhoven (F. Abels, W. Janse, and J. Verbakel) found three words of length 13, all of whose cyclic shifts can be used simultaneously in a dictionary, along with the "all 0's" and "all 1's" words, to obtain $t(13) \ge 41$. Three M.I.T. students (K. Collins, P. Shor, and J. Stembridge) found a general construction which yields

$$t(n^2 + n + 1) \ge n(n^2 + n + 1) + 2$$

for all positive integers n, from which the lower bound result

 $t(l) > cl^{3/2}$

clearly follows. This construction is illustrated for $1 \le n \le 5$ in Table 5.

The large gap which still remains between the upper and lower bound formulas is a clear invitation to further research.

REFERENCES

- F. H. C. Crick, J. S. Griffith and L. E. Orgel, *Codes without commas*, Proc. Nat. Acad. Sci. 43 (1957), 416-421.
- W. L. Eastman, On the construction of comma-free codes, IEEE Trans. on Information Theory, 17-11 (1965), 263-266.
- 3. S. W. Golomb, B. Gordon and L. R. Welch, *Comma-free codes*, Can. J. Math. 10 (1958), 202-209.
- S. W. Golomb, L. R. Welch and M. Delbrück, Construction and properties of comma-free codes, Biol. Medd. Dan. Vid. Selsk. 23 (1958), 3-34.
- 5. B. H. Jiggs, Recent results in comma-free codes, Can. J. Math. 15 (1963), 178-187.
- 6. R. A. Scholtz, Maximal and variable word-length comma-free codes, IEEE Trans. on Information Theory, 17-15 (1969), 300-306.
- J. H. van Lint, {0, 1, *} distance problems in combinatorics, Surveys in Combinatorics (1985), London Mathematical Society Lecture Note Series 103 (Cambridge University Press, 1985), 113-135.

University of Southern California, Los Angeles, California, AT&T Bell Laboratories, Murray Hill, New Jersey