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Abstract. The possibility that magnetic torques may participate in close-in planet migration
has recently been postulated. We develop three dimensional global models of magnetic star-
planet interaction under the ideal magnetohydrodynamic (MHD) approximation to explore the
impact of magnetic topology on the development of magnetic torques. We conduct twin nu-
merical experiments in which only the magnetic topology of the interaction is altered. We find
that magnetic torques can vary by roughly an order of magnitude when varying the magnetic
topology from an aligned case to an anti-aligned case. Provided that the stellar magnetic field
is strong enough, we find that magnetic migration time scales can be as fast as ~ 100 Myr.
Hence, our model supports the idea that magnetic torques may participate in planet migration
for some close-in star-planet systems.

1. Introduction

The diversity of masses, sizes and orbits of known exoplanets has prompted recent
efforts in the scientific community to explore the broad range of interactions that can
exist between planets and their host stars (see Cuntz et al. 2000). In addition to tidal
interactions (e.g. Mathis et al. 2013), planets orbiting inside the stellar wind Alfvén radius
can magnetically interact with their host (Ip et al. 2004; Cohen et al. 2010; Strugarek et al.
2014). These interactions could lead to an angular momentum transfer between the planet
and the star (Lovelace et al. 2008; Laine & Lin 2011; Strugarek et al. 2014), resulting
in a substantial planetary migration and participating in the dynamical (in)stability of
the system. Among the star-planet interaction (SPI) models that have been developed,
MHD simulations combine state of the art numerical models of cool stars magnetospheres
and winds (Matt et al. 2012; Réville et al. 2015) with simplified models of planets (e.g.,
Cohen et al. 2014; Strugarek et al. 2014, and references therein). These global, dynamical
models enable us to assess the effects of SPI in a self-consistent manner, by taking into
account the full interaction channel from the planetary magnetosphere down to the lower
stellar corona.

In a recent paper (Strugarek et al. 2015), we have developed MHD simulations of
magnetic star-planet interactions in three dimensions. We address here the important
question of the physical origin of the magnetic torque, and in particular the key role
magnetic topology plays in determining the strength of the torque. We first briefly de-
scribe our methodology in Section 2, and detail how the magnetic torques are sustained
in Section 3. We conclude in Section 4 by showing that for sufficiently strong stellar wind
magnetic fields, the migration time-scale associated with magnetic torque is comparable
with typical tidal migration time-scales.

14

https://doi.org/10.1017/51743921316002325 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921316002325

Planet migration and magnetic torques 15

2. Three-dimensional models of star-planet magnetic interaction

We model magnetic star-planet interactions with global numerical simulation using
the ideal MHD approach. We use the modular code PLUTO (Mignone et al. 2007) to
solve the MHD equations with a standard HLL Riemann solver coupled to a second-
order Runge-Kutta method for the time integration. The soleinoidality of the magnetic
field is enforced with a constrained method transport (see Strugarek et al. 2015). We
discretize space with a cartesian grid in which a star and a planet are added as internal
boundary conditions. At the stellar surface a magnetized stellar wind is imposed. We
enforce a given magnetic field at the planetary boundary. We solve the MHD equations
in the orbital rotating frame, such that the planet is fixed in the simulation grid. The
star is positioned at the center of the simulation grid, and is hence as well fixed in the
grid (the stellar rotation rate is corrected to account for the orbital rotating frame). The
simulations are carried on a 490 x 355 x 355 grid, with an resolution of 0.03 R, at the
stellar boundary and a resolution of 0.06 Rp in the vicinity of the planet.

The modelled star is considered to be a typical cool star with a coronal temperature of
10° K, with a relatively strong magnetic field such that the Alfvén speed v4 at the base of
the corona is equal to the escape velocity ves. (for details see Strugarek et al. 2015). The
star is considered to slowly rotate (vpo; = 3.03 1073 v, ) and its wind is characterized by

a large average Alfvén radius (Ry) = 1/J/Q, M ~ 18 (see, e.g., Matt et al. 2012).

We consider a close-in planet located at Ro;, = 5 R,.. The orbit is supposed to be
circular since such close-in planet is likely to be tidally locked. We further assume that
the planet possess an intrinsic dipolar magnetic field sufficiently large to retain a mag-
netosphere. The planetary magnetic field is chosen to be 10 times larger than the wind
magnetic field at the planetary surface. We neglect any kind of planetary outflows (see
Matsakos et al. 2015, for a complete discussion about such outflows) to focus on the effect
of magnetic topology on the star-planet interaction itself. We consider the two cases of
aligned and anti-aligned dipolar planetary fields.

We illustrate those two configurations in Figure 1 where a three-dimensional represen-
tation of the interaction is shown. In the aligned case (left panel), the magnetic topology
allows the polar magnetic field lines of the planet (grey lines) to reconnect with the wind
magnetic field lines (coloured lines). In the anti-aligned case (right panel), the planetary
magnetosphere remains closed due to the incompatible topology of the two magnetic
fields. We recall that only the orientation of the planetary field has been changed be-
tween the two cases, leaving all the other parameters untouched.

3. Magnetic torques and planet migration

The torques that develop in close-in star-planet systems can be separated into different
physical contributions through (see Strugarek et al. 2015)

T = ,];am + %01’10113 + 7?\'Iagnetic tension T TP + /TMagnetic pressure- (31)

In Figure 2 we display these various contributions on the spherical cut symbolized by
the white transparent sphere in Figure 1. The torques can be positive (red) or negative
(blue), which respectively correspond to a loss or a gain of angular momentum for the
orbiting planet, i.e. an infall or an expulsion of the planet. The torques are shown in
Mollweide projection, with the central black circle delimiting the day-night meridian. As
a result, the rightmost part of the projection corresponds to the upstream side of the
interaction, and the leftmost side to the downstream side. In the aligned case the total
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Figure 1. 3D renderings of the two star-planet interaction simulations. The stellar wind mag-
netic field lines are color-coded with the magnetic field strength, and the magnetic field lines
connected to the planet are shown in grey. The stellar surface is represented by the orange
sphere, and the planetary surface by the blue sphere. On the ecliptic the orbit is labeled by the
black dashed line, and the logarithm of the density is shown by the transparent colormap. The
transparent white sphere around the planet labels the integration sphere on which the torque
components are calculated in Figure 2.

torque (bottom right panel) is completely dominated by magnetic tension (upper right
panel) and magnetic pressure (bottom middle panel). Conversely, magnetic tension play
almost no role in the anti-aligned case and the total torque is completely dominated by
the magnetic pressure of the ambient wind magnetic field.

The magnetic pressure contribution is composed of positive and negative torques up
and downstream, as expected from a stream-obstacle type of interaction. In the anti-
aligned case, the obstacle can hence be simply approximated by the almost-spherical
magnetosphere of the planet. In the aligned case, the magnetic tension is dominated
by a positive torque downstream. The tension originates from the polar magnetic field
lines that can be identified in Figure 1 (grey lines). In addition to the magnetosphere
of the planet itself, these field lines act as a second obstacle and thus participate to
the angular momentum exchange between the planet and its environment. The overall
torque is obtained by integrating the various contributions over the integration sphere.
As a result, only a small torque remains in the anti-aligned case, while magnetic tension
provides a much stronger torque in the aligned case. The key role of topology clearly
appears: in the aligned case the effective obstacle is completely different from the obstacle
in the anti-aligned case, which results in a much weaker torque in the later case.

The migration time-scale associated with those torques is given by

P 2Jp
P — T )
where the planetary orbital angular momentum is Jp = Mp (GM*Rorb)l/ 2 The mi-
gration time-scale depends directly on the density normalization chosen for the stellar
wind (see Strugarek et al. 2015, for a complete discussion), which controls the mass-loss
rate and the magnetic field strength of the wind in physical units. For a surface stellar
magnetic field B, ~ 10 G, the migration time-scale is of the order of 1.4107 Myr in the

(3.2)
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Figure 2. Contributions to the torque applied to the close-in planet. The terms are shown
on the integration sphere of radius 0.3 Rp enclosing the planet with a Mollweide projection.
The black circle in the center of each projection corresponds to the day-night delimitation. The
upstream side is located on the right of each plot, and the downstream side on the left. The
contributions are normalized by the stellar wind torque 7,. Red denotes angular momentum
extraction from the planet, while blue denotes deposition of angular momentum.

aligned case and 8.4107 Myr in the anti-aligned case. As a result, for such moderate
large-scale stellar magnetic fields, the magnetic torque does not induce any significant
migration of the planet. On the contrary, for a surface stellar magnetic field B, ~ 1 kG,
the migration time-scale drops by 4 orders of magnitude (hence a time-scale of 1.4 10?
Myr in the aligned case). In this case magnetic torques are able to compete with tidal
torques for planet migration.

In conclusion, close-in planets can migrate due to magnetic torques provided the stellar
magnetic field is sufficiently strong and the planet is sufficiently close. In addition, the
magnetic topology has a key impact on the strength of the torque: by simply reversing
the orientation of the planetary magnetic field, the torque is decreased by a factor of 6.

4. Conclusions

We have demonstrated how magnetic topology changes close-in star-planet interactions
using three-dimensional global numerical simulations. We developed twin simulations of
close-in star-planet magnetic interactions in which we only changed the orientation of the
planetary field. In the so-called aligned case, we showed that the effective planetary ob-
stacle is much greater than the planetary magnetosphere alone. As a result, the magnetic
torque is found to be 6 larger than in the conventional anti-aligned case. The magnetic
torques are also shown to be sufficiently strong to compete with tidal torques for planet
migration, provided the stellar magnetic field is sufficiently strong. These results confirm

https://doi.org/10.1017/51743921316002325 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921316002325

18 A. Strugarek et al.

the first-order estimates that were derived in Strugarek et al. (2014) with simpler 2.5
numerical simulations. We are currently running a more extensive set of 3D models to
empirically refine the torque scaling laws with orbital radius, magnetic field strengths
and magnetic topology that were proposed in Strugarek et al. (2014).

Real stars posses much more complex magnetic fields than the simple dipolar configu-
ration we considered here. In reality close-in planets are likely to interact with different
local magnetic configurations along their orbit. Assessing what average magnetic torque
results from a magnetic topology varying along the orbit will require dedicated 3D simu-
lations tackling the dynamical aspects of a planet orbiting in a non-homogenous corona.
Indeed, the time-scale on which the equilibrated configurations modelled in this work
establish depends on the resistivity of the magnetospheric plasma of the planet, and on
its reconnection efficiency with the stellar wind magnetic field. The numerical model pre-
sented in this work provides a solid basis for further, more realistic studies of star-planet
magnetic interactions in which these dynamical aspects could be explored.
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