DISTINGUISHED SUBMODULES
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Although there is no need for a ‘distinguished’ submodule to be given
a formal definition in the present paper, we like to indicate the meaning
attached to this concept here. Perhaps the shortest way of doing so is to say
that a distinguished submodule is a (covariant idempotent) functor from
the category of (left) R-modules into itself mapping each R-module into
its R-submodule specified by a family of left ideals of R. If " is a family
of left ideals of R, then all elements of an R-module M of orders belonging
to ", do not, of course, in general form a submodule of M; but, there are
certain families 2/ 2 # such that all the elements of orders from # form
a submodule in any R-module (distinguished submodules defined by ).
Consequently, no particular structural properties of the R-module are
involved in the definition of such submodules. In this way we can define
radicals (in the sense of Kuros [4]) of a module. In particular, we feel that
an application of this method is an appropriate way in defining the
(maximal) torsion submodule of a module.

Thus, the present paper is, in fact, a study of subfamilies of the family
ZLp of all left ideals of a ring R. We use this opportunity to deal with a
certain duality in the set of subfamilies of #5; this duality relates to
problems connected with the problems of dependence over modules and,
in particular, with the definition of the rank of a module which will be
treated elsewhere (cf. [1]).

1. Basic definitions

Throughout the paper, R stands for an (associative) ring with unity .
The family of all proper (that is, £ R) left ideals of R is denoted by Zp,
or briefly by . For L € # and p € R, the symbol L : p denotes the (right)
ideal-quotient of L by p, that is, the left ideal of all y € R such that yp e L.

We shall consider the following three properties of a subfamily ¢ C &:

Q) KeX npeR\K—->K:peX;

I KieA aKyeX -K,nK,eX;

(E) KietX rnK,e X NK,CK,~>K,eX.
661
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We can see immediately that

1.1. (i) If X, o € 2, satisfy (Q), (I), or (E), then [, .o H# . satisfies
(Q), (I), or (E), respectively.

(i) If X, weQ, satisfy (Q) or (E), then |, .o X, satisfies (Q) or
(E), respectively.

In what follows we shall be interested in the Q-families of left ideals
of R, i.e.in the subfamilies of .# satisfying (Q) and in the F-families (filters)
of left ideals of R, i.e. in the subfamilies of . satisfying (Q), (I) and (E).
Denote the set of all subfamilies of .# by L, the subset of L of all Q-families
by Q and that of all F-families by F. Hence, by 1.1,

1.2. The mappings ¢q and ¢p defined on L by

and N EXeQ
X <XeF

are (idempotent) closure operators in 2.

M will always denote a (unital left) R-module. The order of m e M is
denoted by O(m); hence, O(m) € & if and only if m + 0. Moreover, evidently
O(pm) = O(m) : p for any non-zero m e M and p € R. Since R will be fixed
throughout the paper, we shall often speak briefly about submodules,
homomorphisms etc. instead of R-submodules, R-homomorphisms etc. The
R-module of all cosets of R modulo L will be denoted by Rmod L. A
submodule N of M is said to be essential in M if it meets any non-zero
submodule of M non-trivially. Specializing to M = R mod {0} we get the
concept of an essential left ideal in R. If ¢ is a family of left ideals of R,
then the subset of all elements of an R-module M whose orders belong to
H° = A v {R} will be denoted by M, C M.

2. An order and a Galois connection in Q

Although our next consideration can easily be extended to L, we shall,
with regard to our further needs, restrict the definitions to Q.
If L e, then
ce({L}) = co(L) = {L :P}peR\L;
let us call a Q-family of this type cyclic. Also, let us point out that, in view
of 1.1, any family # C % contains the greatest Q-subfamily: the (set-
theoretical) union of all cyclic Q-families contained in . In particular,

a Q-family is the union of its cyclic Q-subfamilies.
Now, define in Q the following preorder <« by
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H 1K< H g VL(Le L —>co(l) & A\ ).

Clearly,

H\CHy—> A KAy
moreover, we get immediately

H LKA g —> (A, LA AN GNH O Ay L H).
The preorder <« yields an equivalence a in Q, namely
Hy K g (K H G ANH € H ).

Again, we can easily prove that, for w € £,

A A, —>H ~ X,

WER
and, provided @ is finite, also

A A, > A~ K-

wenR
Hence,

2.1. There is a greatest (with respect to order by inclusion) element
in each equivalence class of Q. If K C Q is the equivalence class containing
2, then the greatest element ¢(X") of K is given by

(A =UZ=UZ.
=K ek
Also, X'y n A e K for every A, eK, A ,e K and, furthermore, any
Z € Q such that " C % C ¢(X") belongs to K, as well.

Denote the set of all the greatest elements in the equivalence classes of
2.1, i.e. the set of all o € Q such that ¢(#") = A, by € and, furthermore,
put

T=CnF.

Evidently, C can also be characterized as the set of all those families ¢
which satisfy, for any Z € L, the implication

XA >FCH

(or, even the stronger implication & < A — Z C ). Thus, we deduce
that ¢ is an (idempotent) closure operator; for, if 2, € C(w € 2), then

evidently
N*,ecC.
weN
Also, the preorder < induces an order in the set of all equivalence
classes, and thus, it induces an order in C. It turns out that this order in C
induced by « coincides with the order by inclusion.
Now, define the ‘duality’ map @ in Q as follows: For " € Q, let oX"
be given by
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Leddt —col) n ot = 0.

Clearly,
0 e Q and A n oA = O.

Also

H L\ CH = 0H 1 D 0A
and

RAH = 0(0X) 2.

Furthermore,

0N | =0 g H |\ A,
and

A = c(X).

Hence,

2.2. The mapping 0 defines for the elements of Q a Galois connection
(cf. Ore [5]). The operator ¢ is the corresponding Galois closure operation
and C— the set of all closed elements.

In the introduction, the importance of the mapping ¢ in relation to
dependence over modules was mentioned. It stems from the fact that,
for any ¢ e Q, there exist maximal independent subsets consisting of
elements whose orders belong to ¢ v 0" in an arbitrary R-module (cf. [1]).

3. Distinguished submodules

The value of the concepts of an F-family and an T-family (i.e. a family
belonging to T = C n F) of left ideals will be apparent from the following
theorems.

THEOREM 3.1. Let 4" € L. Then, in any R-module M, the subset M, C M
is an R-submodule of M if and only if A" is an F-family.

Proor. First, let M be an R-module, ¢ € F and m,, m, two non-zero
elements of M, C M. Since O(pm,) = O(m,) : p, pm, € M, by (Q). Also,
since O(m,+m,) 2 O(m,) N O(my), my+mye M, in view of (I) and (E).
Thus, if A" is an F-family, then M, is a submodule of M.

On the other hand, let A" possess the property that, for any R-module
M, M, is always a submodule of M. Consider for a moment the R-module

M* = Rmod L, ® Rmod L,

with L; e & and denote by ¢, the class e+L; of Rmod L, (z = 1, 2); thus,
the general element of M* can be written in the form p,&,+p,y&,. Clearly,
since O(g,) = L,,

T

O(ps8) =Ly i py

0(6,+&) = Ly n L,.

and
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Also, O(8,+é&,;) = L, provided that L, CL,. Therefore, if L, € X", then
necessarily Ly : p; € £ (= ¢ U {R}) and if, moreover, L, € X, then also
L, nL,e X ; hence, A satisfies (Q) and (I). Furthermore, if L; € 4" and
L, C L,, then both £, and & 44, belong to M, and thus

L, = 0(&) = O((§,+&)—&) e X,

We conclude that ¢ satisfies (E) and consequently, it is an F-family.
The assumption in the following theorem is devised to fit the application
in § 4.

THEOREM 3.2. If A" € Q satisfies (E) and, moreover, contains all proper
essential left ideals of R, then ¢(A") is an F-family, and thus a T-family.
In particular, if A is an F-family containing all proper essential left ideals
of R, then ¢(X") 1s a T-family.

Proor. First let us prove that (I) holds for ¢(2¢"). This follows immedi-
ately from the fact that, for any " € Q, 94 always satisfies (I):
Let L=L,nL, with L,;e 0% (¢ =1, 2) and assume that p e R\L
exists such that L : p € 4 . Since
Lip={(Li:p)n(Ly:p),
(Ls : p)\(L; : p) is necessarily non-empty; but, for any element o of this set
R#Li:op=(Ly:aop)n(Ly:0p)=L:opeld,

a contradiction of L, e d#". Hence, 94", as well as, ¢(X) = 0(dX")
satisfies (I).

Now, to complete the proof of the theorem only the validity of (E) for
¢(¢) need to be verified. Thus, let K, C K, with K, e ¢(X"). In order to
show that K, e ¢(X) it is sufficient to prove that

co(Ky) < ¢(X).
Hence, take an arbitrary element K, : p of c¢g(K,); here
pe R\K,C R\K,.

Assume that K, : p ¢ #". Then, K, : p is not essential and thus, there exists
g; € R such that
(Ky : p) o Roy = {0},
Furthermore, since
oy € R\(K,:p) C R\(K, :p), i.e. oyp € R\K,,
there is ¢, € R such that K, : 6,0, € #". Put ¢ = 0,0,. Hence,
(Ky:p):0=K,:0p # R,
and since K, : gp 2 K : op, it belongs to A . The proof is completed.
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THEOREM 3.3. Let X be a T-family. Then, for any R-module M, the
quotient module M|M ,, has no element of order from A, i.e.

(MM ), = {0}.
Moreover, no other F-family equivalent to A~ possesses this property.l
Proor. We present an indirect proof of the first part of the theorem.

Suppose that O(m) e ¢ for a certain m € M /M, containing m € M. We are
going to show that, as a consequence,

c(O(m)) < A,

i.e. O(m)e A, contradicting the assumption of % # 0. Hence, take
L e cy(O(m)):
L = O(m) : p = O(pm) with pm 0,
and assume
O(pm) & O(p);
otherwise O(pm) = O(pm) € A . Thus, for a o € O(pmi)\O{pm) we get
L :o=0(opm) e X,

i.e. ¢g(O(m)) <« A, as required.
In order to prove the other part of the theorem, assume that there is
an F-family &, equivalent to 2 such that

(MM )y, = {0}
for any R-module M. Then, there can be no left ideal L € A \J¢,; for,
otherwise the R-module
M = Rmod L/{(Rmod L),

would be a non-zero R-module such that
O+#meM — O(m) e A\X,,

which is, because of 4" ~ X ';, impossible. Hence 4~ = ;.
The proof of the theorem is completed.

DEerinITION 3.4. Let ¢ € F. An R-module M is said to be a #"-module
if M, = M; M is said to be a J'-free-module if M, = {0}.

Notice that {0} is the only R-module which is simultaneously a ¢ -
module and a 2 -free-module and that the orders of non-zero elements of a
A -free-module belong to d#". We shall see that the concepts of a o~ and
A -free-modules will be particularly valuable in the case when J e T.
Then, inspired by the radical theory of Kuro$§ [4] (cf. next Theorems 3.6

! The latter statement can be generalized (see [2]).
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and 3.7) we can speak about s -radical and /"-semisimple modules.2
The following three theorems will describe some fundamental properties
of A"~ and ¢ -free-modules.

THEOREM 3.5. (a) A submodule of a A -module, or a A -free-module,
is a A -module, or a A -free-module, respectively.

(b) An R-module generated by a family of its A -submodules, or A -free-
submodules, 1s a A -module, or a KA -free-module, respectively.

(c) The direct sum of H -modules, or A -free-modules, is a A -module,
or a A -free-module, respectively.

(d) The direct product of A ~free-modules is a A -free-module.

(e) An extension of a A -free-module by a A -free module is a A -free-
module.

Proor. The statements of (a), (b), (c) and (d) are obvious. In order
to prove (e), consider an R-module M with a submodule N C M such that
both N and M/N are  -free. Thus, O{m) ¢ A" for meN; also, if m e M'\N,
then O(m) C O(m) # R, where m = m-+N € M|N, and therefore, in view
of O(m) ¢ A", O(m) ¢ A", as well.

THEOREM 3.6. (a) In any R-module M, M, is the (unique) maximal
K -submodule of M (and, thus, contains any other A -submodule of M).

(b) Let ¢ be a homomorphism of an R-module M into an R-module M'.
Then, the restriction of ¢ to M, is a homomorphism of M, into M. In
particular, every homomorphic image of a A -module is again a A -module.

(c) For any R-module M, every KA -free homomorphic image of M is a
homomorphic image of M|M .

PROOF. (a) is evident. Taking into account the obvious fact that
O(m) C O(p(m)) for every me M,

we deduce immediately that a homomorphic image of an element of M,
is either zero of an element or order from .#". Hence, both (b) and (c) follow.

THEOREM 3.7. The following two equivalent statements hold if A € T:
(a) An extension of a A -module by a A -module is a A -module.
(b) For any R-module M, M|M,, is a A -free-module.

Proor. First, let us prove the equivalence of the statements (a) and
(b):

(a) - (b). Assume that, for a certain R-module M, M[M, is not
A -free, i.e.

2 Another possibility would be to define, for any # < % and any R-module M the & -sub-
module and the J# -radical of M as the ¢ (X ")-submodule and the ¢, (X¢")-submodule (in an
obvious meaning) of M, respectively.
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(M[My) e = M*IM , # {0}.

Thus, by (a), since M*/M, is a A -module, M* is a # -module, as well.
But, on the other hand, clearly

— a contradiction.
(b) — (a). Let M be an R-module with a # -submodule N such that
M|N is a A -module. Here, N C M, and thus,

MM, = (MIN)[(M,[N);

therefore, in view of Theorem 3.6(b), M /M , is — as a homomorphic image
of a A4 -module — a J#"-module. Also, according to (b), M/M,, is a A -free-
module. Hence, M = M, as required.

Finally, an application of Theorem 3.3 completes the proof.

Here, before presenting an application of the obtained results, let us
point out that a more detailed study of the Q-families, their equivalence
classes and properties related to the ‘radical’ properties of modules can be
found in [2].

4. Torsion and torsion-free modules

In the preceding section, a general method of defining a ‘torsion’
element of a module and thus, torsion and torsion-free modules was
described. In what follows, we suggest a particular choice of such a definition
which seems to be the most appropriate at present: a torsion element is
an element of so-called maxi order. To justify the latter statement let us
express our belief that the elements of essential orders should be classified
as torsion elements; then, it turns out that the family J of all maxi ideals
belongs to T and is the least family containing all proper essential ideals
and satisfying the ‘radical’ requirements for M. Moreover, the corre-
sponding concepts of torsion and torsion-free modules enable us to extend
some other features of the abelian group theory to modules (cf. [1]). We
shall also show that M, is, in fact, Z,(M) of Goldie introduced in [3] under
some restricting conditions for R and M.

Let us start with the definition of a maxi ideal.

DEFINITION 4.1. An ideal L € . is said to be maxi if, for each p e R\L,
there is o € R such that L : op = R is essential. Also, L € & is said to be a
mini ideal if no quotient ideal L : p 7= R is essential.

Denoting by &, J and & the families of all proper essential ideals,
all maxi ideals and all mini ideals, respectively, we can readily see that

08 =% and € =0F =9 .
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Thus, since evidently & € F, we get by virtue of Theorem 3.2 the
following

THEOREM 4.2. The family of all maxi ideals T belongs to T and thus,
for any R-module M, M , C M possesses the properties described in Theorems
3.5, 3.6 and 3.7.

It is easy to see that L € % is a maxi ideal if and only if the submodule
(Rmod L), is essential in R mod L. From here and the fact that an ideal
E D L is essential in R if and only if the submodule E mod L is essential in
R mod L, the two statements mentioned in the introduction to this section
follow immediately ((a) follows also from Theorem 3.3):

THEOREM 4.3. (a) Every F-family A~ containing & such that M, C M
satisfies the ‘vadical’ properties of Theorem 3.7 contains 7 (and is a T-family).

(b} An ideal L € ¥ 1s a maxi ideal if and only if there is an essential
tdeal E in R such that L : p is essential for every p € E.

At the end, we like to include the following two remarks:

Consider briefly the case when R is the ring of all integers, i.e. the case
of abelian groups G. Of course, G, is the maximal torsion subgroup of G.
Applying the method of § 3, we can show readily that any 2-submodule
satisfying ‘radical’ properties of Theorem 3.7 is derived from £ € T, and
that G, is the ‘greatest radical’: Denote by IT* a subset of the set I7 of
all primes and by 2* the family of all (principal) ideals of the form

(phapke . - - pka> with &, > 0 and p,e IT* 1<i<n).

Clearly, Z* € F and, in fact, #* € T. Thus, for any selection IT* of primes
there is a P*-radical G,. of G:

If G, = 3,.n G, is the decomposition into the p-primary components,
then G4o = 3 e G,

It is easy to see that every ‘radical’ must be of this form. In particular,
Gy = {0} for IT* = @ and G,, = G, for IT* = II.

The other remark concerns the fact that for some rings R, the families
J and & of all maxi and all essential left ideals of R, respectively, coincide.
As a matter of fact, we can give a simple necessary and sufficient condition
for the equality J = &

THEOREM 4.4. The equality T = & holds if and only if the singular
tdeal S of R equals to {0}; here, S is the ideal of all elements of R whose left
annihilators are essential in R.

Indeed, the sufficiency (cf. [3]) follows immediately from the fact that,
for any non-essential L € 7, there is a non-zero p € R such that

Lio=J0) 0

https://doi.org/10.1017/51446788700006480 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700006480

670 Vlastimil Dlab [10]

Hence, there exists ¢ € R such that L :op # R is essential in R; thus,
O+#opeS, ie S+ {0}

In order to prove the necessity, assume that S 7 {0}. Denote by L
a maximal left ideal of R such that L n S = {0}. Clearly, the left ideal E
generated by L and S is essential in R. Also, for any p € E, p = A4 with
AeLandoesS,

L:p2{0}:0
is essential in R. Hence, in view of Theorem 4.3(b), L € 7. Since L ¢ &,
we get T #£ 6.

In conclusion, let us note that the condition S = {0} is satisfied in a
ring R if 0 is the only nilpotent element of R and the ascending chain con-
dition holds for the annihilator left ideals of single elements of R. For, in
any ring R, the assumption that p € R is not nilpotent and {0} : p is essential
in R implies readily that

{0} : p™+1 £ {0} : p* for every natural .
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