But the second line of (35) is the residue at the pole of $1 / \sin \pi(\zeta-t)$. Hence the sum of the four similar expressions

$$
\begin{aligned}
& =- \text { residue at pole of } 1 / \sin \pi(\zeta-c) \\
& =-\frac{\sin \pi c}{\sin \pi(t-c) \text { do. } x, y, z}
\end{aligned}
$$

Thus for the sum of the series in (33) we have

$$
\begin{align*}
\mathrm{S}= & \frac{\pi^{3} \sin \pi c}{\sin \pi(t-c) \operatorname{do} x, y, z} \times \\
& \begin{array}{c}
\Pi(t+x+y+z-2 c) \\
\\
\\
\quad \text { where } \mathrm{R}(t+x+z-c) \Pi(z+x-c) \Pi(x+y-c) \Pi(t+x-c) \text { do. } y, 2
\end{array} \tag{36}\\
&
\end{align*}
$$

To exhibit the result as the summation of a series of rational terms, multiply both sides of (36) by

$$
\frac{\Pi t \Pi x \Pi y \Pi z}{\Pi(c-1-t) \text { do. } x, y, z}
$$

Then

$$
\begin{align*}
& c+(c+2) \frac{c-t}{t+1} \text { do. } x, y, z,+\ldots+(c+2 n) \frac{(c-t)^{(n)}}{(t+1)^{(n)}} \text { do. } x, y z,+\ldots \\
& \quad+(c-2) \frac{t}{c-t-1} \text { do. } x, y, z,+\ldots+(c-2 n) \frac{t^{(-n)}}{(c-t-1)^{(-n)}} \text { do. } x, y, z,+\ldots \\
& =\frac{\sin \pi c}{\pi} \frac{\Pi t \Pi x \Pi y \Pi z \Pi(t-c) \Pi(x-c) \Pi(y-c) \Pi(z-c) \Pi(t+x+y+z-2 c)}{\Pi(y+z-c) \Pi(z+x-c) \Pi(x+y-c) \Pi(t+x-c) \Pi(t+y-c) \Pi(t+z-c)} . \tag{37}
\end{align*}
$$

For $t=0$, this is equivalent to (9).
The result may be put in somewhat more striking form by writing 2α for c, and then $t+a, x+\alpha, y+\alpha, z+\alpha$ for t, x, y, z.

Of special cases of (37), those obtained by writing $t=c / 2, t=\infty$, $t=(c-1) / 2$ may be mentioned.

On the Resolution of Integral Algebraic Expressions into Factors.

By R. F. Muirhead, M.A., D.Sc.

On Arithmetical Approximations.

By R. F. Davis, M.A.

