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Abstract

In this article, we prove the existence and uniqueness of solution for the Cauchy problem of the Landau-
Lifshitz equation of ferromagnetism with external magnetic field. We also show that the solution is
globally regular with the exception of at most finitely many blow-up points. An energy identity at
blow-up points is presented.
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1. Introduction

In this paper we discuss the Landau-Lifshitz equation [10] which models the fer-
romagnetic spin chain on surfaces with the Gilbert damping term in the presence
of an external magnetic field h(x, t). This equation plays an important role in the
understanding of non-equilibrium magnetism.

Let JM and JY be closed oriented Riemannian surfaces with metric tensors y =
(Yap)\<a,p<2 and g = (gij)i<ij<2 respectively. Let J/ be isometrically embedded in
K3 and denote its second fundamental form by A. We shall assume that the principal
curvatures of </K and their derivatives are uniformly bounded. Throughout this paper,
C will denote constants which depend only on J( and jV'•. The notation '•' for the
dot product of vectors will be suppressed.

For M0: M -> J\f and t > 0, the Landau-Lifshitz system is given by

(1.1) d,u =
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where ai > 0 and a2 are constants, x denotes the vector cross product in R3, A denotes
the Laplace-Beltrami operator on ^ , <f> is a vector field in K3, which restricts to a
unit normal vector field on J/, and h(x, t) = (h\(x, t), h2(x, t), h3(x, t)) represents
the external magnetic field with h0 = h(-, 0). Furthermore, we shall assume that

M0 € Wx-2(Ji', ,yf )> h0 e L2{JK, Jf); HX = ess sup \h(x, t)\ < oo;

(1.2) . - U'')e^
Ho= \h(x, t)\2 < oo; ^ = / \d,h(x, Ol2 < oo.

where the notation JiJ := jfl x [s, T] c Ji x [0, oo] is used. In the case 5 = 0 ,
we just write MT.

For £2 c ^ , the energy of the map u : £2 -> «/K is given by

£Q(K) = / e(M)rf^#
Jn

in terms of the energy density e(u), which is defined in local coordinates by

where (y"'3) = (ya/s)"'. For £2 = BR(x), the geodesic ball of radius R centred at x,
we also write En(u) = ER(u;x).

In the absence of the external magnetic field, that is, h = 0, equation (1.1) was
discussed in [14]. In addition, if the target manifold is S2, the equation was discussed
in detail in [6], see also [4]. In this case, with the presence of an external magnetic
field but without the Gilbert damping term, that is, a2 — 0, (1.1) becomes d,u =
AM + |VM|2M + h — (h, u). Its static form AM + |VM|2M + h - (h,u) = 0 was
discussed in several papers, see for example [8,9]. If ai = 0, the problem was studied
in [17].

As 0(M) x (0(M) x AM) = (0(M)AM)0(M) - \<p(u)\2Au, \<p(u)\2 = 1, and
(0(M)AM)0(M) = (AM)" = -A(M)(VM, VM), we note that the equation (1.1) has
the following equivalent form in terms of the second fundamental form AoiJf:

(1.3) a,M = a,AM + a1A(M)(VM, VM)
— cti<t>(u) x (0(M) x h) + a2(p(u) x (AM + h).

Note that taking only the first two terms on the right-hand side of (1.3) gives us
the evolution equation of harmonic maps. The equation d,u = AM -I- A(u)(Vu, VM)
was fully discussed in [15]. If the initial data M0 € Wl2(~rf, ^V) is given, its unique
solution exists and is smooth globally except at finitely many blow-up points. Energy
identities describing the solutions near the blow-up points were given in a number of
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papers, for example, [3-5,11-13]. Examples of finite time blow-up for the harmonic
map heat flow were constructed in [1,2].

In this paper, we discuss the existence, uniqueness and regularity of solutions to
(1.1). Our results are as follows:

THEOREM 1 (Existence and Uniqueness). For any initial value u0 and the external
magnetic field h{x, t) satisfying (1.2), there exists a unique solution u of (1.1) which
is regular on ~4K x (0, oo) with the exception of at most finitely many points (xl, Tl),
1 < / < L. Furthermore, the singular points are characterized by the condition that

(1.4) limsup £«(«(-, 0 ;^ ' ) > £o for all R 6 (0, Ro],

where e0 = £o(*^> <^Y) and Ro = Ro(^) are positive constants (to be specified
later).

The solution obtained in Theorem 1 is called 'almost smooth'.

THEOREM 2 (Energy Identity). For an almost smooth solution u of (1.1), let S
denote the set of singularities, and we suppose (xQ, T) € S where 0 < T < oo. Then,
there exist

(i) a sequence tn —>• T,

(ii) harmonic maps a>, : S2 -*• <//, 1 < i < m < oo,

("0 K C i C - * and l * X i C K+. with linwoo < = *o. lim^oc K= 0

and

such that

d.6) u(x, tn) -

m W1 2(5«(A:O), ^ ) ^ > r any disk BR(x0) with B2R(x0) f i t* 7̂  ̂ o : U, T) €
5} = 0. Here, «(-, 7) denotes the weak limit of u(-, tn), andcok(oo) refers to the image
under cok of the north pole ofS2. Furthermore, we have the following energy identity:

m

(1.7) lim ER(u(-, tn);x0) = ER(u(-, T);x0) + V] E(a>,).
1=1

REMARK 1. In Theorem 2, if T = oo, we emphasize that /„ has to be chosen
appropriately in order for the pointwise weak limit u(x, oo) to be a harmonic map.
On the other hand, if T < oo, the energy identity (1.7) is independent of the choice
of the sequence {?„} once the bubbles {w,}^, have been selected.
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2. Existence and uniqueness

The proof of Theorem 1 is given in this section. First, following [15], we define
the following function space:

V{^(J;jV) := | u : x [s, T] ->• <yf | u measurable,

[ 2M|2 ).
J

esssup / |VM(-, t)\2 + [ [ ( |V2M|2 + |3,«|2) < oo

REMARK 2. There exist constants C and Ro > 0 such that for any u e V(J(T\ Jf)
and any R 6 (0, Ro] we have

.1) [ |V«|4 < C e s s s u p £,(«(- , t);x)(f |V2«|2 + / T 2 f |V« | 2 V(2.

where Ro = Ro(^) is a constant which arises from the covering lemma [15,
Lemma 3.3] (see also [15, Lemma 3.1]).

LEMMA 1. Let u be a solution of (1.1), then

(2.2) a2 f d,u{4>{u) x (AM + h)) = 2"2
 2 / |3,M|2.

PROOF. Multiplying (1.1) by 0(M) and observing that - 0 ( M ) X (0(M) X (<f>(u) x
(AM + h))) = 4(u) x (AM + h), we get

0(M) x d,u = cti(p(u) x (AM + h) + a2<p(u) x (0(M) X (AM + h)).

Using (1.1) again, we get

(2.3) </>(") x 3,u + — d,u = " ' + " 2 ( ( />(M) x (AM + A)).

The result (2.2) now follows by multiplying both sides of (2.3) by 3,M and using the
fact that 3,M(0(M) x 3,M) = 0. •

REMARK 3. Similarly, it can be proved that for any <p e C~(B 2 R(^) ) satisfying
< < o < l , ^ = lon BR(x), and |V<p| < C/R for some constant C, we have

(2 .4) a2 f 3,M(</>(M) x (AM + h))<p2 - -^-2 f \d,u\V-
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LEMMA 2. Let u € V{J(r; jV) be a solution of (1.1), then there exists a constant
C such that

I |3,«|2 <
J Mr

(2.5) / |3,M|2 < C(E0 + Ho),

where Eo = f^ |V«o|
2- Moreover, E{-, t) is absolutely continuous and uniformly

bounded on [0, T]:

(2.6) E(-, t)<E0 + CH0,

and the tension field T(M) = AM + A(u)(Vu, VM) satisfies

(2.7) f \r(u)\2<C(E0-

PROOF. Multiplying both sides of (1.3) by d,u and integrating, we obtain

/ \d,u\2+<xi I ^E{u{-,t))dt + ai I d,u(<t>(u) x (0(M) x h))

-a2 I d,u(<t>(u) x (Au + h)) = 0.
JJC\

By virtue of

I d,u{4>(u) x (</>(«) x h)) < f \d,u\\h\ < „, "\ 2. I \d,u\2 + cf \h\2

and Lemma 1, we get

(2.8) "' I \b,u\2 + I T,EM-''»dt * C I I*1' ^ C / /°-

Inequalities (2.5) and (2.6) now follow directly from (2.8). For (2.7), we notice that
the two terms on the right-hand side of (1.1) are orthogonal to each other, so

a\\ \T(u)\2 = a2[ \4>{u) x (4>(u) x Au)\2

J M[ JJC\

< la\ I \<p(u) x (4>(u) x (AM + h))\2 + 2a2 /

= 2 [ \d,u\2-2alf \4>(u) x

<2 [ \d,u\2 + 2ct\ I \h\2 < C(E0 + Ho).
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REMARK 4. Combining (2.1) and (2.6) we obtain the estimate

(2.9) / |VM|4 < C ess sup £„(«(-, t);x)( I \V2u\2 + ^-(Eo +Ho))

for any solution u e V(J(T; jY) of (1.1) and any R € (0, Ro].

Now we prove a lemma which provides a local estimate on the energy.

LEMMA 3. There exists a constant C such that for any solution u e V(^fT; ^Y) of
(1.1), and any R e (0, Ro], the estimate

ER(u(; t);x) < E2R(u0;x) + C-^(E0 + Ht)

holds. (Here Ht = H*(^rff, h) is a constant.)

PROOF. The equation (1.3) is equivalent to

(2.10) d,u-ctiA(u)(Vu, VM) -a2(f)(u) x (Au + h) =ax Au-arfiu) x {(f>{u) x h).

In view of

(2.11) I \ai<t>(u) x (<t>(u) x h)dtu\V2

/" \h\\d,u\<P2 < nt 2"[ 2, I \d,u\V + cf \h\V
2K + al) J }

and Remark 3, we multiply (2.10) by (d,u)<p2, where <p is as stated in Remark 3, and
then integrate over J('s to obtain

LHS= / |3 ,« |V + «i f ^-(e(u)<p2)-a2 [ d,u(<P(u) x (AM + h))<p2

JM; JM\ dt J^T

a\

f a2 f f
R H S < a i / \Vu\\d,u\\V<p\<p-\ ^—j- \d,u\2<p2 + C \h\2<p2

Jji'. 2(off + ot2) jjti Jjt>t

IAIV2.
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Hence

(2.12) ER(u(-

Landau-Lifshitz equation 305

/ e(u(-,t))<p2= / e(uo)<p2+ / —(
y ^ j ^ JM' dt

I e(uo)<p2 + CR-2 f £(«(-, t)) + C I \h\2<p2

J j( Jo Jjc'a

E2R(u0;x) + CR~2(E0 + CH0)t + C

where / / , = (Hi + \\ho\\
2
Ll + H^R2,. To obtain the last step in inequality (2.12), we

use (2.5) and note that

d,h(; d,h(;t)f \h(-,t)\2= f

< 2 f f I2 f \dth(; t)\2 + 2 I \ho\
2 < 2Hxt + \\ho\\

2
Ll,

JM JO JO J^e

f \ h \ V < [ \h\2= [ I \h{-,t)\2< U2Hit + \\h0\\
2
L2) = Hlt

2 + \\
JJC JM1 JO Jjt Jo

+2 [ \ho\
2

and hence f^, \h\2<p2 < mi + \\ho\\
2

L2t, Ho}. D

For a solution u € V(JZT\JV) of (1.1), and any R e (0, Ro], let s(R) =
s(R; u, T) — sup(x / ) €^r ER(u(-, t);x), and in the sequel let R be small enough to
satisfy s(R) < e0, where e0 = EQ(M', JV) will be determined in Lemma 4-Lemma 7.

LEMMA 4. There exists a constant £o>O such that for any solution u€ V(^jfT;
of (1.1), and any R e (0, Ro], the estimate f_^T |V2M|2 < C(E0 + HQ)(1 + TR~2)

holds provided that e(R) < EQ.

PROOF. Multiplying equation (1.3) by AM and integrating over Mr, and by virtue
of (</>(«) x A«)A« = 0 and \<p{u) x (4>(u) x h) + </>(«) x h\ < C\h\, we get

(2.13) —
dt

|A«|

<cf \Au\\Wu\
Jj(T

<% [ \Au\2 +

<°^ f \Au\2 +
Z JMT

\h\\Au\

^[ \Au\2

4 }
\h\2.

\h\2
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By Remark 4 and the definition of s(R) we get the following inequality:

(2.14) f \Vu\4<Ce(R)( [ |V2«|2 + C-j-(E0 + Ho)) .

From (2.13M2.14) if we let s(R) < e0 be sufficiently small we get

(2.15) \ f i-(V«,VM) + ^ / |A«|2
2 J^T dt 2 }MT

j ( 7 ^ |V2«|2 + C^-2(E0 + Ho))

Moreover, integrating by parts yields the estimate

(2.16) I |AM|2> I \V2uf-C [ |V«|2,

where the coefficient C on the right-hand side results from the differentials of the
metric y. Therefore from (2.15)—(2.16) and (2.6) we obtain

L \V2uf <C(EO + Ho)(l + TR-2). . •

In order to state the pointwise a-priori estimates of the solution we now derive the
uniform local estimates of f^, |VM|4 with respect to time t. The proof of the following
lemma is similar to the one of [15, Lemma 3.8] and will be omitted.

LEMMA 5. For any positive numbers € and r, and any R € (0, R$\, there exists a
numberS > 0 such thatfor any solution u € V{^(T\^V) of(l.l)andany I C [r, T]
with measure | / | < S, the estimate / , (/^. |Vw|4) < 6 holds provided that s(R) < s0

and M0, h satisfy (1.2).

In the next lemma, we prove the closure property of the solutions of the Landau-
Lifshitz equations in

LEMMA 6. Let um € V(^T; ^V) be solutions of (1.1) issuing from a set of initial
data umfi with umo —> "o> ond suppose there exists some R € (0, #o] such that
s(R; um, T) < So for every m e N. Then {um} has a subsequence which converges to
u in V(^T; ^V) such that u solves (1.1) with initial data u0.

PROOF. We may suppose um -*• u a.e., d,um —>• d,u, V2wm ->• V 2 M weakly in

and Vwm - • VM strongly in L2(^T). Let

vm = um-u and
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From (1.1) we have

(2.17) d,vm - a , A u m - a2(<t>(um) x Avm)

= a,(A(Mm)(V«m, V«m) - A(u)(Vum, V«m) + A(«)(Vvm, V«m)

+ A(Mm)(V«, Vvm)) + a2(<P(um) - <£(")) x AM

+ ai<p(um) x (0(wm) x /i) - a ^ v ) x (</>(u) x A)

+ a20(wm) x h-a2<t>(v) x h = 1 + 11 + 111,

where

111 = |a,(A(«m)(V«m, V«m) - A(M)(V«m, V«m) + A(«)(Vi;m, V«m)

+ A(um)(Wu, Vum))| < C(|Vf/m|2|i;m| + |Vvm| |Vf/m|);

| II | = |a2(<^(«m) -</>(«)) x AII | < C I A M H ^ I ;

| I I I | = \(al(p(um) x {<t>(um) * h ) - ay<f>{v) x (cj>{v) x A))

+ (a2<t>(um) x h - a2<t>(v) x A ) | < C\h\ \ v m \ .

Multiplying I, II and III by Aum and integrating, by Young's inequality, we get

/ \l-Avm\< cf (IV^Pl

< \ l \Avm\2 +

\HAvm\<cf \Au\\Avm\\vm\<l [ \AvJ

\lllAvm\<cf \h\\vm\\Avm\ < \ f \Avm\2 + cf \vm\2\h\2.

Hence it follows from (2.17) that

(2.18) \ { \ |Vum(-, D l 2 - \ |Vvm(-,0)|2)+ f \Avm\2

\ A v m \ 2 + l \vm\2\Au\2

/% \vm\2\h\2.

Rearranging (2.18), and by (2.16),

sup / |Vum(-,0l2+ f |V2vJ2

< c f \Vvm(-,0)\2 + C f
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+ C f \vm\2\h\2^0 a sm^oo .

Similarly, multiplying the two sides of (2.17) by d,vm and integrating over
gives, as m —> oo,

\3,vm\2<Q f \Vvm(-,0)\2

C2 f (\VUm\4\vm\2 + |Vum|2|V£/m + \vm\2\h\2) -+ 0.

Hence, um —> u strongly in V{^(T;^V). D

Next we will use Holder estimate to show the uniform continuity of the regular
solutions.

LEMMA 7. Let u e V(^T; J/) f|T>o C2{J(J\ JT) be a regular solution of (1.1).
Then for any x > 0 the Holder norms of u and its derivatives may be estimated
uniformly on ^(J by quantities involving Eo, Ho, H^, Hu r, T and R, provided
s(R) < e0.

PROOF. Multiplying (1.3) by AM and integrating over ^#, by virtue of Au((p(u) x
AM) = 0, we get

(2.19) ai / |AM|2 = / AM3(M-a, / A(M)(VM, VM)AM

+ / (arfiu) x (</>(M) x h) - a2<t>(u) x h)Au.

By Young's inequality

(2.20) / ( A M ) 3 , M < ^ f \Au\2 + c[ \d,u\2,

(2.21) f A(u)(Vu,Wu)Au<C I |VM|2|AM| < - / \Au\2 + C I |VM|4,

(2.22) / (ai<t>(u) x (<p(u) x h) + a2(p(u) x h)Au

<C f | A « | | A | < ^ I \Au\2 + C f \h\2.

From(2.19)-(2.22)weget

(2.23) I \Au\2 <C f ( |VM| 4 + |3 ( M | 2 + \h\2).
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Next, differentiate the equation (1.3) with respect to t, multiply d,u on both sides
and then integrate over ^jjff, r < s < t < T, we get

(2.24) / 3>M32M = ci\ I 3,MA3,M + or1 / 3,M3,(A(M)(VM, VM))
JM\ JM; JM;

— oi\ I 3,M3,(0(M) x (<f>(u) x h)
JJC\

+ a2 dtud,(<t>(u) x h)) +a2 / d,ud,((f>(u) x AM).

For the right-hand side of (2.24), first we note that

(2.25) |

and

(2.26) - a , xh)+a2 x h)

<C f (|d,u||3,0(u)||A|

Also,

(2.27) ) x AM)

x VM) - VM)

/ a2d,ud,(4>(u

= / u2d,u d,

= t a23,M(V(3,0(M) x VM) + V(</>(M) X V 3 , H ) )

- / a2d,u(Vd,<p(u) x VM + V<p(u) x V3,M)

< C / ( |3 ,M| |V3,M| |VM| + |3 ,M|2 |VM|2)

| 3 , « | 2 | V M | 2 .

From (2.24H2.27) we obtain

f |V3 ,M|
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+ a2 I \((t>(u) x Ad,u)d,u\ + C I (\d,u\2 + \d,h\2 + W2)

For \t — s\ <S sufficiently small, by the proof of [15, Lemma 3.10], we have

f 2 f 2 f 2 2 2

= C2 inf / |3,M(-, J ) | 2 + C3,
0<«—S<s<l Jjg

where the constants Q, C2, C3 depend on Eo, Ho, H{, //oo, T, T, R, S. It follows that

(2.28) ess sup / |3,M|2 <Cj \d,u\2 < C(E0 + H0 + / / i )( l + r" 1 ) .
r<t<T JJ( JJV;

So from [15, (3.6)], (2.16), (2.23), and (2.28), we get

provided that e(R) < e0. The remainder of the proof which leads to the estimates of
the Holder norms of u and its derivatives is similar to that of [6, Lemma 3.8]. •

We now prove the uniqueness of the solution in the class

LEMMA 8. Suppose uu u2 € V(^T\J/) are solutions to the Landau-Lifshitz
equation (1.1) with the same initial value Mi(-, 0) = u2(-, 0) = uQ. Then «i = u2 in
J(T.

PROOF. Letu = M, - U2, |Vf/| = |Vw,| + |V«2|- From (1.1) we get

(2.29) \d,v — o<iAv + a2(/)(ui) x A«i —a2(f>{u2) x Au2\

VII , ) - A(u2)(Vu2, VM 2 ) | + C|w||A|

,, VII , - V«2)| + |A(«2)(V«, - VM2,

< C(\v\\VU\2 + |Vf/| |Vv|)

If we multiply (2.29) by v, and integrate on ^ ' , then

(2.30) i / (v(-,t))2 + ai f (Vv.Vv)
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<Q[ ( |U | 2 |VI/ | 2 + |W | |V£ / | |V I ; | )+ /" C\v\\h\

+ C2 |(</>(wi) x ^ « i - <t>(u2) x Au2)v\.

We note that

(2.31) / \(4>(ui) x Aiii — 0 ( M 2 ) x Aw2)v|

AMI + </>(«2) x Au)t>|

: Av)v\

= f
= f l(V((0(«.) - 4>(u2)) x w))Vin| + |V(0(«2) x «)Vw|

+ |(V0(«2) x u)Vi;|

<C [ \v\2\VU\2+ I |V£/||w||Vu|.f
Combining (2.30)-(2.31), we get

(2.32) \ I (v(;t))2 + ai f (Vw.Vu)

<cf (|v|2|Vf/|2 + |i;||Vf/||VU|) + c / ' \v(-,t)\2\h\

<cf \v\2\VU\2 + °^- I \Vv\2 + c( \h\\v\2.

By Lemma 2, for any S > 0, there exists t0 e [0, S] such that

sup f \dtu(;s)\2= f \d,u(;to)\2.
0<s<S J J( JJC

If we choose S less than l/(4C//oo), then

C f \h\\v\2<l f \v(;to)\
2.

Finally, following the proof of [15, Lemma 3.12], we obtain

/ ( ( ) ) 2 + T f |Vv|2<0.7
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Thus, it follows that v = 0 in jfts. A continuation argument shows that «] = u2

in JtT. •

As for the local existence of the solution of (1.1), we use an idea of Hamilton's [7]
and derive the local existence result when the initial data u0 is smooth.

LEMMA 9. For the problem (1.1), let u0 be smooth. Then, there exists a unique
{local) solution u e W21{JK x [0, s], jV)for some e > 0.

PROOF. First we define a nonlinear map L : W2-2^01) -*• LtW) as follows:

Lu - d,u + ai</>(u) x (0(w) x (AM + h)) - a2<j>(u) x (AM + h)

= d,u - a. AM - aiA(u)(Vu, VM)

+ cti4>(u) x (<p(u) xh)- a2<p(u) x (AM + h).

For a smooth map u, the derivative of L at M is given by

DL(u)f = d,f - or, A/ - a2tf>(«) x A/ - O(M, A)V/ - b(u, h)f,

where a(M, h) and £(M, /I) are smooth matrix-valued functions.
Write Hf = d,f - a, A/ - a2</>(M0) x A/ and AT/ = -a(M0, h)Vf - b(u0, h)f.

Observe that for any £ ^ 0, we have a^ • ? + a2(.<t>(u0) x £) • | = a ^ • £ > 0 and
hence H is a uniformly parabolic quasilinear operator. Therefore the map / i->- Hf
defines an isomorphism from W2'2(^ x [0, <w]) onto L2(J% x [0, co]). Also, since
/(T : W2-2^ x [0,a)]) ->• L2(^# x [0,<o]) is compact, by Fredholm theory, the
indices of the maps H and H + K are both equal to 0, that is, the dimensions of the
kernel and cokernel of H + K are finite and equal. On the other hand, by an argument
similar to that of [6, Lemma 3.10], we know that the kernel of H + K has dimension
zero. Therefore, DL(u0) is an isomorphism. By the inverse function theorem the set
of all H(M0 + M*) for u* in a neighbourhood of 0 covers a neighbourhood of L(M0)
in L2(^ x [0, co]). If we choose e > 0 small enough, the function equal to 0 for
0 < t < e and equal to L(M0) for e < t < co will be in this neighbourhood. So u\_^,
solves the Landau-Lifshitz equation. Using the standard bootstrap method we can get
the smoothness of the solution. •

PROOF OF THEOREM 1. To complete the proof of Theorem 1, we proceed to deduce
the existence of global almost smooth solutions. Given any initial data M0 e Wl-2(^f),
approximate M0 by smooth maps {u% }~=1. By Lemma 9 there exists a sequence of local
smooth solutions {Mm}~=1 for (1.1) for which the estimates of Lemma 2-Lemma 7 are
valid. Since u™ —> u0 in Wl2(^rff), we can choose R such that, for any x e ^ ,
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By Lemma 3, there exists 71 of order at least eo^o an<^ s u c n t n a t e(R; um, 71) < s0

uniformly. Hence, by Lemma 7, um converges uniformly in V(^ r ' ; ^K) ; moreover,
by Lemma 6, the limit is a solution of (1.1).

To verify the characterization condition (1.4) for the singular points, we proceed
by contradiction. Let 71 be the maximal existence time for a smooth solution starting
from M0 and suppose (1.4) is false, that is, for all x € ^ ,

(2.33) limsup £«(«(-, t);x) < s0 for all Re (0, Ro].

Then, by the regularity estimates of Lemma 7, u may be continuously extended to the
closed interval [0, 71] and M(-, 71) is smooth. Hence by Lemma 9 the local smooth
solution can be extended to a larger interval.

The finiteness of bubbles at fixed singular time 71 follows from Lemma 3, (2.6)
and the additivity of the energy. Indeed, (2.33) can fail at at most finitely many points.
Suppose singularities occur at [xh 7!}^,. Then for any R € (0, Ro] and any compact
submanifold Ji' C Jt\ Uf=, BR(x,), it follows from (2.9) that

E^'(u(-, 71)) < liminf £^-(M(-, t))

U

< liminf E^(u(-, t)) — > ER(u(-, t);xi)

r- , . r* fT' f ,,,2 ,

Jo Jj(

Letting R -> 0, and J(' -*• M, we get

(2.34) Ejf{u{; 71)) < Eo +
o Jjt

To see global existence, we first note that «(-, t) is uniformly bounded in W
(with respect to t). Thus, we can find a sequence /, such that «(•, f,) -> «(-, T{) weakly
in W{'2{J?) and, by the energy estimate of Lemma 2, VM(-, 0 -*• VM(-, Tt) strongly
in 1?{M). Hence, u may be continued to M(-, Tt) weakly in Wl<2(^f) with

I |V«(-, 7,)|2< liminf f |V«(-,0|2-
Jj( ' - r f JM

Restart from T{ with «(-, T{) as the initial data. Iterating this for 7 = 71, T2,..., we
obtain the global solution.

Finally, repeating (2.34) for / = 1, 2 , . . . , we conclude that the number of singu-
larities satisfies £(. Lt < (Eo + CH0)/s0 < oo. •
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3. Singularity and energy identity

In the previous section we showed the existence and uniqueness of almost smooth
solutions of the Landau-Lifshitz equations. Such solutions may have finitely many
singular points for given initial data in Wl2(^). Near these singular points, we can
use the energy identity to describe the behaviour of the solutions. For the evolution
of harmonic maps many results related to this issue have been obtained. Qing [12]
established an energy identity and showed the pointwise bubble tree convergence for
the evolution of harmonic maps in the case where the target is S2. The result was then
generalized to general compact surfaces by Qing and Tian [13]. The following result
can be found in [13].

PROPOSITION 1. Let J^C and Jf be closed Riemannian surfaces and let un e
Wl'2{^K, jY) be a Palais-Smale sequence for the energy functional such that their
tension fields x(un) are uniformly bounded in L2(^K). Then there exist

(i) a finite number of points x' G J%, 1 < i < m < oo;
(ii) sequences Wn}™=l and {A.J,}£L, satisfying (1.6) and

lima'=;c\ limA.;=0;
n—MX! n—*-oo

(iii) a weak limit Uoo : yft ->• ̂ Y of un {or possibly a subsequence) and a finite
number of bubbles u>i : S2 -> J/\ such that

(3.1) un{x) -

strongly in W^i^/P, ^Y). Furthermore, the following energy identity holds:

m

(3.2) lim ER(un;xQ) = ER(Uoo;x0) + Y^ ER(cor,x0) for any R < oo.
n-*oo

PROOF OF THEOREM 2. To prove Theorem 2, we consider a solution of (1.1) near
a singular point (x0, T). We observe that the energy density is concentrated at the
isolated singular points, so that scaling near each singular point is necessary.

If the blow-up time is T = oo, (2.8) implies we can choose a time sequence tn —> oo
such that r(w(-, tn)) is uniformly bounded in 1?{JI). We select sequences {k'Sl=\ ~^ 0
and define the scaling vn(x) — u(Xnx, tn). First, by (2.6), note that E(vn) = E(u(-, tn))
is uniformly bounded by C(E0 + Ho). Further, r(vn) = X2

nr(u(-, tn)) ->• 0. Thus
we can check that E'(vn) -*• 0 so that vn(x) is a Palais-Smale sequence. We use
Proposition 1 on the sequence vn(x) and refer the reader to [12] for details. We
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remark that if we choose tn such that T(M(-, tn)) —> 0 then the weak limit «(-, oo) in
(1.6) is a harmonic map.

When the blow-up time T is finite, it does not seem possible to choose a time
sequence tn —> T to make r(u(-,tn)) uniformly bounded in L2(^). However,
one can prove the existence of lim,^?- £(«(-, t)). As in [12], consider the scaling
vn(x) = u(Xnx + x0, — k2

nxn + tn) for appropriately chosen sequences kn, rn and tn

with limn^oo An = 0 and Hindoo tn = T. Then vn(x) can be seen to be a Palais-Smale
sequence and r(vn) converges to 0 in L 2 ( ^ ) so that again we can apply Proposition 1
to finish the proof. •

REMARK 5. Finally, we remark that when the blow-up time is infinite, while the
convergence of lim^oo £(«(-, t)) fails in general, Topping [16] proved that uniform
convergence holds when the target manifold is S2. He showed that the L2-norm of
T(M(-, t)) decreases exponentially in time, and that the weak limit M(-, OO) and the
bubbles a>, are unique. Furthermore, a counterexample was given to show that these
results may not hold when the target manifold is not S2. The counterexample is from
a two-dimensional domain to S2 x R2 on which a warped metric is defined.
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