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We have developed a simplified approach for calculating the resolution of images taken across a wide variety of 

magnifications and a wide variety of tools. The simplest definition of resolution is a measure of the minimum 

resolvable distance between two points, commonly expressed by the Rayleigh criterion for diffraction-limited 

systems. In practice, however, when microscope vendors and users check the resolution of an instrument, a 

standard sample is used and the measurement is made from the image. A variety of additional methods exist, 

including calculation of the contrast transfer function, Fourier analysis of image, and calculations of optimal 

probe size.[1] We would like to provide a routine for determining image resolution, using the sigmoidal function, 

or logistic equation. For image analysis, we are concerned with the resolution of an image independent of its 

collection method. Similarly, a method that is simple, easily interpretable and well-defined is very important 

when directly comparing images. We present a simple analytical fit of bright-dark transitions in microscope 

images using the logistic equation: 

 

 
 The relevant fit parameter is given here as b, which is proportional to the image resolution as modified by a 

prefactor. We relate b to a practically defined resolution using high angle annular dark-field scanning 

transmission electron microscopy (STEM) images of the Si [110] dumbbell from an aberration corrected STEM. 

The STEM image allows for quantitative comparison of known dimensions to fix the prefactor on b, giving the 

proportionality of the image resolution to the fit parameter. 

 
The intent of the STEM fit is to ground our sigmoidal curve (and therefore the prefactor) in a standard sample 

with known spacing. Although our model is designed to work on edge features across many methods of 

collection, the determination of the prefactor rests in the Gaussian fit of the standard Si[110] dumbbell. In Figure 

1, we fit the Si[110] dumbbell spacing to the sum of two Gaussian functions of the same width, σ, but with 

different locations.[3] The dumbbell spacing is known to be 0.136 nm, making the image resolution roughly 60 

pm to 70 pm, or σ scaled by a factor of 1.5.[2] The Si[110] sample is ideal in this case as the dark gap in the 

middle of the dumbbell at 67 pm is reliably resolved by our microscope, giving us a real-world judge of 

resolution with which to determine the prefactor on b. The parameter b in the logistic equation was analytically 

related to σ from the Gaussian fit. Combining this relation with the known spacing in Si[110], we are able to find 

the prefactor, calculating image resolution = 3.53b. 

 
By grounding our analysis in the quantitative analysis of a STEM HAADF image of Si[110], we are able to 

directly calculate resolution from the sigmoidal fits of contrast edges for a wide variety of microscope images. 

Figure 2 shows that, once we have fixed our prefactor on b, the calculated resolutions provided by our sigmoidal 

fit closely follow the Rayleigh criterion for a series of optical images collected over a range of numerical 

apertures (NA). We can harness this method to track changes in resolution with changes in defocus and other 

microscope parameters, and to back out effective probe size in scanned beam systems. We will show how this 

analysis may be applied to microscopes here at NIST Boulder Laboratories, allowing for the quantification of 

resolution directly from images, covering magnification ranges from optical to STEM methods. Additionally, we 
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will discuss the mathematical equivalency of our fit to other analytical methods for calculating resolution, 

including Gaussian fits, linear fits, and error functions. [4-5]. 
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Fig 1: STEM image of Si[110] dumbbells. 

Any random dumbbell may be fit to the 

sum of two Gaussians, each of the same 

width.  

Fig 2: The edge algorithm for output for multiple 

optical images is plotted vs. 1/NA. The model (red 

line) closely follows the Rayleigh criterion (green). 

The pixel-limited minimum resolution is shown in 

blue.  
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