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NUMERICAL INVARIANTS IN HOMOTOPICAL
ALGEBRA, II-APPLICATIONS

K. VARADARAJAN

Introduction. This paper deals with some applications in the results
obtained in ‘“Numerical Invariants in Homotopical Algebra’ [7]. The applica-
tions are mainly concerned with the homotopy theory of modules developed
by P. J. Hilton [4]. However we have to restrict the class of rings because we
want to obtain a situation where the axioms of Quillen [6] hold good. This
paper is organised as follows.

§ 1 deals with the injective homotopy (z-homotopy) theory of modules over
a Dedekind domain A. Defining Cofibrations, Weak Equivalences and Fibra-
tions to be respectively the collection of monomorphisms, i-homotopy equiva-
lences and maps satisfying the lifting property (abbreviated as L.P.) men-
tioned below we prove in § 1 that the category % of A-modules satisfies the
axioms of Quillen [6].

(L.P.) A map p: E— M in ¥ satisfies (L.P.) if given any injective
module J and any map f:J — M there exists a lift g: J > E

(i.e.,pog =f) of f.

It is easily seen that all the objects in & are fibrant and cofibrant simul-
taneously. It will turn out that both the notions of left homotopy and right
homotopy considered by Quillen [6] agree in this case with the notion of
i-homotopy introduced by Hilton [4; 5, Chapter 13].

§ 2 deals with the projective homotopy (p-homotopy) theory of finitely
generated A modules where A is a principal ideal domain (PID). Defining
Fibrations, Weak Equivalences and Cofibrations to be respectively the collec-
tion of epimorphisms, projective homotopy equivalences and maps having the
extension property (£.P.) mentioned below we prove in § 2 that the category. %
of finitely generated modules over a PID satisfies the axioms of Quillen.

(E.P.) A map ¢: M — N is said to have the E.P if given any finitely
generated free A-module F and any map a : M — F there exists
amap 3 : N — Fsatisfying Bo¢q = a.

Again it turns out that all the objects in.% are simultaneously fibrant and
cofibrant. The notions of left homotopy and right homotopy in the case of #
coincide with the notion of p-homotopy of Hilton [4].
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It is easily checked that the categories @ and.# satisfy the axioms A to 45
and W of [7]. Hence all the results obtained in (7] are valid for € and % .
Following the general development of Quillen [6] we see that in the categories
% and % for each object M it is possible to associate objects ZM and QM
which are well-determined up to homotopy type. This means that in the case
of & the objects ZM and QM are determined unique up to ¢-homotopy type
and in the case of # they are determined unique up to p-homotopy type. It
will turn out that for any M in % any candidate for ZM following Quillen is
automatically a candidate to be the suspension of M as defined by Hilton in [4]
and vice versa. Similarly in the case of % for any M in.# any candidate for
QM in the sense of Quillen is automatically a candidate for the loop space of M
in the sense of Hilton's p-homotopy theory.

In the category %, namely for the i-homotopy theory, it turns out that a
module M is contractible if and only if it is injective. In § 3 we mention
candidates that can serve as a cylinder object and respectively as a path
object for a given M in % . It will follow from this as an easy consequence that
for any M in % the objects £M and QM are contractible. The main result

proved in § 3 is Theorem 3.4. In the case of a connected CIW complex X it is

known [2; 3] that W — Cat X = Ind Cat X. From Theorem 3.4 it follows

that in the category % the equality W — Cat M = Ind Cat M is not valid in
general. In fact for any non injective A-module M we have W — Cat M =1
whereas Ind Cat M = .

In § 4 we look at the category.# , namely we look at the projective homotopy
theory of finitely generated modules over a PID. In this case it turns out that
an object P of # is contractible if and only if it is free. In the case of # also
it will turn out that forany M in%# the objects M and QM will be contractible.
The main result in § 4 is Theorem 4.4 which is the analogue of Theorem 3.4.

Finally I wish to thank Professor Hilton for sending me his articles per-
taining to general homotopy theory. They proved to be of immense value in
the above study of numerical invariants.

1. Injective homotopy theory. The main references for §1 and §2 are [4]
and [5, Chapter 13]. Let A be a Dedekind domain and % the category of
A -modules. Let us choose

(a) all monomorphisms in % as cofibrations;

(b) i-homotopy equivalences in the sense of [5] as weak equivalences; and

(c) homomorphisms p : E — M have the lifting property (L.P) stated in
the introduction as fibrations.

THEOREM 1.1. With the above choice of cofibrations, weak equivalences and
fibrations € is a model category in the sense of Quillen (6, Chapter I].

% is clearly closed under direct and inverse limits. Thus axiom M, of Quillen
is trivially valid for %. Thus we have only to check axioms M; to Ms.
Throuughout this paper j,, : M — M @ N,y : M @ N — M will denote the
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canonical inclusion and projection respectively. Before taking up the verifi-
cation of axioms M; to M; we state some results that we need.

ProrosiTiON 1.2. (i) A monomorphism u: A — B is an i-homotopy equiva-
lence if and only if there exist an imjective module K and an isomorphism
¢0: A ® K >~ B satisfying u = ¢ 0 j4.

(ii) A homomorphism f: A — B is an i-homotopy equivalence if and only if
there exist injective modules K and J, and an isomorphism v : 4 @ K ~B @ J
satisfying f = dpoja-

This is Theorem 13.7 of [5]. Actually Hilton proves (i) first and uses it to
prove (ii).

ProrosiTiON 1.3. Let u: A > Bandf: B— M,0: A — M be such that p 1s
a monomorphism and 0 ~, f o u. Then there exists a homomorphism ¢ : B — M
satisfyingyou =0 and ¢ ~,;f: B— M.

This is Theorem 13.6 of [5]. Actually Propositions 1.2 and 1.3 are valid
over any ring.

LeEMMA 1.4. Given any module M over any ring T there exists a unique maximal
divisible submodule D of M. If C is any divisible submodule of M then C C D.

PRroOPOSITION 1.5. A module M over a Dedekind domain A 1s injective if and
only 1f M 1is divisible.
This is well-known. Refer to Propositions 1.2 and 5.1 in Chapter VII of [1].

ProPosITION 1.6. Let M, N be arbitrary modules over N\ and f: N — M any
homomorphism. Let D be the maximal divisible submodule of M. Leth: N @ D — M
be defined by h(x, u) = f(x) + u foranyx € Nyu € D. Thenh: N ®@ D - M
is a fibration in € .

Proof. Let 6 : J — M be any homomorphism with J injective. Then J is
divisible and hence 6(J) is divisible. By 1.4, we have 8(J) C D. Let ¢ : J —
N @ D be given by ¢(y) = (0, 8(y)) for any ¥ € J. Then clearly ho ¢ = 6.
This proves that & is a fibration.

Proof of M,. Let
g

nlf |

B———M

Diagram 1

be a commutative diagram in € with g4 a monomorphism and p a fibration.
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Case (1). Let u be a w.e. By (i) Proposition 1.2 there exist an injective
module K and an isomorphism ¢ : A @ K ~ B satisfying p = ¢ 0 j4. Since K
is injective and p a fibration there exists a vy : K —» E making Diagram 2

below commutative.
/ lp

K——— M
foix

Diagram 2

The map b = ko~ where k: A @ K — E is given by k(a, u) = g(a) + v(u)
clearly makes Diagram 3 commutative.

A—2 E

o
ul /h/ g IP
7
7

B——mx—

f

Diagram 3

Case (2). Let p be a w.e. By (ii) Proposition 1.2 there exist injective modules
K, J and an isomorphism ¢ : E @ K — M @ J such that p = §,¢jr. Now,
dmeirg = pg = fu (from Diagram 1). Writing A : 4 — J for the map 8 ,;¢jrg
we have ¢jgg(a) = (fu(a), Na)) for all @ € A. Since J is injective and
p : A — B a monomorphism, there exists a map « : B — J satisfying ap = \.
Define6: B— M ® Jby6(b) = (f(b),a(d)). Then é,0 = f.Since dypjr = p
we get

(1) om0 — dmejudup™'0 = [ — pore0.

However,

(2) 60— ¢pdpe™0 = (plegxe™)0 — ¢jrdee™0 = ¢(legx — jedr)e™ 0.
Clearly, (1zgx — jrdr) (E ® K) C K. This together with (2) and (1) yields
(B)  {f — pdre8} (B) C dme(K).

Since K is injective it follows that 8,0 (K) is divisible and hence by 1.5 §,¢(K)
is injective. Let v : ¢ (K) — M denote the inclusion. Since p is a fibration
there exists a map ¢ : d,¢(K) — E satisfying pt = v. Define A: B — E by
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h(d) = t{ f — poue™0} (b) + ¢ '0(b). Then
ph(b) = pt{ f — pére™0} (b) + pore~0(D)
={f — pdee™0} (0) + pore0(b),
for pt is the inclusion of 8y¢(K) in M. Hence
(4)  ph(d) = f(b) — pdre'0(b) + pPore~'0(b) = f(b).
Also, for any a € 4,
(5)  8(u(a)) = (fu(a), au(a)) = (ful(a), Ma) = ¢jrg(a).

Hence

{f — poee 0} (u(a)) = fu(a) — Pore™0 n(a)
= fu(a) — pdre~'¢jrg(a) from (5)
= fu(a) — pérjrg(a)
= fu(a) — pg(a) since dgjz = 1g
= 0 from the commutativity of Diagram 1.

Thus
h(u(a)) = f — poee™'0} (u(a)) + Sze™'0(n(a))
0 + dpe'0(u(a))
S ¢jrg(a) from (5)
drjrg(a) = g(a).
(4) and (6) imply that Diagram 4 below is commutative.

A—2% L F

/X
27
2 f

B———>M
Diagram 4

This completes the proof of M;.

Proof of Mz Letf: A — Bbeany map in %. Let D be the maximal divisible
submodule of B. Since D is injective j4: 4 > A ® D is an i-homotopy
equivalence. Let p: A ® D — F be given by p(a, u) = f(a) + u. Then p
is a fibration by Proposition 1.6 clearly f = p 0j, and j, is a cofibration w.e.

Let 4 be any injective module containing 4 as a submodule. Let p: 4 —
A ® B be given by u(a) = (a, f(a)). Then f = 65 0 p, u is a monomorphism
and 6z an ¢-homotopy equivalence. Also if @ : J — B is any homomorphism,
B:J— A ® B defined by B(u) = (0, a(u)) clearly satisfies 83 0 8 = a. This
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shows that 85 is a fibration. In the decomposition f = 8z O u, dp is a w.e. fibra-
tion and u a cofibration.
This completes the proof of M.

Proof of M;. That every isomorphism is a fibration as well as a cofibration
is trivial to see. It is equally trivial to see that composition of cofibrations
(respectively fibrations) is a cofibration (respectively a fibration).

Let

H—2 E

|

A
f
Diagram 5

be a pull-back in € with p a fibration. Let « : J — A4 be any map with J
injective. Since  is a fibration there exists a 8 : J — E satisfying p 0 8 = fa.
Since Diagram 5 is a pull-back it follows that there existsa y : J — H (unique,
once B is chosen) such that Diagram 6 below is commutative.

Diagram 6

Then ¢ 0o ¥ = a. This proves that ¢ is a fibration.
A push-out of

A —f—>M
!
B

in € is got as follows. Let L = {(f(a), — u(a) € M @ Bla € A}. L is a
submodule of M @ B. Let

M®B
L

7:M®B—
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be the quotient map. Then

L

Diagram 7

b:M———-b;

where @ = 5 0 j)y and B = jp is a push-out diagram in %. Let

B———Fh N
Diagram 8

be any push-out diagram in %. Then there exists a unique isomorphism
6: N—> M ® B/L making Diagram 9 commutative.

f

A——>M
B—h+N a
(Y
3 S
Mo B
L
Diagram 9

Now suppose p is a monomorphism. To show that X is a monomorphism it
suffices to prove that o is. Let x € M be such that a(x) = 0. But a(x) =
7(x,0) and 9(x,0) = 0 & (x,0) € L. Leta € A be such that (x, 0) = (f(a),
— u(a)). Then u(a) = 0. Since p is a monomorphism, this gives a = 0.
Hence x = f(a) = 0. This proves that « is a monomorphism. This means that
a push-out of any cofibration is a cofibration.

This completes the proof of M.

https://doi.org/10.4153/CJM-1975-098-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-098-2

942 K. VARADARAJAN

Axtom Ms. That € satisfies axiom M; is well-known and is actually an
immediate consequence of the characterisation of i-homotopy equivalences
given by Theorem 13.12 of [5].

In the proof of axiom M, we will be making use of the following:

ProProsITION 1.7. Let 6 : J — M be any homomorphism with J injective. Let
h: M @®J— M be given by h(m, u) = m + 6(u) and let

N—2 sveJ

Wl lh
a—L

Diagram 10

be a pull-back diagram. Then = : N — A 1s an i-homotopy equivalence.

Proof. Since every isomorphism is an 7-homotopy equivalence and composi-
tion of i-homotopy equivalences is an 2-homotopy equivalence for proving
proving Proposition 1.7 we can without loss of generality assume that

N={(mua) e M®J @AM+ 0u) = fla)};

m(m,u,a) = a;glm,u,a) = (m,u). Forany a € A we have clearly f(a), 0, a)
€ Nand X\ : 4 — N defined by A(a) = (f(a), 0, a) satisfies 7 0 A(a) = a for
all ¢ € A. The composite

NS4y
is given by Ar(m, u, a) = (f(a), 0, a). Hence {1y — Ar}(m, u, a) =
(m — f(a), u,0). But whenever (m, u,a) € N wehavem + 6(u) = f(a). Thus
{1y — Mry(m,u,a) = (—0(u), u,0). lfa: N— Jand B : J — N are given by
a(m,u,a) = u, B(u) = (—0(u), u, 0) then clearly 1y — Ar = Ba. Since J is
injective it follows that 1y — Ar =~; 0. Thus 7\ = 1, and 7\ ~; 1y. This

proves that = is an ¢-homotopy equivalence with X as an 7-homotopy inverse,
thus completing the proof of Proposition 1.7.

Proof of M,. Let

Diagram 11

be a pull-back diagram with p a w.e. fibration. Since p : E— M isan i-homotopy
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equivalence by (ii) Proposition 1.2 there exist injective modules K and J and
an isomorphism ¢ : E @ K ~ M @ J satisfying p = dy¢jr. Consider a =y :
E ® K — M. Since K is injective and p : E— M is a fibration we see that
there existsa map 6 : K — E satisfying p 00 = a 0 jx. Define b : E @K - E
by h(e,u) = ¢ + 8(u) forany (e,u) € E ® K. Thenclearlypoh = a. Let

N—LyEek

rl 1}1
c—L —E
Diagram 12

be a pull-back diagram. From the fact that Diagrams 11 and 12 are pull-back
diagrams we see that

N—L JEeK

wwl lph =«
f

A—3M

Diagram 13

is a pull-back.

Our aim is to show that w is an ¢-homotopy equivalence. By Proposition
1.7, # : N — Cis an i-homotopy equivalence. By axiom Mj it suffices to prove
that wr is an ¢-homotopy equivalence. Clearly

1
ARGy

4
5,11 6M
A f

—> M

Diagram 14

is a pull-back. Let

N’ E® K

| 1

AQJ———MaJ
el

Diagram 15

Y

https://doi.org/10.4153/CJM-1975-098-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-098-2

944 K. VARADARAJAN

be a pull-back. From Diagrams 14 and 15 we see that

N—L yEek

51;11/1 laM‘P =«
/

A——M

Diagram 16

is a pull-back. Since both Diagrams 13 and 16 are pull-backs we see that there
exists an isomorphism v : N — N’ satisfying d,¢y = wr and ¢’y = ¢. Since ¢
is an isomorphism the pull-back ¢ : N’ —> A4 @ J is also an isomorphism.
84:4 ®J — A is an i-homotopy equivalence since J is injective. Hence
wr = §4¢v is an i-homotopy equivalence.

Let

A——f—+M

| J

B——g———-)N

Diagram 17

be a push-out diagram with u: 4 — B a w.e. cofibration (namely a mono-
morphism which is also an i-homotopy equivalence). By (i) Proposition 1.2 we
can without loss of generality assume p = j, : 4 > 4 ® K with K injective.
Since

A f —>M

| [

A®K——M O K
/@ 1k

Diagram 18

is a push-out we can assume without loss of generality that ¢ = j. Clearly ju
is an 1-homotopy equivalence.
This completes the proof of M.

Remark 1.8. For any 4 € % the map 0 — 4 is clearly a cofibration and
A — 0 a fibration. Thus all the objects in & are simultaneously cofibrant and
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fibrant. It follows that the notions of left homotopy and right homotopy intro-
duced by Quillen [6] coincide in this case.

ProrosiTiON 1.9. Let f, g € Hom (4, B). Then

frlgef~gaf~ g

Proof. From the observation at the end of Remark 1.8 it suffices to prove
the implications f ~'g = f ~; g = f ~" g. Observe that in & for any two
objects C, D the union C V D is the same as C @ D. We will however write
C V D itself thus conforming to the notation in [6]. Let f ~'g. Then there
exists a commutative diagram

AV
vl
A

with ¢ a w.e. (namely an :<-homotopy equivalence). From Diagram 19 we get
009 = 14 = 001; hdo = f, k31 = g. Since o is an i-homotopy equivalence it
follows that 9y, 9; are both <-homotopy inverses to o. In particular 9, >~; 9.
This immediately yields £ 99 ~; k9,; in other words f ~, g.

Let us now assume f =~; g. Then there exist an injective module J and
mapsa : 4 — J,B8:J — Bsuch that Ba = g — f. Denoting themap B @ J —
B X B carrying (b, u) of B @ J into the elements (b, b + 8(u)) of B X B
by (1 + 0, 1 + B) it is clear that

f+eg
A

a
—

Diagram 19

(f, 9

Diagram 20

is commutative. Here jp is an i-homotopy equivalence. This proves f ~7 g.
The proof of Proposition 1.9 is complete.

2. Projective homotopy theory. The results obtained here are in a ‘“‘certain

sense’’ dual to the results obtained in § 1. However, we have to restrict our
attention to the category of finitely generated modules over a PID.

https://doi.org/10.4153/CJM-1975-098-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-098-2

946 K. VARADARAJAN

Let % denote the category of finitely generated modules over a principal
ideal domain A. Let us choose

(a) all epimorphisms in # as fibrations,

(b) p-homotopy equivalences as weak equivalences, and

(c) maps ¢ : M — N satisfying the extension property (E.P) stated in the
introduction as cofibrations.

THEOREM 2.1. With the above choice of fibrations, weak equivalences and co-
fibrations ¥ is a model category in the sense of Quillen.

Axiom M, of Quillen requires that the category under consideration be
closed under finite projective and finite inductive limits. Clearly the category
of finitely generated modules over a Noetherian ring (in particular over a PID)
is closed under finite limits. Though the proofs in this section are in a certain
sense dual to the proofs of results in § 1, the fact that we are considering finitely
generated modules over a PID will play a special role. We therefore prefer to
give proofs. In a way this helps in understanding the duality better.

PROPOSITION 2.2. Let A be any ring and v: M — N a homomorphism of
A modules.

(1) Suppose v : M — N is an epimorphism. Then v is a p-homotopy equiva-
lence if and only 1f there exist a projective module P and an isomorphism ¢ : M —
N @ P satisfying v = dyo.

(ii) In the gemeral case (when v is not necessarily an epimorphism) » is a
p-homotopy equivalence if and only if there exist projective modules P and R and
an isomorphism ¢ : M @ R— N ® P satisfying v = dy@jy. Moreover any projec-
tive ancestor of N could be chosen for R.

(iii) In case M, N are finitely generated P 1s automatically finitely generated in
case (i) and R (hence P) could be chosen to be finitely gemerated in case (ii).

PrROPOSITION 2.3. Let v: M — N be any epimorphism and 6 : A — N,
f: A — M homomorphisms satisfying 6 ~,v o f. Then there exists a homo-
morphism ¢ : A — M satisfying

voy =0 and Y >~,f:A4—> M.

Propositions 2.2 and 2.3 are well-known [4] and are the duals of Propositions
1.2 and 1.3.

PROPOSITION 2.4. Let f : M — N be any map inF . Let T (M) be the tension
submodule of M and n: M — M/T (M) the canonical quotient map. Then the
map

M

(fym) :M_)N(BT(T/[S

1s a cofibration in F .

Proof. Let @ : M — R be any map into a finitely generated free module R.
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Then a(7'(M)) = 0. Hence « yields by passage to quotient a map
M

(M) ———— 5 R.
Define
B:N @ T(M)_)R by B(x,u) = a(u) foranyx € N, u ET(M)
Then it is clear that 8 o (f, n) = a. This proves that
M

is a cofibration in % .

We now take up the proof of the axioms M,; to M; for the category % .
Proof of M,. Let

Diagram 21

be a commutative diagram in.# with » an epimorphism and ¢ a cofibration.

Case (1). Let » be a p-homotopy equivalence. By (iii) Proposition 2.2 there
exist a finitely generated projective A-module P and an isomorphism ¢ : E —
M @ P such that v = §,, 0 ¢. Since A is a PID it follows that P is also free.
Since ¢ is a cofibration it follows that there exists a map v : B — P such that
Diagram 22 below is commutative.

A

| %,

PN
B o P
Diagram 22

The map & = ¢~k where k: B—> M @ P is given by k = (f, v) clearly
makes Diagram 23 below commutative.

BX—— Ny

Diagram 23

https://doi.org/10.4153/CJM-1975-098-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-098-2

948 K. VARADARAJAN

Case (2). Let g be a p-homotopy equivalence. By (iii) Proposition 2.2 and
the fact that A is a PID we see that there exist finitely generated free modules
P and R and an isomorphism ¢: 4 @ R — B @ P satisfying ¢ = dz¢ja.
Since R is free and » : E — M is onto we see that there existsa mapa : R — E
satisfying va = fdppjr. Consider the map8: A ® R — E defined by 6(a, u) =
g(@) + a(u) foralla € 4, u € R. Then 0j, = g. Also from ¢ = dz¢pj 4 we get
that

(7) 04 — 0¢_1j358j.4 = g — 0p™Y5q.
But,

8 60— 0o~ igbpep = 0o lpgre — 0o~ jrdse
= 0o~ (1zgr — jrdr)e.

Clearly, (1zop — jpdp) (B ® P) C P. Since ¢(4) C B ® P we get (lzgr —
jeds)e(A) C P. Submodule of a (finitely generated) free module over a PID
being itself (finitely generated) free we see that (lpgr — jds)e(A4) is a
finitely generated free module. Since ¢ is an isomorphism it follows that
F = ¢ '(1ppp — jron)e(A) is a finitely generated free module. Since ¢: 4 — B
is a cofibration in & it follows that there exists a map ¢: B — F such that
Diagram 24 is commutative.

‘P_I(IB@P — JB0B)¢ja

A > F
\ /
B
Diagram 24

Observe that F is a finitely generated free submodule of 4 ® R satisfying
¢(F) = (1pgr — judr)e(A) C P. Since §5(P) = 0, it follows that

9) () =0.
Define
(10) h:B— Ebyh(®) = 6t() + 0o~ j5(b).
Then
(11) v o h(b) = vot(b) + vBp s (b).
By the very definition of 8 we have
vh(a, u) = vg(a) + va(u) forall (a,u) € A ® R
= fq(a) + fopejr(u)
= fopeja(a) + foppir(u)
= fégp(a, 0) + fope (0, u)
= fépp(a, un).
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Hence v6 = fége. Substituting féze for v6 in (11) we get
vh(b) = fope(t(b)) + fonee™ja (D).

Since ¢(b) € F by (9) we have dz¢(¢(b)) = 0. Hence

(12) vh(b) = fopee~'jn(b) = fopja(b) = f(b).

Also, hg(a) = 6t(q(a)) + 0¢7%r(g(a)). But tg = ¢~'(lzgr — jsds)eja from
Diagram 24. Hence
0tg = 0o (1pgpr — juds)eja
= 0ja — 00~ Yjplppja
=g — O¢7Yjsg by (7).

Therefore

hq(a) = g(a) — 0¢7'58q(a) + 0"z (q(a)) = g(a).
(12) and (13) together imply that Diagram 25 below is commutative.

A—2 ,E

,X
q h/’ v
7

B&¥———M
Diagram 25

This completes the proof of M.

Proof of M,. Let f: M — N be any map in.%. Let n: M — M/T (M) be
the canonical quotient map where 7 (M) is the torsion submodule of M.
By Proposition 2.4, (f,79)M —- N ®@ M/T(M) is a cofibration. Since M
is finitely generated and A a PID it follows that M/T(M) is free.
Hence éy: N @ M/T(M)— N is a p-homotopy equivalence. Denoting
(fym): M—>N® M/T(M) by q we have dyq¢ = f, ¢ a cofibration and 6, a
w.e. fibration.

Let

RSN
be an epimorphism with R a finitely generated free module. Letv : M ® R— N
be given by »(x, #) = f(x) + e(x). Then v is an epimorphism and f = »j,,.
If a: M — Fis any map in# the map B: M ®@ R — F given by 8 = ad,,
clearly satisfies 87, = a. Hence jj is a cofibration. Clearly j,, : M @ R is a

p-homotopy equivalence.
This completes the proof of M.
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Proof of M;. Clearly any isomorphism is an epimorphism and the composi-
tion of epimorphisms is an epimorphism. Let

A— % LE

xl 1
N -——f——rM
Diagram 26
be a pull-back with » an epimorphism. We can identify 4 with
{(e,n) € E @ Nlv(e) = f(n)},

g:4A— E and A: A —» N with the maps g(e, n) = ¢, N(e, n) = n. For any
n € N there exists an e € E such that v(e) = f(n). Then (e, n) € A and
N, n) = n. This proves that N : 4 — N is an epimorphism. Hence the pull-
back of any fibration in% is a fibration.

It is trivial to see that any is omorphismis a cofibration and that the compo-
sition of cofibrations is a cofibration in % . Let

/

A——C

Ql lu

B——g—>D

Diagram 27
be a push-out diagram with ¢ a cofibration. Let
CSF

be any map with F a finitely generated free module. Since ¢ is a cofibration
there exists a map B : B — F satisfying 8¢ = af : A — F. Since Diagram 27

is a push-out there exists a map v : D — I (unique once 3 is chosen) such that
Diagram 28 is commutative.

]

—-C

Diagram 28
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Then v o4 = a. This proves that « is a cofibration. The proof of M; is now
complete.

Axtom M;. This is again well-known and is an immediate consequence of

the characterisation of p-homotopy equivalences.
For the proof of axiom M, we need the following.

ProPOSITION 2.5. Let A be any ring and 6 : B — P any map with P projective.
Leth = (13,0) : B—>B @ P and

f

B———on 3N
h w

B® P—E

Diagram 29
be a push-out diagram. Then w : N — C be a p-homotopy equivalence.
Proof. Without loss of generality we can assume

_BePON

¢ L

where L = {(b, 0(b), —f(0)) € B®P @ Nb€ B} and w=19nojy, k=
7 0 jp Hp Where

BOP®N

1B®P®N— 7

is the canonical quotient map. Consider the mapa: B @ P @ N — N given
by a(b, u, n) = n + f(b). For any (b, 8(b), — f(b)) € L we have a(b, 6(b),
—f()) = —f(b) + f(b) = 0. Hence a passes down to quotient to induce
A : C — Nsatisfyingae = Aon. WehaveNow(n) = Nonojy(n) = a o jy(n)
= (0, 0, n) = n. Hence the composite

N%cAn

is 1y. Consider themapy: B ® P @ N — Pgivenbyvy: (b,u,n) = u — 0(b).
For any (b, 8(b), — f(b)) € L we have v(b, 6(b), — f(b)) = 6(b) — 6(b) = 0.
Hence v induces a map u: C — P satisfying v = pon.

Letx € Cand (b,u,n) € B ® P ® N besuch that (b, u, n) = x. We have

(14) njpu(x) = njpun(d, u, n) = njpy(b, u,n) = njp(u — (b))
7](07 u — 0(b)y O)

I
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Also
(I¢ — w\) = x — wh(x) = (b, u, n) — why(b, u, n)
= (b, u,n) — njya(b,u,n) = n(b, u,n) — njn(n + f(b))
= n(bv u, ’ﬂ) - 77(01 0: n +f(b)) = ﬂ(b» u, —f(b))

However (b, u, —f(®)) — (0, u — 8(b), 0) = (b, 0(b), —f(b) € L. Hence
n(b, u, —f()) = 7(0, u — 6(b), 0). This shows that njpu(x) = (1¢ — w\)(x)
and x € C is arbitrary. Hence (1¢ — w\) = njpu. This means Diagram 30

below is commutative.
P
2.
C————>C

10_w>\

Diagram 30

Since P is projective we see that 1 — w\ o, 0.
Thus %\ ~, 1, and e — 1. This shows that w : N — C is a p-homotopy

equivalence.
Proof of M. Let

)\l lu
f
A———— M
Diagram 31
be a pull-back diagram with » a 7e.e fibration. Then » is an epimorphism which

is also a p-homotopy equivalence. By (i) Proposition 2.2 we can assume
E = M ® P with P finitely generated projective and » = 6, : M ® P — M.

Since
®1
A@P—L—i»M@P

aAl f [

A — M
Diagram 32

A
is a pull-back it follows that C — 4 can be replaced by

A0pri4
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which is clearly a p-homotopy equivalence. Let

A—28 sy

Ql lu
B ——f—>N

Diagram 33

be a push-out with ¢ a w.e. cofibration. Since ¢: A — B is a p-homotopy
equivalence by (iii) Proposition 2.2 there exist finitely generated projective
modules P and R and an isomorphism ¢: A4 @ R— B ® P satisfying
g = dppja. Since A is a PID both P and R are free. Let a = ¢j4. Since P is a
finitely generated free module and ¢ : A — B is a cofibration we see that there
exists a map 6 : B — P satisfying 6 0q¢ = d,a. Let o = (15, 0) : B ® P. We
have @ = ¢js = (9peja, Opeia) = (¢, dpa) and hg = (g, 6q) = (g, dpa). Hence
hg = a. Let

f

B———»N
hl lw
B® P—k D
Diagram 34

be a push-out diagram. Since Diagrams33 and 34 are push-outs it follows that

A—2=F2 su

a = hgl lwu
k

B® P———D
Diagram 35
is a push-out.
Our aim is to show that # : M — N is a p-homotopy equivalence. By Propo-

sition 2.5, ¥ : N — D is a p-homotopy equivalence. By axiom Mj it suffices to
show that wu is a p-homotopy equivalence.

Clearly
A g >
Ja Jnm
A®R—— > M ®R
2@ 1g
Diagram 36
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is a push-out diagram. Let

1
Aor—2%1 [yer

l ) l¢

B®P — D’

Diagram 37

be a push-out. It follows that Diagram 38 below is a push-out.

A—E Sy

o= ml 1%
k’

B® P———D’
Diagram 38

Comparison of Diagrams 35 and 38 yields an isomorphism

D' % D,
satisfying mu = yyj,. Since ¢ is an isomorphism the push-out ¥ is also an
isomorphism. j, : M ® R is a p-homotopy equivalence (R being free) and
v : D" — D is an isomorphism. Hence mu is a p-homotopy equivalence.
This completes the proof of M, for % .

Remark 2.6. It is easily seen that every object in# is simultaneously fibrant
and cofibrant. Hence the notions of left homotopy and right homotopy of
Quillen agree in.% as well.

ProprosiTION 2.7. Let f, ¢ € Hom (4,B). Thenf ~'g & fox,g = f ~"g

Proof. We first observe that when f ~~, g there exists a finitely generated
projective module P and maps a: 4 — P, 8 : P — B satisfying Ba = g — f.
This is because a projective ancestor of B could be chosen to be finitely
generated.

The proof of Proposition 2.7 is got from the proof of Proposition 1.9 by
replacing J by a finitely generated projective module P and ‘‘z-homotopy”’
by “p-homotopy”’.

3. Numerical invariants in injective homotopy theory. This section is
devoted to the study of the numerical invariants defined in [7] for the model
category % of § 1. From Proposition 1.9 it follows that for any 4, B in ¥
the set 7 (4, B) = [A4, B] of homotopy classes of maps in the sense of Quillen
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[6] is the same as the set #(A4, B) of injective homotopy classes of maps as
introduced by Hilton [5]. It is easily seen that the contractible objects ac-
cording to [7, Definition 2.16] in € are precisely the injective modules.

Remarks. 3.1. A module M dominates N if and only if there exist maps
f:N— M, g: M— N such that gf ~; 1. If N is dominated by an injective
module (a contractible object) J then N itself is contractible and hence
injective.

3.2. Let A be any injective module containing 4 and let

p:AVA=4A04-404

be given by u(x, y) = (x + v, y). Then s, oulx, v) =x+y = V(x, »).
Clearly p is a monomorphism and 6, an ¢-homotopy equivalence. Thus V
factors into

AvA&A@A%A

with u a cofibration and 64 a w.e. It follows that 4 @ A, along with the maps
p:AD®A—->A4A@®A,6,:4 @A A,isacylinder object of 4 in the sense
of [6, Chapter I]. Hence a candidate for £4 in the sense of Quillen is the cofibre
of themappu: 4 ® A— A ® A which is the quotient module 4 ® A/u(4 ®A4).
Letn: 4 ®A4d— (4 ® A)/u(4 ® A) be the quotient map. It is clear that 5
carries 4 onto (4 ® 4)/u(4 ® A) and that Ker (n/4A) = A Np(4d @ 4) =
0 ® A. Hence

(4 @A)/ud &4) ~A/4.

But A/A is precisely the definition of 24 in Hilton’s set up of i-homotopy
theory [4]. Since A is a Dedekind domain it follows from Proposition 1.5 that
A/A is injective.

3.3. Let D be the maximal divisible submoduleof 4.Letp: 4 @ D ® D —
A ®A=A4X A begiven by p(a, x,v) = (¢ +x,a + v). Then p j(a) =
pla, 0,0) = (a, a) = Aa). Then p j4 = A. D ® D is the maximal divisible
submodule of 4 @ A. Hence by Proposition 1.6 the mapp: 4 @ D & D —
A4 @ A is a fibration. Also D @ D being injective we see that j4 : 4 —
A ® D @ D is an i-homotopy equivalence. It follows that 4 @ D ® D along
with themapsjs: 4 >4 @D ®@D,p: A ®D ®D — 4 X A4 yieldsapath
object of 4 in the sense of [6, Chapter I]. Hence a candidate for Q(4) is the
fibre (namely the kernel) of the map p: 4 ® D ®D -4 ® 4. Now,
pa, x,y) =0ifandonlyifa+x=0=ae¢+ye=x = —a =1y The map
AN:D—>A4 @D @& Dgivenby AMx) = (—x, x, x) clearly maps D isomorphical-
ly onto the kernel of p. Hence a candidate for @(4) is D, and D is injective.
Since Q(4) is determined unique up to homotopy type (which in this case
happens to be i-homotopy type) it follows that every candidate for 2(4) is
injective.

Thus we see that for every 4 in € both ZA4 and Q(4) are contractible.
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Let W-Cat A4, Ind Cat 4, Cocat 4, Nil 4 and Conil 4 be the invariant
associated to 4 asin [7]. The invariant W-Cat 4 is the Lusternik-Schnirelmann
category of A defined along the methods of G. W. Whitehead. The main
result of this section can be stated as follows:

THEOREM 3.4. (1) W-Cat M = 0 = Ind Cat M = Cocat M whenever M is
an injective N -module.

(2) W-Cat M = 1, Ind Cat M = o0 = Cocat M whenever M is a A -module
which 1s not injective.

(3) Nil M = 0 = Conil M for all M in €.

In the proof of this theorem we will be using the following.

LeEMMA 3.5. Let M € €. If Ind Cat M < oo (respectively Cocat M < o)
then M is injective and hence Ind Cat M = 0 (respectively Cocat M = 0).

Proof. For any integer k = 0let (Sx) and (7%) be the statements given below:

(Sk): Ind Cat M £ k = M is injective.
(T%): Cocat M < k = M is injective.

We will prove both these statements by induction k. That will establish
Lemma 3.5.

Clearly the statement (S) is true by the very definition. Let now &2 = 1
and assume (S;) is true for all I £ ¢ — 1. By definition there exists a cofibra-

tion 4 L Y with Ind Cat ¥ £ & — 1 and the cofibre C of f dominating M.
By (Si-1) we see that Y is injective. The cofibre of f is a quotient of ¥ and
hence C is injective. Since C dominates M by 3.1 we see that M is injective.

The statement (7') is also true by the very definition. Let # = 1 and assume
(T)) be true for all I £ k — 1. Since Cocat M = k, there exists a fibration

ELB
with Cocat E < k — 1 and the fiber C of p dominating M. By (7T%_,) we see
that E is injective. Hence p (E) is divisible and hence injective. Let j : p(E) — B

denote the inclusion of p(E) in B. Since p : E — B is a fibration by the very
definition of a fibration there exists a map g : p(E) — E such that

E
p(E)—L—
Diagram 39

is commutative. This means, for the map p : E — p(E) we have a splitting
E — p(E). In other words

0> Kerp—o> E—p(E)—0
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is a split exact sequence. Hence C = Ker p is a direct summand of the injective
module £ and hence C itself is injective. Since M is dominated by 3.1 we see
that M is injective. This completes the proof of Lemma 3.5.

Proof of Theorem 3.4. (1) is immediate from the definition of these invariants
and the fact that the contractible objects of % are precisely the injective
modules.

(2) Forany M ¢ € wehave M V M = M & M = M X M. Itis therefore
clear that the diagonal map A: M — M X M factors through M VvV M.
Hence W-Cat M = 1. Also W-Cat M = 0 implies that 1,, is homotopic to
zero; in other words 1, ~;0. This means M is a direct summand of an
injective module and hence injective. This proves that W-Cat M =1 for
any module M which is not injective.

That Ind Cat M = 0 = Cocat M whenever M is not injective is an im-

mediate consequence of Lemma 3.5.
(3) By definition
Nil M = Supnil [E4, M] and Conil M = Sup nil [M, Q4].
Ac¥ A%

But we have seen already that in 4 both 24 and Q4 are contractible for all 4.
Hence [Z4, M] = 0 = [M, Q4] for all A € ¥ . This proves (3).

4. Numerical invariants in projective homotopy theory. This section
deals with the model category.% . Thus the base ring A is a PID, and unless
otherwise stated, by a module we mean a finitely generated module. The set
[4, B] for any 4, B in ¥ agrees with the set of projective homotopy classes of
A in B. An object 4 of ¥ is contractible if and only if 4 is free.

Remarks. 4.1. A module 4 dominates another module B if and only if there
exist maps

BLa, 4% B suchthatgf~, 1.

If B is dominated by a free module then B itself is free.

4.2.Let N € # and ¢ : F — N an epimorphism with F free. Define v : N @
FH>N®@N-=NXNbyv(x,u) = (x,x + e(u)) forallx € N,u € F. Then
v is clearly an epimorphism and »jy(x) = v(x, 0) = (x, x) = A(x). Also
jn: N> N @ Fis a p-homotopy equivalence. Thus A factors as

NENeFLNXN
with jy a w.e. and » a fibration. It follows that N ® F along with the maps

NEN@OF wN®F-NXN

yields a path object for NV in Quillen’s set up [6, Chapter I]. Hence a candidate
for QN in Quillen’s set up is the kernelof v : N @ F— N X N. Now (x, u) €

https://doi.org/10.4153/CJM-1975-098-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-098-2

958 K. VARADARAJAN

Kerv & (x,x + e(u)) = (0,0) © x = 0, e(u) = 0. It follows that X : Ker
e — Ker v defined by N(#) = (0, ) is an isomorphism of Ker ¢ onto Ker ».
But Ker e is actually a candidate for QN in Hilton's set up of p-homotopy
theory [4]. Since a submodule of a free module over a PID is free we see that
QN is free. Since QN is determined unique up to p-homotopy type it follows
that any candidate for QV in # is projective and hence free.

4.3.Let N € % and T'(N) denote the torsion submodule of N. Then N/T(N)
= Fis a free finitely generated module. Let n : N — F denote the canonical
quotient map. Let ¢ : N ® N— F @ F @ N be defined by ¢(x, y) = (n(x),
n(y),x + v). Then clearly 6y 0g: N® N — Nisthesameas V: N® N> N
which carries (x, y) to x +y. The map oy: F® F® N—> N is a p-
homotopy equivalence, since F @ F is free. If R is any free module and
a: N ® N— R any map it is clear that «(T(N) @ T(N)) = 0. Thus « in-
ducesamapa: F® F— Rsatisfyingao (n ® 1) =a. lf: FOFO® N>R
is given by B(u,v,x) = a(u,v) for all (u,v) € F @ F then clearly Bo¢q = a.
Thusg: N@®@ N— F ® F ® N is a cofibration. It follows that F @ F @ N
together with the maps ¢: N® N>F® F® N, 6 : F® F® N> N
yields a cylinder object for N in % in the sense of Quillen [6]. A candidate for
2N is the quotient ¥ @ F @ N/q(N @ N).

Consider the map\: F @ F ® N — Fgiven bv N(u,v,x) = u + v — n(x).
We have Mo g(x, ¥) = Mn(x), n(y), * +3) = n(x) +2(y) —n(x + ) = 0.
Hence ¢(N @ N) C Ker \. Suppose (u, v, x) € Ker \. Then « + v = n(x).
Choose a z € N satisfying 7(z) = u. Then v = n(x) — u = 9(x) — 7(z) =
n(x — z). The element (z, x — z) € N @ N has the property ¢(z, x — 2z) =
(n(2), n(x — 2), x) = (4, v, x). Hence Ker N\ C q(N @ N). Thus Ker A =
g(N ® N). Moreover for any u € F we have A(«, 0, 0) = u. Hence A\ : F &
F ® N — Fis onto. It follows that X induces an isomorphism

Thus F is a candidate for ZN. Since 2N is determined unique up to homotopy
type (which agrees with p-homotopy type here) we see that any ZN is con-
tractible.

The main result of this section is the following analogue of Theorem 3.4.

THEOREM 4.4. Let M € ¥, Then

(1) W-Cat M = 0 = Ind Cat M = Cocat M whenever M 1s free;
(2) W-Cat M =1, Ind Cat M = o = Cocat M whenever M s not free;
(3) Nil M = 0 = Conil M for all M € F.

The following is the analogue of Lemma 3.5.

LEMMA 4.5. Let M € % . If Ind Cat M < o (respectively Cocat M < o0)
then M 1s free and hence Ind Cat M = 0 (respectively Cocat M = 0).
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Proof. For any integer £ = 0 let (S;/) and (T}') be the statements given
below.

(S¢): IndCat M < k = M is free
(T'): Cocat M £ k= M is free.

Both these statements will be proved by induction on k.

Clearly the statement (S¢’) is true by the very definition of Inductive
Category. Let £ = 1 and (S/) be true for 1 < k — 1. If Ind Cat M < k there
exists a cofibration

4%y

in .# with Ind Cat ¥ <k — 1 and the cofibre C of ¢ dominating M. By
(Sx—1’) we see that Y is free. Let T(4) denote the torsion submodule of 4.
Since 4 € % it follows that F = 4/T(4) is free. Let n: A — F be the
canonical quotient map.

Since Vis free it follows that ¢(7°(4)) = 0. Henceginducesamapg: F— ¥V
satisfying ¢ = § o #. The cofibre C of ¢ is the quotient ¥/q(4).Sincen: 4 — F
is onto we get ¢(4) = §(F). Hence C = Y/§(F).

Now ¢ : A — Y is a cofibration in.%# . Since F is free it follows that there

B
exists a map Y — F such that 8 o g = 5. The map

FégF

satisfies (1 — Bj)on =9 —Bqn =n—Bg=n—n=0.Since n: A— Fis
an epimorphism we get 1 — 8§. Hence the exact sequence

0-FL v v/§F) —0

splits. Thus C = Y/§(F) is a direct summand of Y. Hence C is projective.
A being a PID it is free. Since C dominates M by 4.1 we see that M itself is
free. This proves (S;/).

Clearly (Ty') is true by the very definition of Cocat. Let 2 = 1 and let
(T'/) be true for all [ = & — 1. Suppose Cocat M = k. Then there exists a
fibration

ELB
with Cocat E = k — 1 and the fibre H of v dominating M. From (T;_,") we
see that E is free. H is a submodule of the finitely generated free module E

over A (a PID). Hence H is a finitely generated free module. Since H domi-
nates M by 4.1 we see that M is free. This proves (7%').

Proof of Theorem 4.4. The proof is exactly similar to the proof of Theorem
3.4. In place of Lemma 3.5 we have only to use Lemma 4.5.
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