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NUMERICAL INVARIANTS IN HOMOTOPICAL 
ALGEBRA, II-APPLICATIONS 

K. VARADARAJAN 

I n t r o d u c t i o n . This paper deals with some applications in the results 
obtained in "Numerical Invar iants in Homotopical Algebra" [7]. The applica
tions are mainly concerned with the homotopy theory of modules developed 
by P. J. Hilton [4]. However we have to restrict the class of rings because we 
want to obtain a situation where the axioms of Quillen [6] hold good. This 
paper is organised as follows. 

§ 1 deals with the injective homotopy (i-homotopy) theory of modules over 
a Dedekind domain A . Defining Cofibrations, Weak Equivalences and Fibra-
tions to be respectively the collection of monomorphisms, i-homotopy equiva
lences and maps satisfying the lifting property (abbreviated as L.P.) men
tioned below we prove in § 1 tha t the category ^ of A -modules satisfies the 
axioms of Quillen [6]. 

{L.P.) A map p : E —> M in ^f satisfies (L.P.) if given any injective 
module / and any map f : J —* M there exists a lift g : J —> E 
(i.e., pog =f) oîf. 

I t is easily seen tha t all the objects in ^ are fibrant and cofibrant simul
taneously. I t will turn out tha t both the notions of left homotopy and right 
homotopy considered by Quillen [6] agree in this case with the notion of 
^'-homotopy introduced by Hilton [4; 5, Chapter 13]. 

§ 2 deals with the projective homotopy (p-homotopy) theory of finitely 
generated A modules where A is a principal ideal domain ( F I D ) . Defining 
Fibrations, Weak Equivalences and Cofibrations to be respectively the collec
tion of epimorphisms, projective homotopy equivalences and maps having the 
extension property (E.P.) mentioned below we prove in § 2 tha t the category J^~ 
of finitely generated modules over a P I D satisfies the axioms of Quillen. 

(E.P.) A map q : M —•> N is said to have the E.P if given any finitely 
generated free A -module F and any map a : M —> F there exists 
a map 0 : N —> F satisfying /3 o q = a. 

Again it turns out tha t all the objects in &~ are simultaneously fibrant and 
cofibrant. The notions of left homotopy and right homotopy in the case of J^~ 
coincide with the notion of ^-homotopy of Hilton [4]. 
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It is easily checked that the categories *$ and J ^ satisfy the axioms A\ to A5 

and W of [7]. Hence all the results obtained in [7] are valid for ^ and !F. 
Following the general development of Quillen [6] we see that in the categories 
*$ and 3F for each object M it is possible to associate objects SM and fiM 
which are well-determined up to homotopy type. This means that in the case 
of ^ the objects 2 M and Q,M are determined unique up to ^-homotopy type 
and in the case of Ĵ ~ they are determined unique up to ^-homotopy type. It 
will turn out that for any M in ^ any candidate for SM following Quillen is 
automatically a candidate to be the suspension of M as defined by Hilton in [4] 
and vice versa. Similarly in the case of &~ for any M in Ĵ ~ any candidate for 
SIM in the sense of Quillen is automatically a candidate for the loop space of M 
in the sense of Hilton's p-homotopy theory. 

In the category ^ , namely for the i-homotopy theory, it turns out that a 
module M is contractible if and only if it is injective. In § 3 we mention 
candidates that can serve as a cylinder object and respectively as a path 
object for a given M in fé\ It will followT from this as an easy consequence that 
for any M in *$ the objects ZM and &M are contractible. The main result 
proved in § 3 is Theorem 3.4. In the case of a connected CW complex X it is 
known [2; 3] that W - Cat X = Ind Cat X. From Theorem 3.4 it follows 
that in the category ^ the equality W — Cat M = Ind Cat M is not valid in 
general. In fact for any non injective A-module M we have W — Cat M = 1 
whereas Ind Cat M = oo. 

In § 4 we look at the ca tegory^ , namely we look at the projective homotopy 
theory of finitely generated modules over a PID. In this case it turns out that 
an object P of ^ is contractible if and only if it is free. In the case of ^ also 
it will turn out that for any Mm^ the objects 2 M and ŒMwill be contractible. 
The main result in § 4 is Theorem 4.4 which is the analogue of Theorem 3.4. 

Finally I wish to thank Professor Hilton for sending me his articles per
taining to general homotopy theory. They proved to be of immense value in 
the above study of numerical invariants. 

1. Injective homotopy theory. The main references for §1 and §2 are [4] 
and [5, Chapter 13]. Let A be a Dedekind domain and ^ the category of 
A -modules. Let us choose 

(a) all monomorphisms in ^ as cofibrations; 
(b) ^-homotopy equivalences in the sense of [5] as weak equivalences; and 
(c) homomorphisms p : E —» M have the lifting property (L.P) stated in 

the introduction as fibrations. 

THEOREM 1.1. With the above choice of cofibrations, weak equivalences and 
fibrations ^ is a model category in the sense of Quillen [6, Chapter I]. 

^f is clearly closed under direct and inverse limits. Thus axiom Mo of Quillen 
is trivially valid for fé\ Thus we have only to check axioms Mi to M-0. 
Throuughout this paper j M : M —• M © N, ôM : M 0 N —> M will denote the 
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canonical inclusion and projection respectively. Before taking up the verifi
cation of axioms Mi to M5 we state some results that we need. 

PROPOSITION 1.2. (i) A monomorphism ^ : A -+B is an i-homotopy equiva
lence if and only if there exist an infective module K and an isomorphism 
<p : A © K o^ B satisfying n = <p ojA. 

(ii) A homomorphism f : A —» B is an i-homotopy equivalence if and only if 
there exist infective modules K and J, and an isomorphism y : A © K c^ B ® J 
satisfying f = bB<pjA. 

This is Theorem 13.7 of [5]. Actually Hilton proves (i) first and uses it to 
prove (ii). 

PROPOSITION 1.3. Let /i : A —> B andf : B —> M, 6 : A —» M be such that \i is 
a monomorphism and 6 c^{f o n. Then there exists a homomorphism \p : B —> M 
satisfying \p o fi = 6 and \j/ c^.tf : B —» M. 

This is Theorem 13.6 of [5]. Actually Propositions 1.2 and 1.3 are valid 
over any ring. 

LEMMA 1.4. Given any module M over any ring Y there exists a unique maximal 
divisible submodule D of M. If C is any divisible submodule of M then C C D. 

PROPOSITION 1.5. A module M over a Dedekind domain A is infective if and 
only if M is divisible. 

This is well-known. Refer to Propositions 1.2 and 5.1 in Chapter VII of [1]. 

PROPOSITION 1.6. Let M, N be arbitrary modules over A andf : N —> M any 
homomorphism. Let D be the maximal divisible submodule of M. Let h : N © D —» M 
be defined by h(x, u) = f(x) + u for any x £ N, u Ç D. Then h : N © D —> M 
is a fibration in fâ. 

Proof. Let 6 : J —> M be any homomorphism with / injective. Then / is 
divisible and hence 6(J) is divisible. By 1.4, we have 8(J) C D. Let <p : J —» 
N © D be given by <p(y) = (0, 6{y)) for any y £ J. Then clearly h o <p = 6. 
This proves that h is a fibration. 

Proof of ML Let 

Diagram 1 

be a commutative diagram in ^ with /x a monomorphism and p a fibration. 
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Case (1). Let /x be a w.e. By (i) Proposition 1.2 there exist an injective 
module i£ and an isomorphism <p : A © K o^ B satisfying p = (p ojA. Since K 
is injective and £ a fibration there exists a y : K -^ E making Diagram 2 
below commutative. 

The map h = k<p~l where k : A © K —> £ is given by &(a, w) = g (a) + T(W) 
clearly makes Diagram 3 commutative. 

Case (2). Let p be a it'.e. By (ii) Proposition 1.2 there exist injective modules 
Kf J and an isomorphism (p:E®K—*M®J such that p = bM(pjE. Now, 
&M<pJEg = pg = fn (from Diagram 1). Writing X : A —+ J for the map ôj<pjEg 
we have <pjEg{a) = (//*(#), M a)) f° r all a £ A. Since / is injective and 
IJL : A —+ B a. monomorphism, there exists a map a : B —> J satisfying an = X. 
Define 0 : B-> M © Jhy 0(b) = (/(&), «(6)). Then ÔM0 = / . Since ôM<pjE = p 
we get 

(1) bMd — bM<pjEbE<p-ld = f - pbE<p-l6. 

However, 

(2) 6 — (fEbE(p~lB = ( ^ 1 # ® A ^ > _ 1 ) 0 — v]EbE<p~l6 = <£>(l#©/r — JEbE)<p~l6. 

Clearly, (1*©* - jsdE) (E © K) C JST. This together with (2) and (1) yields 

(3) {f-p5B<p-l$) (B) CbM<p(K). 

Since K is injective it follows that bM<p(K) is divisible and hence by 1.5 bM<p{K) 
is injective. Let v : bM<p(K) —> i f denote the inclusion. Since £ is a fibration 
there exists a map / : bM<p(K) —» £ satisfying pt = v. Define h : B —» E by 
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h(b) =t{f- pôE<p-le}(b) + bE<p-l6{b).Then 

ph(b) =pt\f- p8E<p-l6} (ft) + pôE<p-l6(b) 

= {f-p8Er16}(b)+p5s<p-1e(b), 

for pt is the inclusion of hM<p(K) in M. Hence 

(4) ph(b) = f{b) - poE<p-l0Q>) + pôE<p-*d(h) = f(b). 

Also, for any a Ç ̂ 4, 

(5) 00(a) ) = (fn(a),ap(a)) = (//i(a), \(a) = <pjEg(a). 

Hence 

{ / - pÔE^d} (M(a)) = //i(a) - pbEV~le p(a) 

= fli(a) - pbB<rl<PJHg{p>) from (5) 
= //x(a) - pôEjEg(a) 

= fp(a) - pg(a) since ôEjE = lE 

= 0 from the commutativity of Diagram 1. 

Thus 

A(/*(«)) = t{f - ^ ^ - ^ } ( / * ( a ) ) + 5^-^(M(a)) 
= 0 + ÔBV-^ivia)) 

= àE(p-l(pjEg(a) from (5) 
= &EJEg(a) = g (a). 

(4) and (6) imply that Diagram 4 below is commutative. 

Diagram 4 

This completes the proof of Mi. 

Proof of Mi. Le t / : A —» B be any map in fê. Let J9 be the maximal divisible 
submodule of B. Since D is injective j A : A -+ A ® D is an i-homotopy 
equivalence. Let p : A ® D —* F be given by p(a, u) = / (a) + u. Then £ 
is a fibration by Proposition 1.6 clearly/ = p ojA and j A is a cofibration w.e. 

Let Â be any injective module containing A as a submodule. Let p : A —> 
Â © B be given by ju(a) = (a, / (a ) ) . Then f = ôB o p, n is a, monomorphism 
and ôfî an i-homotopy equivalence. Also if a : / —» B is any homomorphism, 
j3 : 7 —» 4̂ © 5 defined by 0(w) = (0, a(w)) clearly satisfies ôB o @ = ex. This 
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shows that ôB is a fibration. In the decomposition/ = ôB o /x, ôB is a w.£. fibra-
tion and /1 a cofibration. 

This completes the proof of Af2. 

Proof of Mz. That every isomorphism is a fibration as well as a cofibration 
is trivial to see. It is equally trivial to see that composition of cofibrations 
(respectively fibrations) is a cofibration (respectively a fibration). 

Let 

be a pull-back in *$ with p a fibration. Let a : J —> A be any map with / 

injective. Since p is a fibration there exists a P : / —> £ satisfying £ o j8 = / a . 

Since Diagram 5 is a pull-back it follows that there exists a 7 : / -> JÏ (unique, 

once j8 is chosen) such that Diagram 6 below is commutative. 

Diagram 6 

Then q o 7 = a. This proves that g is a fibration. 
A push-out of 

A-
f 

-+M 

B 

in ^ is got as follows. Let L 
submodule of M © B. Let 

= {( / (a) , - M (a) G M © B\a £ i4}. L i s a 

7j : M © 5 —• 
M © 5 
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be the quotient map. Then 

Diagram 7 

where a = rj ojM and fi = jB is a push-out diagram in \ Let 

J5-

/ -*M 

h 
Diagram 8 

+7V 

be any push-out diagram in fâ. Then there exists a unique isomorphism 
6 : N —> M ® B/L making Diagram 9 commutative. 

Diagram 9 

Now suppose M is a monomorphism. To show that X is a monomorphism it 
suffices to prove that a is. Let x G M be such that a(x) = 0. But a(x) = 
T?(X, 0) and r?(x, 0) = 0 <̂> (x, 0) G L. Let a Ç i be such that (x, 0) = ( / (a) , 
— M(«))- Then /x(a) = 0. Since /x is a monomorphism, this gives a = 0. 
Hence x = / (a) = 0. This proves that a is a monomorphism. This means that 
a push-out of any cofibration is a cofibration. 

This completes the proof of M3. 
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Axiom M*>. That & satisfies axiom M5 is well-known and is actually an 
immediate consequence of the characterisation of i-homotopy equivalences 
given by Theorem 13.12 of [5]. 

In the proof of axiom M\ we will be making use of the following: 

PROPOSITION 1.7. Let 6 : J —» M be any homomorphism with J infective. Let 
h : M © / —» M be given by him, u) = m + 6{u) and let 

>M © J 

Diagram 10 

be a pull-back diagram. Then T : N —> A is an i-homotopy equivalence. 

Proof. Since every isomorphism is an i-homotopy equivalence and composi
tion of i-homotopy equivalences is an i-homotopy equivalence for proving 
proving Proposition 1.7 we can without loss of generality assume that 

N = {(m, u} a) G M © / © A\M + 6{u) = / ( a ) } ; 

Trim, u, a) = a; g(m, u, a) = (w, u). For any a G A we have clearly/(a), 0, a) 
Ç N and X : A —» N defined by A (a) = ( / (a) , 0, a) satisfies -w o A (a) = a for 
all a £ A. The composite 

A 
N^A •N 

is given by \w(m, u, a) = ( / (a ) , 0, a). Hence {1^ — A7r} (w, w, a) = 
(w — / (a ) , w, 0). But whenever (m, u, a) £ i\f we have m + 6{u) = / ( a ) . Thus 
jl^r — A7r} (m, w, a) = ( —0(#), u, 0). If a : N —•> / a n d ft : J —* N are given by 
a(w, w, a) = w, 0(w) = ( —0(w), u, 0) then clearly l v — A7r = /3a. Since J is 
injective it follows that 1N — \w c^t0. Thus T\ = 1A and w\ c^{ 1N. This 
proves that w is an i-homotopy equivalence with A as an i-homotopy inverse, 
thus completing the proof of Proposition 1.7. 

Proof of M4. Let 

Diagram 11 

be a pull-back diagram with p a w.e. fibration. Since p : E —> M is an i-homotopy 
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equivalence by (ii) Proposition 1.2 there exist injective modules K and / and 
an isomorphism <p:E®K^M®J satisfying p = ôM(pjE. Consider a = bM<P '• 
E ® K —> M. Since K is injective and p : E —» M is a fibration we see that 
there exists a map 6 : K -> E satisfying p o 0 = a o j K . Define h : E ®K —» £ 
by h(e,u) = £ + 0(«) for any (e,u) £ E ® K. Then clearly p oh = a. Let 

tf-

* 

C-
Diagram 12 

->£ 

be a pull-back diagram. From the fact that Diagrams 11 and 12 are pull-back 
diagrams we see that 

N-

WlT 

+E® K 

\ph = a 

A- +M 

Diagram 13 

is a pull-back. 
Our aim is to show that w is an z-homotopy equivalence. By Proposition 

1.7, 7T : N —> C is an i-homotopy equivalence. By axiom M$ it suffices to prove 
that ww is an i-homotopy equivalence. Clearly 

A ® J 
f® 1. 

-+M ® J 

Diagram 14 

is a pull-back. Let 

N'< 

A® J-

-+E® K 

/ e i 
-+M ® J 

Diagram 15 
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be a pull-back. From Diagrams 14 and 15 we see that 

N' -

* A * 

-+E® K 

+M 

Diagram 16 

is a pull-back. Since both Diagrams 13 and 16 are pull-backs we see that there 
exists an isomorphism y : N —» N' satisfying bAypy = wir and q'y = q. Since <p 
is an isomorphism the pull-back \p : N' —> A ® J is also an isomorphism. 
8A : A © J —» A is an i-homotopy equivalence since / is injective. Hence 
WT = bA\j/y is an i-homotopy equivalence. 

Let 

+M 

B-

Diagram 17 

r 
Y 

be a push-out diagram with /x : A —» B a w.e. cofibration (namely a mono-
morphism which is also an x-homotopy equivalence). By (i) Proposition 1.2 we 
can without loss of generality assume /x = j A : A —•» A ® K with i£ injective. 
Since 

JA\ 

Y 

/ +M 

/ e u 
Diagram 18 

\JM 

is a push-out we can assume without loss of generality that q = j M - Clearly j M 

is an z-homotopy equivalence. 
This completes the proof of Af4. 

Remark 1.8. For any i Ç ^ the map 0 —> A is clearly a cofibration and 
4̂ —> 0 a fibration. Thus all the objects in ^ are simultaneously cofibrant and 
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fibrant. It follows that the notions of left homotopy and right homotopy intro
duced by Quillen [6] coincide in this case. 

PROPOSITION 1.9. Letf, g Ç Horn (A, B). Then 

f ~l g « / ^ig <=»/ g-

Proof. From the observation at the end of Remark 1.8 it suffices to prove 
the implications / ~l g = ^ / ~ i g =» / ^ r g . Observe that in ^ for any two 
objects C, D the union C V D is the same as C © D. We will however write 
C V D itself thus conforming to the notation in [6]. L e t / ~l g. Then there 
exists a commutative diagram 

Diagram 19 

with a a w.e. (namely an z-homotopy equivalence). From Diagram 19 we get 
ado = I A = adi; hdo = f, hd\ = g. Since a is an i-homotopy equivalence it 
follows that d0l di are both i-homotopy inverses to a. In particular d0 ^ < di. 
This immediately yields h do ^ * hd\\ in other words/ ^ g. 

Let us now assume f c^t g. Then there exist an injective module / and 
maps a : A —> J, (3 : J —> B such that (3a = g — / . Denoting the map B ® J —* 
B X B carrying (6, u) of B 0 / into the elements (b, b + 0(u)) oi B X B 
by (1 + 0, 1 + 0) it is clear that 

( / ,«) 

5 

+ B XB 

Diagram 20 

is commutative. Here j 5 is an i-homotopy equivalence. This proves/ ^ r g. 
The proof of Proposition 1.9 is complete. 

2. Projective homotopy theory. The results obtained here are in a * 'certain 
sense" dual to the results obtained in § 1. However, we have to restrict our 
attention to the category of finitely generated modules over a PID. 
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Let & denote the category of finitely generated modules over a principal 
ideal domain A. Let us choose 

(a) all epimorphisms in ̂  as fibrations, 
(b) ^-homotopy equivalences as weak equivalences, and 
(c) maps q : M —> N satisfying the extension property (E.P) stated in the 

introduction as cofibrations. 

THEOREM 2.1. With the above choice of fibrations, weak equivalences and co-
fibrations J^~is a model category in the sense of Quillen. 

Axiom Mo of Quillen requires that the category under consideration be 
closed under finite projective and finite inductive limits. Clearly the category 
of finitely generated modules over a Noetherian ring (in particular over a PID) 
is closed under finite limits. Though the proofs in this section are in a certain 
sense dual to the proofs of results in § 1, the fact that we are considering finitely 
generated modules over a PID will play a special role. We therefore prefer to 
give proofs. In a way this helps in understanding the duality better. 

PROPOSITION 2.2. Let A be any ring and v : M—* N a homomorphism of 
A modules. 

(i) Suppose v : M —* N is an epimorphism. Then v is a p-homotopy equiva
lence if and only if there exist a projective module P and an isomorphism <p : M —> 
N © P satisfying v = ôN<p. 

(ii) In the general case (when v is not necessarily an epimorphism) v is a 
p-homotopy equivalence if and only if there exist projective modules P and R and 
an isomorphism <p : M © R—+N © P satisfying v = bN<pjM> Moreover any projec
tive ancestor of N could be chosen for R. 

(iii) In case M, N are finitely generated P is automatically finitely generated in 
case (i) and R (hence P) could be chosen to be finitely generated in case (ii). 

PROPOSITION 2.3. Let v : M —> N be any epimorphism and 6 : A —» N, 
f : A —» M homomorphisms satisfying 6 o^p v of. Then there exists a homo
morphism \p : A —> M satisfying 

v o ip = 6 and \p ~ . p / : A —» M. 

Propositions 2.2 and 2.3 are well-known [4] and are the duals of Propositions 
1.2 and 1.3. 

PROPOSITION 2.4. Let f : M —> N be any map in^'. Let T{M) be the tension 
submodule of M and rj : M —> M/T(M) the canonical quotient map. Then the 
map 

is a cofibration in J r . 

Proof. Let a : M —» R be any map into a finitely generated free module R. 
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Then a(T(M)) = 0. Hence a yields by passage to quotient a map 

M 
T(M) 

R. 

Define 

P-.N ® M R by /3(x, u) = â(u) for any x Ç. N,u £ M 
T(M) • T{M) 

Then it is clear that ]8 o (/, ry) = a. This proves that 

is a cofibration in &~. 

We now take up the proof of the axioms Mi to M5 for the category J r . 

Pm?/ 0/ Mx. Let 

Diagram 21 

be a commutative diagram in ^ with v an epimorphism and # a cofibration. 
Case (1). Let v be a ^-homotopy equivalence. By (iii) Proposition 2.2 there 

exist a finitely generated projective A-module P and an isomorphism <p : £ —> 
M © P such that i> = bM o p. Since A is a PID it follows that P is also free. 
Since g is a cofibration it follows that there exists a map y : B —> P such that 
Diagram 22 below is commutative. 

The map A = <p~lk where k : B —> M ® P is given by k = (/, 7) clearly 
makes Diagram 23 below commutative. 

Diagram 23 
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Case (2). Let g be a ^-homotopy equivalence. By (iii) Proposition 2.2 and 
the fact that A is a PID we see that there exist finitely generated free modules 
P and R and an isomorphism <p : A ® R —» B ® P satisfying q = ôB<pjA. 
Since R is free and v : E —» M is onto we see that there exists a map a : R —> E 
satisfying pa = fôB<pjR. Consider the map 0 : A ® R —> £ defined by 0(a, w) = 
g (a) + a(w) for all a £ ^4, w G i?. Then 0j4 = g. Also from q = ÔB<£/A we get 
that 

(7) 6jA - dç-iJBÔBJA = g- e<p-ljBq. 

But, 

(8) 6 — d<p-ljB8B<p = d<p-llB@p<p — 6<P~1JBSB<P 
= 6(p~l{lB^p — jB8B)(p. 

Clearly, ( l f l O P - jBbB) (B ® P) C P . Since <p(A) C 5 ® P we get ( 1 5 0 P -
JB&B)<P(A) C i3- Submodule of a (finitely generated) free module over a PID 
being itself (finitely generated) free we see that (1B®P — jB8B)<p(A) is a 
finitely generated free module. Since <p is an isomorphism it follows that 
F = <£>-1(1B©P ~ JBI>B)<P(A) is a finitely generated free module. Since q : A —>JB 

is a cofibration in ^ it follows that there exists a map t : B -> F such that 
Diagram 24 is commutative. 

<P 10-B®P — JB8B)<PJA 

Diagram 24 

Observe that F is a finitely generated free submodule of A ® R satisfying 
ip(F) = ( l f i 0 P - jBôB)<p(A) C. P . Since bB{P) = 0, it follows that 

(9) 8B{F) = 0. 

Define 

(10) h : B -> £ by *(&) = 0/(6) + B<p-ljB{b). 

Then 

(11) ? o A(6) = vOt(b) + v6<p-ljB(b). 

By the very definition of 6 we have 

vd(a, u) — vg{a) + va(u) for all (a, u) £ A ® R 

= faifl) + fàB<PJR(u) 

= f8B<pjA{a) +fôB<pjR(u) 

= /W(a ,0 ) + / Ô ^ ( 0 , M ) 

= fôB<p(a, u). 
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Hence vB = fôB<p. Substituting f8B<p for vB in (11) we get 

Mb) =ÏÏB<p{t{b)) + fhBw~ljB(b). 

Since t{b) £ F by (9) we have 8B<p(t(b)) = 0. Hence 

(12) vh(b) = fÔB<p<p-*jB(b) = fôBjB(b) = /(&). 

Also, feg(a) = Bt(q{a)) + B<p-\jB(q(a)). But ^ = (p-l(lmP - jBôB)<pjA from 
Diagram 24. Hence 

0/g = d^iU^p — jBôB)<pjA 

= ejA - e<p~ljBbB<pjA 

= g - Bip~ljBq by (7). 

Therefore 

hq(a) = g(a>) ~ B<p-ljBq(a) + B<p~ljB(q(a)) = g(a). 

(12) and (13) together imply that Diagram 25 below is commutative. 

This completes the proof of Mi. 

Proof of M2. Let / : M -> TV be any map in J T Let rj : M -> M/T(M) be 
the canonical quotient map where T(M) is the torsion submodule of M. 
By Proposition 2.4, ( / , rj)M —> N © M/T(M) is a cofibration. Since M 
is finitely generated and A a PID it follows that M/T(M) is free. 
Hence ôN : N © M/T(M) ->iV is a ^-homotopy equivalence. Denoting 
(/, 77) : M —» iV © M/T(M) by ç we have ô^g = / , g a cofibration and ô^ a 
7£j.e. fibration. 

Let 

be an epimorphism with i? a finitely generated free module. Let v : M ® R—+N 
be given by v(x, u) = /(x) + e(u). Then y is an epimorphism and / = vjM. 
If a : ilf —> F is any map in ^ the map @ : M ® R—> F given by /3 = aôM 

clearly satisfies fijM = a. Hence j M is a cofibration. Clearly jM : M ® R is a. 
£-homotopy equivalence. 

This completes the proof of Mi. 
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Proof of Mz. Clearly any isomorphism is an epimorphism and the composi
tion of epimorphisms is an epimorphism. Let 

Diagram 26 

be a pull-back with v an epimorphism. We can identify A with 

{(e,n) eE ®N\v(e) = / («)} , 

g : A —> E and X : A —> N with the maps g(e, n) = e, \(e, n) = n. For any 
n Ç N there exists an e Ç E such that *>(e) = /(w). Then (e, n) £ A and 
X(e, ft) = ft. This proves that X : A —> iV is an epimorphism. Hence the pull-
back of any fibration in ̂  is a fibration. 

It is trivial to see that any is omorphismis a cofibration and that the compo
sition of cofibrations is a cofibration in J^~. Let 

B >D 

Diagram 27 

be a push-out diagram with q a cofibration. Let 

be any map with F a. finitely generated free module. Since q is a cofibration 
there exists a map ff : B —> F satisfying fiq = af : A —> F. Since Diagram 27 
is a push-out there exists a map y : D —* F (unique once /3 is chosen) such that 
Diagram 28 is commutative. 

/ 

Diagram 28 
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Then you = a. This proves that u is a cofibration. The proof of M% is now 
complete. 

Axiom M$. This is again well-known and is an immediate consequence of 

the characterisation of ^-homotopy equivalences. 
For the proof of axiom MA we need the following. 

PROPOSITION 2.5. Let A be any ring and 0 : B —» P any map with P projective. 
Let h = ( l s , 0) : B-+B © P and 

B ® P-

Diagram 29 

be a push-out diagram. Then w : N —> C be a p-homotopy equivalence. 

Proof. Without loss of generality we can assume 

B © P © N 
C ~ L 

where L = {(6, 0(6), -/(&)) € 5 © P 0 iV|6 G £} and w = r) ojN, k = 
*? ojB 'SP where 

T> ^ 7 , ^ AT B ® P ® N 

is the canonical quotient map. Consider the map a:B®P@N—>N given 
by a(b, u, n) = n + /(&). For any (6, 6(b), - /(6)) £ L we have a(6, 6(b), 
—f(b)) = —f(b) + f(b) = 0. Hence a passes down to quotient to induce 
X : C—> TV satisfying a = X o 77. We have \ ow(n) = X o 77 ojN(n) = a o jN(n) 
= a(0, 0, w) = w. Hence the composite 

is 1^. Consider the map 7 : £ © P © iV—>P given by 7 : (6, w, n) = u — 6(b). 
For any (6, 6(b), - / ( & ) ) € L we have 7(6, 0(6), - / ( 6 ) ) = 0(6) - 0(6) = 0. 
Hence 7 induces a map /x : C —» P satisfying 7 = JHOJJ. 

Let x G C and (b,u, n) £ B © P © iV be such that 77 (6, w, w) = x. We have 

(14) rijPn(x) = vjpnri(b, u, n) = yjPy(b, u, n) = r)jP(u - 0(6)) 

= 77(0, u - 0(6), 0). 
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Also 
( l c — w\) = X — w\(x) = rj(b} U, n) — 7̂ X77 (è, U, fl) 

= y(b, u, n) - ÏIJNCLQ), U, n) = r}(b, u, n) - r)jN(n +/(&)) 

= v(b, u, n) - 77(0, 0, n +/(&)) = v(b, u, - / (&)) . 

However (b, u, - /(&)) - (0, u - 6(b), 0) = (6, 6(b), -}{b) G L. Hence 
ry(6, w, —fib)) = y(0, u — 6(b), 0). This shows that VJP^M = (lc — wX)(x) 
and x £ C is arbitrary. Hence ( l c — 7£>X) = rçjpM- This means Diagram 30 
below is commutative. 

C 
lc — w\' 

Diagram 30 

Since P is projective we see that l c — w\ ~ p 0. 

Thus w\ c^p lc and hv - lN. This shows that w : N -> C is a ^-homotopy 
equivalence. 

Pr^o/ 0/ M4. Let 

Diagram 31 

be a pull-back diagram with v a ?e>.£ fibration. Then v is an epimorphism which 
is also a ^-homotopy equivalence. By (i) Proposition 2.2 we can assume 
E = M © P with P finitely generated projective and v = hM : M © P —> M. 
Since 

f © lp 
^ © P — —+M © P 

J- >M 

Diagram 32 

is a pull-back it follows that C —> A can be replaced by 

A © phA 
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which is clearly a ^-homotopy equivalence. Let 

A - y M 

Diagram 33 

be a push-out with q a w.e. cofibration. Since q : A —> B is a ^-homotopy 
equivalence by (iii) Proposition 2.2 there exist finitely generated projective 
modules P and R and an isomorphism <p : A © R —> B © P satisfying 
q = 8B(pjA. Since A is a PID both P and P are free. Let a = <£/A. Since P is a 
finitely generated free module and q : A —> 5 is a cofibration we see that there 
exists a map 0 : B —•> P satisfying 6 o q = ôpa. Let & = ( l s , 0) : P © P. We 
have a = #/*A = (5B^7A, <WjA) = (#, <5Pa:) and hq = (ç, 0g) = (q, ôpa). Hence 
Ag = a. Let 

P- / + N 

B © P - ->£> 

Diagram 34 

be a push-out diagram. Since Diagrams33 and 34 are push-outs it follows that 

g - •M 

a = hq 

B © P -

7TW 

- * £ > 

Diagram 35 

is a push-out. 
Our aim is to show that u : M —» iV is a ^-homotopy equivalence. By Propo

sition 2.5, 7T : iV —> Z> is a p-homotopy equivalence. By axiom M5 it suffices to 
show that iru is a p-homotopy equivalence. 

Clearly 

->M 

Y 

i4 © P -
g e i/ 

-*M © P 

Diagram 36 
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is a push-out diagram. Let 

A © R * R >M © R 

B 0 P- •+D' 

Diagram 37 

be a push-out. I t follows tha t Diagram 38 below is a push-out . 

A-
g 

« = <pjA 

B © P - *' Y 

Diagram 38 

Comparison of Diagrams 35 and 38 yields an isomorphism 

satisfying iru — y\pjM- Since p is an isomorphism the push-out ip is also an 
isomorphism. j M : M 0 R is a £>-homotopy equivalence ( P being free) and 
7 : D ' —» D is an isomorphism. Hence 7rw is a £>-homotopy equivalence. 

This completes the proof of M 4 for J^~. 

Remark 2.6. I t is easily seen tha t every object inJ^~ is simultaneously fibrant 
and cofibrant. Hence the notions of left homotopy and right homotopy of 
Quillen agree i n ^ as well. 

PROPOSITION 2.7. Let f, g G Horn (A,B). Thenf 'lg <=*/ ^v g^f g-

Proof. We first observe tha t when / cmp g there exists a finitely generated 
projective module P and maps a : A —+ P, fi : P —+ B satisfying fia = g — f. 
This is because a projective ancestor of B could be chosen to be finitely 
generated. 

The proof of Proposition 2.7 is got from the proof of Proposit ion 1.9 by 
replacing / by a finitely generated projective module P and " i -homotopy" 
by "^ -homotopy" . 

3. N u m e r i c a l i n v a r i a n t s i n in jec t ive h o m o t o p y t h e o r y . This section is 
devoted to the s tudy of the numerical invariants defined in [7] for the model 
category ^ of § 1. From Proposition 1.9 it follows t h a t for any A, B in & 
the set 7i-(A} B) = [A, B] of homotopy classes of maps in the sense of Quillen 
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[6] is the same as the set ïï(A, B) of injective homotopy classes of maps as 
introduced by Hilton [5]. It is easily seen that the contractible objects ac
cording to [7, Definition 2.16] in ^ are precisely the injective modules. 

Remarks. 3.1. A module M dominates N if and only if there exist maps 
/ : N —> M, g : M —» N such that gf o^ilN. H N is dominated by an injective 
module (a contractible object) J then N itself is contractible and hence 
injective. 

3.2. Let Â be any injective module containing A and let 

M : A V A = A ® A ->A © À 

be given by /z(x, y) = (x + y, y). Then dA o n(x, y) = x + y = V(x, y). 
Clearly ju is a monomorphism and dA an i-homotopy equivalence. Thus V 
factors into 

A V A-^A ®A^A 

with /x a coftbration and ôA a w.e. It follows that A ® Â, along with the maps 
H : A © A —> A ® Â, ôA : A 0^4—>^4,isa cylinder object of A in the sense 
of [6, Chapter I]. Hence a candidate for Z,A in the sense of Quillen is the cofibre 
of the map \x :A ®A-*A © Â which is the quotient module A © Â/n(A ®A). 
Let 7] : A ® Â -» (A ® Â)/p(A ® A) be the quotient map. It is clear that r? 
carries Â onto (A ® Â)/n(A © A) and that Ker {vJÂ) = Â C\ n(A ® A) = 
0 © A. Hence 

(A ® Â)/v(A ® A) ~Â/A. 

But Â/A is precisely the definition of 2^4 in Hilton's set up of t-homotopy 
theory [4]. Since A is a Dedekind domain it follows from Proposition 1.5 that 
Â/A is injective. 

3.3. Let D be the maximal divisible submodule of A. Let p : A © D ® D —> 
^ 4 © y l = ^ 4 X ^ 4 b e given by p(a, x, y) = (a + x, a + y). Then p jA(a) = 
p(a, 0, 0) = (a, a) = A (a). Then p j A = A. D ® D is the maximal divisible 
submodule of A ® A. Hence by Proposition 1.6 the map p : A ® D ® D —> 
A ® A is a fibration. Also D ® D being injective we see that j A : 4̂ —» 
A ® D ® D is an i-homotopy equivalence. It follows that A © D ® D along 
with the maps j A : A -> A ® D ® D,p : A ® D ® D -* A X A yields a path 
object of A in the sense of [6, Chapter I]. Hence a candidate for SI (A) is the 
fibre (namely the kernel) of the map p : A ® D ® D —> A ® A. Now, 
p(a, x, y) = 0 if and only i fa + x = 0 = a + ^<=»x= — a = y. The map 
\ : D—> A ® D ® D given by X(x) = ( —x, x, x) clearly maps Z> isomorphical-
ly onto the kernel of p. Hence a candidate for il (A) is D, and Z) is injective. 
Since Q(A) is determined unique up to homotopy type (which in this case 
happens to be i-homotopy type) it follows that every candidate for il (A) is 
injective. 

Thus we see that for every A in ^ both ^LA and il (A) are contractible. 
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Let W-Cat A, Ind Cat A, Cocat A, Nil A and Conil A be the invariant 
associated to A as in [7]. The invariant W-C&t A is the Lusternik-Schnirelmann 
category of A defined along the methods of G. W. Whitehead. The main 
result of this section can be stated as follows: 

THEOREM 3.4. (1) W-Cat M = 0 = Ind Cat M = Cocat M whenever M is 
an injective A -module. 

(2) W-Cat M = 1, Ind Cat M = oo = Cocat M whenever M is a A-module 
which is not injective. 

(3) Nil M = 0 = Conil M for all M in <g. 

In the proof of this theorem we will be using the following. 

LEMMA 3.5. Let M Ç ^ ' . If Ind Cat M < oo (respectively Cocat M < oo ) 
then M is injective and hence Ind Cat M = 0 (respectively Cocat M = 0). 

Proof. For any integer k ^ 0 let (Sk) and (Tk) be the statements given below: 

(Sk): Ind Cat M ^ k =$ M is injective. 

(r*): Cocat M ^ & => i f is injective. 

We will prove both these statements by induction k. That will establish 
Lemma 3.5. 

Clearly the statement (So) is true by the very definition. Let now k ^ 1 
and assume (Si) is true for all / ^ k — 1. By definition there exists a cofibra-

/ 
tion A —> Y with Ind Cat Y ^ k — I and the cofibre C of / dominating Af. 
By (S;t_i) we see that Y is injective. The cofibre of / is a quotient of Y and 
hence C is injective. Since C dominates M by 3.1 we see that Af is injective. 

The statement (To) is also true by the very definition. Let k ^ 1 and assume 
(Ti) be true for all / ^ k — 1. Since Cocat M ^ &, there exists a fibration 

with Cocat E ^ £ — 1 and the fiber C ol p dominating M. By (7V_i) we see 
that £ is injective. Hence £ (E) is divisible and hence injective. Let j : £ (E) —* B 
denote the inclusion of p(E) in B. Since p : E —» B is a fibration by the very 
definition of a fibration there exists a map g : p(E) —• £ such that 

E 

/>(£) >B 

Diagram 39 

is commutative. This means, for the map p : E—>p(E) we have a splitting 
E —> p(E). In other words 

0 -* Ker p -» E ->p(E) -> 0 
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is a split exact sequence. Hence C = Ker p is a direct summand of the injective 
module E and hence C itself is injective. Since M is dominated by 3.1 we see 
that M is injective. This completes the proof of Lemma 3.5. 

Proof of Theorem 3.4. (1) is immediate from the definition of these invariants 
and the fact that the contractible objects of ^ are precisely the injective 
modules. 

(2) For any M € ^ we have M V M = M ® M = M X M.ltis therefore 
clear that the diagonal map A : M —• M X M factors through M V M. 
Hence W-Cat M g 1. Also I^-Cat M = 0 implies that lM is homotopic to 
zero; in other words 1M ~i0. This means M is a direct summand of an 
injective module and hence injective. This proves that J^-Cat M = 1 for 
any module M which is not injective. 

That Ind Cat M = oo = Cocat M whenever M is not injective is an im
mediate consequence of Lemma 3.5. 

(3) By definition 

Nil M = Sup nil [EA, M] and Conil M = Sup nil [M, QA]. 

But we have seen already that in *$ both 2 A and QA are contractible for all A. 
Hence [2A, M] = 0 = [M,QA] for all A 6 &. This proves (3). 

4. Numerical invariants in projective homotopy theory. This section 
deals with the model category J^. Thus the base ring A is a PID, and unless 
otherwise stated, by a module we mean a finitely generated module. The set 
[Aj B] for any A, B in Ĵ ~ agrees with the set of projective homotopy classes of 
A in B. An object A of &~ is contractible if and only if A is free. 

Remarks. 4.1. A module A dominates another module B if and only if there 
exist maps 

B++A, A-^B such that gf ~v 1B. 

If B is dominated by a free module then B itself is free. 
4.2. Let N G ^ and e : F —> TV an epimorphism with F free. Define v : N © 

F-* N © N = N X N b y ?(*, w) = (x, x + e(u)) for all x £ Nyu Ç F. Then 
y is clearly an epimorphism and vjN(x) = v{x, 0) = (x, x) = A(x). Also 
j N : N —> N ® F is a ^-homotopy equivalence. Thus A factors as 

NHN®F^NXN 
with 7V a w.e. and v a fibration. It follows that N ® F along with the maps 

NHN® F, V:N © F-+NXN 

yields a path object for N in Quillen's set up [6, Chapter I]. Hence a candidate 
for SIN in Quillen's set up is the kernel of v : N © F -» iV X N. Now (x, w) Ç 

https://doi.org/10.4153/CJM-1975-098-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-098-2


958 K. VARADARAJAN 

Ker v <=> (x, x + e(u)) = (0, 0) «=» x = 0, e(u) = 0. I t follows t h a t X : Ker 
e —> Ker v defined by \{u) = (0, u) is an isomorphism of Ker e onto Ker v. 
But Ker e is actually a candidate for ŒiV in Hil ton 's set up of ^ -homotopy 
theory [4]. Since a submodule of a free module over a P I D is free we see t h a t 
UN is free. Since UN is determined unique up to ^ -homotopy type it follows 
tha t any candidate for UN in J^~ is projective and hence free. 

4.3. Let N Ç ̂ a n d T(N) denote the torsion submodule of N. T h e n N/T(N) 
= F is a free finitely generated module. Let rj \ N —> F denote the canonical 
quot ient map. Let q:N®N—>F®F®Nbe defined by g(x, y) = (77 (x), 
v(y),x + y). Then clearly 8N o q : N © N -> iV is the same as V : TV © N->N 
which carries (x, y) to x + y. The map ôN : F © F © TV —> N is a />-
homotopy equivalence, since F © F is free. If R is any free module and 
a : N ® N -+R any map it is clear t ha t a(T(N) © T(N)) = 0. T h u s a in
duces a map a : T7 © ^ —> R satisfying â o (77 © 77) = a. If p : F © T7 © N^R 
is given b y fi(u, v, x) = a(u, v) for all (u,v) £ F ® F then clearly B o q = a. 
Thus ç : i V © i V — > F © F © i V i s a cofibration. I t follows t h a t F © F © TV 
together with the maps q:N®N->F@F@N} 8N : F ® F ® N -> N 
yields a cylinder object for N in j F in the sense of Quillen [6]. A candidate for 
IN is the quotient F ® F © iV/g(iV © iV). 

Consider the map X : F © F © TV —» T7given by X(zi, v, x) = u + z; — 7?(x). 
We have X o g(x, y) = \(rj(x), rj(y), x + y) = 77 (x) + rj(y) — r)(x -\- y) = 0. 
Hence q(N ® N) C Ker X. Suppose (w, v, x) Ç Ker X. Then u + z> = 77 (x). 
Choose a 2; G N satisfying 77(2) = u. Then v = 77 (x) — w = 77 (x) — 77(2) = 
77(x — 2). The element (z, x — z) £ N ® N has the proper ty q(z, x — z) = 
(77(2), 77(x — z), x) = (w, *;, x ) . Hence Ker X C q(N © N). T h u s Ker X = 
q(N © iV). Moreover for any u £ F we have X(w, 0, 0) = w. Hence X : F © 
F ® N —> F is onto. I t follows tha t X induces an isomorphism 

g(iV ©TV) * 

T h u s F is a candidate for UN. Since 2iV is determined unique up to homotopy 
type (which agrees with ^ -homotopy type here) we see t ha t any 27V is con-
tractible. 

T h e main result of this section is the following analogue of Theorem 3.4. 

T H E O R E M 4.4. Let M Ç ^ ~ , Then 

(1) TV-Cat M = 0 = Ind Ca t M = Cocat M whenever M is free; 
(2) TV-Cat M = 1, Ind Cat M = 00 = Cocat i f whenever M is not free; 
(3) Nil M = 0 = Conil M / o r a// I f ^ . 

The following is the analogue of Lemma 3.5. 

L E M M A 4.5. Let M G J T If Ind Ca t M < 00 (respectively Cocat M < 00 ) 
tfften M is free and hence Ind Ca t M = 0 (respectively Cocat i f = 0 ) . 
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Proof. For any integer k ^ 0 let (Sk
f) and (TV) be the statements given 

below. 

(Sk
f): In dCat M S k => M is free 

(77): Cocat AT ̂  & => M is free. 

Both these statements will be proved by induction on k. 
Clearly the statement (So') is true by the very definition of Inductive 

Category. Let ^ 1 and (S/) be true for 1 ^ k - 1. If Ind Cat M S k there 
exists a cofibration 

AXY 

in Ĵ ~ with Ind Cat Y S k — 1 and the cofibre C of g dominating M. By 
(Sfc-iO we see that F is free. Let T(A) denote the torsion submodule of A. 
Since A Ç ^ it follows that F = A/T(A) is free. Let 77 : 4 -> F be the 
canonical quotient map. 

Since Fis free it follows that q(T(A)) = 0. Hence q induces a map q : F —» Y 
satisfying q = q o rj. The cofibre Cof q is the quotient Y/q(A). Since rj : A —> F 
is onto we get g(^4) = ^(i7). Hence C = Y/q(F). 

Now q : A —> Y is a. cofibration in Ĵ ~. Since F is free it follows that there 

exists a map F -•* F such that 13 o q = 77. The map 

satisfies (1F — fiq) o 77 = 77 — ̂ 77 = 77 — @q = rj — 77 = 0. Since 77 : A —> F is 
an epimorphism we get 1F — fiq. Hence the exact sequence 

0->F-^> F - > F / g ( F ) - > 0 

splits. Thus C = Y/q(F) is a direct summand of F. Hence C is projective. 
A being a PID it is free. Since C dominates M by 4.1 we see that M itself is 
free. This proves (5 / ) . 

Clearly (To') is true by the very definition of Cocat. Let ^ ^ 1 and let 
(T/) be true for all / ^ k — 1. Suppose Cocat M ^ k. Then there exists a 
fibration 

with Cocat E ^ k — 1 and the fibre H oi v dominating M. From (Tk-i) we 
see that £ is free. H is a submodule of the finitely generated free module E 
over A (a PID). Hence H is a finitely generated free module. Since H domi
nates i f by 4.1 we see that M is free. This proves (TV). 

Proof of Theorem 4.4. The proof is exactly similar to the proof of Theorem 
3.4. In place of Lemma 3.5 we have only to use Lemma 4.5. 
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