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A Proof of the Uniform Convergence of the Fourier Series,
with Notes on the Differentiation of the Series.

By GEORGE A. GIBSON, M.A.

1. My only justification for presenting this paper to the Society
lies in the fact that, so far as I am aware, the uniform convergence
of the Fourier Series is nowhere alluded to, and far less discussed,
in any English textbook; while the precautions that are necessary
in differentiating the series are hardly ever mentioned even in
treatises which give a very thorough treatment of its convergence.
I have confined myself almost exclusively to what may be called
ordinary functions, as a complete discussion of what has been done
in recent years for functions that lie outside the category of " ordi-
nary " would make the paper much too long. For information as to
the original authorities, I would refer to the paper which I com-
municated to the Society last session On the History of the Fourier
Series. It is sufficient to say here that the proof I now give is
simply an adaptation of that of Heine {Kugelfunctionen, Bd. I.
57-64, Bd. II. 346-353) and of that of Neumann (Uber die nacli
Kreis . . . Functionen fortsch. Entwickelungen, 26-52).

2. The chief instrument employed in the investigation is The
Second Theorem of Mean Value. A sketch of a proof of this
theorem will be found in a paper by me in Vol. VI., pp. 40-42 of
the Society's Proceedings; but for a satisfactory treatment of this
and other theorems of the Integral Calculus I would refer to Cath-
cart's translation of Harnack's Introduction to the Calculus. The
theorem, so fan as we are now concerned with it, may be stated
thus:—If, for all values of x between a and b, f(x) and </>(*) are
finite integrable functions of x and if f(x) is either not increasing or
not decreasing {i.e., has no turning points) in the interval (a, b),
then

\"f(x)<f>(x)dx-/(a) f* 4>(x)dx +/(b) \" <j>(x)clx ars^n
J a J a J t

s

=/(a) j * <$>{x)dx + {/(b)- /(«)}J" 4>{x)dx.
(1)
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Tt is to be understood that /(a) =f(a + 0) = L/ (a + c) and

f(b) ~f(b - 0) = L J\b - e) where a < b and e is positive.
t = 0

3. When a single-valued function f(x) is said to be given
arbitrarily in the interval (a, b), then to each value of x corresponds
one value of f(x) in such a manner that the value of the function
for one value of the argument in no way conditions its value for
another value of the argument. An arbitrary function of this kind
is, however, too general for representation by a Fourier (or any
other) series, and for the present paper we subject the function to
the following restrictions, though some of them may be removed
and a Fourier representation of the function still exist. The argu-
ment x is, merely for convenience, restricted to the interval

(i.) f(x) is to be finite, having an upper limit G to its numerical
values; (ii.) it is to be continuous except for a finite number of
values of x for which it may be discontinuous, but only so that

J\x + 0) and J\x - 0) are each definite, though unequal; (iii.) it is
to have a finite number of maxima and minima—i.e., a finite
number of turning points. Such a function is necessarily integrable.

4. Let S,B+1 = £A0 + 2(Arcosra;
r—l

where Ar = — J[a)cosrada, B, = — I f(a)sinrada . (2)
ir I T I

•> -* J -ir

Hence S*+1« — [ ' /(a){l + 2cosr(a -x)}<la
"•J-7T T'1

= 1 /(a) ^ + ; » da

(3)

ir — x
1 f-i

= - J 0 ^ + 2»)
v + x

1
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It has to be shown that, excluding vat-Hen of x in the neighbour-
hood * of the points of discontinuity, though not these points them-
selves, a finite value of n can be found, which is the same for every
x, such that the difference between S,,,+] and l{J\x + Q)+f(x-0)}
shall be as small as we please, except that when x= ±ir the value
i f ^ - i r + 0)+/(T-0)} is to be taken instead of ±{f(x + O)
+/ (« -0 )} . Iif(7r-0)*f(-ir + 0), the points x = + -K are to be
reckoned points of discontinuity. In other words, the convergence
of the series has to be shown to be in general uniform.

The demonstration is divided into two parts, in the first of which
it is shown, inter alia, that the coefficients An, Bn have zero for
their limit.

5. Consider the integral I <j!>(a)sinma</a where m is any positive
J a

number, integral or fractional, and a, b and <£(<x) may contain a
parameter x {e.g., <£(<x) might be <£(a;+2a)) and <f>(a) is subject to
the same restrictions as J\x) in § 3.

Let a,, a.2, . . . ap be the turning points or points of discon-
tinuity of <f>(a), p in number and let G be an upper limit to the
numerical values of </>(«). Divide the interval (a, b) into the j>+\
partial intervals (a, a^ . . . . (<*„ ar+1) . . . . (ap, b) and take the
integral for the interval {an a^ to which theorem (1) is applicable.

Or+l /•$ rar+l
<t>(a)sinmatia = <WrtP) sinmada + <Wrtr+i) sinmada : ar^£^a,.+l

r J«, J t

cosmar - cosm£ £

i b <j>(a)ainmada < " ? + ' in absolute value. (4)

Now m can be chosen so large that 4(p+ l)G/n» shall be as small
as we please, and this independently of the parameter x; in other
words, the integral converges uniformly to zero with 1/w.

* See §6 for a definition of " neighbourhood of a point."
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r
In the same way it may be shown that </)(a)cos»»arfa con-

J a

verges uniformly to zero with \jm.
These results show that the coefficients of the series, given by

(2), are ultimately zero. I t should be observed, however, that
An, B,, are in general only of the order 1/w ; it is only in excep-
tional cases, as will be seen later, that they are of the order 1/w2.
Hence the series is usually semi-convergent, while the series obtained
by differentiating a Fourier series term by term will usually not be
convergent.

The presence of the factor p +1 in (4) should be noted as an
indication of the necessity for the restrictions (ii.) and (iii.) of §3.

We may also deduce another result that will be useful immedi-
ately. If we suppose Q > P > 0 , then

f Q • rV • r" • 9 9
sina , sina , f sina , •* z • u

da - <<a= l_da <~^ + 7=- numerical] v.
J a J t t J a " VJ

0 0 J v

But we know that the value of the first integral for Q = co is ir/2.
Hence if P > 0

J s i n a 7 7 r - j ' i i 1 i / ~ ,

da< — + -TJ I n absolute value. (o)
a - "

o

6. By means of equations (4) and (5) we can tind limits for each
of the integrals in (3).

Let an arbitrarily small but finite distance 5 be measured off on
each side of the points for which the function is discontinuous, thus
forming what we may call the neighbourhood of the points ; the
points + 7r are also to be dealt with in the same way. A point is
thus in the neighbourhood of c if its abscissa lies between c - 8 and
c + S. Then suppose in the first place, - ir + 8 ̂ x ^TT - 8 and let x
have any value in this range except those in the neighbourhood of the
points of discontinuity, though it may have exactly a value for
which the function is discontinuous.

We shall now show that, given an arbitrarily small quantity 2e,
we can choose n so large, but finite, that S2n+j shall differ from
k{f(x + ®)''rfi.x~®)} kv a quantity that is less than 2^/TT and that
such n is the same for every x.
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Consider f *^x + 2a) " T 1 " da where m = 2
J o sina

although the particular form of m is of no moment; it may be
either integral or fractional. Put \js(x, a) = (a/sina)/(as + 2a), so
that \j/(x, 0) is equal to f(x + 0). Take r, an arbitrarily small but
finite quantity, such that 0 < -q 5 (jr - x)/2. Then

7T — X TT — X

f~T"7 sin(2«+l)a _ f T~* r + 2o ~ W rfa = ^ a
J o si lid J (

sinma

To the last of these integrals equation (4) is applicable if we denote
by G the greatest value of >p(x, a) and then write G/;; in place of
G of (4), since G/7 will be the greatest value of ^(.r, <*)/<*. Hence

I
T—X

sinraa G'
Mx, a) </«.< numerically (7)
" ' ' a mi) J x '

where G' is a finite constant independent of x, though depending
on p.

Again, no matter what the value of x, we can choose rj so small
but finite that \p(x, a) shall have no turning point for any value
of a between 0 and ?/; hence we can apply equation (1) to the first
integral on the right of (6). Thus

V V

f +(x, «)!™rfa = #e, 0) f i^^rfa

+ {ip(x, t]) — ^{x, 0)}

and therefore

where Os^Sij.
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Further, we can choose ?; so small, but finite, that t//(r, •>/) - \f>(x, 0)
shall for every x be less than any arbitrarily small quantity t,

while f !^rf/3> f ™HEdpif*!L. Hence by (5) we may
J«f P J o P 2

now write (8)

^(.r, a) tfa</(.r + 0)1 — + ) + f'
J a \ 2 m?/ / 2

^ H ' (9)+
mi) 2

since ^a; + 0)<G.

By means of (7) and (9) we can now write (6) thus

Jo
a) S i n ( 2 M + 1 ^ a < ^ + 0) + QL

sina 2 wir;

(2r4 + l)i; 2

where G" is a finite constant independent of x.
The theorem to be proved is now obvious. Suppose t given, we

first choose t so that Trt/2 is less than e/2 ; we then choose ?/ to
satisfy this value of e'; n is then chosen so large that G"/(2?i+ 1)77
shall also be less than e/2. The right-hand side of (10) is then less

than JLf(x +0) + t.
2

The same considerations apply to the second integral in (3) so

that we have Sln+1<^{J{x + 0)+/{x-0)} + _ ! and the larger of

the two values of n thus determined is the one required. In other
words, L 8to,+i=*${/(,x + Q)+flx-0)} and the convergence is

uniform.

7. Suppose now, in the second place, that x is in the neighbour-
hood of a point of discontinuity. From equations (0) and (7) it is
evident that the integrals whose limits are 0, (ir - x)/2 and G, •>)
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respectively converge to the same value, as m becomes infinite, even
if T) at tfie same time converge to zero, provided only that mrj at the
same time becomes infinite ; this would be the case if, e.g., •7=1/ Jm.
This result is at first sight a little startling, though it is by no
means without parallel in the theory of limiting values. In the
case now under consideration it will contribute greatly to clearness
to draw the curve y =J\x + 2o) with a for abscissa, giving to x
values that lie within the neighbourhood of a point of discontinuity.
Let c be a value for which fix) is discontinuous, and consider
values of x lying between c-8 and c - 0. Suppose x — c-8; then
when a = 0, y —J\c - 5), As a increases from 0 to 8/2, y changes
from f(c - 8) to f(c - 0). In forming the integrals (6) for the values
c — S of x, the greatest value one would give to r] would be 8/2, in
order that the interval (0, 17) should not contain the point of dis-
continuity, though of course -q might require to be smaller in order
to satisfy the conditions respecting «' and e, in the equations corre-
sponding to (8), (9), (10). Again, if c - 8<x<c, then JJ would not
be so large as 8/2, and as x approaches indefinitely near to c, ij
becomes indefinitely small, and therefore m must be taken in-
definitely great in order that mrj may also be indefinitely great.
The convergence thus becomes infinitely slow for the part of the
series depending on j\x + 2a) and we can assign no finite value for
m such that for every x in the neighbourhood of c the value of l/mrf
shall become arbitrarily small. In other words, while by equations (6)
and (7) in virtue of the observation made at the beginning of this
paragraph we can for any given x find a value of in which will
make the series converge, we must when we take a new value of x
usually take a new value of m, and TO becomes ultimately indefi-
nitely great: that is, the series does not converge uniformly in the
neighbourhood of the point of discontinuity. These considerations
do not, however, apply if x = c ; the convergence of each of the
integrals is simply of the nature of the cases of § 6. Even in the
case of non-uniform convergence, it is only one of the integrals in
(3) that falls under the class considered in this paragraph. I t is
of course known from general principles that when a series repre-
sents a discontinuous function the convergence is non-uniform in
the neighbourhood of the points of discontinuity ; but I have thought
it better to deduce the result in this case from the analysis used to
establish the general theorem.

4 Vol. 12
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8. The values + ir have still to be considered. For these the
reasoning may be gone over afresh; but it is simpler to suppose
f(x) continued for values of x greater than TT and less than - ir,
so that / ( * + 2w) -f(x) and therefore J\TT + 0) =/( - IT + 0) and
/[ — w — 0) =J\TT — 0). If the origin from which x is measured be
then shifted, these points become ordinary points or points of dis-
continuity like those previously discussed; hence in the neigh-
bourhood of + IT, if /{T) =f=y( - n-) the convergence is not
uniform, and if x= ±ir the value to which S.2)l+] converges is

-7r + 0) + / ( i " -0)} which of course reduces to f(ir) if

9. There is one point in the proof just given that perhaps
deserves notice. Is it quite clear that the neighbourhood of points
at which the function is a maximum or a minimum is not of the
same character as that of a point of discontinuity ? Must not r/ for
such points diminish and m increase beyond all limit as x
approaches the value for which the function has a turning point?
Whatever difficulty may seem to exist is at once removed by the
observation of Heine that if f(c) be a maximum value, then,
between the two adjacent minima that include f(c), f(x) can be
put in the form <j>(x) + ^(•t')

where 4>(x) =/(x), \p(x) = 0 for x -5 c

and 4>{x)=f(c), *Kx)=Ax)-Ac) f o r *- c -
Evidently <£/(#) is not decreasing and xjy(x) not increasing, so that
to each the Mean Value Theorem is applicable. Turning points are
thus of the same nature as ordinary points. Heine's treatment of
the Fourier series based on the representation of a function as the
sum of functions which are either not increasing or not decreasing
is very instructive.

10. Equations (6) and (7) establish Riemann's Theorem for
functions of the kind we are considering, namely, that the value of
the series at any point depends only on the behaviour of the function
in the neighbourhood of the point. In establishing this result

r*
and the convergence generally, the integral r/,(a) . sinroa . da/u,
first thoroughly discussed by Dirichlet, plays a leading part and has
been appropriately called Dirichlet8 Integral by Kronecker.
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11. The restrictions imposed on f(x), generally called Dirichlet's
conditions,* still leave a great amount of arbitrariness to i t ; when
we seek to remove restrictions the investigation begins to get rather
complicated. Some of them however can be removed, in part at
least, by considerations founded simply on the nature of an integral.
Suppose, for instance, that for x = c, f(x) is infinite but (x - c)r/[x)
finite and definite when x = c, r being positive and less than unity.
J\x) would still be integrable over the whole range, and excluding
the neighbourhood of c the series would still converge for all other
values as before. Functions which oscillate indefinitely often in the
neighbourhood of a finite number of points can be dealt with in the
same way. But cases like these are of comparatively little practical
importance. Instances of trigonometric series in which the function
is infinite for particular values of the argument are common enough
in analysis. (See, e.g., Chrystal's Algebra II., p. 310, ex. 13, 14.)

12. It is now obvious that the Fourier series can be integrated
and therefore that the expansion is unique, when the function is
supposed to possess the properties laid down in § 3 for the whole
interval. The resulting series will not however, in general, be a
Fourier series since the term ^Ao will introduce the term ^A^r.
The case is different when we consider the differentiation of the
series. We suppose the differential coefficient f'(x) to have the
properties required by § 3.

The first theorem to be given is this :—f(x) will only be obtained
by differentiating the series for f{x) term by term if f(x) be
throughout continuous and besides f(tr) =/( - jr).

Suppose
f (x) •= \ Ao + 2 A,,cosna; -f 2 Bnsinna; (11)

fix) = |C0 + 2C,,cos}w; + 2DMsinn». (12)

If we calculate the values of C,(, Dn we find

so that f(x) is got by differentiating the series (11).

* It is to be understood that the addition " that f(x) may become infinite" is
not included, so that these are Dirichlet's conditions in the narrower acceptation of
the phrase.
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Suppose however that J\x) is continuous but J(T) =¥/[ — T) J
then get

c.= -A -

so that f(x) even in this simple case is not got by differentiating
(11) as it stands.

Denoting {/(•*) -/[ -ir)} by C and expanding £Cx into the
COSWJT

Fourier series - C2 sinna; we can write (11) in the form

f(x) = 1AO + - ^ C x + 2A,,cosrca; + ^(B,, + °™™W\smnx. (13)

The differentiation of this series gives the proper value for f{x)-
In (11) the value of B,, is - Ceosmr/nw + Cn/w, so that the series
obtained by differentiating (11) will usually be oscillating, or diver-
gent. The procedure adopted in using the form (13) may be com-
pared with that of representing the product series for sina; in the form

( x \ -x

13. Suppose now that f(x) is discontinuous for x = c and put
/ ( c + 0) - / (c - 0) = D. Take a function <f>(x) =/(«) + ~D6(x) where

6(x) = 1 from x= -a- to x = e - 0

and 6(x) = 0 from x = c + 0 to x = ir.

The function <j>(x) is continuous in the neighbourhood of c, since
<f>(c - 0) =J{c + 0) = 4>(c + 0). Moreover <j>(x) has the same differen-
tial coefficient as J\x). The Fourier expansion for <j>(x) is, using
AB, B,, to denote the cofficients in (11),

Dsinwc

, D(COSH7T - COS»tc)l . . . . .
-!-—i L\smnx. (14))

Before we can differentiate we must take account of the values for
± x. Denoting J[TT) -/(- TT) by D' we have

</>(*•) - <̂ ( - v) = D' - D
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and the corresponding equation to (11) will be

<f>(x) = i { Ao + _ L _ D\+ _ ( D - D)x + i - A,, + }
" I ir J 2TT \ niz j

v f T> DCOSMC D'cosrar") . , , - ,
+ i { B , , - - + — -sinnx-. (lo)

If we differentiate (15) term by term we get the value of the series
(12), as may be readily proved by going through the necessary
differentiations and integrations.

In the same way if f{x) were also discontinuous for x = c1( we
should put <j>(x) =f(x) + D8(x) + D,^i(.r) where D and 8(x) are as
before, D, =/(ct + 0) - f[c, - 0) and

8x(x) = 1 from x = - tr to x = r, - 0
6x{x) = 0 from x = c, + 0 to x = ir.

The equation corresponding to (15) would then be formed and so on
for any number of points of discontinuity.

The procedure of this paragrapli was suggested by the method
of Heine referred to in § 9, although Heine does not discuss the
differentiation of the series except in regard to the cases mentioned
in §12.

14. I t may perhaps be of interest to give some examples. In
dealing with series which represent a function that is given only for
a portion of the interval ( - ir, TT), it is important to bear in mind
that we may have an infinite number of series which for that portion
coincide with the function, each series being determined by the way
in which we suppose the function continued beyond the given
portion so as to be defined for the complete interval ( - IT, 7r). The
most frequently occurring cases are those for which (i.) J\ — a.1) =/(x)
and (ii.) /{ - x) = ~/(x), giving rise to cosine and to sine series
respectively.

Take the two series

e°* = — v _ ( l - e cos«.7r)sinna; (16)

<A* _ 1 2a » ea"cosMir - 1 ,, „.
e" + — v COS«.T. (17)

7T O' + W
«7T 7T

If we differentiate (17) term by term we get (16), but we do not get
(17) by differentiating (16); on the other hand, we should get (17)
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by integrating (16) term by term, but we should not, immediately
at least, get (16) by integrating (17) term by term. The reason for
the difference in behaviour is obvious after what has been said.
Equation (16) is deduced on the understanding that in the interval
(0, TT) J\X) = eax and in the interval ( - T, 0) f(x) = - e—* ; we
have therefore f(w) -J{ - ir) equal to 2eaT = D' while / ( + 0) = 1

J\-0)=-\ and .•. / ( + 0) - . / ( -0) = 2 = D. Equation (16) must
therefore be put in the form (15), namely

, , v , eaT-l 2 eajrcosmr - 1 a2 .
4>{x) = 1 + x + — v . s inw

IT TT n a1 + ri*

and this equation when differentiated yields (17).
Equation (17), on the other hand, is obtained on the under-

standing that in the interval (0, IT) /(*) = eax and in the interval
( - *, 0) f{x) = *—, so that /(*•) =/(-«•) and / ( + 0) =/( - 0). By
§ 12 it follows that f\x) is obtained by differentiating (17) as it
stands.

Suppose again we have

co&r = — v i Lnsinnx. (18)
TT , IV - 1

In this case f(x) = cosa; in the interval (0, IT) but /(*) = - cosx in
interval ( - ir, 0). Hence

Hence the form corresponding to (15) is

TT 77 7 2«(4»ta - 1)

from which we obtain

2 4 " co&2nxsina; = — — — v .
IT TT j 4 » l 2 — 1

These examples are sufficient to show the care necessary in
differentiating infinite series.

I t is perhaps not out of place to add that the most natural
method of passing to Fourier's Integral Formulae is to start from
the equations of §§ 5 and G, as is done by Neumann.
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