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0. Introduction. Following the notation in Faudree and Schelp [3], we write G —»
(F, H) to mean that every 2-coloring of E(G), the edge set of G, contains a green (the
first color) F or a red (the second color) H. Then the Ramsey number r(F, H) of two
graphs F and H with no isolated vertices has been defined as the minimum p such that
Kp -* (F, H).

For bipartite graphs Bx and B2 without isolated vertices we define the bipartite
Ramsey set f}(B1,B2) as the set of pairs (m,n),m^n, such that Kmn —* (B1; B2) and
neither Km_ln nor Xm>n_! have this property. Thus the set j3(Bl5 B2) can be interpreted as
a variation of the Ramsey number r(Bi, B2). Instead of 2-colorings of the complete graph
we now consider 2-colorings of the complete bipartite graph.

The two bipartite Ramsey numbers b(Bu B2) (the minimum p with Kpp —» (Bu B2)),
and b'(Bu B2) (the minimum p = m + n such that Km_n —» (Bl5 B2)) were defined already
in [5]. They are easily expressed in terms of the bipartite Ramsey set /3(Bl5 B2) which we
now write in the convenient form:

/3(B1,B2) = {(mh, nh);mh<mh+1, mh«nh} for lsshssfc. (1)

Then b(Bu B2) = nk, the smallest nh, and b'(B1,B2) = min(mh + nh). Similar bipartite
Ramsey problems are considered in Beineke and Schwenk [1], Faudree and Schelp [3],
and Irving [7] while general results on Ramsey theory are given in the book by Bollobas
[2].

It is trivial that /3(B1; B2) = /3(B2, Bt). From our Algorithmic Lemma it is easily
deduced that /3(B1; B2) is a non-empty, finite set for all possible pairs of bipartite graphs
Bu B2. Faudree and Schelp [3] have already determined &(BX, B2) for paths:

P(P.,P,) = {dis] + Bt]-l,B(s + O]-e)}, (2)
where e = 0 for s odd, s^t-1,

for s even, t odd, s=£t+l,
and for s = t odd,

and e = 1 otherwise.
Our purposes include the determination of the bipartite Ramsey sets 13(5!, B2) for all

pairs of bipartite graphs of order at most five, for all pairs of stars, and for the path-star
pairs (Ps, Klt) with s « 5 . Notation and terminology not specifically mentioned will follow
that in [4].

Glasgow Math. J. 22 (1981) 31-41.
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1. Algorithmic Lemma. If the bipartite graph B has p = p(B) vertices, let Z(B) be the
set of natural numbers z such that 8 is a subgraph of K2p_2 and z^ ip . We use the
notation

Z(B) = {z1; z 2 , . . . , zL} with Zl < z2 < ... < zL. (3)

Then for connected B we have L = l. By j3'=/3'(Bi, B2)
 w e denote the set of all pairs

(a, b), a^b, such that Kab -* (Bu B2). Thus of course /3(B1; B2) is a subset of 0'. The
independent sets of a and b vertices of Ka>b are denoted by Vx and V2. If these vertices
are labelled by i, l=sj«a, and j , l=£/=sb, then we describe edges of Kab only by (i, j)
with i e Vj and j e V2.

From the definitions we deduce

(a, b)e|3'4>(a + i, b + /")e(3' for i , j>0, (4)

/3' for i,j^0, (5)

', and ( a , b - l ) ^ p ' . (6)

For l=si=sfc — l we have by definition (mi+1 —1, «i+1)^/3'. This together with (1)
(mj + 1-l&mi) and (5) yields (m^ nj+1) ^ /3'. Using (5) again and assuming n^^Hf, we
conclude that (mf, itj) ̂  |3', and this contradiction to the definition proves that

. . . >nk. (7)

It is easy to see that

= {(z,p(B)-z);z£Z(B)}. (8)

We now derive the bipartite Ramsey set of two copies of K2 with any bipartite
graph B.

THEOREM 1. If B is a bipartite graph with p vertices, and Z*(B) = {z; zeZ(B).
- D , z- l^Z(B), z + l£Z(B)}, then

U{(z+ l , p - 2 + l); z€Z*(B)}. (9)

Proof. We write j3(2JC2, B) = /3 and P'(2K2, B) = /3' during this proof, and first show
that

(x ,y)ep '«BcK x _ 1 , y and B c ^ r , (10)

( ^ ) In the special 2-colorings of Kxy, where all edges of a Kxl (respectively, of a
Kly) are colored green, and all others red, there is no green 2K2, and thus a red B exists
with B cK x _ l y (respectively, B cKxy_j).

(4=) In every 2-coloring of Kxy either a green 2K2 exists, or the green edges form a
star. In the last case Kx_ly or Kxy_t exist with red edges only, so that a red B is
guaranteed.

Now (x, y) e |3 with x =£ y implies B <= i^_ljy by (6) and (10). Then a number z e Z(B)
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exists with z s £ x - l , p-z=£y, that is, x = z + l+f, y = p - z + g, /, g ^ 0. From (10) we find
(z + 1, p - z + l)e/3', and this together with (6) shows gs=2, so as g = l, / s* l must be
impossible. Thus the two following conditions are necessary for (x, y)e{3:

x = z + l, y = p - z + l, (11)

x = z + l+f, y = P~z, 0s£/=£p-2z-l. (12)

For (11) we observe that (z + 1, p - z + l)e/3 ' as above, and use (6) and (10) to get

and the equivalences

and

The latter follows since z = 5 ( p - l ) would give BcK z + l p _ z + 1 .
If in (1-2) z + ZL, we use B c K ^ ^ , , , ^ , B c KZi+i,p_z,'_x, and (10) to get (zi+1, p - z,) e

/3'. From B^XZi+i_1,p_z,_1 and (10), it follows that ( z i + 1 - l , p -z f )£ /3 ' and (z i + 1 , p -
Zj — 1) ̂  /3'. We then note that (6) enables us to conclude (zi+1, p - zf) e (3, and (x, y) ̂  |3 for
/ ^ zi+1 - zf — 1 in (12). It remains to consider z = zL in (12). Here we use B c 1<CP_ZI__1IP_ZL

(as z « | ( p - l ) in (12)), and B ^ K P _ Z L _ 1 > P _ Z L _ 1 to deduce, as before, from (10) and (6) that
(x, y) 6 /3 holds only for x = y = p - zL, zL ̂ Kp ~ !)• D

In the following we denote by fo;(B) = bj the maximum of all line independence
numbers of the complements of B with regard to Kz.p_z.. We now find the bipartite
Ramsey set of the 3-point path with any bipartite graph.

THEOREM 2. / / B is a bipartite graph'with p vertices, and Z(B) = {Zj eZ(B);
bj(B)<bi(B) for 1 =s/« i -1}, then

B) = {(z,,p-fti(B));zleZ(B)}. (13)

Proof. Again it is convenient to write /3 and 0' for /3(P3, B) and /3'(P3, B). We first
determine the set /3' by showing that

(x, y) e /3' O zf e Z(B) exists with x 3= zf, y s= p - bf (B). (14)

If the edges (1,1), (2, 2),..., (x, x) of Kxy are colored green and all others red,
then no green P3 and thus a red B exists in Kxy. The subgraph Kz,,p-Z, of Kxy with the
vertices of this red B contains at most bt of the x independent green edges. Then z{

vertices either belong to Vj (or to V2) and at least p - zf - bt (or z; - bt) of the vertices in
V2 are among the vertices x + 1 , x + 2 , . . . , y, that is, y - x 2= p - z{ - bt (or y - x > zf - b;).
These inequalities yield y2=p-bj if x^z f (or x^p -Z j^Z j ) .

(<=) Because of (4) it suffices to show (zj; p-b^e /3' for ZieZ(B). In any 2-coloring
of KZj-p_bi we either find a green P3, or at least p - bt - zf vertices in V2 are incident only
with red edges. A subgraph KZi p_z. of Kz._p_b|, in which these p - bf - zf vertices are among
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the p-Zf vertices, contains at most bt green edges, which are independent. Thus the
complement of these green edges with regard to KZiP_Zi contains a red B, and (14) is
proved.

Now (14) always guarantees (z{, p — b^efi'. Also from (14) we deduce
(z j -1 , p - b i ) ^ 0 ' and (zf, p - b e - l ) ^ / 3 ' O b , <bf for l=s/<i . Then (6) completes the
proof of Theorem 2. •

The following lemma describes algorithmic steps for the general determination of
3(Bi, B2). We start with mt from (a). For hs=l, we then may use (b), (c), and (d)
cyclically to find for mh the corresponding nh by (b), to ask whether we have finished
using (c), and, otherwise, to find the next value mh+1 by means of (d).

ALGORITHMIC LEMMA, (a) mx = Zi(B1) + z1{B2)-l;
(b) (mh, y)e/3'(Bi, B2), and x^mh exists with (x, y-1)£&{BU B2)3>y = nh;
(c) (nh-l,nh-l)^p'oh = k;
(d) (x,nh-l)4p'(BuB2), and y ^ n h - l exists with (x + l,y)ep'(B1,B2)^>

x + 1 = mh+i, if h<k.

Proof, (a) If in Kxy all edges which are incident with z1(B1)-1 vertices of Vj (and all
edges in case of x<zl(B1)-l) are colored green and all others red, then for x —
(z1(B1)-l)=£z1(B2)-l neither a green B t nor a red B2 can occur, and hence m t >

For any 2-coloring of Kxy with x = z1(B1) + z1(B2)-l , and y =
l + 2xmaxi=12{p(Bi)-z1(Bi)-l} we consider the (x, y)-matrix M with elements Of, = 1 if
the edge (i,/') is green, and au =0 otherwise. Then in M at least one of the 2X different
columns occurs at least maxj=12{p(Bj)-z1(Bi)} times. This column contains z^B^
entries 1, or z1(B2) entries 0. Hence M must contain a (z^B^, p(Bj) —21(B1))-submatrix
only with entries 1, or a {zx{B2), p(B2) - z1(B2))-submatrix only with entries 0. Thus j ^ ,
contains a green Bx or a red B2, and m1^z1(B1) + z1(B2)-l is proved.

(b) If y > nh then (mh, y -1 ) e ^', while if y < nh then (mh, y) ^ /3', and either case
yields a contradiction.

(c) For h < k we deduce from (mh+1, nh+1) e /3' and (4) that (nh — 1, nh -1 ) e /3', as (1)
and (7) yield m h + 1 ^ n h + 1 ^ n h - l . The assumption (nk — l, n k - l ) e | 3 ' then implies the
existence of nh with n h ^ n k - l which contradicts (7).

(d) For x + l>m h + 1 , from (mh+1, nh+i)e|3' by (4) and (7) we get (mh+1, n h - l )e j3 ' ,
and then (4) gives the contradiction (x, nh-l)e(i'. If now (mh+1, nh-l)e(i' is assumed,
then by (4), there exist m;, n; with rrtj ̂  mh+1 - 1 and Mj ̂  nh - 1 , that is, by (1) and (7) the
contradiction i^h and i^h + 1, respectively, follows. Hence (mh+1 - 1 , nh — 1)^ 0' which
yields for x + l<m h + 1 by (5) the contradiction (x + 1, y)f£/3'. Thus only x + l = mh+1 is
possible. •

We are now able to utilize the Algorithmic Lemma to verify easily that the bipartite
Ramsey set of a pair of stars is a singleton ordered couple.

THEOREM 3. p(K1.s,Ku) = {(l,s + t-\)}. (15)

https://doi.org/10.1017/S0017089500004444 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004444


GENERALIZED RAMSEY THEORY FOR GRAPHS XII 35

Proof. At first m1 = 1 follows from (a) of the Lemma. In any 2-coloring of K1 >S+I_i
the one vertex of V1 is incident either with s green or t red edges, and hence
(l ,s + t-l)ep'(K1 - I ,K1, t) . If in Ks+t_2>s+t_2 the edges (i,i+j), l«i=£s + r - 2 , 0=s/=s
s - 2 , i + j (mod s + t-2), are colored green and all others red, then no green Kls and no
red JKJ,, can exist, that is, (s + t-2, s + t-2)^ j3'(Kls, Ku). For s +1&3, this together with
(b) and (c) of the Lemma proves Theorem 3, and for s = t = 1 we use (8). •

We now apply the Algorithmic Lemma further in order to determine the bipartite
Ramsey set of a small path Ps, s^5, and any star Klt. This result will be useful in the next
section on bipartite Rarnsey sets for small graphs.

THEOREM 4. Let ts=3, A = 2, and let fh+1 be the smallest integer with

l)], and /aW = B0 + 3)]. (16)

For s = 4 and s = 5 then k(4,t) = d(t); k(5,t) = d(t) if t is even and r>4; fc(5,4) = 3;
fc(5, t) = d(t) - 1 if t is odd; and

(3(PS, Ku) = {(mh, nh); 1 =£ h =£k(s, t), mfc(5>0 = t if t is even,

mh = fh otherwise, n^s^-i = 6, nh = t + [(t - l)/(mh -1)] otherwise}. (17)

Proof. We use c = [(t-l)/(a-l)], 2=£as=f. In K^.+e-j the edges (i, (i-l)c+;) with
l ^ j ^ a - 1 , l ^ / ^ c , and i = a, l^j^t-l-(a-2)c are colored green, and all others
red. Then every vertex is incident with at most (-1 red edges, and neither a red Klt nor a
green P4 can occur, that is,

(a,t + [(t-l)l(a-l)]-l)^P'(Ps,Ku), 2^a^t, 4«s. (18)

In any 2-coloring of Ka ,+c either we find a red Ku, or every vertex in Vx is incident
with at least c + 1 green edges. Because of a(c + l)>c + t at least one vertex in V2 is
incident with two green edges. As c + 1^2, and c + l3=3 for a=srj(t + l)], there exist a
green P4, and a green P5, respectively, and hence

- D/(a -1)]) 6 j8'(P., X^,), 2 ^ a ̂  {r](t + ̂  ' 15

In a similar way we get

(3,6)e0'(P5,Ki,4)- (20)

Any 2-coloring of KX6 either contains a red K1A, or every vertex of Vt is incident with at
least 3 green edges, and at least one vertex of V2 with 2 green edges, and thus a green Ps

occurs.
We now consider Kt+lt+1, t odd, and Kt_11+1, ( even. For l s s i ^ ^ r + l), and

l=si:s=i(t-2), respectively, the edges (2i-l,2i-l), (2 i - l ,2 i ) , (2i ,2i- l) , (2i, 2i), and
for K,_lt+1 in addition ( t - 1 , ( - / ) , 0^j^2, are colored green and all others red. Thus
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there is no green P5 and no red Klt, and therefore

(odd

reven.

(21)

(22)

Next we suppose for a 2-coloring of Kut+1, t even, that there exist neither a green Ps

nor a red Ku. Then every vertex in Vt is incident with at least two green edges, and every
vertex in V2 with at least one green edge, and as maximal connected subgraphs the only
possibilities are /C2>2 or Klr with r ^ 2 vertices in V2. If there are g copies of green iC22,
and KUrt, K, r 2 , . . . , K, rh denote the green stars, then we have t = b + 2g and t + l =
2g + L=st>''i vertices. Together with r f ^ 2 we obtain 6 « 1 . Since b = 2g-t is even we get
fc = 0, and this implies t = 2 g - l , which contradicts t even; hence

l)ep'(P5,Ku), teven. (23)

We now apply the Algorithmic Lemma to deduce 0(PS, Ku) for s = 4, 5. From (a) we
see that m, = 2 = / v Then from (b) we obtain nh = t + [ ( t - l ) / (m h - l ) ] if for mfc(5,0 = t we
use (23) and (21), and if for mh=fh with hf fc(5, 4 ) - 1 we use h = mh in (19) and (18).
For mfc(S-4)_, =/2 = 3 we use (20), (22) with a = 3, and (b) to get n^s,^-! = 6.

For s = 4, or s = 5, f even, t>4 , we get nd = t + l, and for s = 5, ( = 4, we find
"d+i = »3 = ' + 1 = 5. By substituting a = t in (18) and using (c), it follows that k(4,t) =
d{t),k(5,t) = d(t), t even, t>4, and k(5,4) = d + 1 = 3. If s = 5, f odd, then nd_1 = f + 2,
and we obtain fc(5, f) = d(O~l. ' °dd, from (21) and (c).

In the cases s = 4, h<d((), and s = 5, h < d ( ( ) - l , we consider a = / h + 1 - l in (18)
together with [(f-l)/(/h + 1-2)] = [ ( t - l ) / ( / h - l ) ] from (16), so as a =/h + 1 in (19) together
with (16), to conclude mh+1 = /h+1 using part (d) of the Lemma. For s = 5, t even, t>4,
the case h = d(t)-l yields nd_1 = t + 2, and from (22), (23), and (d) we obtain mh+1 =
md = mk(s,o = t. For s = 5, f = 4, there remain two cases. If h = 1, then fij = 7, and a = 2 in
(18), (20)| and (d) show m2 = /2 = 3. If h = 2, then n2 = 6, and (22), (23), and (d) imply
m3 = t = 4. D

2K. K 2 , 2 K 1 , 3

P 3 U K 2 K1 B15 "1,4 10 2,3"

Figure 1. The small bipartite graphs.

2,3
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2. Bipartite Ramsey sets for small graphs. From the list of all graphs of order p =£ 6
in [4], we show in Fig. 1 those bipartite graphs which have p =£ 5 vertices and no isolates.
We call these twelve graphs the small bipartite graphs and list symbolic names for all but
the tenth one which is then denoted by B10. (It can also be written as K1 + Kl + Ki + K2

but that is too long a symbol.)

THEOREM 5. For all pairs (B^Bj) of small bipartite graphs Bt and B,- from Fig. 1 the
bipartite Ramsey sets (3(^,5,) are gathered in Table 1.

K2

P3

2K2

P3UK2

B i o

K2.3

K2

(1,1)

p 3

(1,2)

(1,3)

TABLE 1. (3(1

2K2

(2,2)

(2,2)

(3,3)

P4

(2,2)

(2,3)

(3,3)

(3,3)

3i? J3y) FOR ALL SMALL BIPARTITE GRAPHS.

*2.2

(2,2)

(2,4)

(3, 3)"

(3,4)

(3,7)

(5,5)

K,.3

(1,3)

(1,4)

(2,4)

(3,3)

(2,5)

(3,4)

(2,6)

(3,5)

(1,5)

P3UK2

(2,3)

(2,3)

(3,3)

(3,3)

(3,4)

(2,5)

(3,4)

(3,3)

Ps

(2,3)

(2,3)

(3,3)

(3,4)

(3,4)

(2,5)

(3,4)

(3,5)

Kl,4

(1,4)

(1,5)

(2,5)

(4,4)

(2,7)

(3,5)

(2,8)
(3,7)
(5,6)

(1,6)

(2,6)

(3,5)

(2,7)
(3,6)
(4,5)

(1,7)

B i o

(2,3)

(2,4)

(3,3)

,3,4,

(3,5)

•(2,5)

(3,4)

(3,5)

(2,7)

(3,6)

(3,5)

K2,3-e

(2,3)

(2,4)

(3,3)

(3,4)

(3,7)

(5,5)

(2,6)

(3,5)

(3,4)

(3,5)

(2,8)
(3,7)
(5,6)

(3,5)

(3,7)

(5,5)

K2.3

(2,3)

(2,5)

(3,3)

(3,7)

(4,5)

(3,10)

(4,8)

(2,7)

(4,6)

(3,5)

(3,7)

(4,5)

(2,9)

(3,8)

(3,7)

(4,6)

(3,10)

(4,8)

(3,13)
(5,11)
(7,9)
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Proof. The first three rows of Table 1 are immediate consequences of (8), (13), and
(9). Then /3(P,,P,), 4«s , t « 5 , p(KltS, Ku), 3=ss, t «4 , and (3(PS,KU), 4=£s«5, 3 « r «
4, can be derived from (2), (15), and (17), respectively. For the remaining pairs (Bf, B,)
(excluding (K2,3, K2 3) for the moment) we first prove the validity of (x, y) e /3'(Bj, B,) for all
pairs of Table 1. By the g- degree and r- degree of a vertex v we will mean the number of
green and red edges incident with v in a 2-coloring of Kxy.

For B = P3UK2 we prove (3, 3)e|3'(B, P4), (3, 3) e/3'(B, B), (3,4)eJ3'(B, K2,3-e),
(3, 5)e /3'(B, K2>3), (2, 6) and (3, 5)e /3'(B, Klj4): All green edges in Kxy without a green
P3UK2 are either part of one star, or of one K22, or they all are independent, and in any
case a red B, occurs.

For t = 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 5 in this sequence we
obtain (2, 5) e fi\Kt 3, B10), (2, 7) and (3, 6) e p'(K1>4, B10), (3,4) e p'(K2.3 - e, P4), (2, 6) e
fl'^wXw-e). (2,7)ep'(^i.3,«2.3), (2,8), (3,7), and (5, 6)ej3'(Klj4,K2,3-c), (2,9)
and (3,8)e(3'(K1A,K2,3), (3, 5)e/3'(B10, K2,3-e), (3,7) and (4, 6)e/3'(B10, K2.3), (3,7)
and (5, 5) efl'(K2.3-«>£„-«)» (3> lO)e/3'(K23-e, .K2,3), if we check for 0'(B,,B,) that
^x.t (f^y) with a green star i£1-t contains either a green Bf (if one vertex of Vj has
g-degree 3=2 for B^K^,), or a red B,, and that iCx-v with r-degree 3=y-r + l for all
vertices of Vt contains a red By.

(3,4)e P'(K22, P5): In K34 two vertices of Vx with sum of g-degrees 3=6 guarantee a
green K22. If otherwise the sum of r-degrees for all pairs of vertices in Ŷ  is 3= 3, then
either one vertex of Vj has r-degree 2=3, and another r-degree ^ 2 , so that a red P5

exists, or two vertices of V1 have r-degree 2, and the third has r-degree 1 or 2, and
always a green K2 2 or a red P5 must exist.

(3,5)e (3'(P5, K2,3-e): If in K35 two vertices of Vj have g-degree ^ 3 , then a green
P5 exists. Otherwise two vertices in Vx have r-degree ^ 3 . If all vertices in Vt have
r-degree s=3, or two vertices have the sum of their r-degrees >7, then a red K23-e
exists. If otherwise two vertices of Vt have r-degree 3, and the third =5 2, then either a
green P5 or a red K23 — e exists.

(3,7) and (4, 5)e'fi'(P5, K2_3): If all vertices of V2 in KX7 or K45 have g-degree « 1 ,
then there are at least 14 or 15 red edges, and two vertices of Vt have the sum of their
r-degrees 5= 10 or 5= 8, respectively, and thus a red K2>3 exists. Otherwise V2 contains a
vertex v with g-degree 3=2. If g-degree 3=2 for two vertices w1; w2 of green edges (wf, u),
then either a green P5 exists, or both have g-degree 2, and are adjacent by green edges to
the same vertex of V2{i= v), and thus a red K23 exists. Otherwise vv1; for instance, has
g-degree 1, and either a red K23 exists, or w2 has g-degree 3= 5 or 3= 3, respectively. If no
green P5 exists, then at least 4 or 2 vertices j^v of V2 with green edges (w2, /) have
r-degree 2 or 3, respectively, and a red K23 occurs.

(4, 8)e j3'(K2,3-e, K23): If in K48 three vertices of Vx have r-degree 2*5, then a red
K23 exists. Otherwise, there are two vertices in Vx with g-degree 3=4. If no green K 2 3 - e
exists, then the remaining two vertices of Vt have r-degree 3=6, and we get a red K23.

For the pairs still missing in Table 1 (excluding {K2 3, K2 3)) we use the fact that
(x, y) e /3'(Bi; Bs) implies (x, y) e |3'(Ba, Bb) if Ba c B; and Bb a B).

In a second step we collect in Table 2 certain pairs (x, y) with (x, y)^ |3'(Bj, B,). From
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2 13 2-14 2-15

Figure 2. Bipartite graphs with green edges used for Table 2.

Figures 2.JV, 1 =£N=£ 15, (where only green edges are reproduced) we can deduce the pairs
(x, y)N of Table 2. From Table 1 follow (3, 3) £ P'(P4, KU3) and (2, 6)^ /3'(P4, KrA). As
(x, y) £ p'(Bh Bj) implies (x, y) £ p'(Ba, Bb) if Be <= Ba and B, c Bb, all other pairs of Table
2 are checked easily.

By use of the Algorithmic Lemma we now can determine the sets I3(BI, B,) of
Table 1.

The only remaining case, fi(K2,3, K^3), is a consequence of a result in Irving [7]. Here
sets Cs„ s =s t, are considered, which contain all pairs (a, b), such that every 2-colored Kab

has a monochromatic Kst with the s and ( vertices chosen from the a and b vertices,
respectively, and such that 2-colorings of Ka_lb and Kab_j exist without a monochromatic
Ks,. From this we deduce

P(K^ KJ = {(a, b);a^b, (a, b) or (b, a) e Q( , (a - i, b-j)
and (b-i,a- j) £ Q,t for i,j^O,i+j» 1}.

Now C2,3 = {(3,13), (5,11), (7, 9), (15,7), (21, 5)} is proved in [7], and we obtain
/3(K2,3, K.2,3) = {(3,13), (5,11), (7,9)}, which completes the proof of Theorem 5. •

As the conjecture in [7] that K1317 -* (K33, K3<3) was recently proved in [6], we obtain
from [7] and [6] the set

C3.3 = {(5,41), (7,29), (9,23), (13,17), (17,13), (23,9), (29, 7), (41, 5)},

https://doi.org/10.1017/S0017089500004444 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004444


40 FRANK HARARY, HEIKO HARBORTH AND INGRID MENGERSEN

TABLE 2. PAIRS (X, y)4 j3'(J3;, B,).

p 4

^ 2 . 2

K,.3

P3UK2

Ps

B 1 0

K2,3-e

^ 2 . 2

(3, 3)6

(4,6)13

(2, 5)3

(4,4)12

(3, 3)6

K,.3

(3,3)

(2,5)

(4,4)

(2,4),

(3,3)6

P3UK2

(3,3)

(2,4)

(3,3)

Ps

(3,3)

(3, 3)7

(2,6)

(2, 7)4

(4,6),,
(5,5)14

(2, 5)2

(4,4)1O

(5,5)14

Bio

(3,3)

(4,4)

(2,4)

(4,4)12

(3,3)

(4,4),,

(2,6)

(5,5)

(4,4)

K 2 3 - e

(3,3)

(4,6)

(2,5)

(4,4)

(3,3)

(4,4)

(2,7)
(4,6)
(5,5)

(4,4)

(4,6)

*2 .3

(3, 6)8

(4,4)10

(3, 9)9

(7.7)1S

(3, 6)8

(5,5)14

(4,4)10

(3,6)

(4,4)

(2, 8)5

(7,7)1S

(3,6)

(5,5)

(3,9)

(7,7)

and in addition to Table 1 we conclude with the bipartite Ramsey set of the most famous
nonplanar bipartite graph.

THEOREM 6. /3(JC3>3, * „ ) = {(5,41), (7, 29), (9, 23), (13, 17)}. •
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