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theory of gravity. It shows that combining these ideas with techniques of the

theory of partial differential equations can elucidate the stability of the basic

solutions of the theory. Introducing the differential geometric, spinorial and PDE

background required to gain a deep understanding of conformal methods, this

text provides an accessible account of key results in mathematical relativity over

the last 30 years, including the stability of de Sitter and Minkowski spacetimes.

For graduate students and researchers, this self-contained account includes

useful visual models to help the reader grasp abstract concepts and a list of

further reading, making this the perfect reference companion on the topic.
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(Let no one untrained in geometry enter)

– Epigram at the Academy of Plato
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Preface

This book discusses an approach to the study of global properties of solutions

to the equations of general relativity, the Einstein field equations, in which the

notion of conformal transformation plays a central role. The use of conformal

transformations in differential geometry dates back, at least, to the work of

Hermann Weyl in the 1920s.1 Their application to global questions in general

relativity, as presented in this book, stems from the seminal work of Roger

Penrose in the 1960s in which the close connection between the global causal

structure of the solutions to the equations of general relativity and conformal

geometry was established.2 Penrose’s key insights are that the close relation

between the propagation of the gravitational field and the structure of light

cones which holds locally in a spacetime is also preserved in the case of large

scales and that the asymptotic behaviour of the gravitational field can be

conveniently analysed in terms of conformal extensions of the spacetime. In

the following decade Penrose’s ideas were polished, extended and absorbed

into the mainstream research of general relativity by a considerable number of

researchers3 – finally leading to the influential notion of asymptotic simplicity.

The subject reached its maturity when this formal theory was combined

with the methods of the theory of partial differential equations (PDEs). This

breakthrough is mainly due to the work of Helmut Friedrich in the early 1980s,

who – through the conformal Einstein field equations4 – showed that ideas of

conformal geometry can be used to establish the existence of large classes of

solutions to the Einstein field equations satisfying Penrose’s notion of asymptotic

simplicity. As a result of this work it is now clear that Penrose’s original insights

hold for large classes of spacetimes and not only for special explicitly known

solutions.

This book develops the theory of the conformal Einstein field equations from

the ground up and discusses their applications to the study of asymptotically

simple spacetimes. Special attention is paid to results concerning the existence

and stability of de Sitter-like spacetimes, the semiglobal existence and stability

of Minkowski-like spacetimes using hyperboloidal Cauchy problems and the

1 See Weyl (1968).
2 See Penrose (1963, 1964).
3 See e.g. Hawking and Ellis (1973); Geroch (1976).
4 See Friedrich (1981a,b, 1983).
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xvi Preface

construction of anti-de Sitter-like spacetimes from initial boundary value prob-

lems. These results belong to the canon of modern mathematical relativity. In

addition to their mathematical interest, they are of great physical relevance as

they express, among other things, the internal consistency of general relativity

and provide an approach for the global evaluation of spacetimes by means of

numerical methods.

Why a book on the subject? The applications of conformal methods in general

relativity constitute a mature subject with a number of core results which will

withstand the pass of time. Still, it provides a number of challenging open

questions whose resolution will strengthen its connections with other research

strands in general relativity. This book aims at making the subject accessible to

physicists and mathematicians alike who want to make use of conformal methods

to analyse the global structure and properties of spacetimes. Hopefully, this book

will provide an alternative to the use of original references while learning the

subject or doing research.

Anyone who wants to engage with the subject of this book faces a number

of challenges. To begin with, one has a vast literature spreading over more

than 50 years. As it is to be expected from a living subject, the perspectives

change through time, the importance of certain problems rise and wane and

it is sometimes hard to differentiate the fundamental from the subsidiary. The

combination of results from various references is often hindered by changing

notation and conflicting conventions. Moreover, to appreciate and understand the

results of the theory one requires a considerable amount of background material:

conformal geometry, spinors, PDE theory, causal theory, etc. These methods are

an essential part of the toolkit of a modern mathematical relativist. This book

endeavours to bring together in a single volume all the required background

material in a concise and coherent manner.

As a cautionary note, it should be mentioned what this book is not intended

to be. This book is not an introductory book to general relativity. A certain

familiarity with the subject is assumed from the outset – ideally at the level of

Part I of R. Wald’s book General Relativity.5 This is also not a book on the

applications of the theory of PDEs in general relativity. For this, there are other

books available.6 Also, although the Cauchy problem in general relativity is a

leading theme, this book should not be viewed as a monograph on the topic –

for this, I refer the interested reader to H. Ringström’s monograph.7

I have endeavoured to write a book which not only serves as an introduction to

the subject but also is a tool for research. With this idea in mind, I have striven to

provide as much detail as possible of the arguments and calculations. However,

at some stages supplying further details is neither possible nor desirable. Indeed,

quoting the preface of J. L. Synge’s classical book on general relativity: “There

5 See Wald (1984).
6 See e.g. Choquet-Bruhat (2008); Rendall (2008).
7 See Ringström (2009).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


Preface xvii

are heavy calculations in the book, but there are places where the reader will

find me sitting on the fence, whistling, instead of rushing into the fray”; see

Synge (1960).8 In an attempt to keep the readability and the length of the text

under control, I have not endeavoured to provide completely general or optimal

theorems – the attentive reader will realise this and is referred to the literature

for further details, if required. As a picture is better than a thousand words, I

have complemented the text with a considerable number of figures and diagrams

which, I hope, will help to explain the content of the main text and provide

useful visual models.

In writing this book, I have assumed the reader to have a certain mathematical

maturity. Some basic knowledge of topology is needed – Appendix A in Wald’s

book contains the required background – as well as familiarity with basic tensorial

calculus. I have, however, not assumed any prior knowledge of 2-spinors. The

necessary toolkit is developed in the course of two chapters. Readers looking

for a supplementary source on the topic are referred to J. Stewart’s book.9

The applications of conformal methods discussed in this book require certain

knowledge of the theory of PDEs. I provide all the required material in a chapter

of its own – nevertheless, some previous exposure to the basic ideas of the

theory of PDEs is an advantage. Some arguments in the book make use of very

concrete results of analysis. In these cases, I have included the necessary ideas

in appendices to the various chapters.

8 I am thankful to R. Beig for bringing my attention to this quote.
9 See Stewart (1991).
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Adem Hursit and Jarrod Williams), collaborators and colleagues (Artur Alho,

Robert Beig, Alberto Carrasco, Daniela Pugliese, Alfonso Garćıa-Parrado, David
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the standard conformal field equations, page 196

(gab,Ξ, s, Lab, d
a
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1

Introduction

This book discusses an approach to the analysis of asymptotic and global

properties of solutions to the equations of Einstein’s theory of general relativity

(the Einstein field equations) based on ideas arising in conformal geometry. This

approach allows a geometric and rigorous formulation of problems and notions

of great physical relevance in the context of general relativity. At the same time,

it provides valuable insights into the properties of the Einstein field equations

under optimal regularity conditions.

Before entering into the subject, it is useful to discuss the motivation behind

this type of endeavour. Accordingly, a brief account of certain aspects of what

can be called mathematical general relativity is necessary.

1.1 On the Einstein field equations

Einstein’s theory of general relativity is the best theory of gravity we have. It

is a relativistic theory of gravity which considers four-dimensional differentiable,

orientable manifolds M̃ endowed with a Lorentzian metric g̃; a discussion of these

differential geometric notions is provided in Chapter 2. The pair (M̃, g̃) is called

a spacetime . Here, and in the rest of this book, quantities associated to the

spacetime (M̃, g̃) will be distinguished by a tilde (̃ ); the motivation behind this

notation will become clear in the following. The gravitational field is described

in general relativity as a manifestation of the curvature of spacetime.

The fundamental equations of general relativity, the Einstein field equa-

tions, describe how matter produces the curvature of spacetime. They are given,

in the abstract index notation discussed in Section 2.2.6, by

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab, (1.1)

where g̃ab is the abstract index version of g̃, and where R̃ab and R̃ denote,

respectively, the Ricci tensor and Ricci scalar of the metric g̃. Moreover, λ is

the so-called cosmological constant and T̃ab denotes the energy–momentum
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2 Introduction

tensor of the matter in the spacetime. Precise definitions and conventions for the

curvature tensors are provided in Chapter 2, while a discussion of the energy–

momentum tensors for a range of matter models is provided in Chapter 9. The

energy–momentum tensor satisfies the conservation equation

∇̃aT̃ab = 0,

where ∇̃a denotes the covariant derivative of the metric g̃. TheBianchi identity

satisfied by the Riemann curvature tensor R̃a
bcd of the metric g̃ ensures the

consistency between the conservation equation and the Einstein field equations.

A solution to the Einstein field equations is a pair (M̃, g̃), together with

a g̃-divergence-free tensor T̃ab such that Equation (1.1) holds. In suitable open

subsets of M̃ the metric g̃ is expressed, using some local coordinates (xμ), in

terms of its components (g̃μν); here and in what follows, Greek indices are

used as coordinate indices. In general, several coordinate charts will be needed

to cover the spacetime manifold M̃. Two metrics g̃ and ḡ over M̃ are said

to be isometric if they are related, everywhere on M̃, by some coordinate

transformation.

In the cases where T̃ab = 0, a direct computation shows that Equation (1.1)

implies

R̃ab = λg̃ab. (1.2)

In what follows, the latter will be known as the vacuum Einstein field

equations and a solution thereof as an Einstein spacetime. The full curvature

of a four-dimensional manifold is described by the tensor R̃a
bcd. This tensor

has 20 independent components. By contrast, the Ricci tensor appearing in the

Einstein field Equations (1.1) and (1.2) has only 10 independent components.

Hence, even in the absence of a cosmological constant, where the vacuum field

Equations (1.2) reduce to

R̃ab = 0, (1.3)

it is possible to have solutions with a non-vanishing Riemann tensor. As a

consequence, solutions to the vacuum field equations play a special role in general

relativity, as they describe pure gravitational configurations. Vacuum spacetimes

are often deemed more fundamental, as they exclude potential pathologies which

may arise from the choice of a particular matter model.

General relativity has two main domains of applicability: cosmology and iso-

lated systems. To make use of the Einstein field Equations (1.1) within these two

domains, one requires a number of idealisations. On the one hand, in cosmology it

is usually assumed that the matter content of the universe can be described by a

perfect fluid with an equation of state which depends on a particular cosmological

era. It is a convention in mathematical relativity to refer to spacetimes with

compact spacelike sections as cosmological spacetimes. On the other hand,

isolated systems are convenient idealisations of astrophysical objects for which

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


1.2 Exact solutions 3

it is assumed that the cosmological expansion has no influence. The transition

between the regime of isolated systems and the cosmological one is a topic

of fundamental relevance for the understanding of the physical content of the

Einstein field equations; see, for example, Ellis (1984, 2002).

The validity of general relativity has been verified in a number of experiments

covering a wide range of scenarios ranging from the dynamics of the solar system

to cosmological scales; see, for example, Will (2014) for a discussion of the

subject. Surveys of the physical content of general relativity and its various

domains of applicability can be found, for example, in Poisson and Will (2015)

and Shapiro (1999).

Note. In the remainder of this chapter, in order to simplify the presentation, the

discussion will be restricted to Einstein spaces, that is, solutions to the vacuum

Equations (1.2). The inclusion of matter very often requires a case-by-case ana-

lysis.

1.2 Exact solutions

A natural first step to developing an understanding of the properties of solutions

to the Einstein field equations is the construction of exact solutions, that is,

explicit solutions written in terms of elementary functions of some coordinates.

The first non-trivial exact solution to the Einstein field equations ever obtained

is the Schwarzschild solution. It describes a static spherically symmetric vacuum

configuration; see Schwarzschild (1916), an English translation of which can

be found in Schwarzschild (2003). Remarkably, despite the complexity of the

field equations, the literature contains a vast number of exact solutions to

the equations of general relativity; see, for example, Stephani et al. (2003)

for a monograph on the subject. The number of solutions with a physical or

geometric significance is, arguably, much smaller; see, for example, Bičák (2000)

and Griffiths and Podolský (2009).

1.2.1 Construction of exact solutions

The construction of exact solutions to the Einstein field equations requires a

number of assumptions concerning the nature of the solutions. The most natural

assumptions involve the presence of continuous symmetries (Killing vectors) of

some type in the solution, for example, spherical symmetry, axial symmetry,

stationarity (including staticity) and homogeneity. Other types of assumptions

involve the algebraic structure of the curvature tensors of the spacetime (e.g.

the Petrov type of the Weyl tensor). These types of assumptions are harder to

justify on a physical basis.

Exact solutions are usually constructed in a coordinate system adapted to

the assumptions being made. Very often, these natural coordinates cover only a

portion of the whole spacetime manifold. Thus, one needs to find new coordinate

systems (charts) for the exact solution which allow one to uncover a full maximal
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4 Introduction

analytic extension of the spacetime. This maximal extension usually paves the

way to the interpretation of the exact solution and gives access to its global

properties.

1.2.2 The limitations of exact solutions

Several of the well-known consequences of general relativity have been developed

through the analysis of exact solutions, for example, the notion of a black

hole. Thus, the study of exact solutions to the Einstein field equations helps to

develop a physical and geometric intuition which, in turn, can lead to questions

concerning more generic solutions. However, despite the valuable insights they

provide, the construction of exact solutions is not a systematic approach to

explore the space of solutions of the theory. In particular, this approach leaves

open the question of whether certain properties of a solution are generic, that

is, satisfied by a broader class of spacetimes. Moreover, exact solutions do not

lend themselves to the analysis of dynamic situations such as, for example, the

description of the gravitational radiation produced by an isolated system. Thus,

it is not possible to address issues involving stability just by means of exact

solutions. In order to analyse the above issues one has to consider whether it is

possible to formulate an initial value problem for the Einstein field equations by

means of which large classes of solutions can be constructed.

1.3 The Cauchy problem in general relativity

As in the case of many other physical theories, general relativity admits the

formulation of an initial value problem (Cauchy problem). This aspect of the

theory is obscured by both the tensorial character of the Einstein field equations

and the absence of a background geometry in the theory ; it is a priori not clear

that the field equations give rise to a system of partial differential equations

(PDEs) of a recognisable type.

Classical physical theories are expected to satisfy a causality principle:

the future of an event in spacetime cannot influence its past, and, moreover,

signals must propagate at finite speed . Among the three main types of PDEs

(elliptic, hyperbolic and parabolic), hyperbolic differential equations are the only

ones compatible with the causality principle. This observation suggests it should

be possible to extract from the Einstein field equations a system of evolution

equations with hyperbolic properties.

1.3.1 Hyperbolic reductions

The seminal work of Fourès-Bruhat (1952) has shown that the hyperbolic

properties of the Einstein field equations can be made manifest by means of

a suitable choice of coordinates. Following modern terminology, a choice of

coordinates is a particular example of gauge choice. Indeed, by choosing the
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1.3 The Cauchy problem in general relativity 5

spacetime coordinates (xμ) in such a way that they satisfy the wave equation

associated with the metric g̃, the Einstein field equations can be shown to

imply a system of quasilinear wave equations for the components (g̃μν) of the

(a priori unknown) metric g̃ with respect to the wave coordinates. For quasilinear

wave differential equations there exists a developed theory which allows the

formulation of a well-posed Cauchy problem. The use of wave coordinates is not

the only way of bringing to the fore the hyperbolic aspects of the Einstein field

equations. In this book, it will be shown that the Einstein field equations can

be reformulated in such a way that after a suitable gauge choice they imply a

so-called (first order) symmetric hyperbolic evolution system – a class of PDEs

with properties similar to those of wave equations and for which a comparable

theory is available. The procedure of extracting suitable hyperbolic evolution

equations through a particular reformulation of the Einstein field equations

and a suitable gauge choice is known as a hyperbolic reduction ; hyperbolic

reductions are further discussed in Chapter 13. Besides its natural relevance

in mathematical relativity, the construction of hyperbolic reductions for the

Einstein field equations is of fundamental importance for numerical relativity;

see, for example, Alcubierre (2008) and Baumgarte and Shapiro (2010).

In the same way that the Einstein field equations are geometric in nature,

a proper formulation of the Cauchy problem in general relativity must also be

done in a geometric way; see, for example, Choquet-Bruhat (2007). This idea

is, in principle, in conflict with the discussion of hyperbolicity properties of the

Einstein field equations, as the associated procedure of gauge fixing breaks the

spacetime covariance of the field equations. As will be seen in the following, this

tension can be resolved in a satisfactory manner.

1.3.2 Initial data and the constraint equations

The formulation of an initial value problem for the Einstein field equations

requires the prescription of suitable initial data for the evolution equations on

a three-dimensional manifold S̃. This manifold will be later interpreted as a

hypersurface of the spacetime (M̃, g̃). An important feature of general relativity

is that the initial data for the evolution equations implied by the Einstein field

equations are constrained. The constraint equations of general relativity

(Einstein constraints) can be formulated as a set of equations intrinsic to the

initial hypersurface S̃ for a pair of symmetric tensors h̃ and K̃ describing,

respectively, the intrinsic geometry of the hypersurface (intrinsic metric or

first fundamental form) and the way the initial hypersurface is curved

within the spacetime (M̃, g̃) – the so-called extrinsic curvature or second

fundamental form. A priori, it is not clear what the freely specifiable data for

these constraint equations consist of, or whether, given a particular choice of

free data, the equations can be solved. The systematic analysis of the constraint

equations has shown that under suitable assumptions, they can be recast as a set

of elliptic partial differential equations ; see, for example, Bartnik and Isenberg
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(2004). For this type of equation a theory is available to discuss the existence

and uniqueness of solutions.

The constraint equations play a fundamental role in the theory and ensure that

the solution of the evolution equations is, in fact, a solution to the Einstein field

equations; this type of analysis is often called the propagation of the constraints.

The constraint equations of general relativity will be discussed in Chapter 11.

1.3.3 The well-posedness of the Cauchy problem in general relativity

The formulation of the Cauchy problem in general relativity ensures, at least

locally, the existence of a solution to the Einstein field equations which is

consistent with the prescribed initial data. More precisely, one has the following

result first proven in Fourès-Bruhat (1952).

Theorem 1.1 (local existence of solutions to the initial value problem)

Given a solution (h̃, K̃) to the Einstein constraint equations on a three-

dimensional manifold S̃ there exists a vacuum spacetime (M̃, g̃) such that S̃
is a spacelike hypersurface of M̃, h̃ is the intrinsic metric induced by g̃ on S̃
and K̃ is the associated extrinsic curvature.

The spacetime (M̃, g̃) obtained as a result of Theorem 1.1 is called a

development of the initial data set (S̃, h̃, K̃). Not every spacetime can

be globally constructed from an initial value problem. Those which can be

constructed in this way are said to be globally hyperbolic. There are important

examples of spacetimes which do not possess this property – most noticeably,

the anti-de Sitter spacetime. A general result concerning globally hyperbolic

spacetimes states that their topology is that of R×S̃ with each slice S̃t ≡ {t}×S̃
being intersected only once by each timelike curve in the spacetime. The slices

S̃t are known as Cauchy surfaces. The above points will be further discussed

in Chapter 14.

The Cauchy problem for the Einstein field equations provides an appropriate

setting for the discussion of dynamics. In particular, it allows one to investigate

whether a given solution of the Einstein field equations is stable, that is, whether

its essential features are retained if the initial data set is perturbed. Moreover,

it also allows one to analyse whether a given property of a solution is generic,

that is, whether the property holds for all solutions in an open set in the space

of initial data.

1.3.4 Geometric uniqueness and the maximal globally hyperbolic

development

An important observation concerning Theorem 1.1 is that it does not ensure

the uniqueness of the development (M̃, g̃) of the initial data set (S̃, h̃, K̃):

a different hyperbolic reduction procedure will, in general, give rise to an

alternative development (M̃′, g̃′). From the point of view of the Cauchy problem
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1.3 The Cauchy problem in general relativity 7

of general relativity, the solution manifold is not known a priori. Instead, it is

obtained as a part of the evolution process.

Given that an initial data set for the Einstein field equations gives rise to

an infinite number of developments (one for each reasonable gauge choice), it is

natural to ask whether it is possible to combine these various developments to

obtain a maximal development. This question is answered in the positive by the

following fundamental result; see Choquet-Bruhat and Geroch (1969).

Theorem 1.2 (existence of a maximal development) Given an initial data

set for the Einstein field equations (S̃, h̃, K̃), there exists a unique maximal

development (M̃, g̃), that is, a development such that if (M̃′, g̃′) is another

development, then M̃′ ⊆ M̃ and on M̃′ the metrics g̃ and g̃′ are isometric.

The maximal development (M̃, g̃) is also known as the maximal globally

hyperbolic development of the data (S̃, h̃, K̃). Theorem 1.2 clarifies the sense in

which one can expect uniqueness from the Cauchy problem in general relativity;

this idea is known as geometric uniqueness.

One can think of the maximal development of an initial data set as the largest

spacetime that can be uniquely constructed out of an initial value problem. The

boundary of this maximal development, if any at all, sets the limits of predictabil-

ity of the data – accordingly, one has a close link with the notion of classical

determinism. In certain spacetimes, it is possible to extend the maximal devel-

opment of a hypersurface to obtain a maximal extension. Accordingly, in general,

maximal developments and maximal extensions do not coincide. A further

discussion of the Cauchy problem in general relativity is provided in Chapter 14.

1.3.5 Construction of maximal developments and global existence

of solutions

Given some initial data set (S̃, h̃, K̃), it is natural to ask, How can one

construct its maximal development (M̃, g̃)? In general, this is a very difficult

task, as it requires controlling the evolution dictated by the Einstein field

equations under very general circumstances – something for which the required

mathematical technology is not yet available. There are, nevertheless, some

conjectures concerning the global behaviour of maximal developments. The origin

of these conjectures goes back to Penrose (1969) – see Penrose (2002) for a

reprint – and are usually known by the name cosmic censorship. In particular,

the so-called strong cosmic censorship states that the maximal development of

generic initial data for the Einstein field equations cannot be extended as a

Lorentzian manifold.

Given an exact solution to the Einstein equations, if one knows its maximal

extension, one can determine the maximal development (M̃, g̃) of one of its

(Cauchy) hypersurfaces, say, S̃. In what follows, let (h̃, K̃) denote the initial data

implied on S̃ by the spacetime metric g̃. The explicit knowledge of the maximal

development allows one to provide a physical interpretation of the solution and
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8 Introduction

to analyse its global structure in some detail. One can now ask whether certain

aspects of (M̃, g̃) – say, its basic global structure – are shared by a wider class

of solutions to the Einstein field equations. A strategy to address this question

within the framework of the Cauchy problem in general relativity is to consider

initial data sets (S̃, h̄, K̄) which are, in some sense, close to the initial data for the

exact solution. One can then try to show that the associated maximal globally

hyperbolic development (M̄, ḡ) has the desired global properties. If this is the

case, one has obtained a statement about the stability of the solution and the

genericity of the property one is interested in. The standard convention, to be

used in this book, is to call (M̃, g̃) and (S̃, h̃, K̃), respectively, the background

spacetime and the background initial data set and (M̄, ḡ) and (S̃, h̄, K̄) the

perturbed spacetime and perturbed initial data set, respectively. In prac-

tice, the notion of closeness between initial data sets is dictated by the require-

ments of the PDE theory used to prove the existence of solutions to the evolution

equations. In the previous discussion it has been assumed that the 3-manifolds

on which the background and perturbed initial data are prescribed are the same.

The stability analysis allows one to conclude that the spacetime manifolds M̃
and M̄ are the same – they are, however, endowed with different metrics.

In analysing the stability of the background solution (M̃, g̃) one needs to show

that the solutions to the evolution equations with perturbed initial data exist

as long as the background solution. The expectation is that the assumption of

having initial data close to data for an exact solution whose global structure is

well understood will ease this task. In the following sections a strategy to exploit

this assumption will be discussed.

1.4 Conformal geometry and general relativity

Special relativity provides a framework for the discussion of the notion of

causality – that is, the relation between cause and effect – which is consistent

with the principle of relativity. The causal structure of special relativity is

determined by the light cones associated with the Minkowski metric η̃. It allows

the determination of whether a signal travelling not faster than the speed of light

can be sent between two events – if this is the case, then the two events are said

to be causally related. More generally, one can talk of Lorentzian causality :

any Lorentzian metric g̃ gives rise to a causal structure determined by the light

cones associated to g̃. Thus, general relativity provides a natural generalisation

of the notions of causality of special relativity – one in which the light cones

vary from event to event in spacetime. Crucially, however, in general relativity

the causal structure is a basic unknown of the theory.

The theory of hyperbolic differential equations provides notions of causality

which, in principle, are independent from the notions of Lorentzian causality.

It is, nevertheless, a remarkable feature of general relativity that locally, the

propagation of fields dictated by the Einstein field equations is governed by

the structure of the light cones of the solutions – the so-called characteristic
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1.4 Conformal geometry and general relativity 9

surfaces of the evolution equations. Thus, the notions of Lorentzian and PDE

causality coincide. This aspect of the Einstein field equations is further discussed

in Chapter 14.

1.4.1 Conformal transformations and conformal geometry

Locally, a light cone can be described (away from its vertex) in terms of a

condition of the form φ(xμ) = constant where φ : M̃ → R is such that

g̃μν∂μφ∂νφ = 0. (1.4)

The structure of the light cones of a spacetime (M̃, g̃) is preserved by conformal

rescalings, that is, transformations of the spacetime metric of the form

g̃ �→ g ≡ Ξ2g̃, Ξ > 0 (1.5)

where Ξ is a smooth function on M̃ – the so-called conformal factor.

Throughout this book, the metrics g̃ and g will be called the physical metric

and the unphysical metric, respectively. The rescaling (1.5) gives rise to

a conformal transformation of (M̃, g̃) to (M̃, g). Precise definitions and

further discussion of these notions are provided in Chapter 5. In elementary

geometry, conformal transformations are usually described as transformations

preserving the angle between vectors. In Lorentzian geometry, they preserve the

light cones; from (1.4) it follows that gμν∂μφ∂νφ = 0, so that the condition

φ(xμ) = constant also describes the light cones of the metric g.

One key aspect of conformal rescalings is that they allow one to introduce

conformal extensions of the spacetime (M̃, g̃); see Figure 1.1. In a Riemannian

setting, the most basic example of conformal extensions of manifolds is the so-

called conformal completion of the Euclidean plane R2 into the 2-sphere S2 by

(M,g)

∂M

(M, g)˜ ˜
g=Ξ2g̃

Figure 1.1 Schematic representation of the conformal extension of a manifold.
The physical manifold (M̃, g̃) has infinite extension, while the unphysical
(extended) manifold (M, g) is compact with boundary ∂M. The boundary
∂M corresponds to the points for which Ξ = 0. Further details can be found
in Chapter 5. Adapted from Penrose (1964).
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10 Introduction

I+
(a) (b) (c)

I−

I

I+

I−

Figure 1.2 Penrose diagrams of the three spacetimes of constant curvature: (a)
the de Sitter spacetime; (b) the anti-de Sitter spacetime; (c) the Minkowski
spacetime. Details of these constructions can be found in Chapter 6.

means of stereographic coordinates. By suitably choosing the conformal factor Ξ,

the metric g given by the rescaling (1.5) may be well defined even at the points

where Ξ = 0. If this is the case, it can be verified that the set of points ∂M for

which Ξ = 0 corresponds to ideal points at infinity for the spacetime (M̃, g̃) and

is called the conformal boundary . The pair (M, g) where M is the extended

manifold obtained from attaching to M̃ its conformal boundary is usually known

as the unphysical spacetime. Of particular interest are the portions of the

conformal boundary which are hypersurfaces of the manifold M – these sets

are characterised by the additional requirement of dΞ �= 0, so that they have a

well-defined normal. This part of the conformal boundary is denoted by I .

Explicit calculations show that the three spacetimes of constant curvature –

the Minkowski, de Sitter and anti-de Sitter spacetimes – can be conformally

extended. The details of these constructions are described in Chapter 6. These

conformal extensions are conveniently represented in terms of Penrose diagrams ;

see Figure 1.2. A discussion of the construction of Penrose diagrams can also

be found in Chapter 6. The insights provided by the conformal extensions of

these solutions are, in great measure, the fundamental justification for the use

of conformal methods in general relativity.

1.4.2 Conformal geometry

The study of properties which are invariant under conformal transformations of

a manifold is known as conformal geometry . Associated to the metric g of

the unphysical spacetime (M, g) one has its covariant derivative (connection) ∇a

and its curvature tensors, say, Ra
bcd, Rab, R. These objects can be related to the

corresponding objects associated to the physical metric g̃ (∇̃a, R̃
a
bcd, R̃ab and R̃)

and the conformal factor Ξ and its derivatives. Their transformation laws show,

in particular, that the Riemann tensor, the Ricci tensor and the Ricci scalar are

not conformal invariants. There is, however, another part of the curvature which
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1.4 Conformal geometry and general relativity 11

is conformally invariant. It is described by theWeyl tensor, for which it holds that

C̃a
bcd = Ca

bcd, on M̃.

In view of the above, one can regard the Weyl tensor as a property of the

collection of metrics conformally related to g̃ – the conformal class [g̃]. If the

vacuum Einstein field Equations (1.3) hold, the Bianchi identities imply that

∇̃aC̃
a
bcd = 0 (1.6)

irrespectively of the value of the cosmological constant.

1.4.3 Conformal invariance of equations of physics

A number of equations in physics have nice conformal properties. The prototyp-

ical example is given by the source-free Maxwell equations

∇̃aF̃ab = 0, ∇̃[aF̃bc] = 0, (1.7)

where F̃ab denotes the Faraday tensor. One can introduce an unphysical

Faraday tensor Fab by requiring it to coincide with F̃ab on M̃. Using the

transformation properties relating the covariant derivatives ∇̃a and∇a, it follows

that the Maxwell equations are conformally invariant ; that is, one has that

∇aFab = 0, ∇[aFbc] = 0.

The above equations are well defined everywhere on the unphysical spacetime

manifold M, in particular at the conformal boundary. These equations allow

the extension of the definition of the unphysical field Fab to the conformal

boundary ∂M.

In contrast to the Maxwell equations, the vacuum Einstein field Equations

(1.2) are not conformally invariant. The transformation law for the Ricci tensor

under the rescaling (1.5) implies the equation

Rab = − 2

Ξ
∇a∇bΞ− gabg

cd

(
1

Ξ
∇c∇dΞ− 3

Ξ2
∇cΞ∇dΞ

)
. (1.8)

The above equation is, at least formally, singular at the points where Ξ = 0.

Thus, it does not provide a good equation for the analysis of the evolution of the

unphysical metric g on M. Nevertheless, as pointed out by Penrose (1963) the

Bianchi identity (1.6) has a nice conformal covariance property. More precisely,

one has that

∇̃a

(
Ξ−1C̃a

bcd

)
= 0.

The above equation suggests defining the rescaled Weyl tensor dabcd ≡
Ξ−1C̃a

bcd. Under certain assumptions, the Weyl tensor can be shown to vanish at

I so that the rescaled Weyl tensor is well defined at this portion of the conformal

boundary – this important result is analysed in detail in Chapter 10. The rescaled
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12 Introduction

Weyl tensor is not a conformal invariant; it transforms in a homogeneous fashion

under the rescaling (1.5). The above discussion leads to the equation

∇̃ad
a
bcd = 0, (1.9)

the so-called Bianchi equation. In addition, in view of the symmetries of the

Weyl tensor it can be shown that

∇̃[ed
a
|b|cd] = 0. (1.10)

Note the similarity between Equations (1.9) and (1.10) and the Maxwell

Equations (1.7). In particular, the equations are regular even at the conformal

boundary. These equations are full of physical significance, as the Weyl tensor can

be thought of as describing the free gravitational field, that is, a gravitational

analogue of the Faraday tensor. Chapter 8 provides a detailed derivation and

discussion of the equations presented in this section.

1.4.4 Asymptotics of the gravitational field and asymptotic

simplicity

One of the basic predictions of general relativity is the existence of gravitational

waves propagating at the speed of light across the fabric of spacetime. As

a dynamical process governed by the Einstein field equations, gravitational

radiation is closely related to the structure of the light cones of spacetime –

thus, if one wants to analyse gravitational radiation one has to examine the

propagation of the gravitational field along null directions. This analysis is

complicated by the absence of a background geometry so that, a priori, it is not

clear what the asymptotic behaviour of the gravitational field should be. This

concern lies at the heart of the subject of the asymptotics of spacetime – that

is, the study of the limit behaviour of fields at large distances and large times

and the characterisation of spacetimes by data obtained by taking such limits.

In theories which describe fields on a given background, one can discuss limits

at infinity in a meaningful way in terms of the background geometry. The

situation is radically different in general relativity, where the spacetime (M̃, g̃)

– with respect to which the limits of fields derived from g̃ are to be formulated –

is the central objects of study. Accordingly, making sense of limiting procedures

in general relativity is a delicate process and requires a careful analysis of the

geometry and the way it is determined by the Einstein field equations. An

approach to this analysis is provided by Penrose’s suggestion that the close

relation between the propagation of the gravitational field and the structure

of null cones which holds locally is also preserved at large scales and that the

asymptotic behaviour of the gravitational field can be conveniently analysed in

terms of conformal extensions of the spacetime; see Penrose (1963, 1964) and

Penrose (2011) for a reprint of the latter reference. With this idea in mind,

Penrose introduced the notion of asymptotically simple spacetimes, namely,

spacetimes admitting a smooth conformal extension which is similar to that
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1.4 Conformal geometry and general relativity 13

of one of the three constant curvature spacetimes. Proceeding in this manner,

one attempts to single out a class of sufficiently well-behaved spacetimes for

which it is possible to relate the structure of the light cones in spacetime to the

structure of the field equations and the large-scale behaviour of their solutions.

For asymptotically simple spacetimes the causal character of I is determined

by the sign of the cosmological constant; moreover, as already seen, the Weyl

tensor vanishes on the conformal boundary – the latter is the basic observation

in a collection of results known generically as peeling.

Minkowski-like spacetimes, that is, those asymptotically simple spacetimes

for which λ = 0, are of particular relevance in the study of asymptotics with

regard to their connection to the notion of isolated systems in general relativity;

compare the discussion at the end of Section 1.1. For this type of spacetime I is

a null hypersurface describing idealised observers at infinity. Penrose’s original

insight was to use the notion of asymptotic simplicity as a way of characterising

isolated systems in general relativity – this idea has been called Penrose’s

proposal by Friedrich (2002). One of the appealing features of this approach to

the study of isolated systems is that it provides a general framework in which

notions of physical interest such as gravitational radiation and the associated

mass/momentum-loss can be rigorously formulated and analysed. A substantial

amount of work has been invested in pursuing these ideas, as attested by the

sprawling literature on the subject. An exposition of the notion of asymptotic

simplicity, some of its basic consequences and Penrose’s proposal is given in

Chapters 7 and 10.

1.4.5 The conformal Einstein field equations

In view of Penrose’s ideas on the relation between general relativity and

conformal geometry one can ask: to what extent is it possible to draw conclusions

about the global structure of spacetimes from an analysis of the behaviour, under

conformal rescalings, of the Einstein field equations? As will be seen in this book,

by considering this question one is led to analyse the behaviour of solutions to

the Einstein field equations under optimal regularity conditions. To address the

above question one needs a suitable set of equations to work with. As already

observed, the direct transcription of the Einstein field equations as an equation

for the unphysical metric g does not provide a set of equations which are adequate

from the point of view of PDE theory.

An alternative set of field equations, the so-called conformal Einstein field

equations, has been constructed in the seminal work by Friedrich (1981a,b,

1983). The construction of this conformal representation of the equations begins

with a revised reading of the singular Equation (1.8) not as an equation for the

unphysical metric (or alternatively, its Ricci tensor) but for the derivatives of the

conformal factor Ξ. To complete this alternative point of view one upgrades the

curvature tensors to the level of unknowns and, accordingly, provides equations

for them. The required equations are supplied by the Bianchi identities in a way

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


14 Introduction

which is consistent with the Einstein field equations satisfied by the physical

metric g̃. The resulting system consists of equations for the conformal factor

and its first- and second-order derivatives, the unphysical metric g (through the

definition of its Ricci tensor), the unphysical Ricci tensor Rab and the rescaled

Weyl tensor dabcd – the equation for the latter field is Equation (1.9). The

equations derived by Friedrich have two key properties: (i) they are formally

regular even at the points where Ξ = 0 and (ii) whenever Ξ �= 0, they imply

a solution to the Einstein field equations. The considerations leading to the

conformal Einstein field equations will be discussed in Chapter 8.

The equations described in the previous paragraph are usually known as

the metric conformal field equations. One can extend the basic construction to

incorporate more gauge freedom so as to obtain a more flexible set of equations.

A natural first step in this direction consists of rewriting the field equations in

a frame formalism. This leads, in turn, in an almost direct way to the spinorial

version of the equations; see below. A more extreme generalisation consists of a

reformulation of the field equations in terms of a covariant derivative ∇̂a which

is not the Levi-Civita connection of a metric, but which nevertheless respects the

structure of the conformal class [g̃], a so-called Weyl connection. The resulting

equations are known as the extended conformal Einstein field equations. As will

be seen below, this particular formulation of the equations allows the use of

gauges with conformally privileged properties.

Friedrich’s conformal Einstein equations are not the only possible type of

conformal representation of the Einstein field equations; see, for example, Mason

(1995) and Anderson (2005a). In any case, they are the ones which have been

studied in a more systematic manner in the literature.

1.4.6 Gauge conditions and conformal geodesics

As already mentioned, the procedure of hyperbolic reduction requires the

specification of a gauge in terms of which the evolution equations are to be

expressed. Earlier in this chapter, the notion of a gauge choice had been restricted

to a specification of coordinates. For the conformal field equations, the gauge

specification involves three aspects: a coordinate, a frame and a conformal aspect.

The precise choice of these three aspects of the gauge depends on the particulars

of the problem at hand. A discussion of the gauge freedom contained in the

conformal field equations is given in Chapter 13.

The presence of a conformal gauge freedom – that is, the freedom to specify

the representative in the conformal class one wants to work with – is one of the

most attractive aspects of the conformal field equations. Given the bewildering

freedom one has in this respect, the use of conformal gauges related to conformal

invariants is a natural choice. Conformal geodesics are a good example of the type

of invariants one can consider. These curves are defined through a set of equations

which are invariant under conformal rescalings. In general, the conformal class

[g̃] does not contain a metric for which the conformal geodesics can be recast
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1.5 Existence of asymptotically simple spacetimes 15

as standard (metric) geodesics. However, there is always a Weyl connection for

which they are affine geodesics. Conformal geodesics can be used to construct

conformal Gaussian gauge systems for which coordinates and an adapted frame

are propagated off an initial hypersurface. Conformal geodesics allow one to

specify a privileged unphysical metric g = Θ2g̃ where Θ is a conformal factor

determined through the conformal geodesic equations. Crucially, for solutions

to the vacuum field equations (1.2), the conformal factor Θ can be determined

explicitly from the initial data for a congruence of these curves – it turns out to be

a quadratic polynomial of a suitable parameter of the curves in the congruence.

To fully exploit the advantages provided by conformal Gaussian systems, it is

necessary to express the conformal field equations in terms of Weyl connections –

these considerations lead to the already mentioned extended conformal field

equations. Conformal geodesics and their properties are analysed in Chapter 5.

1.4.7 Spinors

This book adopts an approach to the extraction of information from the

conformal Einstein field equations which makes systematic use of a formalism

based on the so-called 2-spinors. The use of spinors to carry out this analysis is

not essential to the purposes of the book, but it has the advantage of simplifying

certain algebraic aspects of the discussion.

Spinors are the most basic objects subject to Lorentz transformations. To

every tensor and tensorial operation there exists a spinorial counterpart. More

precisely, to every tensor of rank k there corresponds a spinor of rank 2k. In some

particular cases – for example, null vectors or the Weyl tensor – by exploiting

symmetries one can associate to the tensor a spinor of the same rank k.

Spinors are well adapted to the discussion of the geometry of null hypersur-

faces. Thus, it is not surprising that they are a valuable tool in the discussion of

the Einstein field equations. In this book, spinorial representations of the confor-

mal field equations are systematically used as a part of the hyperbolic reduction

procedure. In particular, a 2-spinor formalism usually known as the space spinor

formalism, which can be regarded as a spinorial analogue of the 1+3 formalism

for tensors, provides an almost completely algorithmic approach to the decompo-

sition of the field equations into (symmetric hyperbolic) evolution equations and

constraint equations. The basic spinorial formalism used in this book is described

in Chapter 3, while the space spinor formalism is dealt with in Chapter 4.

1.5 Existence of asymptotically simple spacetimes

The conformal field equations provide a powerful tool for the analysis and

construction of asymptotically simple spacetimes. In broad terms, they allow

the reformulation of problems involving unbounded domains in the physical

spacetime (M̃, g̃) as problems on bounded domains of the unphysical spacetime

(M, g). From the point of view of PDE theory, problems involving a finite
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16 Introduction

existence time are simpler to analyse than global existence questions. Under

the appropriate conditions, the existence of solutions to hyperbolic differential

equations on a fixed finite time interval can be shown by invoking the property

of Cauchy stability ; this and other basic notions of PDE theory are discussed

in Chapter 12 where a brief account of basic existence results for symmetric

hyperbolic systems is given. Prior to its use with the conformal Einstein field

equations, the technique for the analysis of evolution equations based on a

combination of conformal techniques and Cauchy stability had been used to show

the existence of global solutions of the Yang-Mills equations on the Minkowski

and de Sitter spacetimes; see Choquet-Bruhat and Christodoulou (1981).

The remainder of this section provides a brief survey of some of the existence

results for asymptotically simple spacetimes which have been obtained using the

conformal Einstein equations. These results will be elaborated in Part IV of this

book.

1.5.1 Characteristic initial value problems

Characteristic problems are a particular type of initial value problem where

data are prescribed on null initial hypersurfaces. Typically, these data are

prescribed on two intersecting null hypersurfaces N1 and N2. The relevant PDE

theory then allows one to conclude the existence and uniqueness of solutions on

neighbourhoods of N1 ∩N2 which are either to the future or to the past of their

intersection. In a different type of characteristic problem one prescribes initial

data on a null cone N , including its vertex, and one endeavours to obtain a

solution inside the cone – at least in a neighbourhood of the vertex. Conformal

methods allow the formulation of characteristic problems for which initial data

are prescribed on a null conformal boundary – in this case one talks of an

asymptotic characteristic initial value problem ; see Friedrich (1981a,b,

1982, 1986c). An attractive feature of characteristic initial value problems is that

the field equations, expressed in an adapted gauge, have structural properties

which simplify their analysis. In particular, the constraint equations on the initial

null hypersurfaces reduce to ordinary differential equations.

Asymptotic characteristic problems allow the aspects of the theory of the

asymptotics of isolated systems to be set on a rigorous footing. The basic

theory of characteristic problems for hyperbolic equations is discussed in Chapter

12. Applications of this theory to the conformal field equations are given in

Chapter 18.

1.5.2 De Sitter-like spacetimes

The simplest type of standard (i.e. non-characteristic) initial value problem for

the conformal Einstein field equations involves the construction of de Sitter-like

spacetimes. In this case one considers compact initial hypersurfaces S which are

diffeomorphic to the 3-sphere S3. One has the following concise statement first

proved in Friedrich (1986b).
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1.5 Existence of asymptotically simple spacetimes 17

Theorem 1.3 (global existence and stability of de Sitter-like space-

times) Solutions to the Einstein field Equations (1.2) with a de Sitter-like value

of the cosmological constant arising from Cauchy initial data close to data for

the de Sitter spacetime are asymptotically simple.

The proof of this result relies on the fact that a conformal representation of the

exact de Sitter spacetime can be recast as a solution of the conformal Einstein

field equations which extends beyond the conformal boundary. It follows from

the general theory of hyperbolic equations that the solution of the evolution

equations for an initial data set which is close to initial data for the background

solution will give rise, in its development, to a spacelike hypersurface on which

the conformal factor vanishes. This hypersurface can then be interpreted as the

conformal boundary of the perturbed spacetime. Thus, the resulting perturbed

spacetime has the same global structure as the de Sitter spacetime, and one can

say that, in this case, the notion of asymptotic simplicity is stable. Remarkably,

a variation of Theorem 1.3 allows for the possibility of prescribing initial data

on the conformal boundary.

Theorem 1.3 can be extended to include the coupling of the gravitational field

with various types of trace-free matter. A detailed discussion of the proof of

Theorem 1.3 is given in Chapter 15.

1.5.3 Anti-de Sitter-like spacetimes

As already mentioned, the anti-de Sitter spacetime provides one of the basic

examples of non-globally hyperbolic spacetimes. This peculiarity of the spacetime

can be attributed to the timelike nature of its conformal boundary; this is further

discussed in Chapter 14. As a consequence of the above, spacetimes with a global

structure which is similar to that of the anti-de Sitter spacetime cannot be

constructed using a standard initial value problem, and the initial data have

to be supplemented by suitable boundary data on the hypothetic conformal

boundary. This type of setting was first analysed in Friedrich (1995) and requires

the identification of initial data which can be described as anti-de Sitter-like

and appropriate boundary data for the conformal Einstein field equations on

a timelike hypersurface representing the conformal boundary. It turns out that

initial data sets (S̃, h̃, K̃) for anti-de Sitter-like spacetimes are characterised by

the fact that they admit a conformal extension (S,h,K) such that S has a

boundary ∂S with the topology of the 2-sphere S2. Based on the example of the

exact anti-de Sitter spacetime one expects the conformal boundary to intersect S
on ∂S and be of the form Ic = (−c, c)×∂S for some c > 0. A detailed analysis of

the conformal evolution equations on Ic reveals that suitable boundary data for

the conformal field equations consists of a three-dimensional Lorentzian metric


. In order to ensure the smoothness of solutions, the underlying PDE theory

requires certain compatibility conditions (corner conditions) between the initial

and the boundary data which are implied by the conformal field equations.

Taking into account the above observations one has the following.
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18 Introduction

Theorem 1.4 (local existence of anti-de Sitter-like spacetimes) Consider

an anti-de Sitter-like initial data set (S̃, h̃, K̃) for the Einstein field equations and

a Lorentzian three-dimensional metric 
 on Ic. Assume that the above data sat-

isfy suitable corner conditions. Then, there exists a solution to the Einstein field

equations (M̃, g̃) with anti-de Sitter-like cosmological constant and an associated

conformal extension (M, g) such that S̃ is a spacelike hypersurface of (M̃, g̃) and

so that (h̃, K̃) coincides with the intrinsic metric and extrinsic curvature implied

by (M̃, g̃) on S̃. Furthermore, Ic is the conformal boundary of (M, g) and the

intrinsic metric of Ic implied by g belongs to the conformal class of 
.

The proof of the above theorem is described in Chapter 17. The above theorem

ensures only local existence of anti-de Sitter-like spacetimes, that is, the existence

of a solution close to S̃. It says nothing about the global existence or stability of

solutions. Accordingly, it does not require assumptions on the smallness of the

data. At the time of writing, the question of the stability (or lack thereof) is an

open problem.

1.5.4 Minkowski-like spacetimes

The analysis of Minkowski-like spacetimes gives rise to some of the most

challenging open problems in the application of conformal methods in general

relativity.

In principle, one would like to construct Minkowski-like spacetimes by

prescribing suitable asymptotically Euclidean initial data on a three-dimensional

manifold S̃ which is a Cauchy hypersurface of the hypothetic spacetime. However,

it turns out that a simpler problem consists of the specification of initial data

on a 3-manifold H̃ describing a hypersurface of M̃ which in the conformal

extension intersects I —a so-called hyperboloid . Hyperboloidal initial data

sets (H̃, h̃, K̃) admit conformal extensions (H,h,K) for which H is a manifold

with boundary ∂H which has the topology of the 2-sphere S2 – this boundary

corresponds to the intersection of the hyperboloid with I . Hyperboloidal initial

data sets are similar in structure to anti-de Sitter-like initial data. There is, in

fact, a correspondence between the two; this relation is explored in Chapter 11.

An important feature of hyperboloids is that they are not Cauchy hypersurfaces;

that is, they do not allow the reconstruction of a whole Minkowski-like spacetime.

Despite this shortcoming, one has the following semi-global existence and

stability result first proved in Friedrich (1986b).

Theorem 1.5 (semi-global existence and stability of the hyperboloidal

initial value problem) Solutions to the hyperboloidal initial value problem

for the Einstein Equation (1.3) with initial data (H̃, h̃, K̃) which are suitable

perturbations of Minkowski hyperboloidal data are asymptotically simple to the

future of H̃ and have a conformal boundary with the same global structure as the

conformal boundary of Minkowski spacetime.
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1.5 Existence of asymptotically simple spacetimes 19

A detailed account of this result is given in Chapter 16. Aside from some

technical details, the key ideas of the proof of this result are similar to those of

Theorem 1.3 for de Sitter-like spacetimes. Again, a conformal point of view allows

one to provide a global existence result for the Einstein field equations in terms

of a problem involving a finite existence time. A proof of the non-linear stability

of the Minkowski spacetime making use of initial data prescribed on a Cauchy

initial hypersurface has been given in the work by Christodoulou and Klainerman

(1993). This proof relies on a detailed analysis of the decay of the gravitational

field using carefully constructed estimates. Remarkably, the main result of this

work does not provide enough regularity at infinity for us to conclude that the

spacetime obtained is asymptotically simple.

Time-independent solutions

An important source of intuition on the behaviour of general Minkowski-

like spacetimes is provided by the analysis of time-independent spacetimes,

that is, spacetimes possessing a continuous symmetry which (at least) in the

asymptotic region is timelike. If the Killing vector of a time-independent solution

is hypersurface orthogonal, then one speaks of a static spacetime. Otherwise,

one has a stationary solution. In the vacuum case, static and stationary

solutions can be thought of as describing the exterior gravitational field of

some compact matter configuration. In addition, the Schwarzschild and Kerr

spacetimes describe time-independent black holes. From the point of view of

conformal geometry, their relevance lies in that they allow a detailed analysis of

spatial infinity, that is, the portion of the conformal boundary intersecting the

conformal extension S of a Cauchy hypersurface S̃. Vacuum time-independent

spacetimes can be shown to admit conformal extensions which are as smooth as

one can expect.

Time-independent spacetimes are described by equations which, in a suitable

gauge, are elliptic. This feature of this class of solutions explains many of their

rigidity and uniqueness properties – in particular, they are characterised through

a sequence of multipole moments. The analysis of these expansions and other

asymptotic properties of static and stationary solutions can be performed in

a very convenient manner through conformal methods. In addition, and quite

remarkably, static spacetimes can be shown to have a close relation to spacetimes

constructed from an asymptotic characteristic initial value problem on a light

cone. These and further aspects of static solutions are discussed in Chapter 19.

Spatial infinity

The asymptotic region of Cauchy hypersurfaces of Minkowski-like spacetimes

can be conformally extended to include a further point – the point at infinity. In

these conformal extensions, domains in the asymptotic region are transformed

into suitable neighbourhoods of the point at infinity. This point compactification

procedure is a generalisation of the compactification of R2 into S2. From a
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20 Introduction

spacetime perspective, the point at infinity gives rise to spatial infinity i0.

In this picture, i0 can be thought of as the vertex of the light cone of I ,

and the Minkowski-like spacetime corresponds to the exterior of the cone; this

construction is analysed in Chapters 19 and 20.

The construction of Minkowski-like asymptotically simple spacetimes from

Cauchy initial data requires a precise understanding of the behaviour of the

gravitational field in a neighbourhood of spatial infinity. It was first observed

by Penrose (1965) that for spacetimes with non-vanishing mass the conformal

structure becomes singular at spatial infinity. As a consequence, the initial data

implied by the Bianchi Equation (1.9) – which, as already discussed, is one of the

key constituents of the conformal field equations – blows up at spatial infinity.

The resulting singularity makes the analysis of solutions to the conformal field

equations in this region of spacetime particularly challenging. This observation

explains, to some extent, why the first results on the existence of Minkowski-

like spacetimes were restricted to the developments of hyperboloidal initial data.

Early attempts to analyse this situation – see, for example, Beig and Schmidt

(1982), Beig (1984) and Friedrich (1988) – reached an impasse due to the lack

of a suitable representation of spatial infinity. A breakthrough in this direction

was given in Friedrich (1998c) where a representation of spatial infinity based on

the properties of conformal geodesics, the so-called cylinder at spatial infinity,

allows one to formulate a regular finite initial value problem for the conformal

field equations at spatial infinity. In recent years, a considerable amount of

work has been devoted to exploring the implications of this construction.

The picture that has progressively emerged is that the conditions required to

ensure the existence of asymptotically simple developments out of asymptotically

Euclidean initial data are much more restrictive than what one would first

expect.

The analysis of the structure of spatial infinity has been informed by

developments in the construction of solutions to the constraint equations of

general relativity. The exterior asymptotic gluing constructions introduced in

Corvino (2000) and Corvino and Schoen (2006) allow one to glue static and

stationary asymptotic regions to otherwise completely general asymptotically

Euclidean initial data sets, the basic ideas of the exterior asymptotic gluing

construction are briefly discussed in Chapter 11. As already observed, time-

independent solutions to the Einstein field equations are well behaved in a

neighbourhood of spatial infinity. Chruściel and Delay (2002) have shown that

it is possible to combine this observation with Theorem 1.5 to obtain complete

Minkowski-like asymptotically simple spacetimes. The spacetimes obtained in

this manner are very special, as they are exactly static, or, more generally,

stationary in a neighbourhood of spatial infinity – nevertheless, radiation is

registered at null infinity. It is natural to ask whether it is possible to relax

this rigid behaviour so as to obtain more general types of asymptotically simple

spacetimes. The analysis of the problem of spatial infinity remains a challenging
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1.7 Structure of this book 21

open area of research; an introductory discussion to the problem of spatial infinity

is provided in Chapter 20.

1.6 Perspectives

At the time of writing, the use of conformal methods to analyse the global

existence and stability of solutions to the Einstein field equations has been

mainly restricted to asymptotically simple spacetimes. One of the motivations

behind this book is to encourage researchers interested in the open problems

of mathematical relativity to further extend the available conformal methods

so as to make them suitable for the analysis of more complicated spacetimes

– for example, black holes. From the author’s point of view, the realisation

of this vision requires the development of not only analytic tools, but also a

computational framework which allows one to perform numerical relativity using

the conformal field equations. Some ideas in this direction are put forward in the

concluding Chapter 21.

1.7 Structure of this book

This book is divided in four parts. Throughout, a combination of abstract index

notation and index-free notation has been used. An index-free notation has

been preferred whenever it simplifies the presentation and emphasises structural

aspects of an equation, while abstract indices are used, mostly, in detailed

calculations. The spinorial conventions follow those in the monograph of Penrose

and Rindler (1984). In view of the systematic use of spinors, this book adopts a

(+−−−) convention for the signature of Lorentzian metrics. As a consequence of

this convention the sign of the cosmological constant in the de Sitter spacetime

is negative, while for the anti-de Sitter spacetime it is positive. In order to

avoid confusion – inasmuch as it is possible – with other sources, a negative

cosmological constant will be described as being de Sitter-like and a positive

one as being anti-de Sitter-like. Further details on conventions can be found in

Chapters 2, 3 and 4.

Throughout this book bold italics are systematically used to denote that a

given concept is being defined, while italics are used to highlight an idea; the

attentive reader will realise that sometimes the distinction between these two is

blurry.

The content of the four parts of this book can be briefly described as follows.

Part I (Geometric tools) provides a self-contained discussion of the differential

geometric and spinorial notions that will be used throughout the book. The

presentation and selection of material is tailored to the needs of the discussion

in Parts II and III and the applications in Part IV. Chapter 2 gives a brief

account of the required notions of differential geometry. The purpose of the

chapter is not only to serve as a quick reference in later parts of the book

but also to elaborate certain ideas which are not readily available elsewhere
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in the literature. Chapter 3 provides an account of 2-spinors, while Chapter 4

develops the so-called space spinor formalism. Chapter 5 provides an introduction

to conformal geometry which covers not only the transformation formulae for

the connection and curvature but also not so well-known topics such as Weyl

connections and conformal geodesics – two key notions which will be further

developed in Parts II and III.

Part II (General relativity and conformal geometry) provides an introduction to

the use of conformal methods in general relativity. It also develops a toolkit of

other mathematical methods which will be used to extract information from the

Einstein field equations. Chapter 6 provides a brief survey of the construction

of conformal extensions of basic solutions to the Einstein field equations – the

Minkowski, de Sitter, anti-de Sitter and Schwarzschild spacetimes – as well as

a general framework for the construction of Penrose diagrams of spherically

symmetric static spacetimes. Chapter 7 provides a discussion of one of the leading

themes of this book, the concept of asymptotically simple spacetimes and a

formulation of the so-called Penrose’s proposal. Chapter 8 gives a derivation

and detailed discussion of the main tool of this book, the conformal Einstein

field equations. Several versions of the equations are considered – metric, frame,

spinorial and in terms of Weyl connections. Chapter 9 complements Chapter

8 and describes matter models amenable to treatment by means of conformal

methods. Several of the main results of this book for the vacuum case can

be generalised by including these matter models. Chapter 10 provides a brief

discussion of the formal theory of the asymptotics of spacetime – sometimes also

called asymptopia. This is a vast topic with a sprawling literature. It is thus

impossible to do full justice to the subject in a concise chapter. Accordingly, the

decision has been made to restrict the material to aspects of the subject which

motivate the later parts of the book.

Part III (Methods of PDE theory) provides an account of PDE and spinorial

methods that will be used systematically in Part IV to obtain statements about

the existence of various types of solutions to the Einstein field equations. Chapter

11 provides a discussion of the constraint equations implied by the conformal

Einstein field equations on spacelike and timelike hypersurfaces – the so-called

conformal constraint equations. The proper discussion of this material requires

the introduction of certain notions of elliptic PDE theory. This is done at various

places in the chapter. Chapter 12 provides a discussion of the methods of the

theory of hyperbolic PDEs which will be used in the latter parts of the book. This

chapter has been written with the applications in Part IV in mind and covers

basic local existence and uniqueness results for initial value, boundary value

and characteristic initial value problems. Chapter 13 discusses in detail various

hyperbolic reduction procedures for the conformal Einstein field equations by

means of spinorial methods. The analysis is not restricted to the evolution

systems, but also considers the subsidiary evolution equations required to prove

the propagation of the constraints. Part III of the book concludes with Chapter
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14 where a brief discussion of Lorentzian causality and key aspects of the Cauchy

problem in general relativity are given.

Part IV (Applications) is concerned with applications of the conformal Ein-

stein field equations to the analysis of the existence of asymptotically simple

spacetimes. Chapter 15 analyses the global existence and stability of de Sitter-

like spacetimes; see Theorem 1.3. Two different proofs are provided: the first

one makes use of the standard conformal field equations and gauge source

functions, and the second one relies on the extended conformal field equations

and conformal Gaussian systems. Chapter 16 provides a proof of the semiglobal

existence and stability result for hyperboloidal initial data for the Minkowski

spacetime and a detailed analysis of the structure of the conformal boundary of

the resulting spacetimes; see Theorem 1.5. Chapter 17 provides a discussion of

the construction of anti-de Sitter-like spacetimes by means of an initial boundary

value problem; see Theorem 1.5. Chapter 18 discusses a different setting for the

construction of solutions to the conformal field equations, that of asymptotic

characteristic initial value problems either on intersecting null hypersurfaces (one

of them representing null infinity) or on a cone (representing past null infinity).

Chapter 19 analyses the properties of static solutions by means of conformal

methods. The main purpose of this chapter is to pave the way for the discussion

of the problem of spatial infinity, which is analysed in Chapter 20. In particular,

a discussion of the construction of the so-called cylinder at spatial infinity is

provided.

The book concludes with Chapter 21, which provides a subjective selection of

open problems in mathematical general relativity where it is felt that the use of

conformal methods can provide fresh insights.

Further reading sections. Each chapter provides a brief literature survey. The

purpose of this is to provide the interested reader a convenient point of entry into

the literature in case more details or an alternative perspective on the subject

are required.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


Part I

Geometric tools
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2

Differential geometry

The language of general relativity is differential geometry. The present chapter

provides a brief review of the ideas and notions of differential geometry that

will be used in this book. It also serves the purpose of setting the notation and

conventions. The chapter assumes a prior knowledge of the subject at the level,

say, of the first chapter of Choquet-Bruhat (2008) or Stewart (1991), or chapters

2 and 3 of Wald (1984). In view of the applications in later parts of this book,

some topics which may not be regarded as belonging to the standard baggage

of a relativist are discussed in some detail – for example, general (i.e. non-Levi-

Civita) connections, the so-called 1+3 split of tensors – that is, a split based on

a congruence of timelike curves, rather than on a foliation, as in the usual 3 + 1

– and the analysis of the geometry of submanifolds using a frame formalism.

2.1 Manifolds

The basic objects of study in differential geometry are differentiable manifolds.

Intuitively, a manifold is a space that, locally, looks like Rn for some n ∈ N.

Despite this simplicity at a small scale, the global structure of a manifold can be

much more complicated and leads to considerations of differential topology.

2.1.1 On the definition of a manifold

A differentiable function f between open sets U , V ⊂ Rn, f : U → V, is

called a diffeomorphism if it is bijective and if its inverse f−1 : V →
U is differentiable. If f and f−1 are Ck functions, then one has a Ck-

diffeomorphism. Furthermore, if f and f−1 are C∞ functions, one speaks of

a smooth diffeomorphism and one writes U ≈ V. Throughout this book, the
word smooth will be used as a synonym for C∞. The words function, map and

mapping will be used as synonyms of each other.

A topological space is a set with a well-defined notion of open and closed

sets. Given some topological space M, a chart on M is a pair (U , ϕ), with
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28 Differential geometry

U ⊂ M and ϕ a bijection from U to an open set ϕ(U) ⊂ Rn such that given

p ∈ U

ϕ(p) ≡ (x1, . . . , xn).

The entries x1, . . . , xn are called local coordinates of the point p ∈ U . The set

U is called the domain of the chart. Two charts (U1, ϕ1) and (U2, ϕ2) are said

to be Ck-related if the map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)

and its inverse are Ck. The map ϕ1 ◦ ϕ−1
2 defines changes of local coordinates

(xμ) = (x1, . . . , xn) �→ (yμ) = (y1, . . . , yn) in the intersection U1 ∩ U2; see

Figure 2.1. Thus, one can regard the coordinates (yμ) as functions of the

coordinates (xμ). All throughout this book the Greek letters μ, ν, . . . will be used

to denote coordinate indices. The functions yμ(x1, . . . , xn) are Ck and, moreover,

the Jacobian det(∂yμ/∂xν) is different from zero.

A Ck-atlas on M is a collection of charts whose domains cover the set M.

The collection of all Ck-related charts is called a maximal atlas. The pair

consisting of the space M together with its maximal Ck-atlas is called a Ck-

differentiable manifold. If the charts are C∞-related, one speaks of a smooth

differentiable manifold. If for each ϕ in the atlas, the map ϕ : U → Rn has

the same n, then the manifold is said to have dimension n. In what follows,

the discussion will be restricted to manifolds of dimension 3 and 4.

Remark. In introductory discussions of differential geometry one generally

considers smooth structures. However, as will be seen in later chapters, when

one looks at general relativity from the perspective of conformal geometry, the

R
n

R
n

U2U1

ϕ1 ϕ2

ϕ2 ◦ ϕ1
−1

Figure 2.1 Schematic representation of the change of coordinates between
charts – see the main text for further details. The figure is adapted from
Stewart (1991).
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2.1 Manifolds 29

smoothness (or lack thereof) encodes important physical content. Accordingly,

one is led to consider the more general class of Ck-differentiable manifolds.

The differentiable manifolds used in general relativity are generally assumed

to be Hausdorff and paracompact. A differentiable manifold is Hausdorff if

every two points in it admit non-intersecting open neighbourhoods. The reason

for requiring the Hausdorff condition is to ensure that a convergent sequence of

points cannot have more than one limit point. If M is paracompact, then there

exists a countable basis of open sets. Paracompactness is used in several basic

constructions in differential geometry. In particular, it is required to show that

every Riemannian manifold admits a metric. In what follows, all differentiable

manifolds to be considered will be assumed to be Hausdorff and paracompact.

Accordingly, in the rest of the book Hausdorff, paracompact differentiable

manifolds will be simply called manifolds.

Orientability

An open set of Rn is naturally oriented by the order of the coordinates (xμ) =

(x1, . . . , xn). Hence, a chart (U , ϕ) inherits an orientation from its image in Rn. In

an orientable manifold the orientation of these charts matches together properly.

More precisely, a manifold is said to be orientable if its maximal atlas is such

that the Jacobian of the coordinate transformation for each pair of overlapping

charts is positive.

An alternative description of the notion of orientability in terms of orthonormal

frames will be given in Section 2.5.3. Orientability is a necessary and sufficient

condition for the existence of a spinorial structure on M; see, for example,

Chapter 3.

2.1.2 Manifolds with boundary

Manifolds with boundary arise naturally when discussing general relativity from

the perspective of conformal geometry. In order to introduce this concept one

requires the following subsets of Rn:

Hn ≡ {(x1, · · · , xn) ∈ Rn | xn ≥ 0},
∂Hn ≡ {(x1, · · · , xn) ∈ Rn | xn = 0}.

One says that M is a manifold with boundary if it can be covered with charts

mapping open subsets of M either to open sets of Rn or to open subsets of Hn.

The boundary of M, ∂M, is the set of points p ∈ M for which there is a chart

(U , ϕ) with p ∈ U such that ϕ(U) ⊂ Hn and ϕ(p) ∈ ∂Hn. The boundary ∂M
is an (n − 1)-dimensional differentiable manifold in its own right. Hence, it is a

submanifold of M – see Section 2.7.1.
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30 Differential geometry

2.2 Vectors and tensors on a manifold

In order to probe the geometric properties of a manifold one needs vectors

and, more generally, tensors. This section provides a brief discussion of these

fundamental notions.

2.2.1 Some ancillary notions

Derivations

Denote by X(M) the set of scalar fields (i.e. functions) over M; that is,

smooth functions f : M → R.

Definition 2.1 (derivations) A derivation is a map D : X(M) → X(M)

such that:

(i) Action on constants. For all constant fields c, D(c) = 0.

(ii) Linearity. For all f, g ∈ X(M), D(f + g) = D(f) +D(g).

(iii) Leibnitz rule. For all f, g ∈ X(M), D(fg) = D(f)g + fD(g).

The connection between derivations and covariant derivatives is discussed in

Section 2.4.1.

Curves

The notion of a vector is intimately related to that of a curve. Given an open

interval I = (a, b) ⊂ R where either or both of a, b can be infinite, a smooth

curve on M is a map γ : I → M such that for any chart (U , ϕ), the composition

ϕ◦γ : I → Rn is a smooth map. One often speaks of the curve γ(s) with s ∈ (a, b);

s is called the parameter of the curve. If the domain (a, b) of a curve can be

extended to, say, [a, b] while keeping γ(s) smooth, one has an extendible curve.

A curve which is not extendible is called inextendible.

A tangent vector to a curve γ(s) at a point p ∈ M, to be denoted as γ̇(p),

is the map defined by

γ̇(p) : f �→ d

ds
(f ◦ γ)

∣∣
p
= γ̇(f)

∣∣
p
, f ∈ X(M).

Given a chart (U , ϕ) with local coordinates (xμ), the components of γ̇(p) with

respect to the chart are given by

ẋμ(p) ≡ d

ds
xμ(γ(s))

∣∣
p
.

In a slight abuse of notation the points of the curve γ will often be denoted by

x(s) ∈ M and its tangent vector by ẋ(s).
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2.2 Vectors and tensors on a manifold 31

2.2.2 Tangent vectors and covectors

To each point p ∈ M, one can associate a vector space T |p(M), the tangent

space at p consisting of all the tangent vectors at p. In what follows, the elements

of this space will be simply known as vectors. All throughout, vectors will

mostly be denoted with lowercase bold Latin letters: v, u, w, . . . Abstract index

notation will also be used to denote vectors; see Section 2.2.6. The tangent space

T |p(M) can be characterised either as the set of derivations at p of smooth

functions on M or as the set of equivalence classes of curves through p under

a suitable equivalence relation. With the first characterisation one considers the

vectors as directional derivatives, while with the second one they are considered

as velocities. If the dimension of the manifold M is n, then T |p(M) is a

vector space of dimension n. Local coordinates (xμ) in a neighbourhood of the

point p give a basis of T |p(M) consisting of the partial derivative operators

{∂/∂xμ}; where no confusion arises about which coordinates are meant, one

simply writes {∂μ}. In particular, for the vector tangent to a curve one has

that ẋ(s) = ẋμ(s)∂μ. In this last expression and in what follows, Einstein’s

summation convention has been adopted – that is, repeated up and down

coordinate indices indicate summation for all values of the range of the index.

That is,

ẋμ(s)∂μ ≡
n∑

μ=1

ẋμ(s)∂μ.

Covectors

The dual space T ∗|p(M), the cotangent space at p, is the vector space of

linear maps ω : T |p(M) → R. Generic elements of T ∗|p(M) will be denoted

by lowercase bold Greek letters: α, β, ω, . . . . Being dual to T |p(M), the space

T ∗|p(M) has also dimension n, and its elements are called covectors. If ω acts

on v ∈ T |p(M), then one writes 〈ω,v〉 ∈ R.

Given f ∈ X(M), for each v ∈ T |p(M), one has that v(f) is a scalar. Hence,

f defines a map, the differential of f , df : T |p(M) → R via

df(v) = v(f).

As a consequence of the linearity of v one has that df is linear, and thus df ∈
T ∗|p(M). Given a chart (U , ϕ) with coordinates (xμ), the coordinate differentials

dxμ form a basis for T ∗|p(M), the so-called dual basis . The dual basis satisfies

〈dxμ,∂ν〉 = δν
μ, where δν

μ is the so-called Kronecker’s delta . It follows that

every covector ω at p ∈ M can be written as ω = 〈ω,∂μ〉dxμ.

Bases

The previous discussion is extended in a natural way to more general bases. Given

any basis {ea} of T |p(M), its dual basis {ωb} of T ∗|p(M) is defined by the
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32 Differential geometry

condition 〈ωb, ea〉 = δa
b. In the rest of the book, lowercase bold indices such as

a, b, . . . denote spacetime frame indices ranging 0, . . . ,3. These will be used

when working with four-dimensional manifolds. The lowercase bold Latin letters

i, j, k, . . . will range, depending on the context, over either 0, 1, 2 or 1, 2, 3.

For simplicity of presentation, and unless explicitly stated, a four-dimensional

manifold will be assumed in the subsequent discussion.

Given another pair of bases {ẽa} and {ω̃b} of T |p(M) and T ∗|p(M),

respectively, these are related to the bases {ea} and {ωb} by non-singular

matrices (Aa
b) and (Aa

b) such that

ẽa = Aa
beb, ω̃a = Aa

bω
b, (2.1)

satisfying Aa
bA

b
c = δc

a so that (Aa
b) and (Aa

b) are inverses of each other. In

these last expressions and in what follows, Einstein’s summation convention

for repeated contravariant and covariant frame indices has been adopted so that

a sum from b = 0 to b = 3 is implied.

Condition (2.1) ensures that the new bases {ẽa} and {ω̃b} are dual to each

other; that is, 〈ω̃b, ẽa〉 = δa
b. Given v ∈ T |p(M), α ∈ T ∗|p(M), the above

transformation rules for the bases imply

v = vaea = ṽaẽa = (ṽaAa
b)eb,

α = αaω
a = α̃aω̃

a = (α̃aA
a
b)ω

b.

The two bases are said to have the same orientation if det(Aa
b) > 0.

2.2.3 Higher rank tensors

Higher rank tensors can be constructed using elements of T |p(M) and

T ∗|p(M) as basic building blocks. A contravariant tensor of rank k at the

point p is a multilinear map

M : T ∗|p(M)× · · · × T ∗|p(M)︸ ︷︷ ︸
k terms

−→ R,

that is, a function taking k covectors as arguments. Similarly, a covariant

tensor of rank l at the point p is a multilinear map

N : T |p(M)× · · · × T |p(M)︸ ︷︷ ︸
l terms

−→ R,

that is, a function taking l vectors as arguments. More generally, one can also

have tensors of mixed type : a (k, l) tensor at p is a multilinear map

T : T ∗|p(M)× · · · × T ∗|p(M)︸ ︷︷ ︸
k terms

×T |p(M)× · · · × T |p(M)︸ ︷︷ ︸
l terms

−→ R,

so that T takes k covectors and l vectors as arguments. In particular, a (k, 0)-

tensor corresponds to a contravariant tensor of rank k, while a (0, l)-tensor is
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2.2 Vectors and tensors on a manifold 33

a covariant tensor of rank l. The space of (k, l)-tensors at the point p will

be denoted by T k
l |p(M). In particular, one has the identifications T 1|p(M) =

T |p(M) and T1|p(M) = T ∗|p(M). Formally, the space T k
l |p(M) is obtained as

the tensor product of k copies of T ∗|p(M) and l copies of T |p(M). That is, one

has that

T k
l |p(M) = T |p(M)⊗ · · · ⊗ T |p(M)︸ ︷︷ ︸

k terms

⊗T ∗|p(M)⊗ · · · ⊗ T ∗|p(M)︸ ︷︷ ︸
l terms

.

The ordering given in the previous expression is known as the standard order.

Notice, however, that an arbitrary tensor does not need not to have its arguments

in standard order.

As an example of the previous discussion consider v ∈ T |p(M) and α ∈
T ∗|p(M). Their tensor product v ⊗α is then defined by

(v ⊗α)(u,β) = 〈β,v〉〈α,u〉, u ∈ T |p(M), β ∈ T ∗|p(M). (2.2)

One readily sees that v⊗α is a bilinear map and thus a (1, 1)-tensor at p ∈ M.

The action of the tensor product given in Equation (2.2) can be extended directly

to an arbitrary (finite) number of tensors and covectors. If {ea} and {ωb} denote,
respectively, bases of T |p(M) and T ∗|p(M), then a basis of T k

l |p(M) is given by

{eb1
⊗ · · · ⊗ ebk

⊗ ωa1 ⊗ · · · ⊗ ωal}.

The collection of all the tensor spaces of the form T k
l |p(M) is called the tensor

algebra at p and will be denoted by T •|p(M). The tensor algebra is defined by

means of a direct sum.

Symmetries of tensors

A covariant tensor of rank l, say, S, is said to be symmetric with respect to its

ith and jth arguments if

S(v1, . . . ,vi, . . . ,vj , . . . ,vl) = S(v1, . . . ,vj , . . . ,vi, . . . ,vl). (2.3)

Similarly, A it is said to be antisymmetric if

A(v1, . . . ,vi, . . . ,vj , . . . ,vl) = −A(v1, . . . ,vj , . . . ,vi, . . . ,vl). (2.4)

If the properties (2.3) and (2.4) hold under interchange of any arbitrary pair

of indices, one says that S is totally symmetric and A is totally antisym-

metric, respectively. The above definitions can be extended to contravariant

tensors of arbitrary rank. A totally antisymmetric covariant tensor of rank l is

also called an l-form . Symmetry properties of tensors are best expressed in

terms of abstract index notation.
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34 Differential geometry

2.2.4 Tensor fields

The discussion in the previous subsections concerned the notion of a tensor at

a point p ∈ M. The tensor bundle over M, T•(M), is the disjoint union of

the tensor algebras T •|p(M) for all p ∈ M:

T•(M) ≡
∐
p∈M

T •|p(M).

The disjoint union emphasises that although for p, q ∈ M, p �= q, the spaces

T •|p(M) and T •|q(M) are isomorphic; they are regarded as different sets.

Important subsets of the tensor bundles are the tangent bundle and the

cotangent bundle given, respectively, by

T (M) ≡
∐
p∈M

T |p(M), T ∗(M) ≡
∐
p∈M

T ∗|p(M).

A smooth tensor field over M is a prescription of a tensor T ∈ T •|p(M) at

each p ∈ M such that when T is represented locally in a system of coordinates

around p, the corresponding components are smooth functions on the local

chart and, more generally, across the atlas. This idea can be naturally extended

to consider tensor fields which are not smooth but just Ck for some positive

integer k. An important property of tensor fields is that they are multilinear

over X(M). This property is often referred to as X-linearity. It can be used to

characterise tensors. More precisely, one has the following lemma which will be

used repeatedly (see Penrose and Rindler (1984) for a proof):

Lemma 2.1 (characterisation of tensors) A map

T : T ∗(M)× · · · × T ∗(M)× T (M)× · · · × T (M) → X(M)

is induced by a (k, l)-tensor field if and only if it is multilinear over X(M).

The discussion of tensor fields and the tensor bundle is naturally carried out

using the language of fibre bundles ; see, for example, Kobayashi and Nomizu

(2009). This point of view will, however, not be used in this book.

2.2.5 The commutator of vector fields

Given u, v ∈ T (M), their commutator [u,v] ∈ T (M) is the vector field

defined by

[u,v]f ≡ u(v(f))− v(u(f)),

for f ∈ X(M). Given a basis {ea} one has that the components of the

commutator with respect to this basis are given by

[u,v]a = u(va)− v(ua), ua ≡ 〈ωa,u〉, va ≡ 〈ωa,v〉.
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2.2 Vectors and tensors on a manifold 35

One can readily verify that

[u,v] = −[v,u],

[u+ v,w] = [u,w] + [v,w],

[[u,v],w] + [[v,w],u] + [[w,u],v] = 0.

The last identity is known as the Jacobi identity – not to be confused with

the Jacobi identity for spinors, to be discussed in Chapter 3.

2.2.6 Abstract index notation for tensors

The presentation of tensors in this section has so far used an index-free

notation . In the sequel, the so-called abstract index notation will also be

used where convenient; see Penrose and Rindler (1984). To this end, lowercase

Latin indices will be employed. Accordingly, a vector field v ∈ T (M) will also be

written as va. Similarly, for α ∈ T ∗(M) one writes αa. More generally, a (k, l)-

tensor T will be denoted by T a1···ak
b1···bl . It is important to stress that the indices

in these expressions do not represent components with respect to some coordinates

or frame. These components are denoted, respectively, by Greek indices and bold

lowercase Latin indices such as in vμ and va. The role of the abstract indices is

to specify in a simple way the nature of the object under consideration and to

describe in a convenient fashion operations between tensors. In particular, the

action 〈α,v〉 of a 1-form on a vector is denoted in abstract index notation by

αav
a, while its tensor product α⊗ v is written as αav

b. Similarly, the operation

defined in Equation (2.2) is expressed as αau
aβbv

b.

The idea behind the use of abstract indices is to have a notation for tensorial

expressions that mirrors the expressions for their basis components (had a

basis been introduced). Using the index notation one can write only tensorial

expressions since no basis has been specified; see, for example, Wald (1984) for

a further discussion on this subject.

Each type of notation has its own advantages. In particular, the index-free

notation is better to describe conceptual and structural aspects, while the

abstract index notation is useful in explicit computations. In particular, the

abstract index notation allows the expression, in a convenient way, of tensors

whose arguments are not given in standard order as in Fab
c
d.

An operation which has a particularly convenient description in terms of

abstract indices is the contraction between a contravariant and a covariant

index. For example, given Fab
c
d, the contraction between the contravariant

index c and, say, the covariant index d is denoted by Fab
c
c. Following the

convention that repeated indices are dummy indices one has, for example, that

Fab
c
c = Fab

d
d. Given a basis {ea} and a cobasis {ωa}, their elements are

denoted, using abstract index notation, as ea
a and ωa

a, respectively. If Fab
c
d ≡

Fab
c
dea

aeb
bωc

ced
d denotes the components of Fab

c
d with respect to a basis {ea}

and its associated cobasis {ωa}, then the components of the contraction Fab
c
c
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36 Differential geometry

are given by Fab
c
c. Following Einstein’s summation convention, a sum on the

index c is understood. Although this definition is given in terms of components

with respect to a basis, the contraction is a geometric (i.e. coordinate- and base-

independent) operation transforming a tensor of rank (k, l) into a tensor of rank

(k − 1, l − 1).

Symmetries of tensors are expressed in a convenient fashion using abstract

index notation. For example, if Sab and Aab denote, respectively, symmetric and

antisymmetric covariant tensors of rank 2, then Sab = Sba and Aab = −Aba. More

generally, given Mab, its symmetric and antisymmetric parts are defined,

respectively, by the expressions

M(ab) ≡
1

2
(Mab +Mba), M[ab] ≡

1

2
(Mab −Mba).

The operations of symmetrisation and antisymmetrisation can be extended to

higher rank tensors. In particular, it is noticed that for a rank 3 covariant tensor

Tabc one has

T[abc] ≡
1

3!
(Tabc + Tbca + Tcab − Tacb − Tcba − Tbac).

If a tensor Sa1···al
is symmetric with respect to the indices a1, . . . , al, then one

writes Sa1···al
= S(a1···al). Similarly, if Aa1···al

is antisymmetric with respect to

a1, . . . , al, one writes Aa1···al
= A[a1···al] and Aa1···al

is said to be an l-form.

Consistent with the abstract index notation for tensors, it is convenient to

introduce a similar convention to denote the various tensor spaces. Accordingly

the bundle Tk
l (M) will, in the following, be denoted by Ta1···ak

b1···bl(M). In

particular, in this notation the tangent bundle T (M) is denoted by Ta(M),

while the cotangent bundle T ∗(M) is given by Ta(M).

A further discussion of the abstract index notation with specific remarks in

the treatment of spinors is given in Section 3.1.4.

2.3 Maps between manifolds

This section discusses maps between manifolds. In what follows let M and N
denote two manifolds. These manifolds could be the same.

2.3.1 Push-forwards and pull-backs

A map ϕ : N → M is said to be smooth (C∞) if for every smooth function

f ∈ X(M), the composition ϕ∗f ≡ f ◦ ϕ : N → R is also smooth. Given p ∈ N ,

let T |p(N ), T |ϕ(p)(M) denote, respectively, the tangent spaces at p ∈ N and

ϕ(p) ∈ M. The map ϕ : N → M induces a map ϕ∗ : T |p(N ) → T |ϕ(p)(M), the

push-forward, through the formula

(ϕ∗v)f(p) ≡ v(f ◦ ϕ)(p), v ∈ T |p(N ).

It can be readily verified that ϕ∗ so defined is a X-linear map; that is, given

v, u ∈ T |p(N ) and a function f ∈ X(M) one has ϕ∗(fv + u) = fϕ∗v + ϕ∗u.
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2.3 Maps between manifolds 37

Note that the above definition is made in a point-wise manner. Smooth vector

fields do not, in general, push forward to smooth vector fields, except in the case

of diffeomorphisms. For example, if ϕ is not surjective, then there is no way

of deciding which vector to assign to a point not on the image of ϕ. If ϕ is

not injective, then for some points of M, there may be several different vectors

obtained as push-forwards of a vector on N . However, given ϕ : N → M a

diffeomorphism, for every v ∈ T (N ) there exists a unique vector field on T (M)

obtained as the pull-back of v; see Lee (2002).

The push-forward ϕ∗ : T (N ) → T (M) can be used, in turn, to define a map

ϕ∗ : T ∗(M) → T ∗(N ), the pull-back, as

〈ϕ∗ω,v〉 ≡ 〈ω, ϕ∗v〉, ω ∈ T ∗(M), v ∈ T (N ).

Again, it can be readily verified that ϕ∗ so defined is X-linear: ϕ∗(fω + ζ) =

f∗ϕ∗ω + ϕ∗ζ for ω, ζ ∈ T ∗(M). The pull-back commutes with the differential

d; that is, ϕ∗(df) = d(ϕ∗f). Contrary to the case of push-forwards, pull-backs of

smooth covector fields always lead to smooth covector fields. There is no ambiguity

in the construction. In the case that ϕ : N → M is a diffeomorphism, then the

inverse pull-back (ϕ∗)−1 is well defined so that covectors can be pulled back from

T ∗(N ) to T ∗(M).

The operations of push-forward and pull-back can be extended in a natural

way, respectively, to arbitrary contravariant and covariant tensors. The case of

most relevance for the subsequent discussion is that of a covariant tensor of rank

2, g ∈ T2(M). Its pull-back ϕ∗g ∈ T2(N ) satisfies

(ϕ∗g)(u,v) = g(ϕ∗u, ϕ∗v), u, v ∈ T (N ).

2.3.2 Lie derivatives

Smooth maps of the manifold into itself, ϕ : M → M, lead to the notion of the

Lie derivative. Given a vector v, the Lie derivative £v measures the change

of a tensor field along the integral curves of v.

In what follows, let f ∈ X(M) denote a smooth function and u, v ∈ T (M),

α ∈ T ∗(M). The action of £v on functions and vectors is given by

£vf ≡ v(f), £vu ≡ [v,u].

The Lie derivative can be extended to act on covectors by requiring the Leibnitz

rule

£v〈α,u〉 = 〈£vα,u〉+ 〈α,£vu〉.

A coordinate expression can be obtained from the latter. The action of £v can

be extended to arbitrary tensor fields by means of the Leibnitz rule

£v(S ⊗ T ) = £vS ⊗ T + S ⊗£vT .
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38 Differential geometry

The reader interested in the derivation of the above expressions and their precise

relation to the notions of push-forward and pull-back of tensor fields is referred

to, for example, Stewart (1991) where a list of coordinate expressions for the

computation of the derivatives is also provided.

2.4 Connections, torsion and curvature

This section discusses the further structure required on a manifold to describe

the geometric notion of curvature – a key ingredient of the equations of general

relativity.

2.4.1 Covariant derivatives and connections

The notion of linear connection allows one to relate tensors at different points

of the manifold M.

Definition 2.2 (linear connection) A linear connection (connection for

short) is a map ∇ : T1(M)×T1(M) → T1(M) sending the pair of vector fields

(u,v) to a vector field ∇vu satisfying:

(i) ∇u+vw = ∇uw +∇vw

(ii) ∇u(v +w) = ∇uv +∇uw

(iii) ∇fuv = f∇uv

(iv) ∇u(fv) = u(f)v + f∇uv

for f ∈ X(M). The vector ∇uv is called the covariant derivative of v with

respect to u.

Any manifold admits a connection. In four dimensions this can be shown

through the specification of 43 functions on the spacetime manifold M; see,

for example, Willmore (1993). The reason behind this result becomes more

transparent once the so-called connection coefficients have been introduced; see

Section 2.6.

As a consequence of the requirement (iv) ∇uv is not X-linear in v; however, it

is X-linear in u. Thus, using Lemma 2.1 for a fixed second argument it defines a

mixed (1, 1)-tensor. Using abstract index notation the latter is denoted by ∇av
b,

so that ∇av
b ∈ Ta

b(M).

From the discussion in the previous paragraph it follows that one can regard

the connection ∇ as a map ∇a : Tb(M) → Ta
b(M). Moreover, a connection ∇

induces a map ∇a : Tb(M) → Tab(M) via

(∇aωb)v
b = ∇a(ωbv

b)− ωb(∇av
b).

This map is fixed if one requires the Leibnitz rule to hold between the product of

a vector and a covector. To extend the covariant derivative to arbitrary tensors

one uses again the Leibnitz rule. For example, from
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2.4 Connections, torsion and curvature 39

∇e(ωaT
a
bcdu

bvcwd) = (∇eωa)T
a
bcdu

bvcwd + ωa(∇eT
a
bcd)u

bvcwd

+ ωaT
a
bcd(∇eu

b)vcwd + ωaT
a
bcdu

b(∇ev
c)wd

+ ωaT
a
bcdu

bvc(∇ew
d),

it follows that

(∇eT
a
bcd)ωau

bvcwd = ∇e(ωaT
a
bcdu

bvcwd)− (∇eωa)T
a
bcdu

bvcwd

− ωaT
a
bcd(∇eu

b)vcwd − ωaT
a
bcdu

b(∇ev
c)wd

− ωaT
a
bcdu

bvc(∇ew
d),

so that one obtains a X-linear map Ta
bcd(M) → Te

a
bcd(M).

The subsequent discussion will make use of the commutator of covariant

derivatives. This is defined as

[∇a,∇b] ≡ 2∇[a∇b].

One has that

[∇a,∇b](TA + SA) = [∇a,∇b]TA + [∇a,∇b]SA,

[∇a,∇b](TARB) = ([∇a,∇b]TA)RB + TA([∇a,∇b]RB),

where A and B denote an arbitrary string of (covariant and contravariant) indices.

Covariant derivatives and derivations on a manifold are related in a natural

way: given a derivation D and a connection ∇ on M there exists a unique

v ∈ T (M) such that Df = va∇af for any f ∈ X(M) ; see, for example, O’Neill

(1983).

2.4.2 Torsion of a connection

The notion of torsion arises from the analysis of the action of the commutator of

covariant derivatives on scalar fields. For convenience the abstract index notation

is used. Consider xab ∈ Tab(M) and f, g ∈ X(M). One readily has that

xab[∇a,∇b](f + g) = xab[∇a,∇b]f + xab[∇a,∇b]g,

xab[∇a,∇b](fg) = (xab[∇a,∇b]f)g + f(xab[∇a,∇b]g).

It follows from the latter that the operator xab[∇a,∇b] must be a derivation; see

Definition 2.1. Thus, there exists ua ∈ Ta(M) such that

xab[∇a,∇b] = ua∇a. (2.5)

The map xab �→ ua∇a defined by Equation (2.5) is X-linear. It defines a tensor

Σ, the torsion tensor of the connection ∇, via uc = xabΣa
c
b. Hence,

∇a∇bf −∇b∇af = Σa
c
b∇cf, f ∈ X(M). (2.6)
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40 Differential geometry

One readily sees that

Σa
c
b = −Σb

c
a.

That is, the torsion is an antisymmetric tensor. If a connection ∇ is such that

Σa
c
b = 0, then it is said to be torsion-free.

Remark. Alternatively, one could have defined the torsion via the relation

Σ(u,v) = ∇uv −∇vu− [u,v], u, v ∈ T (M). (2.7)

2.4.3 Curvature of a connection

In order to discuss the notion of curvature of a connection it is convenient to

define the modified commutator of covariant derivatives

�∇a,∇b� ≡ [∇a,∇b]− Σa
c
b∇c.

Clearly, one has that �∇a,∇b�f = 0 for f ∈ X(M) so that

�∇a,∇b�(fTA) = f�∇a,∇b�TA,

for A denoting an arbitrary string of covariant or contravariant indices. In

particular, one has that

�∇a,∇b�(fu
c) = f�∇a,∇b�u

c,

�∇a,∇b�(u
c + vc) = �∇a,∇b�u

c + �∇a,∇b�v
c.

From the previous expressions one concludes that the map ud �→ �∇a,∇b�u
d is

X-linear. Thus, using Lemma 2.1 it defines a tensor field Rd
cab, the Riemann

curvature tensor of the connection ∇. One writes

�∇a,∇b�u
d = ([∇a,∇b]− Σa

c
b∇c)u

d = Rd
cabu

c. (2.8)

Alternatively, one has that

(∇a∇b −∇b∇a)u
d = Rd

cabu
c +Σa

c
b∇cu

d.

The antisymmetry of �∇a,∇b� on the indices a and b is inherited by the Riemann

curvature tensor, so that

Rd
cab = −Rd

cba.

The action of the commutator of covariant derivatives can be extended to

other tensors using the Leibnitz rule. For example, from

�∇a,∇b�(ωdv
d) = (�∇a,∇b�ωd) v

d + ωd�∇a,∇b�v
d,

one can conclude that

(∇a∇b −∇b∇a)ωd = −Rc
dabωc +Σa

c
b∇cωd.
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Similarly, evaluating �∇a,∇b�(S
d
efωdu

evf ), one concludes that

(∇a∇b −∇b∇a)S
d
ef = Rd

cabS
c
ef −Rc

eabS
d
cf −Rc

fabS
d
ec +Σa

c
b∇cS

d
ef .

Remark. The curvature can be defined in an alternative way via the relation

Riem(u,v)w = ∇u∇vw −∇v∇uw −∇[u,v]w, u, v, w ∈ T (M), (2.9)

where the expression Riem(u,v)w corresponds to Rd
cabw

cuavb in abstract

index notation.

Bianchi identities

In order to investigate further symmetries of the curvature tensor, consider the

triple derivative ∇[a∇b∇c]f of f ∈ X(M). A computation shows, on the one

hand, that

2∇[a∇b∇c]f = 2∇[[a∇b]∇c]f = [∇[a,∇b]∇c]f

= Σ[a
d
b∇|d|∇c]f −Rd

[cab]∇df,

and on the other hand that

2∇[a∇b∇c]f = 2∇[a∇[b∇c]]f

= ∇[a[∇b,∇c]]f = ∇[a

(
Σb

d
c]∇df

)
= ∇[aΣb

d
c]∇df +Σ[b

d
c∇a]∇df.

Putting these two computations together and using the definition of the torsion

tensor, Equation (2.6), one concludes that

∇[aΣb
d
c]∇df +Rd

[cab]∇df +Σ[a
d
bΣc]

e
d∇ef = 0.

As the scalar field f is arbitrary, one concludes that

Rd
[cab] +∇[aΣb

d
c] +Σ[a

e
bΣc]

d
e = 0. (2.10)

This is the so-called first Bianchi identity . In the case of a torsion-free

connection it takes the familiar form

Rd
[cab] = 0.

As a consequence of the antisymmetry in the last two indices, the latter can be

written as

Rd
cab +Rd

abc +Rd
bca = 0.
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42 Differential geometry

Next, consider the action of ∇[a∇b∇c] on a vector field vd. As in the case of

the first Bianchi identity, one can compute this object in two different ways. On

the one hand, one has that

2∇[a∇b∇c]v
d = 2∇[[a∇b]∇c]v

d

= [∇[a,∇b]∇c]v
d

= �∇[a,∇b�∇c]v
d +Σ[a

e
b∇|e|∇c]v

d

= −Re
[cab]∇ev

d +Rd
e[ab∇c]v

e +Σ[a
e
b∇|e|∇c]v

d,

and on the other hand that

2∇[a∇b∇c]v
d = 2∇[a∇[b∇c]]v

d

= 2∇[a�∇b,∇c]�v
d +∇[a

(
Σb

e
c]∇ev

d
)

= ∇[aR
d
|e|bc]v

e +Rd
e[bc∇a]v

e +∇[aΣb
e
c]∇ev

d +Σ[b
e
c∇a]∇ev

d.

Equating the two expressions for 2∇[a∇b∇c]v
d and using the first Bianchi

identity, Equation (2.10), to eliminate covariant derivatives of the torsion tensor

one concludes that

∇[aR
d
|e|bc] +Σ[a

f
bR

d
|e|c]f = 0. (2.11)

This is the so-called second Bianchi identity . For a torsion-free connection

one obtains the well-known expression

∇[aR
d
|e|bc] = 0. (2.12)

2.4.4 Change of connection

Consider two connections ∇ and ∇̄ on the manifold M. A natural question to

be asked is whether there is any relation between these connections and their

associated torsion and curvature tensors. By definition one has that

(∇̄a −∇a)f = 0, f ∈ X(M).

Moreover, one also has that

(∇̄a −∇a)(fv
a) = f(∇̄a −∇a)v

a.

It follows that the map vb �→ (∇̄a −∇a)v
a is X-linear, so that, invoking Lemma

2.1, there exists a tensor field, the transition tensor Qa
b
c, such that

(∇̄a −∇a)v
b = Qa

b
cv

c. (2.13)

Now, from

(∇̄a −∇a)(ωbv
b) = 0,

one readily concludes that

(∇̄a −∇a)ωb = −Qa
c
bωc. (2.14)
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A different choice of covariant derivatives gives rise to a different choice of

transition tensor. The set of connections over a manifold M is an affine space:

given a connection ∇ on the manifold, any other connection can be obtained by

a suitable choice of transition tensor. If Q denotes the index-free version of the

tensor Qa
b
c, then the relation between the connection ∇ and ∇̄ will be denoted,

in a schematic way, as

∇̄−∇ = Q.

In Chapter 5 specific forms for the transition tensor will be investigated.

Transformation of the torsion and the curvature

A direct computation using Equations (2.6) and (2.13) renders the following

relation between the torsion tensors of the connections ∇̄ and ∇:

Σ̄a
c
b − Σa

c
b = −2Q[a

c
b]. (2.15)

In particular, it follows that if Qa
c
b =

1
2Σa

c
b, then Σ̄a

c
b = 0. That is, it is always

possible to construct a connection which is torsion-free.

An analogous, albeit lengthier computation using Equations (2.6) and (2.8)

renders the following relation between the respective curvature tensors:

R̄c
dab −Rc

dab = 2∇[aQb]
c
d − Σa

e
bQe

c
d + 2Q[a

c
|e|Qb]

e
d. (2.16)

2.4.5 The geodesic and geodesic deviation equations

Given a covariant derivative ∇, one can introduce the notion of parallel

propagation . Given u, v ∈ T (M), then u is said to be parallely propagated in

the direction of v if it satisfies the equation ∇vu = 0.

A geodesic γ ⊂ M is a curve whose tangent vector is parallely propagated

along itself. Following the convention of Section 2.2.1, let ẋ denote the tangent

vector to γ. One has that

∇ẋẋ = 0. (2.17)

A congruence of geodesics is the set of integral curves of a vector field

ẋ satisfying Equation (2.17). Any vector z such that [ẋ, z] = 0 is called a

deviation vector of the congruence of geodesics. Assuming that the connection

∇ is torsion-free so that ∇ẋz = ∇zẋ, a computation shows that z satisfies the

geodesic deviation equation

∇ẋ∇ẋz = Riem(ẋ, z)ẋ.

Remark. The set of geodesics emanating from a point p ∈ M allows one to

define a diffeomorphism between a neighbourhood of the origin of T |p(M) and a

suitably small neighbourhood U of p, the so-called exponential map. A precise
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44 Differential geometry

definition of the exponential map is given in Section 11.6.2. Further properties

and applications are given in Sections 14.2 and 18.4.1.

2.5 Metric tensors

A metric on the manifold M is a symmetric rank 2 covariant tensor field g

– to be denoted by gab in abstract index notation. The metric tensor g is said

to be non-degenerate if g(u,v) = 0 for all u if and only if v = 0. In the

sequel, and unless otherwise explicitly stated, it is assumed that all the metrics

under consideration are non-degenerate. If g(u,v) = 0, then the vectors u and

v are said to be orthogonal . Pointwise, the components gab ≡ g(ea, eb) with

respect to a basis {ea} define a symmetric (n× n)-matrix (gab). As this matrix

is symmetric, it has n real eigenvalues. The signature of g is the difference

between the number of positive and negative eigenvalues. If the signature is n or

−n, then g is said to be a Riemannian metric. If the signature is ±(n − 2),

then g is a Lorentzian metric.

From the non-degeneracy of g it follows that there exists a unique contravariant

rank 2 tensor to be denoted by either g� or gab such that

gabg
bc = δa

c.

In terms of components with respect to a basis this means that the matrices (gab)

and (gab) are inverses of each other. Accordingly, g� is also non-degenerate and

one obtains an isomorphism between the vector spaces T |p(M) and T ∗|p(M).

More precisely, given v ∈ T |p(M), then v� ≡ g(v, ·) ∈ T ∗|p(M) as g(u,v) ∈
R for any u ∈ T |p(M). Similarly, given ω ∈ T ∗|p(M), one has that ω� ≡
g�(ω, ·) ∈ T |p(M). In terms of abstract indices, the operations � (flat) and �

(sharp) correspond to the operations of lowering and raising of indices by

means of gab and gab:

va ≡ gabv
b, ωa ≡ gabωb.

The operations � and � are inverses of each other. They can be extended in a

natural way to tensors of arbitrary rank.

Given two manifolds M and M̄ with metrics g and ḡ, respectively, a

diffeomorphism ϕ : M → M̄ is called an isometry if ϕ∗ḡ = g. If an isometry

exists, then the pairs (M, g) and (M̄, ḡ) are said to be isometric. If M = M̄
and g = ḡ, one speaks of an isometry of M.

Remark. Most of the Lorentzian metrics to be considered in this book will

be associated to four-dimensional manifolds. These Lorentzian metrics will

be assumed to have signature −2. This convention leads one to consider

three-dimensional negative-definite Riemannian metrics, that is, metrics with

signature −3. In this book, only three-dimensional Riemannian manifolds will be

considered. In the sequel, the symbol g will be used to denote a generic Lorentzian

metric, while h will be used for a generic negative-definite Riemannian metric.
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Specifics for Lorentzian metrics

Following the standard terminology of general relativity, a pair (M, g) consisting

of a four-dimensional manifold and a Lorentzian metric will be called a

spacetime . The metric g can be used to classify vectors in a pointwise manner

as timelike, null or spacelike depending on whether g(v,v) > 0, g(v,v) = 0

or g(v,v) < 0, respectively. A basis {ea} is said to be orthonormal if

g(ea, eb) = ηab, ηab ≡ diag(1,−1,−1,−1).

It follows that g can be written as

g = ηabω
a ⊗ ωb, (2.18)

where {ωa} denotes the coframe dual to {ea}. A change of basis, as given by

Equation (2.1), preserving Equation (2.18), is called a Lorentz transforma-

tion. A calculation readily shows that for a Lorentz transformation one has

that

ηabA
a
cA

b
d = ηcd.

Further aspects of Lorentz transformations are discussed in Sections 3.1.9, 3.1.12

and 5.1.1.

The set of null vectors at a point p ∈ M is called the null cone at p and will

be denoted by Cp. By definition timelike vectors lie inside the null cone, while

spacelike ones lie outside it. The null cone is made of two half cones. If one of

these half cones can be singled out and called the future half cone C+
p and

the other the past half cone C−
p , then T |p(M) is said to be time oriented.

A timelike vector inside C+
p is said to be future directed ; similarly a timelike

vector inside C−
p is called past directed . If T (M) can be time oriented in a

continuous manner for all p ∈ M, then (M, g) is said to be a time-oriented

spacetime . A curve γ ⊂ M with a timelike, future-oriented tangent vector ẋ is

said to be parametrised by its proper time if g(ẋ, ẋ) = 1.

Specifics for Riemannian metrics

A Riemannian metric h endows the tangent spaces of the manifold with an inner

product. Because of the signature conventions, this inner product is negative

definite. A basic result of Riemannian geometry is that every differential manifold

admits a Riemannian metric. The proof of this argument relies heavily on the

paracompactness of the manifold; see, for example, Choquet-Bruhat et al. (1982).

In the case of a Riemannian metric h, a basis {ei} is said to be orthonormal if

h(ei, ej) = −δij , δij ≡ diag(1, 1, 1).

Thus, using the associated coframe basis {ωi} one can write

h = −δijω
i ⊗ ωj .
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46 Differential geometry

2.5.1 Metric connections and Levi-Civita connections

Two further conditions which are usually required from a connection are metric

compatibility and torsion-freeness. In this section the consequences of these

assumptions are briefly reviewed.

Metric connections

A connection ∇ on M is said to be metric with respect to g if ∇g = 0 (i.e.

∇agbc = 0). The Riemann curvature tensor of the connection ∇ acquires, by

virtue of the metricity condition, a further symmetry. This can be better seen

by applying the modified commutator �∇a,∇b� to the metric gab. On the one

hand, by the assumption of metricity one has �∇a,∇b�gcd = 0, while on the other

hand

�∇a,∇b�gcd = −Re
cabged −Re

dabgce = −Rdcab −Rcdab,

where Rdcab ≡ gdeR
e
cab. Hence, one concludes that

Rcdab = −Rdcab. (2.19)

The Levi-Civita connection

A connection ∇ is said to be the Levi-Civita connection of the metric g

if ∇ is torsion-free and metric with respect to g. The Fundamental Theorem of

Riemannian Geometry (also valid in the Lorentzian case) ensures that the Levi-

Civita connection of a metric g is unique. The proof of this result is well known

and readily available in most books on Riemannian geometry; see, for example,

Choquet-Bruhat et al. (1982). The Levi-Civita connection ∇ of the metric g is

characterised by the so-called Koszul formula

2g(∇vu,w) = v(g(u,w)) + u(g(w,v))−w(g(v,u))

− g(v, [u,w]) + g(u, [w,v]) + g(w, [v,u]). (2.20)

Of particular interest are the further symmetries that the Riemann tensor

of a Levi-Civita connection possesses. First of all, because of the metricity, the

curvature tensor has the symmetry given in Equation (2.19). Furthermore, as

the connection is torsion-free, the first Bianchi identity implies Rc[dab] = 0. From

the latter one readily has that

2Rcdab = Rcdab +Rdcba

= −Rcabd −Rcbda −Rdbac −Rdacb

= −Racdb −Rbcad −Rbdca −Radbc

= Rabcd +Rbadc.
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2.5 Metric tensors 47

Hence, one recovers the well-known symmetry of interchange of pairs

Rcdab = Rabcd.

Characterisation of flatness

An open subset U ⊂ M of a spacetime (M, g) is said to be flat if the metric g

on U is isometric to the Minkowski metric

η ≡ ημνdx
μ ⊗ dxν , (ημν) ≡ diag(1,−1,−1,−1).

In the case of a three-dimensional Riemannian manifold (S,h), flatness implies

a local isometry with the three-dimensional Euclidean metric

δ ≡ −δαβdx
α ⊗ dxβ , (δαβ) ≡ diag(1, 1, 1).

The Riemann tensor of a Levi-Civita connection provides a local characterisation

of the flatness of a manifold. More precisely, a metric is flat on U if and only

if its Riemann tensor vanishes on U . The if part of the result follows by direct

evaluation of the Riemann tensor. The only if part is more complicated; see, for

example, Choquet-Bruhat et al. (1982), page 310 for a proof.

Traces

A metric g on a manifold M allows one to introduce a further operation on

tensors which reduces their rank by 2 – the trace with respect to g. Given

T ∈ T2(M), its trace, trgT , is the scalar described in abstract index notation by

gabTab. Observing that gabTab = T a
a, one sees that taking the trace of a tensor is

a generalisation of the operation of contraction. The operation of taking the trace

can be generalised to any pair of indices of the same type in an arbitrary tensor

– for example, gacMabcd and gbcMabcd denote the traces of Mabcd with respect

to the first and third arguments and the second and third ones, respectively.

Given a symmetric tensor on a four-dimensional manifold M, Tab = T(ab) ∈
Tab(M), its trace-free part T{ab} is given by

T{ab} ≡ Tab −
1

4
gabg

cdTcd.

In the case of a three-dimensional manifold S with metric h, the above definition

has to be modified to

T{ij} ≡ Tij −
1

3
hijh

klTkl,

for a symmetric tensor Tij ∈ Tij(S). The operation of taking the trace-free part

of a tensor can be extended to tensors of arbitrary rank. Unfortunately, the

expressions to compute them become increasingly cumbersome. A more efficient

approach to describe this operation is in terms of spinors; see Chapters 3 and 4.

A tensor Ma1···ak
is said to be trace-free if Ma1···ak

= M{a1···ak}.
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48 Differential geometry

2.5.2 Decomposition of the Riemann tensor

In what follows, consider a spacetime (M, g) and a connection ∇̄ on M – not

necessarily the Levi-Civita connection of the metric g. Let R̄a
bcd denote the

Riemann curvature tensor of the connection ∇̄. A concomitant of R̄a
bcd is any

tensorial object which can be constructed from the curvature tensor by means of

the operations of covariant differentiation and contraction with gab and gab. The

basic concomitant of R̄a
bcd is the Ricci tensor R̄cd defined by the contraction

R̄bd ≡ R̄a
bad.

When working in index-free notation the Ricci tensor will be denoted by Ric.

Using the contravariant metric gab one can define a further concomitant, the

Ricci scalar relative to the metric g, R̄, as

R̄ ≡ gbdR̄bd.

A concomitant of R̄a
bcd which will appear recurrently in this book is the

Schouten tensor relative to g, L̄ab. In four dimensions it is defined as

L̄ab =
1

2
R̄ab −

1

12
R̄gab.

The definition of the Schouten tensor is dimension dependent. The definition for

three dimensions will be discussed in Section 2.7. When working in index-free

notation the Schouten tensor will be denoted by Schouten. In the discussion of

spinors in Chapter 3 a further concomitant arises in a natural way: the trace-free

Ricci tensor Φ̄ab. In four dimensions one has that

Φ̄ab ≡
1

2
R̄{ab} =

1

2

(
R̄(ab) −

1

4
R̄gab

)
,

where the overall factor of 1
2 is conventional. It is important to observe that the

tensors R̄ab and L̄ab are not symmetric unless ∇̄ is a Levi-Civita connection.

Finally, one can define the Weyl tensor of ∇̄ relative to g, C̄a
bcd, as the fully

trace-free part of R̄a
bcd. When working in index-free notation the Weyl tensor

will be denoted by Weyl.

The case of a Levi-Civita connection

If ∇̄ is the Levi-Civita connection of the metric g, so that ∇̄ = ∇, it can be

shown that

Rc
dab = Cc

dab + 2(δc[aLb]d − gd[aLb]
c), (2.21a)

= Cc
dab + 2Sd[a

ceLb]e, (2.21b)

where

Sab
cd = δa

cδb
d + δa

dδb
c − gabg

cd.

This tensor will play a special role in the context of conformal geometry; see

Chapter 5. A spinorial derivation of this decomposition is provided in Chapter 3.
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2.5 Metric tensors 49

Remark. The decomposition given by Equations (2.21a) and (2.21b) is unique;

that is, the Rieman tensor cannot be reconstructed from any other combination

of the Schouten and Weyl tensors. Moreover, if Cc
dab = 0 and Lab = 0, then

necessarily Rc
dab = 0. These remarks also hold for the generalisations of the

decomposition to Weyl connections; see Section 5.3 and, in particular, Equation

(5.28a).

The Einstein tensor

An important concomitant of the Riemann tensor of a Levi-Civita connection ∇
is the Einstein tensor G defined in four dimensions by

Gab ≡ Rab −
1

2
Rgab.

Starting from the second Bianchi identity, Equation (2.12), contracting the

indices d and b and then contracting the resulting expression with gae yields

∇aRab =
1

2
∇bR, that is, ∇aGab = 0.

That is, the Einstein tensor is divergence-free.

2.5.3 Volume forms and Hodge duals

The spacetime volume form of the metric g, εabcd, is defined by the conditions

εabcd = ε[abcd], εabcdε
abcd = −24,

and

εabcde0
ae1

be2
ce3

d = 1,

where {ea} is a g-orthonormal frame. A spacetime (M, g) has a non-vanishing

volume element if and only if M is orientable; see, for example, O’Neill (1983);

Willmore (1993). The following properties can be directly verified:

εabcdε
pqrs = −24δa

[pδb
qδc

rδd
s], (2.22a)

εabcdε
pqrd = −6δa

[pδb
qδc

r], (2.22b)

εabcdε
pqcd = −4δa

[pδb
q], (2.22c)

εabcdε
pbcd = −6δa

p; (2.22d)

see, for example, Penrose and Rindler (1984). If ∇ denotes the Levi-Civita

covariant derivative of the metric g, one can then readily verify that ∇aεbcde = 0.

That is, the volume form is compatible with the Levi-Civita connection of the

metric g.
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50 Differential geometry

The Hodge duals

Given an antisymmetric tensor Fab = F[ab], one can use the volume form to

define its Hodge dual ∗Fab as

∗Fab ≡ −1

2
εab

cdFcd.

This definition can be naturally extended to any tensor with a pair of

antisymmetric indices. Using the identity (2.22c) one readily finds that

∗∗Fab = −Fab.

Of special relevance are the Hodge duals of the Riemann and Weyl tensors. If

Rabcd denotes the Riemann curvature of the Levi-Civita connection ∇, then one

can define a left dual and a right dual , respectively, by

∗Rabcd ≡ −1

2
εab

pqRpqcd, R∗
abcd ≡ −1

2
εcd

pqRabpq.

The Hodge dual can be used to recast the Bianchi identities in an alternative

way. More precisely, one has that

Ra[bcd] = δ[b
pδc

qδd]
rRapqr = −1

6
εsbcd (ε

spqrRapqr) =
1

3
εsbcdR

∗
ap

sp.

Thus, the first Bianchi identity Ra[bcd] = 0 is equivalent to

R∗
ab

cb = 0. (2.23)

Furthermore,

1

2
εf

abc∇[aR
d
|e|bc] = ∇a

(
1

2
εf

abcRd
ebc

)
= −∇aR

∗d
ef

a.

Thus, one has that

∇aR∗
abcd = 0.

Finally, it is noticed that the duals of the Weyl tensor satisfy

∗Cabcd = C∗
abcd.

Sometimes it is convenient to make use of operations of dualisation on

one or three indices. Given an arbitrary tensor Ja and another tensor Kabc

antisymmetric in abc one defines

†Jabc ≡ εabc
dJd,

‡Ka ≡ 1

6
εa

bcdKbcd. (2.24)

Using the properties of contractions of the volume form, it can be shown that

‡†Ja = Ja,
†‡Kabc = Kabc.

Further details on the calculations required to obtain all of the properties

discussed in this section can be found in Penrose and Rindler (1984).
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2.6 Frame formalisms 51

2.6 Frame formalisms

Frame formalisms have been used in many areas of relativity to analyse the

properties of the Einstein field equations and their solutions; see, for example,

Ellis and van Elst (1998); Ellis et al. (2012); Wald (1984). One of the advantages

of frame formalisms is that they lead to consider scalar objects and equations,

which are, in general, simpler to manipulate than their tensorial counterparts. A

further advantage of frames is that they lead to a straight forward transcription

of tensorial expressions into spinors; see Chapter 3.

The purpose of this section is to develop and fix the conventions of a frame

formalism used in Friedrich (2004).

2.6.1 Basic definitions and conventions

Given a spacetime (M, g), let {ea} denote a frame and let {ωb} denote its dual

coframe basis. For the time being, this frame is not assumed to be g-orthogonal.

By definition one has that

〈ωb, ea〉 = δa
b. (2.25)

In what follows, it will be assumed one has a connection ∇ which, for the time

being, is assumed to be general ; that is, it is not necessarily metric or torsion-

free. The connection coefficients of ∇ with respect to the frame {ea}, to be

denoted by Γa
b
c, are defined via

∇aeb = Γa
c
bec, (2.26)

where ∇a ≡ ea
a∇a denotes the covariant directional derivative in the

direction of ea. As ∇aeb is a vector, it follows that

〈ωc,∇aeb〉 = 〈ωc,Γa
d
bed〉 = Γa

d
b〈ωc, ed〉 = Γa

c
b.

This expression could have been used, alternatively, as a definition of the

connection coefficients. In order to carry out computations one also needs an

expression for ∇aω
b. By analogy with Equation (2.26) one can write ∇aω

b =

�a
b
cω

c. The coefficients �a
b
c can be expressed in terms of the connection

coefficients Γa
c
b by differentiating Equation (2.25) with respect to ∇d. Noting

that δa
b is a constant scalar one has, on the one hand, that

∇d(〈ωb, ea〉) = ed(〈ωb, ea〉) = ed(δa
b) = 0,

while, on the other hand, one has

∇d(〈ωb, ea〉) = 〈∇dω
b, ea〉+ 〈ωb,∇dea〉 =

(
�d

b
c + Γd

b
c

)
〈ωc, ea〉,

so that �d
b
c = −Γd

b
c. Consequently, one has

∇aω
b = −Γa

b
cω

c. (2.27)
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52 Differential geometry

It is observed that the specification of the 43 connection coefficients Γa
b
c fully

determines the connection ∇; a generalisation of this argument shows that every

manifold admits a connection; see, for example, Willmore (1993).

Consider now v ∈ T (M) and α ∈ T ∗(M). Writing the above in terms of the

frame and coframe, respectively, one has

v = vaea, va ≡ 〈ωa,v〉,
α = αaω

a, αa ≡ 〈α, ea〉.

In order to further develop the frame formalism it will be convenient to define

∇av
b ≡ 〈ωb,∇av〉, ∇aαb ≡ 〈∇aα, eb〉.

It follows from Equations (2.26) and (2.27) that

∇av
b = ea(v

b) + Γa
b
cv

c, ∇aαb = ea(αb)− Γa
c
bαc. (2.28)

The above expressions extend in the obvious way to higher rank components.

Notice, in particular, that

∇aδb
c = −Γa

d
bδd

c − Γa
c
dδb

d = −Γa
c
b + Γa

c
b = 0.

Metric connections

Now assume that the connection ∇ is g-compatible (i.e. ∇g = 0) and that the

frame {ea} is g-orthogonal; that is, g(ea, eb) = ηab. It follows then that

∇a (g(eb, ec)) = ea(ηbc) = 0

and that

∇ag(eb, ec) = g(∇aeb, ec) + g(eb,∇aec).

Thus, using Equation (2.26) one concludes that

Γa
d
b ηdc + Γa

d
c ηbd = 0. (2.29)

Finally, in the case of a Levi-Civita connection and with the choice of a coordi-

nate basis {∂μ}, the Koszul formula, Equation (2.20), shows that the connection

coefficients reduce to the classical expression for the Christoffel symbols:

Γμ
ν
λ =

1

2
gνρ(∂μgρλ + ∂λgμρ − ∂ρgμλ).
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2.7 Congruences and submanifolds 53

2.6.2 Frame description of the torsion and curvature

Following the spirit of the previous subsections, let

Σa
c
b ≡ ea

aeb
bωc

cΣa
c
b

denote the components of the torsion tensor Σa
c
b with respect to {ea} and

{ωa}. Given f ∈ X(M), a short computation shows that

Σa
c
bec(f) = ∇aeb(f)−∇bea(f)

= (eaeb(f)− Γa
c
bec(f))− (ebea(f)− Γb

c
aec(f))

= [ea, eb](f)− (Γa
c
b − Γb

c
a) ec(f),

where it has been used that ∇af = ea(f). Thus, one obtains that

Σa
c
bec = [ea, eb]− (Γa

c
b − Γb

c
a) ec. (2.30)

To obtain a frame description of the Riemann curvature tensor one makes use

of Equation (2.8) with uc = ed
c, and contracts with ea

aeb
bωc

d. One then has that

Rc
dab ≡ ea

aeb
bed

dωc
cR

c
dab.

Furthermore, one can compute

ea
aeb

bωc
c∇a∇bed

c = ωc
c∇a(∇bed

c)− ωc
c(∇aeb

b)(∇bed
c),

= ωc
c∇a(Γb

f
def

c)− ωc
cΓa

f
b∇fed

c

= ωc
cea(Γb

f
d)ef

c + ωc
cΓb

f
d∇aef

c − Γa
f
bΓf

c
d

= ea(Γb
c
d) + Γb

f
dΓa

c
f − Γa

f
bΓf

c
d.

A similar computation can be carried out for ea
aeb

bωc
c∇b∇aed

c so that one

obtains

Rc
dab = ea(Γb

c
d)− eb(Γa

c
d) + Γf

c
d(Γb

f
a − Γa

f
b)

+ Γb
f
dΓa

c
f − Γa

f
dΓb

c
f − Σa

f
bΓf

c
d. (2.31)

Remark. Equations (2.30) and (2.31) are sometimes known as the (Cartan)

structure equations. They can be conveniently expressed in the language of

differential forms; see, for example, Frankel (2003); Wald (1984).

2.7 Congruences and submanifolds

The formulation of an initial value problem in general relativity requires the

decomposition of tensorial objects in terms of temporal and spatial components.

This decomposition requires, in turn, an understanding of the way geometric

structures of the spacetime are inherited by suitable subsets thereof. For

concreteness, in what follows a spacetime (M, g) is assumed. Hence M is a

four-dimensional manifold and g denotes a Lorentzian metric.
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2.7.1 Basic notions

Submanifolds

Intuitively, a submanifold of M is a set N ⊂ M which inherits a manifold

structure fromM. A more precise definition of submanifolds requires the concept

of embedding. Given two smooth manifolds M and N , an embedding is a map

ϕ : N → M such that:

(a) The push-forward ϕ∗ : T |p(N ) → T |ϕ(p)(M) is injective for every point

p ∈ N .

(b) The manifold N is diffeomorphic to the image ϕ(N ).

In terms of the above, one defines a submanifold N of M as the image,

ϕ(S) ⊂ M, of a k-dimensional manifold S (k < 4) by an embedding ϕ : S →
M. Often it is convenient to identify N with ϕ(S) and denote, in an abuse of

notation, both manifolds by N . A three-dimensional submanifold of M is called

a hypersurface . In what follows, a generic hypersurface will be denoted by

S. As a consequence of its manifold structure, one can associate to S tangent

and cotangent bundles, T (S) and T ∗(S) and, more generally, a tensor bundle

T•(S).
A vector u (ui) on S can be associated to a vector of M by the push-forward

ϕ∗u. A vector on v ∈ T (M) is said to be normal to S if g(v, ϕ∗u) = 0 for

all u ∈ T (S). If ε ≡ g(v,v) = ±1, one speaks of a unit normal vector – in

this case the surface is said to be timelike if ε = −1 and spacelike if ε = 1.

A hypersurface S of a Lorentzian manifold M is orientable if and only if there

exists a unique smooth normal vector field on S; see, for example, O’Neill (1983).

A natural way of specifying a hypersurface is as the level surface of some

function f ∈ X(M). In this case one has that the gradient df ∈ T ∗(M) gives

rise to a normal vector (df)� ∈ T (M). The unit normal of S, ν (νa), is then

defined as a unit 1-form in the direction of df ; that is, g�(ν,ν) = ε. The normal

of S is defined in the restriction to S of the cotangent bundle T ∗(M). In the

case of a spacelike hypersurface, the normal constructed in this way is taken,

conventionally, to be future pointing.

Foliations

A foliation of a spacetime (M, g) is a family, {St}t∈R, of spacelike hypersurfaces

St, such that ⋃
t∈R

St = M, St1 ∩ St2 = Ø for t1 �= t2.

The hypersurfaces St are called the leaves or slices of the foliation. The foliation

{St}t∈R can be defined in terms of a scalar field f ∈ X(M) such that the leaves

of the foliation are level surfaces of f . That is, given p ∈ St, then f(p) = t. The

scalar field f is said to be a time function . In what follows, it will be convenient
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2.7 Congruences and submanifolds 55

to identify f and t. The normal of a foliation is a normalised vector field ν

orthogonal to each leaf of a foliation. The gradient dt provides a further 1-form

normal to the leaves. In general, one has that

ν = Ndt.

The proportionality factor N is called the lapse of the foliation.

Distributions

A distribution Π is an assignment at each p ∈ M of a k-dimensional subspace

Π|p of the tangent space T |p(M). The vector spaces Π|p are called hyperplanes

if their dimension is one less than that of M. A submanifold N of M such that

Π|p = T |p(N ) for all p ∈ N is said to be an integrable manifold of Π. If for

every p ∈ M there is an integrable manifold, then Π is said to be integrable.

One has the following result (see e.g. Choquet-Bruhat et al. (1982) for details):

Theorem 2.1 (Frobenius theorem) A distribution Π on M is integrable if

and only if for u, v ∈ Π, one has [u,v] ∈ Π.

The projector associated to the distribution Π is a tensor field ha
b

satisfying ha
bhb

c = δa
c such that for va ∈ T(M) one has that ha

bva ∈ Π.

2.7.2 Geometry of congruences

Integral curves

A curve γ : I → M is the integral curve of a vector v if the tangent vector

of the curve γ coincides with v. Standard theorems of the theory of ordinary

differential equations – see, for example, Hartman (1987) – ensure that, given

v ∈ T (M), for all p ∈ M there exists an interval I � 0 and a unique integral

curve γ : I → M of v such that γ(0) = p. If the domain of an integral curve is

R, then the integral curve is said to be complete .

Congruences

The notion of a congruence of geodesics has been discussed in Section 2.4.5. More

generally, a congruence of curves is the set of integral curves of a (nowhere

vanishing) vector field v on M. In the remaining part of this section it will be

assumed that the curves of a congruence are non-intersecting and timelike. This

will be the case of most relevance in this book. In what follows, t will denote

the vector field generating a timelike congruence. Without loss of generality it is

assumed that g(t, t) = 1.

As in previous sections let {ea} denote a g-orthonormal frame. The orthonor-

mal frame can be adapted to the congruence defined by the vector field t by
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setting e0 = t. Given a point p ∈ M, the tangent space T |p(M) is naturally

split in a part tangential to t, to be denoted by 〈t〉|p (the one-dimensional

subspace spanned by t), and a part orthogonal to it which will be denoted

by 〈t〉⊥|p = 〈ei〉|p (the three-dimensional subspace generated by {ei} with

i = 1, 2, 3). The space 〈t〉⊥|p is an example of a hyperplane. One writes then

T |p(M) = 〈t〉|p ⊕ 〈t〉⊥|p, (2.32)

where ⊕ denotes the direct sum of vectorial spaces – that is, any vector in

T |p(M) can be written in a unique way as the sum of an element in 〈t〉|p and

an element in 〈t〉⊥|p. Hence, one sees that the congruence generated by t gives

rise to a three-dimensional distribution Π. At every point p ∈ M, the subspace

Πp ⊂ T |p(M) corresponds to 〈ei〉|p; that is, {ei} is a basis of Πp. In the sequel,

〈t〉 and 〈t〉⊥ will denote, respectively, the disjoint union of all the spaces 〈t〉|p
and 〈t〉|⊥p , p ∈ M, and one has that Π = 〈t〉⊥. The Frobenius theorem, Theorem

2.1, gives the necessary and sufficient conditions for the distribution defined by

〈t〉|⊥p to be integrable; that is, for the vector t to be the unit normal of a foliation

{St} of the spacetime.

Making use of g� one obtains an analogous decomposition for the cotangent

space. Namely, one has that

T ∗|p(M) = 〈t�〉|p ⊕ 〈t�〉⊥|p, (2.33)

with 〈t�〉⊥|p = 〈ωi〉|p . The decompositions (2.32) and (2.33) can be extended

in a natural way to higher rank tensors by considering tensor products. Given

a tensor Tab with components with respect to the frame {ea} given by Tab,

one has that Tij ≡ ei
aej

bTab and T00 ≡ tatbTab correspond, respectively, to the

components of Tab transversal and longitudinal to t; finally, T0i ≡ taei
bTab

and Ti0 ≡ ei
atbTab are mixed transversal-longitudinal components.

The covariant derivative of t

To further discuss the geometry of the congruence generated by the timelike

vector t it is convenient to introduce the Weingarten map χ : 〈t〉⊥ → 〈t〉⊥
defined by

χ(u) ≡ ∇ut, u ∈ 〈t〉⊥.

One can readily verify that

g(t,χ(u)) = g(t,∇ut) =
1

2
∇u(g(t, t)) = 0, (2.34)

so that indeed χ(u) ∈ 〈t〉⊥. Hence, it is enough to consider the Weingarten map

evaluated on a basis {ei} of 〈t〉⊥. Accordingly, one defines

χi ≡ χ(ei) = χi
jej , χi

j ≡ 〈ωj ,χi〉.
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2.7 Congruences and submanifolds 57

In the following, it will be more convenient to work with χij ≡ ηjkχi
k. The

scalars χij can be considered as the components of a rank 2 covariant tensor on

χ ∈ 〈t〉⊥⊗〈t〉⊥ – the Weingarten (or shape) tensor of the congruence. The

symmetric part θij ≡ χ(ij) and the antisymmetric part ωij ≡ χ[ij] are called the

expansion and the twist of the congruence, respectively. From g(t, ei) = 0 it

follows that g(∇jt, ei) = −g(t,∇jei). Hence, one can compute

χij = g(ei,χj) = g(ei,∇jt) = −g(t,∇jei)

= −g(t,∇iej − [ei, ej ]) = g(∇it, ej) + g(t, [ei, ej ])

= g(χi, ej) + g(t, [ei, ej ])

= χji + g(t, [ei, ej ]),

where in the third line it has been used that ∇iei − ∇jei = [ei, ej ] as ∇
is torsion-free. Hence, by the Frobenius theorem, Theorem 2.1, the symmetry

relation χij = χji holds if and only if the distribution 〈t〉⊥ is integrable. The

components χij are related to the connection coefficients of ∇ as can be seen

from

χi
j = 〈ωj , χi〉 = 〈ωj ,∇ie0〉 = 〈ωj ,Γi

b
0eb〉 = Γi

j
0.

Alternatively, one has that

χij = Γi
c
0ηcj = −Γi

c
jηc0 = −Γi

0
j ,

where the last two equalities follow from the metricity of the connection; see

Equation (2.29). Now, from g(t, t) = 1, it readily follows that g(∇at, t) = 0.

Consequently, one has that the acceleration of the congruence, a ≡ ∇0t =

∇0e0, if non-vanishing, must be spatial; that is, g(a, t) = 0 so that a ∈ 〈t〉⊥.
Using the definition of connection coefficients of the connection ∇ it follows that

ai ≡ 〈ωi,a〉 = Γ0
i
0.

2.7.3 Geometry of hypersurfaces

Given a spacetime (M, g) and a hypersurface thereof, S, the embedding ϕ :

S → M induces on S a rank 2 covariant tensor h, the intrinsic metric or

first fundamental form of S via the pull-back of g to S:

h ≡ ϕ∗g.

As a consequence of the definition of an embedding, the intrinsic metric h will

be non-degenerate if the hypersurface S is timelike or spacelike. Its signature

will be (+,−,−) in the former case and (−,−,−) in the latter. The (unique)

Levi-Civita connection of h will be denoted by D. Alternatively, one can define

the pull-back connection

ϕ∗∇ : T (S)× T (S) → T (S)
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58 Differential geometry

via

ϕ∗
(
(ϕ∗∇)vu

)
≡ ∇ϕ∗v(ϕ∗u), u, v ∈ T (S). (2.35)

It can be verified that ϕ∗∇ as defined above is indeed a linear connection. Given

a function f ∈ X(M), the action of ϕ∗∇ on the pull-back ϕ∗f is defined by

(ϕ∗∇)v(ϕ
∗f) ≡ ϕ∗(∇ϕ∗vf) ∈ T (M). (2.36)

In order to define the action of ϕ∗∇ on covectors, one requires the Leibnitz rule

(ϕ∗∇)v〈ϕ∗ω,u〉 = 〈(ϕ∗∇)v(ϕ
∗ω),u〉+ 〈ϕ∗ω, (ϕ∗∇)vu〉,

for ω ∈ T ∗(M) and u, v ∈ T (S). A calculation using this expression with the

definitions (2.35) and (2.36) shows that for ω ∈ T ∗(M) one has

(ϕ∗∇)vϕ
∗ω ≡ ϕ∗(∇ϕ∗vω).

In a natural way, the embedding ϕ : S → M takes the connection ∇ to the

connection D. More precisely, one has the following result:

Lemma 2.2 Given u, w ∈ T (S)

ϕ∗(Dwu) = ∇ϕ∗w(ϕ∗u). (2.37)

Proof Given a function f ∈ X(M) one has that

(ϕ∗∇)u ((ϕ∗∇)v(ϕ
∗f)) = (ϕ∗∇)u (ϕ∗(∇ϕ∗vf))

= ϕ∗ (∇ϕ∗u∇ϕ∗vf)

= ϕ∗ (∇ϕ∗v∇ϕ∗uf)

= (ϕ∗∇)v ((ϕ
∗∇)u(ϕ

∗f)) ,

where to pass from the second to the third line it has been used that the

connection ∇ is torsion-free. One thus concludes that the connection ϕ∗∇ is

indeed torsion free. Finally, it can be readily verified that one has compatibility

with the metric h. Indeed,

(ϕ∗∇)vh = (ϕ∗∇)v(ϕ
∗g) = ϕ∗(∇ϕ∗vg) = 0,

where the last equality follows from the g-compatibility of the connection ∇. As

ϕ∗∇ is torsion-free and h-compatible, it follows from the fundamental theorem

of Riemannian geometry that it must coincide with the connection D. In other

words, one has that ϕ∗∇ = D, as given in Equation (2.37).
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A frame formalism on hypersurfaces

The present discussion of the geometry of hypersurfaces is valid for both

the spacelike and timelike case. To accommodate these two possibilities, all

throughout, the following conventions concerning frame indices will be used:

if the hypersurface is timelike so that ε = 1, the frame indices i, j, k, . . . take

the values 1, 2, 3; if the hypersurface is spacelike so that ε = −1, the indices

i, j, k, . . . take the values 0, 1, 2.

Following the conventions given in the previous paragraph, let {ei} ⊂ T (S)
denote a triad of h-orthogonal vectors. If S is spacelike one has that h(ei, ej) =

−δij , while in the timelike case h(ei, ej) = diag(1,−1,−1). Using the push-

forward ϕ∗ : T (S) → T (M) one obtains the vectors ϕ∗ei defined on the

restriction of T (M) to S. The triad {ei} can be naturally extended to a tetrad

{ea} on the restriction of T (M) to S by setting e0 = ν� in the spacelike case and

e3 = ν� in the timelike case. In order to discuss these two cases simultaneously,

the notation e⊥ will be used. Similarly, the notation ω⊥ will be used to denote

the normal element of the coframe, that is, ω0 or ω3. Given v and α on the

restriction of T (M) and T ∗(M) to S, their components along the normal will

be denoted by v⊥ and α⊥, respectively.

To simplify the presentation, the notation ei will often be used to denote both

the vectors of T (S) and their push-forward to T (M). The appropriate point of

view should be clear from the context. In the cases where confusion may arise,

it is convenient to make use of abstract index notation: given ei ∈ T (S), we
shall write ei

i; its push-forward ϕ∗ei ∈ T (M) will be denoted by ei
a. Similarly,

ωi ∈ T ∗(M) will be written as ωi
a, while the pull-back ϕ∗ωi ∈ T ∗(S) will be

denoted by ωi
i. Given u ∈ T (S), one has that ui ≡ 〈ϕ∗ωi,u〉 = 〈ωi, ϕ∗u〉.

Written in index notation uaωi
a = uiωi

i; that is, the (spatial) components of u

and its push-forward ϕ∗u coincide.

As a consequence of the existence of two covariant derivatives, one also has

two sets of directional covariant derivatives. Firstly, acting on spacetime objects,

∇a = ea
a∇a, so that in particular∇i = ei

a∇a. Secondly, acting on hypersurface-

defined objects, one has Di = ei
iDi. The connection coefficients of D with

respect to {ei} are given by γi
j
k ≡ 〈ωj , Diek〉. Now, given u ∈ T (S) and

α ∈ T ∗(S) and defining

Diu
j ≡ 〈ωj , Diu〉, Diαj ≡ 〈Diα, ej〉,

one has, by analogy to Equation (2.28), that

Diu
j = ei(u

j) + γi
j
ku

k, Diαj = ei(αj)− γi
k
jαk.

To investigate relations between the directional covariant derivatives ∇i and

Di one makes use of the formula (2.37) with w = ei, u = ej so that ϕ∗(Diej) =

∇i(ϕ∗ej) = ∇iej – the last equality given in a slight abuse of notation as,

strictly speaking, ∇i acts on spacetime objects. From the definition of connection

coefficients one has that
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60 Differential geometry

Γi
j
k = 〈ωj ,∇iek〉 = 〈ωj , ϕ∗(Diek)〉
= 〈ϕ∗ωj , Diek〉 = γi

j
k. (2.38)

Given a spatial vector u ∈ T (M) (i.e. u⊥ ≡ nau
a = 0) and recalling that

∇au
b ≡ ea

aωb
b∇au

b, using Equation (2.28) one has that

∇au
b = ea(u

b) + Γa
b
ku

k. (2.39)

Restricting the free frame indices in the above expression and using (2.38) one

finds

∇iu
j = ei(u

j) + Γi
j
ku

k

= ei(u
j) + γi

j
ku

k = Diu
j .

The intrinsic curvature tensors on the hypersurface

In order to describe the intrinsic curvature of the submanifold S, one considers

the three-dimensional Riemann curvature tensor rklij of the Levi-Civita

connection D of the intrinsic metric h. Given v ∈ T (S), and recalling that D is

torsion-free, one has by analogy to Equation (2.8) that

DiDjv
k −DjDiv

k = rklijv
l.

As rklij is the Riemann tensor of a Levi-Civita connection one has the symmetries

rklij = r[kl]ij = rkl[ij] = r[kl][ij],

rklij = rijkl, rk[lij] = 0.

In what follows, let rlj ≡ rklkj and r ≡ hljrlj denote, respectively, the Ricci

tensors and scalars of D. It is convenient to also consider the trace-free part

of the three-dimensional Ricci tensor sij and the three-dimensional

Schouten tensor lij given by

sij ≡ r{ij} = rij −
1

3
rhij , lij ≡ sij +

1

12
rhij .

The three-dimensionality of the submanifold S leads to the decomposition

rklij = 2hk[ilj]l + 2hl[j li]k. (2.40)

A computation using the above expressions shows that the second Bianchi

identity D[irjk]lm = 0 takes, in this case, the form

Disij =
1

6
Djr.
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2.7 Congruences and submanifolds 61

Given the h-orthogonal triad {ei} and its associated coframe basis {ωi} one

defines the components rklij ≡ ei
iej

jωk
kel

lrklij . A computation similar to that

leading to Equation (2.31) yields

rklij = ei(γj
k
l)− ej(γi

k
l) + γm

k
l(γj

m
i − γi

m
j)

+ γj
m

lγi
k
m − γi

m
lγj

k
m. (2.41)

Moreover, the definition of the torsion tensor implies:

[ei, ej ] =
(
γi

k
j − γj

k
i

)
ek. (2.42)

Remark. Equations (2.41) and (2.42) are the three-dimensional analogue of the

(Cartan) structure Equations (2.30) and (2.31).

Extrinsic curvature

The discussion in Section 2.7.2 concerning the Weingarten map can be specialised

to the case of the tangent space of a hypersurface. This leads to the notion of

extrinsic curvature or second fundamental form of the hypersurface S.
The latter is defined via the map K : T (S)× T (S) → R given by

K(u,v) ≡ 〈∇uν,v〉 = g(∇uν
�,v). (2.43)

From the discussion of the Weingarten map it follows that K as defined above is

a symmetric three-dimensional tensor. In abstract index notation the latter will

be written as Kij .

Now, given an orthonormal frame {ei} on S and choosing v = ei and u = ej
in formula (2.43) one finds that the components Kij are given by

Kij = ∇iνj ≡ 〈∇jν, ei〉 = 〈∇jω
⊥, ei〉 (2.44)

so that, comparing Equation (2.44) with the definition of the connection

coefficients one finds that

Kij = Γi
a
⊥ηaj

= −Γi
a
jηa⊥ = −εΓi

⊥
j . (2.45)

Now, looking again at Equation (2.39) and setting a �→ i, b �→ ⊥ one obtains

∇iv
⊥ = ei(v

⊥) + Γi
⊥

kv
k

= Γi
⊥

kv
k = −εKikv

k, (2.46)

as v ∈ T (S) so that v⊥ = 0.
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The Gauss-Codazzi and Codazzi-Mainardi equations

The curvature tensors of the connections ∇ and D are related to each other by

means of the Gauss-Codazzi equation

Rijkl = rijkl +KikKjl −KilKjk, (2.47)

and the Codazzi-Mainardi equation

Ri⊥jk = DjKki −DkKji. (2.48)

The proof of the Gauss-Codazzi equation follows by considering the commu-

tator of ∇, Equation (2.8), acting on the frame vectors el:

∇a∇bel
c −∇b∇ael

c = Rc
dabel

d ≡ Rc
lab.

Contracting the previous equation with ei
aej

bωk
c, and using

∇bel
c = ωb

bΓb
a
lea

c,

together with formulae (2.38) and (2.46) and the expression for the components

of the three-dimensional Riemann tensor in terms of the connection coefficients,

Equation (2.41), yields (2.47). The proof of the Codazzi-Mainardi Equation

(2.48) involves less computation. In this case one evaluates the commutator of

covariant derivatives on the covector ν. Contracting with ei
aej

bek
c one readily

finds that

∇i∇jνk −∇j∇iνk = −R⊥
kij ,

where R⊥
kij ≡ Rd

cabνdek
cei

aej
b. Now, using Equation (2.44) one finds that

∇iKjk −∇jKik = −R⊥
kij .

Formula (2.48) follows from the above expression by noticing that ∇iKjk =

DiKjk as Kjk corresponds to the spatial components of a spatial tensor.

A remark concerning foliations

The discussion in the previous subsections was restricted to a single hypersurface

S. However, it can be readily extended to a foliation {St}. In this case the

contravariant version of the normal ν� and the unit vector t generating the

congruence coincide. Moreover, one has a distribution which is integrable so

that the Weingarten tensor χ ∈
(
〈t〉⊥ ⊗ 〈t〉⊥

)
|p, for p ∈ M can be identified

with the second fundamental form K ∈ T |p(St(p)) ⊗ T |p(St(p)) where t(p) ∈ R

is the only value of the time function such that p ∈ St(p). In particular one has

that χij = χ(ij).
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2.8 Further reading

There is a vast choice of books on differential geometry ranging from introductory

texts to comprehensive monographs. An introductory discussion geared towards

applications in general relativity can be found in the first chapter of Stewart

(1991) or the second and third chapters of Wald (1984). A more extensive

introduction with broader applications in physics is Frankel (2003). A more

advanced discussion, again aimed at applications in physics, is the classical

textbook by Choquet-Bruhat et al. (1982). A systematic and coherent discussion

of the theory from a modern mathematical point of view covering topological

manifolds, smooth manifolds and differential geometry can be found in Lee

(1997, 2000, 2002). A more concise alternative to the latter three books is given

in Willmore (1993). A monograph on Lorentzian geometry with applications to

general relativity is O’Neill (1983). Readers who like the style of this reference will

also find the brief summary of differential geometry given in the first chapter of

O’Neill (1995) useful. The present discussion of differential geometry has avoided

the use of the language of fibre bundles. Readers interested in the latter are

referred to Taubes (2011).

Books on numerical relativity like Baumgarte and Shapiro (2010) and

Alcubierre (2008) also provide introductions to the 3+1 decomposition of general

relativity. In these references, the reader will encounter an approach to this topic

based on the so-called projection formalism. A more detailed discussion, also

aimed at numerical relativity, can be found in Gourgoulhon (2012).
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3

Spacetime spinors

The notion of spinors arises naturally in the construction of a relativistic first-

order equation for a quantum wave function – the so-called Dirac equation.

Spinors are the most basic objects to which one can apply a Lorentz transfor-

mation. The seminal work in Penrose (1960) has shown that spinors constitute

a powerful tool to analyse the structure of the Einstein field equations and their

solutions. Most applications of spinors in general relativity make use not of the

Dirac spinors but of the so-called 2-spinors. The latter are more elementary

objects, and indeed, the whole theory of the Dirac equation can be reformulated

in terms of 2-spinors. In the sequel, 2-spinors will be very often simply called

spinors.

The purpose of this chapter is to develop the basic formalism of spinors in a

spacetime. Accordingly, one speaks of spacetime spinors, sometimes also called

SL(2,C) spinors; see, for example, Ashtekar (1991). A discussion of spinors in the

presence of a singled-out timelike direction, the so-called space spinor formalism,

is given in Chapter 4. One of the motivations for the use of spinors in general

relativity is that they provide a simple representation of null vectors and of

several tensorial operations. Although spinors will be used systematically in this

book, they are not essential for the analysis. All the key arguments could be

carried out in a tensorial way at the expense of lengthier and less transparent

computations.

The presentation in this chapter differs sligthly in focus and content from

that given in other texts; see, for example, Penrose and Rindler (1984); Stewart

(1991); O’Donnell (2003). For reasons to be discussed in the main text, a

systematic use of the so-called Newman-Penrose formalism will be avoided –

although the basic notational conventions of Penrose and Rindler (1984), the

authoritative work on the subject, are retained.
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3.1 Algebra of 2-spinors 65

3.1 Algebra of 2-spinors

In what follows let (M, g) be a spacetime. The present discussion begins by

analysing spinorial structures at a given point p of the spacetime manifold M.

The concept of a spinor is closely related to the representation theory of the

group SL(2,C). This group has two inequivalent representations in terms of

two-dimensional complex vector spaces which are complex conjugates of each

other; for a discussion of this aspect of the theory, see, for example, Carmeli

(1977); Sexl and Urbantke (2000). Thus, the discussion of this chapter starts

with a brief discussion of complex vector spaces.

3.1.1 Complex vector spaces

By a complex vector space it will be understood a vector space over the field

of the complex numbers, C. In what follows let S denote a complex vector space,

and let S∗ denote its dual, that is, the complex vector space of all linear maps

from S to C. As in the case of real vector spaces, given ς ∈ S and ζ ∈ S∗, the

application of ζ on ς will be denoted by 〈ζ, ς〉. Notice, however, that in this case

〈ζ, ς〉 ∈ C.

Given S, it is natural to define an operation of complex conjugation over S:

given ς ∈ S, its complex conjugate ς̄ is defined via

〈ζ, ς̄〉 ≡ 〈ζ, ς〉, ζ ∈ S∗.

The operation of complex conjugation from S to S∗ can be defined in an

analogous way: given ζ ∈ S∗, its complex conjugate ζ̄ satisfies

〈ζ̄, ς〉 ≡ 〈ζ, ς〉, ς ∈ S.

Given ξ, ζ ∈ S and z ∈ C, the complex conjugate of the linear combination

ξ+zζ is ξ̄+z̄ζ̄. Thus, the operation of complex conjugation is not an isomorphism

between S and itself, but an anti-isomorphism between S and the vector space

S̄, the complex conjugate of S. Similarly, the complex conjugation defines an

anti-isomorphism between S∗ and the space, S∗, the complex conjugate of S∗.

If one considers the complex conjugate of the spaces S and S∗, one recovers

the spaces S and S∗, respectively. Moreover, because of the way the complex

conjugate operation has been defined, one has that S∗ = S̄∗, so that S and S∗

are duals of each other.

The vector spacesS,S∗,S andS∗ will be regarded as the elementary building

blocks in the construction of a spinorial formalism. As in the case of real vector

spaces one can construct higher rank objects by considering arbitrary tensor

products of these vector spaces. This will be discussed later in the chapter once

further structure and an abstract index notation for spinors has been introduced.

3.1.2 Simplectic vector spaces

Key to the notion of spinors is the definition of a symplectic vector space .

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


66 Spacetime spinors

Definition 3.1 (simplectic vector space) A simplectic vector space

consists of an even-dimensional vector space S endowed with a function [[·, ·]] :
S×S → C which is:

(i) antisymmetric (skew); that is, given ξ, η ∈ S

[[ξ,η]] = −[[η, ξ]]

(ii) bilinear; that is,

[[ξ + zζ,η]] = [[ξ,η]] + z[[ζ,η]], [[ξ,η + zζ]] = [[ξ,η]] + z[[ξ, ζ]]

(iii) non-degenerate; that is, if [[ξ,η]] = 0 for all η then ξ = 0.

The antisymmetric product [[·, ·]] defines in a canonical way an isomorphism

between S and S∗: to ξ ∈ S one associates ξ� ≡ [[ξ, ·]] ∈ S∗. A transfor-

mation Q : S → S satisfying [[Qξ,Qη]] = [[ξ,η]] is called a symplectic

transformation .

Remark. The rest of this book will be concerned only with the case where the

dimension of S is 2.

3.1.3 Spin bases

From the definition of a symplectic vector space it follows directly that given

non-zero ξ, η ∈ S such that [[ξ,η]] = 0, there exists z ∈ C, z �= 0 such that

ξ = zη. Alternatively, given ξ, η ∈ S, they are linearly independent if and only

if [[ξ,η]] �= 0. This observation leads to the idea of a spin basis.

Definition 3.2 (spin basis) Given non-zero o, ι ∈ S, the pair {o, ι} is said

to be a spin basis for S if [[o, ι]] = 1.

Now, given ξ ∈ S, the components of ξ with respect to the basis {o, ι} are

defined by the equation

ξ = ξ0o+ ξ1ι,

where

ξ0 ≡ [[ξ, ι]], ξ1 ≡ −[[ξ,o]].

3.1.4 Abstract index notation for spinors

The discussion of spinors in this book makes use of a combination of index-free

and abstract index notations. Following the general discussion on abstract index

notation given in Penrose and Rindler (1984), an element ξ ∈ S will also be

denoted by ξA, where the abstract superindex A provides information about the

vector space to which the object belongs – in this case S. Similarly given η ∈ S∗,
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3.1 Algebra of 2-spinors 67

it will often be written as ηA. This notation of abstract sub- and superindices will

also be extended to the vector spaces themselves; thus, the symbols SA and SA

will be used, respectively, instead of S and S∗. Furthermore, given ξA ∈ SA,

then ξA will denote ξ�, the dual of ξ under the antisymmetric product in S.

Following this notation, the product [[η, ξ]] = 〈η�, ξ〉 will be written as ηAξ
A.

In order to extend the formalism, one introduces an infinite number of copies

(realisations) of the spaces S and S∗: SA, SB , . . . and SA, SB , . . . . The

different realisations are connected to each other by a sameness map such that

ξA and ξB correspond to two different copies of the same object ξ belonging to

different realisations of S, that is, SA and SB . A peculiarity of the abstract

index notation is that although ξA and ξB describe the same object, expressions

like ξA = ξB are not allowed – the indices in an equation must be balanced.

Objects like ξA and ηB are called valence 1 spinors. Following the

terminology used for tensors, ξA is said to be contravariant , while ηA is

said to be covariant . Higher valence spinors can be introduced using the

tensorial product ⊗ of the basic vector spaces S and S∗. The use of the abstract

index notation simplifies the underlying discussion of these tensorial products.

For example, a valence 3 spinor χAB
C is defined through a multilinear map

χ : SA ×SB ×SC → C. As a consequence of the S-linearity of this mapping,

there exists a spinor χAB
C ∈ SAB

C . The space SAB
C is a vector space. This

procedure extends in a natural way to higher valence spinors with arbitrary

combinations of covariant and contravariant indices. The collection of all the

spaces of the form SA···C
D···F is called the spin algebra and is denoted by S•.

The spin algebra ensures that the multiplication of spinors renders a spinor. The

operation of addition in S• is defined only between spinors of the same type, that

is, the same rank and same combination of covariant and contravariant indices.

3.1.5 The spinor εAB

As the antisymmetric 2-form [[·, ·]] is a function from S⊗S to C, it follows that

there exists a valence 2 spinor εAB ∈ SAB such that

[[ξ,η]] = εABξ
AηB .

The spinor εAB is called the ε-spinor . Now, as [[ξ,η]] = −[[η, ξ]], it follows

that εAB = −εBA; that is, εAB is antisymmetric. It has already been shown that

[[ξ,η]] can be written as ξAη
A; thus, it follows that

ξB = εABξ
A = ξAεAB . (3.1)

That is, εAB can be regarded as an index lowering object. In other words, the

spinor εAB provides a convenient way to express the duality between the spaces

S and S∗. This duality is a bijection, so that it follows that there must exist a

further spinor, (ε−1)AB ∈ SAB , by means of which one can raise back the index
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68 Spacetime spinors

of the spinor ξA; that is, ξA = (ε−1)CAξC . In order to simplify the appearance

of the above expressions it is convenient to define a further spinor εAB ∈ SAB

via

εAB ≡ −(ε−1)AB , (3.2)

so that one obtains

ξA = −εCAξC . (3.3)

Combining Equations (3.1) and (3.3) one obtains ξB = −εABε
CAξC , which

together with the requirement that εAB and (ε−1)AB represent inverse opera-

tions, implies

δB
C = −εABε

CA,

with δB
C the two-dimensional Kronecker’s delta . The spinor εAB is also

antisymmetric. This can be seen from

[[ξ,η]] = ξBη
B = ξBδC

BηC = −ξB(εDCε
BD)ηC

= εBDξB(εCDηC) = εBDξBηD.

A similar computation shows that [[η, ξ]] = εDBηDξB . Finally, as [[ξ,η]] =

−[[η, ξ]] one concludes that εAB = −εBA as claimed.

If εAC and εA
C denote the spinors in S• obtained by raising the first and

second index of εAB , respectively, it follows from the above calculations that

εC
A = −εAC = δC

A, εABε
AB = εA

A = 2.

The above formulae lead to the so-called see-saw rule . Given a spinor χP ···QA

one has that

χP ···QA = εABχP ···Q
B = −χP ···Q

Bε
BA = χP ···QBεB

A, (3.4a)

χP ···Q
A = −εABχ

P ···QB = χP ···QBεBA = −χP ···Q
Bε

B
A. (3.4b)

Comparing the above expressions one concludes that

χP ···Q
A
A = −χP ···QA

A.

3.1.6 The Jacobi identity and decompositions

in irreducible components

AsS is a vector space of dimension 2, it follows that any antisymmetrisation over

a set of three or more spinorial indices must vanish. In particular, one obtains

what is known as the Jacobi identity :

εA[BεCD] = εABεCD + εACεDB + εADεBC = 0. (3.5)

A direct consequence of the Jacobi identity is the following lemma:
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3.1 Algebra of 2-spinors 69

Lemma 3.1 (irreducible decomposition of a pair of indices) Consider

the spinor ζ···AB···. Then

ζ···AB··· = ζ···(AB)··· +
1

2
εABζ···C

C
···.

Proof Consider the Jacobi identity rewritten in the form

εA
CεB

D − εB
CεA

D = εABε
CD,

and multiply it by ζ···CD···. One readily obtains

2ζ···[AB]··· = εABζ···C
C
···.

Finally, combining the latter with the identity

ζ···AB··· = ζ···(AB)··· + ζ···[AB]···,

one obtains the required result.

The previous result can be used to interchange the order of two spinorial

indices. In this case Lemma 3.1 directly yields

ζ···BA··· = ζ···AB··· − εABζ···P
P
···. (3.6)

The above lemma leads to the following result:

Proposition 3.1 (irreducible decomposition of spinors) Any spinor ζA···F
can be decomposed as the sum of the spinor ζ(A···F ) and products of ε-spinors with

symmetrised contractions of ζA···F .

Proof Assume ζABC···F to have valence n. In the following argument, the

symbol ∼ between two spinors indicates that their difference is a linear

combination of the outer product of ε-spinors and spinors of lower valence. The

key idea of the decomposition is to show that

ζABC···EF ∼ ζ(ABC···EF ).

To this end, one first notices that

nζ(ABC···EF ) = ζA(BC···EF )+ ζB(AC···EF )+ ζC(AB···EF )+ · · ·+ ζF (AB···E). (3.7)

Now, one looks at the terms in the right-hand side of the above equation and

considers the difference between the first and the second term, the first and the

third term and so on. Using Lemma 3.1, these differences can be rewritten as

ζA(BC···EF ) − ζB(AC···EF ) = −ζX (XC···EF )εAB ,

ζA(BC···EF ) − ζC(AB···EF ) = −ζX (XB···EF )εAC ,

...

ζA(BC···EF ) − ζF (ABC···E) = −ζX (XBC···E)εAF .
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70 Spacetime spinors

The above expressions can be used in Equation (3.7) to eliminate the terms

ζB(AC···EF ), ζB(AC···EF ), · · · ζF (ABC···E).

One obtains

ζ(ABC···EF ) = ζA(BC···EF ) +
1

n
ζX (XC···EF )εAB + · · ·+ 1

n
ζX (XBC···E)εAF .

That is,

ζ(ABC···EF ) ∼ ζA(BC···EF ).

The procedure described above can be repeated for each of the terms

ζX (XC···EF ), · · · ζX (XB···E),

to obtain

ζ(ABC···EF ) ∼ ζA(BC···EF ) ∼ ζAB(C···EF ) ∼ · · · ∼ ζABC···(EF ) ∼ ζABC···EF .

Remark. If one has a spinor with a set of contravariant indices, these can be

lowered so that Proposition 3.1 applies.

The type of decompositions of spinors provided by Proposition 3.1 will be used

systematically in the rest of the book. A particularly useful example is given by

χABCD = χ(ABCD) +
1

2
χ(AB)P

P εCD +
1

2
χP

P
(CD)εAB +

1

4
χP

P
Q
QεABεCD

+
1

2
εA(CχD)B +

1

2
εB(CχD)A − 1

3
εA(CεD)Bχ, (3.8)

with

χAB ≡ χQ(AB)
Q, χ ≡ χPQ

PQ.

A decomposition like the one given in Equation (3.8) will be called a decom-

position in irreducible components. The spinors χ(ABCD), χ(AB)P
P , . . . , χ

are independent in the sense that χABCD = 0 if and only if

χ(ABCD) = 0, χ(AB)P
P = 0, · · · χ = 0.

The latter fact will be used repeatedly in the following. Finally, it is observed

that the number of independent components an arbitrary symmetric spinor can

have is given by the following proposition; see Penrose and Rindler (1984).

Proposition 3.2 (number of independent components) If ζA···C = ζ(A···C)

is of valence p, then it has (p+ 1) independent components.

In conjunction with Proposition 3.1 the latter result can be used to count the

total number of independent components of an arbitrary spinor.
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3.1 Algebra of 2-spinors 71

3.1.7 Components with respect to a basis

As in the case of tensors, it is often convenient to discuss spinors in terms of

a specific basis. To express this idea, it is convenient to introduce bold indices

A, B, . . . ranging over 0 and 1. Thus, ξA and ηA represent the components of

ξA and ηB with respect to a specific basis. This idea extends in a natural way

to higher valence spinors.

Given a spin basis {o, ι}, one often requires a notation to describe the basis

in a more systematic manner. This will be done by means of the symbol εA
A

where

ε0
A ≡ oA, ε1

A ≡ ιA. (3.9)

Similarly, the dual cobasis of εA
A will be denoted collectively by εAA. By

definition one has that

εA
AεBA = δA

B.

It follows from Equation (3.9) and the previous condition that

ε0A = −ιA, ε1A = oA.

Using this notation and given two spinors ξA and ηB , one can write

ξA = ξAεA
A, ηB = ηBεBB ,

where

ξA ≡ ξAεAA, ηB ≡ ηBεB
B .

Hence

[[η, ξ]] = ηAξ
A =

(
ηP εPA

) (
ξQεQ

A
)
= ηP ξP .

The components εAB of the antisymmetric spinor εAB with respect to the

basis εA
A are given by

(εAB) ≡
(
εABεA

AεB
B
)
=

(
oAo

A oAι
A

ιAo
A ιAι

A

)
=

(
0 1

−1 0

)
. (3.10)

Now, a direct computation shows that(
0 1

−1 0

)−1

=

(
0 −1

1 0

)
.

Hence, consistent with Equation (3.2) one has that

(εAB) ≡
(
εABεAAε

B
B

)
=

(
0 1

−1 0

)
.

An alternative way of rewriting the previous discussion is

δA
B = εA

AεA
B , εAB = εABεA

AεB
B, εAB = εABεA

AεB
B .
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72 Spacetime spinors

From the latter it follows that

δA
B = oAι

B − ιAo
B , (3.11a)

εAB = oAιB − ιAoB , (3.11b)

εAB = oAιB − ιAoB . (3.11c)

3.1.8 Complex conjugation of spinors

In order to relate spinors with tensors one has to consider the operation of

complex conjugation discussed in Section 3.1.1. The convention to denote the

operation of complex conjugation in the abstract index notation is to add a bar

to the kernel symbol and a prime to each of the indices. For example, one has that

ζA = ζ̄A
′ ∈ SA′

.

The operation of complex conjugation is idempotent – given ζ ∈ S, then ¯̄ζ = ζ.

Using abstract index notation one writes the latter as ζ̄A′ = ζA.

A spinor ξA···CS′···U ′
D···EW ′···Y ′ with, say, p unprimed contravariant indices,

r primed contravariant indices, q unprimed covariant indices and s primed

covariant indices describes the most general type of spinors. It is obtained from

the S-linear map

ξ : SA × · · · ×SC︸ ︷︷ ︸
p times

×SS′ × · · · ×SU ′︸ ︷︷ ︸
r times

×SD × · · · ×SE︸ ︷︷ ︸
q times

×SW ′ × · · · ×SY ′︸ ︷︷ ︸
s times

→ C.

The algebra S• is then extended to accommodate this more general type of

spinors with unprimed and primed indices.

An important consequence of the fact that the spaces S and S̄ are not

isomorphic is that it is not possible to single out 2-spinors which are intrinsically

real or imaginary unless one assumes further structure on S•. From a notational

point of view, as S and S̄ are not isomorphic, the relative position of primed and

unprimed indices is irrelevant. Thus, one can write expressions like ζAA′ = ζA′A.

Notice, in contrast, that the reordering of groups of primed indices or groups of

unprimed indices is not allowed unless the spinor possesses special symmetries.

The rules for the raising and lowering of indices of valence 1 spinors are

extended to higher valence spinors in a natural way. Primed indices are raised and

lowered using the spinors εA
′B′ ∈ SA′B′

and εA′B′ ∈ SA′B′ which are related,

respectively, to εAB and εAB by complex conjugation. That is,

ε̄A′B′ ≡ εAB , ε̄A
′B′ ≡ εAB .

It is conventional to write εA′B′ , εA
′B′

instead of ε̄A′B′ and ε̄A
′B′

.

Finally, note that the discussion of Section 3.1.6 concerning the decompo-

sition of spinors in irreducible components, and in particular Lemma 3.1 and

Proposition 3.1, can be directly extended to the case of spinors containing primed
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indices or combinations of primed or unprimed indices. In particular, one has the

following decomposition of a spinor with two unprimed and two primed indices:

ηAA′BB′ = η(AB)(A′B′) +
1

2
ηP

P
(A′B′)εAB +

1

2
η(AB)Q′Q

′
εA′B′

+
1

4
εABεA′B′ηQ

Q
Q′Q

′
. (3.12)

A particular case of the above decomposition is when ζAA′BB′ is the spinorial

counterpart of an antisymmetric rank-2 tensor ζab = −ζba. In this case one has

that

ζAA′BB′ = ζABεA′B′ + ζ̄A′B′εAB , (3.13)

where ζAB ≡ 1
2ζAP ′B

P ′
, and one has that ζAB = ζ(AB).

3.1.9 The relation between spinors and tensors

Spinors provide a simple representation of several tensorial operations. Although

every four-dimensional tensor (world tensor) can be represented in terms of

spinors, the converse is not true. There are spinors which admit no discussion in

terms of tensors. This observation is based on the fact that 2-spinors are related

to representations of the group of (2×2) complex matrices with unit determinant,

SL(2,C), while tensors are related to the Lorentz group. These groups are not

isomorphic to each other. The group SL(2,C) covers the Lorentz group in a

2 : 1 way; see, for example, Carmeli (1977); Sexl and Urbantke (2000) for further

discussions on this issue.

Hermitian spinors

The key property to relate 2-spinors to world tensors is hermicity. A spinor

ξ ∈ S• is said to be Hermitian if and only if ξ = ξ̄, that is, if the spinor is

equal to its complex conjugate. For this to be the case, ξ needs to have the same

number of unprimed and primed indices. By raising and lowering the indices as

necessary one can, without loss of generality, assume that the spinor has the same

number of unprimed and primed contravariant indices and the same number of

unprimed and primed covariant indices, for example, ξAA′···DD′EE′···HH′
. In this

case the hermicity condition reads

ξAA′···DD′EE′···HH′
= ξ̄AA′···DD′EE′···HH′

,

where on the right-hand side it has been used that the position of primed and

unprimed indices can be interchanged.

Consider now ξAA′ ∈ SAA′
. If {o, ι} and {ō, ῑ} are, respectively, spin bases of

S and S̄, one can write

ξAA′
= aoAōA

′
+ bιAῑA

′
+ coAῑA

′
+ dιAōA

′
, (3.14)
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74 Spacetime spinors

for some a, b, c, d ∈ C. In other words, a pair AA′
of indices is associated to

four complex components. If one assumes, in addition, ξAA′
to be Hermitian,

then it follows that a, b ∈ R and c = d̄. Thus, the hermicity condition reduces

the number of independent components to four real ones. Consequently, one can

think of the Hermitian spinor ξAA′ ∈ SAA′
as describing a four-dimensional

vector (world-vector) ξa.

The argument described in the previous paragraph can be extended in a

natural fashion to higher valence Hermitian spinors, ξAA′···DD′EE′···HH′
, so that

one can regard each pair of unprimed-primed indices (i.e. AA′ , EE′
, · · · ) as

associated to a tensorial index (i.e. a,
e, · · · ).

In what follows let

gAA′BB′ ≡ εABεA′B′ . (3.15)

A computation then shows that ḡAA′BB′ = gAA′BB′ and, in addition, that

gAA′BB′
= εABεA

′B′
,

gAA′BB′gBB′CC′
= gAA′CC′ ≡ δA

CδA′C
′
,

gAA′BB′gAA′BB′
= 4,

gAA′BB′ = gBB′AA′ .

Furthermore, given vAA′ ∈ SAA′ it can be readily verified that

vAA′gAA′BB′
= vBB′

, vAA′
gAA′BB′ = vBB′ .

Hence, the spinor gAA′BB′ has all the properties of a spinorial counterpart of the

metric tensor. These ideas will now be put in more precise terms.

The Infeld-van der Waerden symbols

In order to describe explicitly the correspondence between spinors and tensors at

a point p ∈ M, consider a basis {ea} ⊂ T |p(M) and let gab ≡ g(ea, eb) denote

the components of the metric g with respect to this basis. Let also {ωa} ⊂
T ∗|p(M) denote the dual basis to {ea} so that 〈ωb, ea〉 = δa

b. It is conventional

to assume that the basis is g-orthogonal ; that is, gab = ηab. Finally, let {εA} ⊂ S

denote a spin basis, and let εAB denote the components of the spinor εAB with

respect to the latter basis. The scalars gab and εAB can be put in correspondence

with each other via an equation of the form

εABεA′B′ = σa
AA′σb

BB′ηab, (3.16)

where σa
AA′ are the so-called Infeld-van der Waerden symbols. These can

be regarded as the entries of four (2 × 2) matrices (σa
AA′), a = 0, . . . ,3.

Unprimed indices denote the rows and the primed indices the columns of the

matrix. Given σa
AA′ , one defines the inverse symbol σb

BB′
via the relations

σa
AA′

σb
AA′ = δa

b, σa
AA′

σa
BB′ = δB

AδB′A
′
. (3.17)
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3.1 Algebra of 2-spinors 75

From these expressions it follows that the correspondence (3.16) can be inverted

to yield

ηab = σa
AA′

σb
BB′

εABεA′B′ . (3.18)

Using Equation (3.18) and observing that ηab = ηab, it follows that

σa
AA′

= σa
AA′

. (3.19)

Hence, (σa
AA′

) and (σa
AA′) describe Hermitian matrices. An explicit compu-

tation shows that the matrices

(σ0
AA′

) ≡ 1√
2

(
1 0

0 1

)
, (σ1

AA′
) ≡ 1√

2

(
0 1

1 0

)
,

(σ2
AA′

) ≡ 1√
2

(
0 i

−i 0

)
, (σ3

AA′
) ≡ 1√

2

(
1 0

0 −1

)
,

and

(σ0
AA′) ≡ 1√

2

(
1 0

0 1

)
, (σ1

AA′) ≡ 1√
2

(
0 1

1 0

)
,

(σ2
AA′) ≡ 1√

2

(
0 −i

i 1

)
, (σ3

AA′) ≡ 1√
2

(
1 0

0 −1

)
,

satisfy the relations (3.16), (3.17), (3.18) and (3.19). The above matrices

correspond, up to a normalisation factor, to the so-called Pauli matrices .

Now, consider arbitrary v ∈ T |p(M) and α ∈ T ∗|p(M). In terms of the bases

{ea} and {ωa}, v and α can be written as

v = vaea, va ≡ 〈ωa,v〉,
α = αaω

a, αa ≡ 〈α, ea〉.

The components va and αa can be put in correspondence with Hermitian spinors

using the Infeld-van der Waerden symbols via the rules

va �→ vAA′
= vaσa

AA′
, (3.20a)

αa �→ αAA′ = αaσ
a
AA′ . (3.20b)

In terms of arrays of explicit components and matrices one has

(v0, v1, v2, v3) �→ 1√
2

(
v0 + v3 v1 + iv2

v1 − iv2 v0 − v3

)
,

(α0, α1, α2, α3) �→
1√
2

(
α0 + α3 α1 − iα2

α1 + iα2 α0 − α3

)
.

A quick computation shows that

〈α,v〉 = vaαa = vAA′
αAA′

= v00
′
α00′ + v01

′
α01′ + v10

′
α10′ + v11

′
α11′

= v0α0 − v1α1 − v2α2 − v3α3.
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76 Spacetime spinors

Thus, one has that the assignments defined in (3.20a) and (3.20b) are consistent

with the inner product defined on T |p(M) by the metric g.

The assignment given by (3.20a) and (3.20b) can be extended to tensors of

arbitrary rank. For example, given the tensor Tab
c, denote its components with

respect to {ea} and {ωb} by Tab
c. One then has the assignment

Tab
c �→ TAA′BB′CC′ ≡ σa

AA′σb
BB′σc

CC′
Tab

c.

The object TAA′BB′CC′
will be called the spinorial counterpart of the tensor

components Tab
c.

3.1.10 The spinorial representation of null vectors

As already mentioned in the introduction to this chapter, one of the key

advantages of the use of spinors is the convenient representation of null vectors

they provide. More precisely, one has the following result:

Proposition 3.3 (spinorial counterpart of null vectors) The spinorial

counterpart of a non-vanishing real null vector ka can be written as

kAA′
= ±κAκ̄A′

, (3.21)

for some valence 1 spinor κA.

Proof A direct computation shows that kAA′
as given by Equation (3.21) is

indeed the spinorial counterpart of a null vector. Conversely, a computation

yields

g(k,k) = εABεA′B′kAA′
kBB′

= 2(k00
′
k11

′ − k01
′
k10

′
) = det(kAA′

).

Thus, the requirement g(k,k) = 0 implies that kAA′
, regarded as a (2×2) matrix,

has rows/columns which are linearly dependent. Accordingly, there exist valence

1 spinors κA and λB such that kAA′
= κAλ̄A′

. As, k is non-zero, it follows that

κA, λB �= 0. From the reality of k, it follows that its spinor counterpart kAA′

must be Hermitian; that is, kAA′
= k̄AA′

. Hence, κAλ̄A′
= κ̄A′

λA. Contracting

the latter with κA one has that κAλ
A = 0, so that κA and λA must be

proportional to each other. The proportionality factor can be absorbed into κA

by means of a redefinition of the spinor. The sign in Equation (3.21) is that of

the proportionality constant.

Remark. A null vector constructed using the positive sign in Equation (3.21)

will be said to be future pointing , while one using the negative sign will be

called past pointing .

From Proposition 3.3 it follows that every valence 1 spinor κA defines a null

vector k. However, this is not a one-to-one correspondence. More precisely, a
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3.1 Algebra of 2-spinors 77

spinor differing from κA by a complex phase, that is, eiϑκA, with ϑ ∈ R will give

rise to the same null vector. The phase change is said to be right-handed if

ϑ > 0. This phase does not affect the construction of the vector k. Nevertheless,

it contains some geometric information. To see this, consider a further spinor

μA such that κAμ
A = 1 so that {κA, μA} constitute a spin basis. Now, one can

readily verify that

sAA′ ≡ 1√
2
(κAμ̄A′

+ μAκ̄A′
), tAA′

=
i√
2
(κAμ̄A′ − μAκ̄A′

),

are the spinorial counterparts of two unit spacelike vectors s and t and that they

are both orthogonal to k. At each point p ∈ M, s and t span a subspace of

T |p(M) which is orthogonal to k. This subspace is called the flag of the spinor

κA; the pole of the flag is the vector k.

Now, suppose κA is subject to a phase change such that

κA �→ eiϑκA. (3.22)

In order to retain the normalisation κAμ
A = 1, the transformation (3.22) implies

the transformation μA �→ e−iϑμA. Furthermore, one has that

s �→ cos 2ϑs+ sin 2ϑt, t �→ − sin 2ϑs+ cos 2ϑt,

so that a phase change of ϑ in κA implies a change of 2ϑ in its flag; the flagpole,

however, remains unchanged.

3.1.11 Null tetrads

Inspection of Equation (3.14) shows that every spin basis {o, ι} gives rise to

an associated vector basis consisting of null vectors. This null tetrad has

the peculiarity of consisting of two real null vectors and two complex null

vectors which are the complex conjugates of each other. In order to analyse

this further, let

lAA′ ≡ oAōA
′
, nAA′ ≡ ιAῑA

′
, mAA′ ≡ oAῑA

′
, m̄AA′ ≡ ιAōA

′
.

Furthermore, let la, na, ma and m̄a (or l, n, m, m̄) denote the tensorial

counterparts of the above spinors. Using the above definitions one can verify

that

lan
a = −mam̄

a = 1, (3.23)

while all the other remaining contractions vanish. Using relations (3.11a)–(3.11c)

it can be readily shown that

gab = 2l(anb) − 2m(am̄b), gab = 2l(anb) − 2m(am̄b).
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78 Spacetime spinors

An orthonormal tetrad {ea} can be readily obtained from the null tetrad

{l, n, m, m̄}. Namely, let

e0 =
1√
2
(l+ n), (3.24a)

e1 =
1√
2
(m+ m̄), (3.24b)

e2 =
i√
2
(m− m̄), (3.24c)

e3 =
1√
2
(l− n). (3.24d)

Using the relations in (3.23) it can be verified that the latter vectors indeed

constitute an orthonormal tetrad. Furthermore, it can be readily checked that

e0 is timelike while e1, e2 and e3 are spacelike. The vector e0 is said to be

future pointing as both l and n are future pointing in the sense of Section 3.1.10.

Moreover, a right-handed phase change (i.e. ϑ > 0) in the spin basis of the form

oA �→ eiϑoA, ιA �→ e−iϑιA leads to the right-handed rotations

e1 �→ cos 2ϑe1 + sin 2ϑe2, e2 �→ − sin 2ϑe1 + cos 2ϑe2,

while at the same time leaving e0 and e3 unchanged. Accordingly, the triad

of spacelike vectors {e1, e2, e3} defined by (3.24b)–(3.24d) is said to be right-

handed. The inverse relations to (3.24a)–(3.24d) are given by

l =
1√
2
(e0 + e3), n =

1√
2
(e0 − e3),

m =
1√
2
(e1 − ie2), m̄ =

1√
2
(e1 + ie2).

The spinorial counterpart of the volume form

The spinorial counterpart of the volume 4-form εabcd is given by

εAA′BB′CC′DD′ = i(εABεCDεA′C′εB′D′ − εACεBDεA′B′εC′D′). (3.25)

Using the Jacobi identity (3.5) it can be verified that the above expression is

indeed totally antisymmetric under interchange of the pairs AA′ , BB′ , CC′ and

DD′ . Moreover, one has

εAA′BB′CC′DD′εAA′BB′CC′DD′
= 24,

and

σ0
AA′

σ1
BB′

σ2
CC′

σ3
DD′

εAA′BB′CC′DD′ = 1;

compare Section 2.5.3. The expression (3.25) can be deduced applying a

decomposition in irreducible components to εAA′BB′CC′DD′ and exploiting its

antisymmetry properties.
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3.1 Algebra of 2-spinors 79

3.1.12 Changes of basis and SL(2,C) transformations

Let {εAA} and {ε̃AA} denote two spin bases for S. The spinors of one basis can

be expressed as linear combinations of the spinors of the other basis. This can

be conveniently be written as

ε̃A
A = ΛA

P εP
A, (3.26)

where (ΛA
P ) denotes an invertible (2×2) matrix. The associated spinor cobases

{εAA} and {ε̃AA} are related in a similar way:

ε̃AA = ΛA
P εPA, (3.27)

where (ΛA
P ) is another invertible (2× 2) matrix. Now, one has that

δA
B = ε̃A

P ε̃BP =
(
ΛA

P εP
Q
) (

ΛB
QεQQ

)
=
(
ΛA

PΛB
Q

)
εP

QεQQ

= ΛA
PΛB

QδP
Q = ΛA

PΛB
P .

Hence, the matrices (ΛA
P ) and (ΛA

P ) are inverses of each other.

Now, given a contravariant valence 1 spinor κA, one can expand it in terms of

the bases {εAA} and {ε̃AA} as

κA = κAεA
A = κ̃Aε̃A

A.

As a consequence of the change of basis (3.26), the coefficients κA and κ̃A are

related to each other via

κ̃A = ΛA
P κP .

Similarly, from the transformation rule (3.27), the components μA and μ̃A of a

valence 1 covariant spinor μA with respect to the spin cobasis {εAA} and {ε̃AA}
can be found to be related via

μ̃A = ΛA
PμP .

The transformation rules given in the previous paragraph can be extended

in a natural way to higher valence spinors and to spinors with primed indices.

For example, if vAA′
and ṽAA′

denote the components of the spinor vAA′
with

respect to the two different sets of bases, one has that

ṽAA′
= ΛA

P Λ̄A′
P ′vPP ′

.

A case of special importance is that of the antisymmetric spinor εAB for which

the transformation rule between bases is given by

ε̃AB = ΛA
PΛB

QεPQ. (3.28)

Earlier in the chapter, the notion of simplectic transformations was intro-

duced. The properties of these transformations can be investigated from

Equation (3.28). As a consequence of the discussion of Section 3.1.7 the matrices
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80 Spacetime spinors

(εAB) and (ε̃AB) both have the form given by Equation (3.10). It follows from

Equation (3.28) that

det (ε̃AB) =
(
det
(
ΛA

B
))2

det(εAB).

Furthermore as det (ε̃AB) = det(εAB) = 1, one concludes that det
(
ΛA

B
)
= ±1.

Hence, if one restricts attention to the transformations with positive determinant,

one finds that the set of transformations that preserve the antisymmetric product

[[·, ·]] is given by the group SL(2,C).

Relation to the Lorentz transformations

Following the discussion of the previous paragraphs, the components gAA′BB′ of

the spinorial counterpart of the metric transform under a change of spin basis as

g̃AA′BB′ ≡ ε̃AB ε̃A′B′ = ΛA
P Λ̄A′P

′
ΛB

QΛ̄B′Q
′
εPQεP ′Q′ .

Using the Infeld-van der Waerden symbols, the latter can be rewritten as

η̃ab = Λa
cΛb

dηcd,

with

Λa
c ≡ σa

AA′
σc

PP ′ΛA
P Λ̄A′P

′
.

The above expression provides the relation between SL(2,C) and Lorentz

transformations; see, for example, Sexl and Urbantke (2000) for more details.

3.1.13 Soldering forms

The connection between spinors and world tensors has been implemented in

terms of the components with respect to some vector and spin bases. There is a

different perspective of this translation in terms of so-called soldering forms.

The metric tensor g can be written in terms of the orthonormal cobasis {ωa} as

g = ηabω
a ⊗ ωb.

This last expression can be rewritten, using the correspondence (3.18), as

g = εABεA′B′σa
AA′

σb
BB′

ωa ⊗ ωb = εABεA′B′ωAA′ ⊗ ωBB′
, (3.29)

where ωAA′ ≡ σa
AA′

ωa. The four covectors {ωAA′} are called the soldering

forms . In terms of abstract index notation one writes the soldering form as

ωAA′
a. A similar discussion can be made with the contravariant metric g�. From

g� = ηabea ⊗ eb, together with (3.16), one can write

g� = εABεA
′B′

eAA′ ⊗ eBB′ , (3.30)
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where eAA′ ≡ σa
AA′ea. In abstract index notation one would write eAA′a

instead of eAA′ . In view of the above, given a vector v ∈ T |p(M) and a covector

α ∈ T ∗|p(M), one can write

v = vAA′
eAA′ , α = αAA′ωAA′

.

As a final remark concerning the connection between spinors and world tensors,

it is observed that ea = δa
beb. Thus, δa

b can be interpreted as the components

ea
b of the frame vector ea with respect to the frame {ea}. Contracting ea

b with

σb
BB′

one finds

ea
BB′ ≡ ea

bσb
BB′

= σa
BB′

.

3.2 Calculus of spacetime spinors

The discussion of the previous section has been restricted to spinors at a given

point of the spacetime manifold M. It is now assumed that a spinorial structure

can be constructed in a consistent way on the whole of M – the conditions

ensuring this are discussed in Section 3.3, and essentially amount to requiring

the spacetime to be orientable. The spinorial structure over M (also called a

spin bundle) will be denoted by S(M). Consistent with this notation, the

spinorial structure at a point p ∈ M will be denoted by S|p(M).

As is the case with tensors, the idea of relating spinors defined at different

points of the spacetime manifold requires the use of the notion of a connection

and its associated covariant derivative. Thus, it is necessary to extend the

notion of a connection in such a way that it applies to spinor fields. In what

follows, by a spinor field it is understood a smooth assignment of a spinor,

say, ξA···CD′···F ′G···LP ′···N ′
, to each point of the spacetime manifold. The sets

of spinorial fields over M will be denoted in a similar manner to the sets of

spinors at a point, that is, S•(M), SA(M), SA(M), SAA′B(M), and so on.

3.2.1 The spinorial covariant derivative

A spinor covariant derivative ∇AA′ is a map

∇AA′ : SB···C′
D···E′(M) → SB···C′

AD···A′E′(M).

Given an arbitrary spinor ζB···C′
D···E′ , its spinorial covariant derivative will be

denoted by∇AA′ζB···C′
D···E′ . The mapping defined by∇AA′ is required to satisfy

the following properties:

(i) Linearity. Given ζB···C′
D···E′ , ηB···C′

D···E′ ∈ SB···C′
D···E′(M),

∇AA′(ζB···C′
D···E′ + ηB···C′

D···E′) = ∇AA′ζB···C′
D···E′ +∇AA′ηB···C′

D···E′ .
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82 Spacetime spinors

(ii) Leibnitz rule. Given fields ζB···C′
D···E′ ∈ SB···C′

D···E′(M) and

ξF ···G′
H···I′ ∈ SF ···G′

H···I′(M),

∇AA′(ζB···C′
D···E′ξF ···G′

H···I′) = ξF ···G′
H···I′∇AA′ζB···C′

D···E′

+ ζB···C′
D···E′∇AA′ξF ···G′

H···I′ .

(iii) Hermicity. Given ζB···C′
D···E′ ∈ SB···C′

D···E′(M),

∇AA′ζB···C′
D···E′ = ∇AA′ ζ̄B

′···C
D′···E .

(iv) Action on scalars. Given a scalar φ, then ∇AA′φ is the spinorial

counterpart of ∇aφ.

(v) Representation of derivations. Given a derivation D on spinor fields,

there exists a spinor ξAA′
such that

DζB···C′
D···E′ = ξAA′∇AA′ζB···C′

D···E′ ,

for all ζB···C′
D···E′ ∈ S•(M).

Remark. The above list of properties is more general than the ones given in, say,

Penrose and Rindler (1984) and Stewart (1991), as the present discussion does

not assume that the spinor covariant derivative is compatible with the ε-spinor;

that is, ∇AA′εBC = 0.

For completeness, the following result proved in Penrose and Rindler (1984)

is recalled:

Theorem 3.1 (existence of the spinorial covariant derivative) Every

covariant derivative ∇ over M has a spinorial counterpart ∇AA′ .

3.2.2 Spin connection coefficients

In specific computations, given a spin basis {εAA}, it is convenient to introduce

the notion of the spin connection coefficients associated to a certain

connection. The direct spinorial counterparts of the connection coefficients Γa
c
b

are given after suitable contraction with the Infeld-van der Waerden symbols by

the spinor components

ΓAA′BB′
CC′ ≡ ωBB′

BB′∇AA′eCC′BB′
, (3.31)

where ∇AA′ ≡ eAA′AA′∇AA′ denotes the directional covariant derivative

in the direction of eAA′ . Now, using that

ωBB′
BB′ = εBB ε̄

B′
B′ , eCC′CC′

= εC
C ε̄C′C

′
,

it follows that

ΓAA′BB′
CC′ = εBB ε̄

B′
B′ ε̄C′B

′∇AA′εC
B + εBB ε̄

B′
B′εC

B∇AA′ ε̄C′B
′

= εBBδC′B
′∇AA′εC

B + ε̄B
′
B′δC

B∇AA′ ε̄C′B
′
.
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3.2 Calculus of spacetime spinors 83

Hence, defining the spin connection coefficients

ΓAA′BC ≡ εBB∇AA′εC
B , (3.32)

one obtains

ΓAA′BB′
CC′ = ΓAA′BCδC′B

′
+ Γ̄AA′B

′
C′δC

B. (3.33)

Using δC
B = εC

QεBQ, the definition of ΓAA′BC and requiring that

∇AA′δC
B = 0

one also has that

ΓAA′BC = −εC
Q∇AA′εBQ.

The spin connection coefficients provide a way of computing the covariant

derivative of spinors without a tensorial counterpart. Given κA = κAεA
A ∈

SA(M) one has that

∇AA′κB ≡ εB
Q∇AA′κQ

= εB
Q∇AA′(κP εPQ)

= εB
Q
(
eAA′(κP )εPQ + κP∇AA′εPQ

)
= eAA′(κB)− ΓAA′PBκP .

Similar computations show, for example, that

∇AA′ζB = eAA′(ζB) + ΓAA′BP ζP ,

∇AA′ξB′CC′
= eAA′(ξB′CC′

)− Γ̄AA′Q
′
B′ξQ′CC′

+ΓAA′CQξB′QC′
+ Γ̄AA′C

′
Q′ξB′CQ′

.

The generalisation to spinors of arbitrary valence and number of primed indices

can be readily obtained from the above examples.

Metric and Levi-Civita spin connection coefficients

So far, the discussion of the spin connection coefficients has been completely

general. In the present section it is assumed that the connection is metric.

The spinorial counterpart of the metric compatibility condition ∇agbc = 0 is

given by

∇AA′(εBCεB′C′) = εB′C′∇AA′εBC + εBC∇AA′εB′C′ = 0.

Regarding the second equality as a (partial) decomposition in irreducible terms,

one has that

∇AA′εBC = 0, ∇AA′εB′C′ = 0.
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84 Spacetime spinors

In order to investigate the implications of a metric connection on its associated

spin connection coefficients, it is convenient to compute

∇AA′εBC = eAA′(εBC)− ΓAA′QBεQC − ΓAA′QCεBQ

= − ΓA′A′CB + ΓAA′BC = 0

as eAA′(εBC) = 0; again, the components εBC are constants. Hence, one

concludes that

ΓAA′BC = ΓAA′(BC).

3.2.3 Spinorial curvature

The spinorial counterpart of the curvature tensors can be introduced in a natural

way by looking at the commutator of spinorial covariant derivatives. More

precisely, one can write

�∇AA′ ,∇BB′�ξCC′
= RCC′

PP ′AA′BB′ξPP ′
(3.34)

with

�∇AA′ ,∇BB′� ≡ ∇AA′∇BB′ −∇BB′∇AA′ − ΣAA′PP ′
BB′∇PP ′ ,

consistent with the notation of Section 2.4.3 and with ΣAA′CC′
BB′ represent-

ing the spinorial counterpart of the torsion tensor of ∇. The spinor

RCC′
DD′AA′BB′ is the spinorial counterpart of the Riemann curvature

tensor Rc
dab. In the following discussion it is assumed that the connection ∇

is completely general – in particular, it could have torsion and be non-metric,

so that ∇AA′εBC �= 0. As a consequence, the curvature spinor has only the

symmetry

RCC′
DD′AA′BB′ = −RCC′

DD′BB′AA′ .

The curvature spinor in terms of the spin connection coefficients

In order to obtain a simpler representation of the curvature spinor it is convenient

to look first at its expression in terms of spin connection coefficients. To this

end, one can consider the frame expression (2.31) for the Riemann tensor, and

contract it with the Infeld-van der Waerden symbols. One readily obtains

RCC′
DD′AA′BB′ = eAA′(ΓBB′CC′

DD′)− eBB′(ΓAA′CC′
DD′)

+ΓFF ′CC′
DD′ΓBB′FF ′

AA′ − ΓFF ′CC′
DD′ΓAA′FF ′

BB′

+ΓBB′FF ′
DD′ΓAA′CC′

FF ′ − ΓAA′FF ′
DD′ΓBB′CC′

FF ′

−ΣAA′FF ′
BB′ΓFF ′CC′

DD′ .
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3.2 Calculus of spacetime spinors 85

Now, making use of the decomposition (3.32) for the spin connection coefficients,

one obtains after a lengthy, but straightforward calculation that

RCC′
DD′AA′BB′ = RC

DAA′BB′δD′C
′
+ R̄C′

D′AA′BB′δD
C , (3.35)

where

RC
DAA′BB′ ≡ eAA′(ΓBB′CD)− eBB′(ΓAA′CD)

−ΓFB′CDΓAA′FB − ΓBF ′CDΓ̄AA′F
′
B′ + ΓFA′CDΓBB′FA

+ΓAF ′CDΓ̄BB′F
′
A′ + ΓAA′CFΓBB′FD − ΓBB′CFΓAA′FD

−ΣAA′FF ′
BB′ΓFF ′CD.

This last expression can be regarded as the spinorial counterpart of the first

Cartan structure equation; see Equation (2.31).

The commutator of covariant derivatives on arbitrary spinors

The commutator expression (3.34) applies only to spinors arising from a tensorial

counterpart. In this section this commutator expression is applied to arbitrary

valence spinors. In order to do this, observe that Equation (3.35) also holds if

expressed in terms of abstract spinorial indices. More precisely, one has that

RCC′
DD′AA′BB′ = RC

DAA′BB′δD′C
′
+ R̄C′

D′AA′BB′δD
C , (3.36)

where, in general RCDAA′BB′ �= R(CD)AA′BB′ .

Applying the commutator (3.34) to the particular case when ξCC′
= εD

CεD′C
′

one obtains, after taking into account the split (3.36), that

εD′C
′
�∇AA′ ,∇BB′�εD

C + εD
C�∇AA′ ,∇BB′�εD′C

′

= εD′C
′
RC

DAA′BB′εD
D + εD

CR̄C′
D′AA′BB′εD′D

′
.

From the latter one can conclude that

�∇AA′ ,∇BB′�εD
C = RC

QAA′BB′εD
Q,

�∇AA′ ,∇BB′�εD′C
′
= R̄C′

Q′AA′BB′εD′Q
′
.

Now, using that εP
CεQC = δP

Q, and that �∇AA′ ,∇BB′�δP
Q = 0, one finds that

εP
C�∇AA′ ,∇BB′�εQC = −εQC�∇AA′ ,∇BB′�εP

C (3.37a)

= −εQCR
C
DAA′BB′εP

D. (3.37b)

Multiplying the previous expression by εPD and using that εPDεP
C = δD

C one

obtains

δD
C�∇AA′ ,∇BB′�εQC = −εQCR

C
QAA′BB′δD

Q.
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86 Spacetime spinors

Finally, using that �∇AA′ ,∇BB′�δD
C = 0, one concludes that

�∇AA′ ,∇BB′�εQD = −RC
DAA′BB′εQC . (3.38)

A similar argument applied to primed basis spinors yields

�∇AA′ ,∇BB′�εQ
′
D′ = −R̄C′

D′AA′BB′εQ
′
C′ . (3.39)

Now, using that �∇AA′ ,∇BB′� applied to a scalar is zero, one has that

Equations (3.37a), (3.37b), (3.38) and (3.39) render the following formulae for

arbitrary valence 1 spinors:

�∇AA′ ,∇BB′�μC = RC
QAA′BB′μQ, (3.40a)

�∇AA′ ,∇BB′�λ̄C′
= R̄C′

Q′AA′BB′ λ̄Q′
, (3.40b)

�∇AA′ ,∇BB′�κC = −RQ
CAA′BB′κQ, (3.40c)

�∇AA′ ,∇BB′�ν̄C′ = −R̄Q′
C′AA′BB′ ν̄Q′ . (3.40d)

The extension to higher valence spinors follows from the Leibnitz rule. For

example, one has that

�∇AA′ ,∇BB′�ξCD
E′

= −RQ
CAA′BB′ξQD

E′ −RQ
DAA′BB′ξCQ

E′

+R̄E′
Q′AA′BB′ξCD

Q′
.

3.2.4 Decomposition of a general curvature spinor

Expression (3.36) is a convenient starting point to analyse the decomposition of

the curvature spinor in terms of irreducible components. Lowering the index pair

CC′ using the ε-spinor one obtains:

RCC′DD′AA′BB′ = RCDAA′BB′εD′C′ + R̄C′D′AA′BB′εDC

= −RCDAA′BB′εC′D′ − R̄C′D′AA′BB′εCD. (3.41)

For the curvature spinor of a general connection one has that RCDAA′BB′ �=
R(CD)AA′BB′ . However, one still has that

RCDAA′BB′ = −RCDBB′AA′ .

This antisymmetry can be exploited using the split (3.13) in such a way that the

indices CD are not touched. Accordingly, one obtains

RCDAA′BB′ = XCDABεA′B′ + YCDA′B′εAB , (3.42)

where

XCDAB = XCD(AB) ≡
1

2
RCDAQ′B

Q′
,

YCDA′B′ = YCD(A′B′) ≡
1

2
RCDA′QB′Q.
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3.2 Calculus of spacetime spinors 87

To complete the decomposition of the curvature spinor in irreducible components

one can apply the decomposition formulae (3.8) and (3.12) for valence 4 spinors

toXCDAB and YCDA′B′ . This idea will not be pursued any further here. However,

it will be convenient to single out certain components of the decomposition in

irreducible terms of XCDAB . It is conventional to set

ΨABCD ≡ X(ABCD), Λ ≡ 1

6
XPQ

PQ.

Let CCC′DD′AA′BB′ denote the spinor obtained from the split (3.41) of the

curvature spinor by setting XABCD = X(ABCD) and YCDA′B′ = 0. One has that

CCC′DD′AA′BB′ = −ΨABCDεA′B′εC′D′ − Ψ̄A′B′C′D′εABεCD. (3.43)

As a consequence of the total symmetry of ΨABCD it can be readily verified that

CCC′DD′AA′BB′ is the spinorial counterpart of a trace-free tensor. Following the

discussion in Section 2.5.2, it must be the spinorial counterpart of the Weyl

tensor Ccdab.

Decomposition of the curvature spinor of a torsion-free connection

The decomposition of the curvature spinor is now particularised to the case

of a torsion-free connection. In this case, the Riemann curvature tensor has

the cyclic symmetry of the Bianchi identity. The latter is best exploited using

the alternative expression of the identity given by Equation (2.23) involving the

right-dual of the Riemann tensor. Using the spinorial counterpart of the volume

form given by Equation (3.25) one has that

R∗
AA′BB′CC′DD′ =

i

2
(δC

EδD
F δC′F

′
δD′E

′ − δC
F δD

EδC′E
′
δD′F

′
)RAA′BB′EE′FF ′

= iRAA′BB′CD′DC′ ,

so that the spinorial counterpart of Equation (2.23) is given by

RCC′QQ′A
Q′Q

A′ = 0.

A direct evaluation of the above condition using the splits (3.41) and (3.42)

shows that

XCQA
QεC′A′ − X̄C′Q′A′Q

′
εCA + YCAC′A′ − ȲC′A′AC = 0,

so that

XPQ
PQ = X̄PQ

PQ, ȲC′A′AC = YCAC′A′ .

Hence, one has that XPQ
PQ (i.e. Λ) is a real scalar, while YABA′B′ is a Hermitian

tensor, and, thus, it is the spinorial counterpart of a rank 2 tensor.
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88 Spacetime spinors

Decomposition on the curvature spinor of a metric connection

As already seen, a connection which is compatible with a metric g satisfies

∇AA′εCD = 0. It follows then that �∇AA′ ,∇BB′�εCD = 0. However, one also

has that

�∇AA′ ,∇BB′�εCD = −RQ
CAA′BB′εQD +RQ

DAA′BB′εCQ,

from which one concludes that

RCDAA′BB′ = R(CD)AA′BB′ .

The latter can be reexpressed in terms of the following symmetries of the spinors

XABCD and YABA′B′ :

XABCD = X(AB)CD, YABA′B′ = Y(AB)A′B′ .

Decomposition of the curvature spinor of a Levi-Civita connection

Finally, one can collect the results of the previous subsections to obtain the well-

known irreducible decomposition of the spinorial counterpart of the Riemann

tensor of a Levi-Civita connection. As the Levi-Civita connection associated to

the metric g is both torsion-free and metric, it follows then that

XABCD = X(AB)(CD), XCQA
Q = 0.

It follows from (3.8) that XABCD = XCDAB and that

XABCD = X(ABCD) −
1

3
εA(CεD)BXPQ

PQ

= ΨABCD + Λ(εDBεCA + εCBεDA).

Similarly, for YABA′B′ one has that

YABA′B′ = Y(AB)(A′B′),

so that according to the general split (3.12) YABA′B′ corresponds to a trace-free

rank 2 tensor.

To conclude the analysis, it is convenient to compute the Ricci tensor and

scalar in terms of the spinors XABCD and YABA′B′ . From Equations (3.41) and

(3.42) it follows directly that

RAA′BB′ = −XQA
Q
BεA′B′ − X̄Q′A′Q

′
B′εAB + 2YABA′B′

R = −4XPQ
PQ,

where RAA′BB′ denotes the spinorial counterpart of the Ricci tensor Rab

and it has been used that for a Levi-Civita connection YABA′B′ = ȲA′B′AB and

XPQ
PQ = X̄P ′Q′P

′Q′
. In particular, one has that

R = −24Λ.
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3.2 Calculus of spacetime spinors 89

As YABA′B′ is trace-free, it has to be related to Φab, the symmetric trace-free

part of the Ricci tensor. Indeed, a calculation for its spinorial counterpart shows

that

2ΦABA′B′ ≡ RAA′BB′ − 1

4
RεABεA′B′

= 2YABA′B′ .

It can be verified that ΦABA′B′ satisfies the symmetries

ΦABA′B′ = ΦBAA′B′ = ΦABB′A′ = ΦBAB′A′ . (3.44)

Putting together the discussion of this section, one finds that the spinor

counterpart of the Riemann curvature tensor of a Levi-Civita connection can

be decomposed as

RAA′BB′CC′DD′ = −εA′B′εC′D′(ΨABCD + 2ΛεA(CεD)B)

−εABεCD(Ψ̄A′B′C′D′ + 2ΛεA′(C′εD′)B′)

+εA′B′εCDΦABC′D′ + εABεC′D′ΦCDA′B′ .

Working back from this expression one can recover the decomposition of

the Riemann tensor in terms of the Weyl and Schouten tensor given in

Equations (2.21a) and (2.21b).

3.2.5 The �AB-operator

In some applications it is convenient to have a more explicit expression for the

commutator of spinorial covariant derivatives. In the remainder of this section it

is assumed that ∇AA′ is the spinorial counterpart of a Levi-Civita connection.

Exploiting the antisymmetry of Equation (3.40a) with respect to the pairs AA′

and BB′ one can rewrite it as(
εA′B′�AB + εAB�A′B′)μC = RC

QAA′BB′μQ, (3.45)

where

�AB ≡ ∇Q′(A∇B)
Q′
, �A′B′ ≡ ∇Q(A′∇Q

B′).

It can be verified that both �AB and �A′B′ are linear and satisfy the Leibnitz

rule – one has, for example, that

�AB(μCλ
D) = (�ABμC)λ

D + μC(�ABλ
D).

Defining the D’Alembertian operator as � ≡ ∇PP ′∇PP ′
, one obtains the

decomposition

∇AQ′∇B
Q′

=
1

2
εAB�+�AB .
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90 Spacetime spinors

Now, contracting indices suitably in Equation (3.45) one readily obtains

�ABμ
C = XC

QABμ
Q, �A′B′μC = Y C

QA′B′μQ.

Using the explicit expressions for the curvature spinors XABCD and YABA′B′ for

a Levi-Civita connection, as given in Section 3.2.4 one concludes that

�ABμC = ΨABCDμD − 2Λμ(AεB)C , �A′B′μC = ΦCDA′B′μD. (3.46)

The above expressions can be extended to higher order valence spinors by means

of the Leibnitz rule.

The expressions in (3.46) can be extended to the case of connections with

torsion; see Penrose (1983) for the general theory and Gaspeŕın and Valiente

Kroon (2015) for explicit expressions and applications.

3.3 Global considerations

The discussion on null vectors and their flagpoles in Section 3.1.10 makes a

natural connection with the notion of orientability and the assumptions needed

to ensure the existence of spinorial structures on a region of spacetime.

As seen in Proposition 3.3, every non-vanishing null vector is either future

pointing or past pointing, in accordance with the choice of sign made in

Equation (3.21). Thus, the existence of spinors on a region of spacetime provides

a way to define a time orientation. In a similar way, the idea of a right-handed

phase change of a triad of orthonormal vectors {e1, e2, e3}, as discussed in

Section 3.1.10, can be used to define a notion of space orientation. Thus, at least

at an intuitive level, the existence of a spinorial structure over a spacetime seems

to imply that the spacetime is time orientable and space orientable. It turns out

that the converse is also true: time and space orientability ensure the existence

of a spinorial structure. More precisely, one has the following result proved in

Geroch (1968):

Theorem 3.2 (orientability and the existence of a spinor structure) A

non-compact spacetime (M, g) has a spinor structure if and only if there exists

on M a global system of orthonormal tetrads.

Part IV of this book will be concerned with the construction of spacetimes from

suitably posed initial value problems. Thus, it is convenient to have a criterion

to encode the existence of a spinorial structure in an initial value problem.

An example of this is the following result in Geroch (1970c):

Proposition 3.4 (global hyperbolicity and the existence of a spinor

structure) Every globally hyperbolic spacetime has a spinor structure.

The notion of global hyperbolicity is discussed in Section 14.1.
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An orientable spacetime may have several spinorial structures. One can ensure

uniqueness of the spinorial structure if one restricts further the topology of the

spacetime. More precisely, one has that (see Geroch (1968)):

Proposition 3.5 (uniqueness of the spinorial structure) The spinorial

structure of a spacetime is unique if and only if M is simply connected.

3.4 Further reading

Further details on the various topics covered in the present chapter can be

found in Penrose and Rindler (1984), Stewart (1991) and O’Donnell (2003). The

discussion in these references leads, in a natural way, to the Newman-Penrose

formalism and applications like the Petrov algebraic classification of the Weyl

tensor. Some discussion on the use of spinors in the construction and analysis

of exact solutions to the Einstein field equations can be found in Stephani et al.

(2003) and Griffiths and Podolský (2009). The relation between Dirac spinors

and 2-spinors is presented in Penrose and Rindler (1984) and Stewart (1991).

A pure mathematics perspective can be found, for example, in Petersen (1991);

see also Choquet-Bruhat et al. (1982).

A more general perspective of the discussion of the present chapter can be

obtained by making use of the notion of fibre bundles ; see, for example, Ashtekar

et al. (1982). In terms of this language, the spinorial structure arises as a principal

fibre bundle over the spacetime manifold M with structure group SL(2,C).

This point of view is convenient for computer algebra implementations; see,

for example, Mart́ın-Garćıa (2014). The fibre bundles are useful in analyses that

require the blowing up of particular points of spacetime – as in the analysis

of caustics in Friedrich and Stewart (1983) or the so-called problem of spatial

infinity of Friedrich (1998c).

Appendix: the Newman-Penrose formalism

The idea of a spinor-based null tetrad formalism was introduced in the seminal

article by Newman and Penrose (1962); see also Newman and Penrose (1963).

This so-called Newman-Penrose (NP) formalism was first used as a way

of analysing the asymptotics of gravitational radiation. The potential of the

formalism to obtain exact solutions to the Einstein field equations, in particular,

ones having an algebraically special Weyl tensor, was quickly realised; see,

for example, Stephani et al. (2003) for an entry point to the literature of

exact solutions. Refinements of the formalism which are adapted to specific

configurations or types of problems are available in the literature, most noticeably

Geroch et al. (1973); see also Machado and Vickers (1995, 1996).

The key aspects of a generic spinor-based null tetrad formalism have already

been covered in this book. One of the peculiarities of the formalism, as introduced

in Newman and Penrose (1962), is the use of specific symbols to denote
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92 Spacetime spinors

directional derivatives and the spin coefficients. This notation will not be used

in this book as the Newman-Penrose (NP) formalism assumes, from the onset, a

Levi-Civita connection. However, the discussion in this book will very often use

more general connections. Hence, one has more independent spin coefficients.

Moreover, the labelling of spin coefficients through indices lends itself better

for a systematic analysis of the properties of the relevant equations. Additional

difficulties with the NP formalism arise with the space spinor formalism; see the

next chapter.

The purpose of this appendix is to provide a guide to the translation, whenever

possible, between NP objects and the ones used in this book.

The directional derivatives

Let {o, ι} denote, as usual, a spin basis. Also, let {l,n,m, m̄} denote the null

tetrad constructed from the spin basis, as described in Section 3.1.9. The NP

convention for the directional derivatives along the directions given by the null

tetrad is

D ≡ la∇a = oAōA
′∇AA′ = ∇00′ ,

Δ ≡ na∇a = ιAῑA
′∇AA′ = ∇11′ ,

δ ≡ ma∇a = oAῑA
′∇AA′ = ∇01′ ,

δ̄ ≡ m̄a∇a = ιAōA
′∇AA′ = ∇10′ .

The spin coefficients

In what follows, it is assumed that the connection ∇ is Levi-Civita so that

∇AA′εBC = 0. The NP convention for the spin coefficients of ∇ is given by:

ε = Γ00′00 = −Γ00′11 = Γ00′10,

α = Γ10′00 = −Γ10′11 = Γ10′10,

β = Γ01′00 = −Γ01′11 = Γ01′10,

γ = Γ11′00 = −Γ11′11 = Γ11′10,

π = Γ00′01 = Γ00′11, κ = −Γ00′10 = Γ00′00,

λ = Γ10′01 = Γ10′11, ρ = −Γ10′10 = Γ10′00,

μ = Γ01′01 = Γ01′11, σ = −Γ01′10 = Γ01′00,

ν = Γ11′01 = Γ11′11, τ = −Γ11′10 = Γ11′00.

The above spin coefficients can be expressed entirely in terms of the directional

derivativesD, Δ, δ, δ̄ applied to the null frame vectors or, alternatively, applied to

the spin basis {o, ι}. See O’Donnell (2003) and Stewart (1991) for details on this.

Explicit expressions of the spin coefficients in terms of curls (antisymmetrised

derivatives) have been worked out in Cocke (1989).
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The Ricci and Weyl tensors

The NP conventions to denote the components of the Weyl spinor ΨABCD with

respect to {o, ι} are:

Ψ0 ≡ ΨABCDoAoBoCoD, Ψ1 ≡ ΨABCDoAoBoCιD, Ψ2 ≡ ΨABCDoAoBιCιD,

Ψ3 ≡ ΨABCDoAιBιCιD, Ψ4 ≡ ΨABCDιAιBιCιD.

The conventions for the components of the trace-free Ricci spinor ΦAA′BB′ are:

Φ00 ≡ ΦAA′BB′oAoB ōA
′
ōB

′
, Φ01 ≡ ΦAA′BB′oAoB ōA

′
ῑB

′
,

Φ02 ≡ ΦAA′BB′oAoB ῑA
′
ῑB

′
, Φ10 ≡ ΦAA′BB′oAιB ōA

′
ōB

′
,

Φ11 ≡ ΦAA′BB′oAιB ōA
′
ῑB

′
, Φ12 ≡ ΦAA′BB′oAιB ῑA

′
ῑB

′
,

Φ20 ≡ ΦAA′BB′ιAιB ōA
′
ōB

′
, Φ21 ≡ ΦAA′BB′ιAιB ōA

′
ῑB

′
,

Φ22 ≡ ΦAA′BB′ιAιB ῑA
′
ῑB

′
.

Notice that in both lists of definitions the value of the index denotes the number

of contractions with the spinor ι.

The NP formalism makes use of the symbol Λ to denote a multiple of the trace

of the Ricci tensor. The relation to the Ricci scalar is

R = −24Λ.

The Newman-Penrose field equations

Newman and Penrose (1962) provided explicit expressions of the Ricci and the

Bianchi identities in terms of their notation for the spin connection coefficients

and the components of ΨABCD and ΦAA′BB′ . These equations are collectively

called the Newman-Penrose field equations. Explicit expressions are available

in O’Donnell (2003), Penrose and Rindler (1986) and Stewart (1991). Besides

the NP field equations, the formalism consists also of explicit expressions for the

commutators of the directional derivatives D, Δ, δ, δ̄. Expressions for the source-

free Maxwell equations are available in the literature as well; see, for example,

the appendix in Stewart (1991).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


4

Space spinors

This chapter discusses a framework for spinors in which a further structure is

introduced – a so-called Hermitian inner product. The resulting formalism will be

referred to as space spinors or SU(2,C)-spinors. The space spinor formalism

can be used to describe the geometry of three-dimensional Riemannian manifolds

and, more generally, foliations of spacetime. Moreover, it can also be used to

provide a description of the hyperplanes associated to a congruence of timelike

curves.

The notion of space spinors was first introduced in Sommers (1980); see also

Sen (1981). It provides a systematic approach to the construction of evolution

equations which can be regarded as a spinorial version of the 1 + 3 formalism

for tensors. Space spinors are used in several other areas of relativity such

as quantum gravity (see e.g. Ashtekar (1991)), the construction of quasi-local

notions of energy (see e.g. Szabados (2009)) and global aspects of the geometry

of 3-manifolds (see e.g. Bäckdahl and Valiente Kroon (2010a); Beig and Szabados

(1997); Tod (1984)).

4.1 Hermitian inner products and 2-spinors

Let (M, g) denote a four-dimensional Lorentzian manifold. As in Chapter 3, it is

assumed that at each point p ∈ M one has a two-dimensional simplectic vector

space S|p(M) as given by Definition 3.1. One has the following definition:

Definition 4.1 (Hermitian inner product) A Hermitian inner product

on a simplectic two-dimensional vector space S is a function 〈〈·, ·〉〉 : S×S → C

which is:

(i) Hermitian; that is, given ξ, η ∈ S

〈〈ξ,η〉〉 = 〈〈η, ξ〉〉
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4.1 Hermitian inner products and 2-spinors 95

(ii) linear in the second entry; that is, given ξ, η, ζ ∈ S, z ∈ C

〈〈ξ,η + zζ〉〉 = 〈〈ξ,η〉〉+ z〈〈ξ, ζ〉〉

(iii) positive definite; that is, given ξ ∈ S

〈〈ξ, ξ〉〉 ≥ 0

and 〈〈ξ, ξ〉〉 = 0 if and only if ξ = 0.

From conditions (i) and (ii) it follows that a Hermitian inner product is

antilinear in the first entry; that is, given ξ, η, ζ ∈ S, z ∈ C, one has

〈〈ξ + zζ,η〉〉 = 〈〈ξ,η〉〉+ z̄〈〈ζ,η〉〉.

4.1.1 Hermitian conjugation

In what follows, given a spacetime (M, g), assume that for each point p ∈ M, the

vector space S|p(M) is endowed with a Hermitian inner product which changes

smoothly from point to point. The Hermitian inner product can be expressed in

terms of a Hermitian spinor �AA′ ∈ SAA′(M) such that

〈〈ξ,η〉〉 = �AA′ ξ̄A
′
ηA. (4.1)

It can be verified that the right-hand side of the above expression satisfies condi-

tions (i) and (ii) of Definition 4.1. Given a spinor basis {εAA}, the components

of �AA′ with respect to the basis are given by �AA′ ≡ �AA′εA
Aε̄A′A

′
. The

components �AA′ can be thought of as the entries of a (2× 2) matrix (�AA′).

The positivity condition (iii) of Definition 4.1 requires the above matrix to be

diagonalisable and to have positive eigenvalues. Thus, it is natural to consider

a (not necessarily normalised) basis {εAA} for which (�AA′) takes the diagonal

form

(�AA′) =

(
�00′ 0

0 �11′

)
.

The scaling of the basis {εAA} can be fixed, without loss of generality, so that

(�AA′) is the identity matrix. In the rest of the book, whenever a Hermitian

inner product is discussed, it will be assumed that a spin basis {εAA} has been

chosen so that

(�AA′) =

(
1 0

0 1

)
. (4.2)

A direct consequence of the above normalisation condition is that one can

write

�AA′ = oAōA′ + ιAῑA′ = ε1Aε̄
1′

A′ + ε0Aε̄
0′

A′ , (4.3a)
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96 Space spinors

�A
A′

= oAō
A′

+ ιAῑ
A′

= ε1Aε̄0′A
′ − ε0Aε̄1

A′
, (4.3b)

�AA′
= oAōA

′
+ ιAῑA

′
= ε0

Aε̄0′A
′
+ ε1

Aε̄1′A
′
. (4.3c)

From these expressions it follows that

�AA′�BA′
= oAι

B − ιAo
B = ε1Aε1

B + ε0Aε0
B .

Thus,

�AA′�A′B = δA
B . (4.4)

Notice, in particular, that �AA′�AA′
= 2.

The spinor �AA′ induces an operation of Hermitian conjugation + :

S•(M) → S•(M). Given μA ∈ S(M), we define its Hermitian conjugate μ+
A

via

μ+
A ≡ �A

A′
μ̄A′ . (4.5)

It follows then that one can write

〈〈ξ,η〉〉 = −ξ+Aη
A = ηAξ

+A.

Observe that as a consequence of the see-saw rule, Equations (3.4a) and (3.4b),

one has μ+A ≡ −�A
A′ μ̄A′

. The Hermitian conjugation is extended to higher

valence spinors by requiring

(μλ)+ = μ+λ+

for μ, λ ∈ S•(M). It is a consequence of the normalisation condition (4.2) that

μ++
A1···Ak

= (−1)kμA1···Ak
.

Furthermore, μ+AμA = 0 if and only if μA = 0, the latter as a result of condition

(iii) of Definition 3.1. Using the representation of �A
A′

given by (4.3b) one finds

that

o+A = ιA, ι+A = −oA, (4.6a)

o+A = ιA, ι+A = −oA. (4.6b)

Hence, the normalisation leading to (4.3a)–(4.3c) is equivalent to the normalisa-

tion condition

oAo
+A = 1,

for the spinor o. Notice also that, as a consequence of the previous discussion, a

non-zero spinor and its Hermitian conjugate are linearly independent. Finally, a

calculation using the expression of εAB in terms of oA and ιA, yields

ε+AB = �A
A′
�B

B′
εA′B′ = εAB .
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4.2 The space spinor formalism 97

Remark. In the rest of the book, when working with spinor structures endowed

with a Hermitian product, it will always be assumed that a spin basis satisfying

relations (4.6a) and (4.6b) has been chosen.

4.2 The space spinor formalism

A consequence of the existence of an operation of Hermitian conjugation is that,

given a spinor ξ ∈ S•(M), its complex conjugate ξ̄ and its Hermitian conjugate

ξ+ contain the same information. This observation allows the introduction of

a spinorial formalism based entirely on spinors with unprimed indices by

contracting all the primed indices in the spinors with �A
A′
. Given ξA1···ApA′

1···A′
q
,

we define its space spinor counterpart ξA1···ApB1···Bq
as

ξA1···ApB1···Bq
≡ �B1

A′
1 · · ·�Bq

A′
qξA1···ApA′

1···A′
q
. (4.7)

The above expression can be inverted by recalling the normalisation condition

(4.4) to yield

ξA1···ApA′
1···A′

q
= (−1)q�B1

A′
1
· · ·�Bq

A′
q
ξA1···ApB1···Bq

.

Thus, the information contained in a spinor with primed indices and its space

spinor counterpart is equivalent.

4.2.1 The Hermitian product and three-dimensional vectors

The operation of Hermitian conjugation gives rise to a notion of reality for

spinors. More precisely, a spinor μA1B1···AkBk
with an even number of indices

will be said to be real if

μ+
A1B1···AkBk

= (−1)kμA1B1···AkBk
,

and imaginary if

μ+
A1B1···AkBk

= (−1)k+1μA1B1···AkBk
.

Consider now a symmetric valence-2 spinor vAB ∈ S•(M). Given a space

spinor basis {o, ι} such that ι ≡ o+, one can write

vAB = aoAoB + bιAιB + co(AιB), (4.8)

with a, b, c ∈ C. The Hermitian conjugate of vAB is given by

v+AB = āιAιB + b̄oAoB − c̄ι(AoB).

If vAB is real, that is, v+AB = −vAB , then b̄ = −a and c̄ = c. Thus, the real

spinor vAB has only three real components so that it describes a three-dimensional

vector vi. This argument can be extended to higher valence real space spinors

so that

ξA1B1···AkBk

C1D1···CmDm = ξ(A1B1)···(AkBk)
(C1D1)···(CmDm),
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98 Space spinors

if real, can be regarded as the space spinor counterpart of a three-dimensional

tensor ξi1···ik
j1···jm – every pair of symmetric spinor indices is associated to a

spatial tensor index. One can summarise the previous discussion in the following:

Lemma 4.1 (the distribution associated to a Hermitian product) A

Hermitian spinor �AA′ on S•(M) induces a three-dimensional distribution Π

on M.

Observation. The distribution Π may not possess integrable manifolds.

The consequences of Lemma 4.1 can be further elaborated by considering the

spinorial counterpart of the projector ha
b associated to the distribution Π. To

this end let

hAA′BB′ ≡ δA
BδA′B

′ − 1

2
�AA′�BB′

.

It can be readily verified that

hAA′BB′
hBB′CC′

= hAA′CC′
, hAA′BB′

�BB′ = 0.

Now, given vAA′ ∈ S•(M) denote by vAB its space spinor counterpart. A

calculation then shows that

v(AB) = �B
A′
hAA′CC′

vCC′ = �(A
A′
vB)A′ .

Thus, the spinor hAA′BB′
is the projector associated to the distribution induced

by �AA′ . The space spinor version of hAA′BB′
is given by hABCD ≡ �B

A′
�D

C′

hAA′CC′ . It can be readily verified that hABCD = h(AB)(CD). Using the Jacobi

identity (3.5) one can show that

hABCD ≡ −εA(CεD)B . (4.9)

It can also be verified that

hABPQh
PQCD = hAB

CD ≡ εA
(CεB

D), hABCDhABCD = hPQ
PQ = 3.

In addition, one has

h+
ABCD = hABCD,

so that hABCD is a real space spinor. Moreover, given vAB = v(AB) and uAB =

u(AB) one has that

vABhABCD = vCD, uABh
ABCD = uCD, uABhCD

AB = uCD.

Finally, it is observed that if the spinor vAB is real, then using the decomposition

of Equation (4.8) one readily finds that

hABCDvABvCD = vABv
AB = 2ab− 1

2
c2 = −2|b|2 − 1

2
c2 ≤ 0.
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Thus, given p ∈ M, the spinor hABCD gives rise to a negative definite inner

product on Π|p ⊂ T |p(M). Accordingly, the vectors in Π are spatial with respect

to the metric g. As Π may not possess integrable submanifolds, hABCD is not

necessarily the spinorial counterpart of a (negative definite) three-dimensional

Riemannian metric of a spacelike submanifold of M.

4.2.2 Spatial Infeld-van der Waerden symbols

The relation between space spinors and three-dimensional vectors can be

formalised by means of suitable soldering objects. At each point p ∈ M consider a

g-orthonormal basis {ei} of Π|p and let {ωi} denote the associated cobasis. One

has then that g(ei, ej) = −δij . In addition, let {εAA} be a spin basis satisfying

ε+1
A = ε0

A; compare Equation (4.6b). Spatial Infeld-van der Waerden

symbols can be defined from the spacetime Infeld-van der Waerden symbols

σa
AA′

and σa
AA′ through the relations

σi
AB ≡ −�(A

A′σi
B)A′

, σi
AB ≡ �(A

A′
σi

B)A′ .

hABCD = −σi
ABσj

CDδij , σi
ABσj

AB = δi
j . (4.10)

The explicit expressions for the spatial Infeld-van der Waerden symbols are

given by

σ1
AB =

1√
2

(
−1 0

0 1

)
, σ2

AB =
1√
2

(
−i 0

0 −i

)
, σ3

AB =
1√
2

(
0 1

1 0

)
,

and

σ1
AB =

1√
2

(
−1 0

0 1

)
, σ2

AB =
1√
2

(
i 0

0 i

)
, σ3

AB =
1√
2

(
0 1

1 0

)
.

Given the above, the components of a three-dimensional vector v and a three-

dimensional covector ξ can be put in correspondence with symmetric valence-2

real spinors via the formulae

vi �→ vAB = viσi
AB, ξi �→ ξAB = ξiσ

i
AB,

or more explicitly

(v1, v2, v3) �→ 1√
2

(
−v1 − iv2 v3

v3 v1 − iv2

)
, (4.11a)

(ξ1, ξ2, ξ3) �→
1√
2

(
−ξ1 + iξ2 ξ3

ξ3 ξ1 + iξ2

)
. (4.11b)

It can be verified that

〈ξ,v〉 = ξiv
i = ξABvAB = −ξ1v

1 − ξ2v
2 − ξ3v

3.
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100 Space spinors

The above correspondence between space spinors and three-dimensional vectors

can be readily extended to higher rank tensors. For example, given the

components Tij
k of a tensor Tij

k one has the correspondence

Tij
k �→ TABCD

EF ≡ σi
ABσj

CDσk
EFTij

k.

Finally, it is observed that σi
AB and σi

AB can be used to define an alternative

set of basis and cobasis {eAB}, {ωAB} for Π|p through the relations

eAB ≡ σi
ABei, ωAB ≡ σi

ABωi. (4.12)

In terms of these definitions the symbols σi
AB are the components of the frame

{eAB} with respect to itself. It can be verified that

〈ωAB, eCD〉 = hCD
AB, g(eAB, eCD) = hABCD.

4.2.3 Changes of basis and SU(2,C) transformations

To characterise the class of transformations preserving the structure of the

Hermitian inner product it is convenient to consider a change of spin basis

ε̃A
A = OA

P εP
A, ε̃AA = OA

P εPA,

where (OA
P ) and (OA

P ) are SL(2,C) matrices such that

OA
POB

P = δA
B.

It follows that

�̃AA′ = �AA′ ε̃A
A¯̃εA′A

′

= �AA′
(
OA

P εP
A
) (

ŌA′P
′
ε̄P ′A

′
)
= �PP ′OA

P ŌA′P
′
.

Hence, if one requires OA
P to be such that both�AA′ and �̃AA′ are the identity

matrix – compare Equation (4.2) – then OA
P and ŌA′P

′
have to be inverses

of each other; that is, the transformation described by the matrix (OA
B) is

an SU(2,C) transformation. This property explains the alternative name of

SU(2,C) spinors used to describe spinorial structures endowed with a Hermitian

product; see, for example, Ashtekar (1991). It is a direct consequence of the

previous discussion that the notions of real and imaginary space spinors as

discussed in Section 4.2.1 are invariant under SU(2,C) transformations.

It can be readily verified that SU(2,C) transformations are related to

three-dimensional rotations, that is, O(3) transformations . As SU(2,C)

transformations are a special case of SL(2,C) transformations, it follows that

εAB = OA
COB

DεCD; that is, ε̃AB = εAB. From the latter one has that

hABCD = OA
EOB

FOC
GOD

HhEFGH .
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4.2 The space spinor formalism 101

Contracting the above expression with spatial Infeld-van der Waerden symbols

one obtains

δij = Oi
kOj

lδkl,

where the matrix (Oi
k) with elements given by

Oi
k ≡ σi

ABσk
EFOA

EOB
F

is an O(3)-transformation, that is, a three-dimensional real matrix preserving

the identity matrix.

4.2.4 Spinors on three-dimensional manifolds

In this section it is assumed that the distribution Π associated to the Hermitian

spinor �AA′ has an integral manifold S. It follows that S is a spacelike

hypersurface of the spacetime manifoldM, and the restriction of Π to S coincides

with the tangent bundle T (S). Vectors and covectors in T (S) are associated to

symmetric valence-2 real spinors.

Under the assumptions of the previous paragraph, consistently with the

discussion of Section 4.2.1, one has that the spinor hABCD = −εA(CεD)B is the

spinorial counterpart of the three-dimensional (negative definite) Riemannian

metric h induced on S by g. One can write

h = −δijω
i ⊗ ωj = hABCDωAB ⊗ ωCD

with the coframe {ωAB} defined as in Equation (4.12). In a natural manner, the

spinor �AA′ can be identified with the normal to S.

An alternative point of view

The discussion of spinors on three-dimensional manifolds outlined in the previous

paragraphs assumes that S is a spacelike hypersurface of a spacetime (M, g).

A more intrinsic perspective can be obtained by postulating the existence of a

spinorial structure over S, to be denoted by S(S), endowed with an operation

of Hermitian conjugation + : S(S) → S(S) satisfying the properties discussed

in Section 4.1.1. This point of view leads one to consider conditions ensuring

the existence of this space spinor structure. An example of a sufficient

condition is that the vacuum Einstein constraint equations (see Chapter 11)

can be solved on S. If this is the case, the three-dimensional manifold can be

regarded as a spacelike hypersurface of a spacetime (M, g); see Chapter 14. The

spacetime (M, g) is globally hyperbolic and, thus, admits a spinor structure;

see Proposition 3.4. The g-normal to S in M induces the required operation of

Hermitian conjugation.

In what follows, the notational conventions of Section 3.1.4 are adopted, and

one writes S•(S), SA(S), SA(S), . . . to denote the various bundles associated

to S(S).
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102 Space spinors

Totally symmetric spinors

Spinors provide a simple representation of the operation of taking the symmetric

trace-free part of a three-dimensional tensor.

Proposition 4.1 (space spinor representation of trace-free three-

dimensional tensors) Let TA1B1···ApBp
denote the spinorial counterpart of a

three-dimensional real tensor Ti1···ip . One has that

TA1B1···ApBp
= T(A1B1···ApBp) if and only if Ti1···ip = T{i1···ip}.

Proof Any possible contraction of T(A1B1···ApBp) with hABCD must vanish so

that Ti1···ip must be trace free. Conversely, if Ti1···ip = T{i1···ip}, then one has

that

hA1B1A2B2TA1B1A2B2···ApBp
= TPQ

PQ···ApBp
= 0.

Using the decomposition (3.8) together with the symmetries of TA1B1A2B2···ApBp

in the indices A1B1A2B2
one concludes that

TA1B1A2B2···ApBp
= T(A1B1A2B2)···ApBp

.

Now, considering the contraction of the pair A2B2
with pairs outside the sym-

metrisation bracket and repeating the previous argument as many times as nec-

essary one concludes that TA1B1A2B2···ApBp
must be completely symmetric.

4.2.5 Timelike congruences and Hermitian products

Assume now that the spacetime (M, g) has some privileged future directed

timelike vector τ with parameter τ .1 The vector τ does not need to be

hypersurface orthogonal. Let τAA′
denote the spinorial counterpart of τ and

consider the normalisation g(τ , τ ) = 2. As discussed in Section 2.7.1, τ defines

a distribution on M. Let Sτ denote the hyperplanes generated by τ ; as τ is

not hypersurface orthogonal, the hyperplanes are not, in general, the tangent

bundles to the leaves of a foliation of M. The timelike spinor τAA′ induces a

Hermitian product 〈〈ξ,η〉〉 = τAA′ ξ̄A
′
ηA for ξA, ηA ∈ S(S). Indeed, as τAA′

is

the spinorial counterpart of a spacetime vector, it is a Hermitian spinor, so that

τAA′ ξ̄A′ηA = τAA′ η̄A
′
ξA.

Furthermore, given that τAA′
is timelike future directed and ξAξ̄A

′
describes a

future-directed null vector, it follows that τAA′ξAξ̄A
′ ≥ 0. Thus, formula (4.1)

1 It is possible to construct a “space spinor” formalism adapted to spacelike congruences with

tangent vector ρAA′
; see e.g. Szabados (1994). This requires adapting some of the formulae

given in the preceding sections. In particular, the associated Hermitian product needs to be

negative definite. Moreover, the analogue of Equation (4.13) is given by ρAA′ρBA′
= εBA so

that ρAA′ρAA′
= −2.
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4.2 The space spinor formalism 103

and the various subsequent expressions in Section 4.1 can be used for the choice

�AA′ = τAA′ .

From the discussion in Section 4.1.1 it follows that there exists a spin basis

{εAA} such that

τAA′
= ε0

Aε0′A
′
+ ε1

Aε1′A
′
.

In particular, one has that

τAA′τBA′
= εA

B . (4.13)

Space spinor split of general spacetime spinors

The tensorial counterpart of a spinor μA1A′
1···AkA′

k
can be expanded in terms of

the spatial frame {eAB} if and only if it is spatial with respect to τ , that is, if

the k conditions

τA1A
′
1μA1A′

1···AkA′
k
= 0, · · · τAkA

′
kμA1A′

1···AkA′
k
= 0

hold. In this case, its space spinor counterpart is given by

μA1B1···AkBk
= τB1

A′
1 · · · τBk

A′
kμA1A′

1···AkA′
k
= μ(A1B1)···(AkBk).

To deal with the spinorial counterparts of tensors which are not spatial in the

sense described above, one makes use of the projector

hBB′
AA′ ≡ εA

BεA′B
′ − 1

2
τAA′τBB′

,

which takes a spinor ξA1A′
1···AkA′

k
onto the spatial spinor

ξA1A′
1···AkA′

k
hA1A

′
1
B1B′

1
· · ·hAkA

′
k
BkB′

k
.

The space spinor version of the above spatial spinor is obtained by contracting

the primed indices with τA
A′

as in formula (4.7). In particular, this procedure

applied to the projector hAA′BB′ yields hABCD. The non-spatial components of

ξA1A′
1···AkA′

k
can be obtained by a full contraction of a primed-unprimed pair of

indices with τAA′
.

An alternative way of looking at the projection procedure described in the

previous paragraphs is the following: given the spinorial counterpart ξA1A′
1···A1A′

k

of a (in principle non-spatial) tensor, define

ξA1B1···AkBk
≡ τB1

A′
1 · · · τBk

A′
kξA1A′

1···A1A′
k
.

Then ξ(A1B1)···(AkBk) encodes the spatial part of ξA1A′
1···A1A′

k
, while ξP1

P1 · · · Pk
Pk

corresponds to its pure time component. Mixed time-spatial components have

the form ξP
P
(A2B2)···(AkBk), and so on.
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104 Space spinors

As a particular example of the previous discussion one has that for a Hermitian

spinor vAA′ ∈ S•(M) it holds that

vAA′ =
1

2
τAA′v − τQA′v(QA)

where v ≡ vPP ′τPP ′
and vAB ≡ τB

A′
vAA′ . Observing that v = vQ

Q one can

write, alternatively, that

vAB =
1

2
εABv + v(AB).

The 1 + 3 split of frame and the metric

Given a g-orthonormal frame {eAA′} and its coframe {ωAA′}, the discussion of

the previous paragraphs implies that they can be written as

eAA′ =
1

2
τAA′e− τBA′eAB,

ωAA′
=

1

2
τAA′

ω + τC
A′

ωCA,

where the various vectors and covectors in the decomposition are given by

e ≡ τPP ′
ePP ′ , eAB ≡ τ(A

P ′
eB)P ′ ,

ω ≡ τPP ′ωPP ′
, ωAB ≡ −τ (AP ′ωB)P ′

.

Now, recalling that 〈ωAA′
, eBB′〉 = εB

AεB′A
′
, one obtains that

〈ω, e〉 = 2, 〈ω, eAB〉 = 0,

〈ωAB, e〉 = 0, 〈ωAB, eCD〉 = hAB
CD.

Using the above pairings together with expression (3.29) one obtains the

following 1 + 3 split of g:

g =
1

2
ω ⊗ ω + hABCDωAB ⊗ ωCD. (4.14)

In particular, one has that

hABCD ≡ g(eAB, eCD) = −εA(CεD)B.

If τ is hypersurface orthogonal, then the vectors {eAB} and the covectors

{ωAB} are intrinsic to the hypersurfaces Sτ orthogonal to τ ; thus, they can be

regarded as belonging to T (Sτ ) and T ∗(Sτ ), respectively. In addition,

h ≡ hABCDωAB ⊗ ωCD

corresponds to the (negative definite, Riemannian) metric induced by g on Sτ .

Let εijk denote the volume form of the three-dimensional metric h, and let
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4.3 Calculus of space spinors 105

εABCDEF be its spinorial counterpart. Using the antisymmetry properties of

εABCDEF it can be expressed in terms of εAB as

εABCDEF =
i√
2
(εACεBEεDF + εBDεAF εCE). (4.15)

Furthermore, it can be checked that

εABCDEF ε
ABCDEF = −6.

Alternatively, Equation (4.15) can be obtained from Equation (3.25), by suitable

contactions with τAA′
. More precisely, one has that

εCDEFGH =
1√
2
τAA′

τD
C′
τF

E′
τH

G′
εAA′CC′EE′GG′ .

4.3 Calculus of space spinors

This section discusses the notion of covariant derivative in the context of the

space spinor formalism. For simplicity of the presentation, it is assumed that

one has a situation as described in Section 4.2.5 where the spinor �AA′ is given

by the spinorial counterpart τAA′ of the tangent vector τ to a timelike congruence

in (M, g). Moreover, it is also assumed that ∇AA′ is the spinorial counterpart

of the Levi-Civita connection of the metric g.

4.3.1 The Sen connection

The spinor τAA′
can be used to obtain a space spinor version of the spacetime

spinorial covariant derivative ∇AA′ . More precisely, one can define

∇AB ≡ τB
A′∇AA′ .

The latter, in turn, can be written in terms of its irreducible components as

∇AB =
1

2
εABP +DAB , (4.16)

where

P ≡ τAA′∇AA′ , DAB ≡ τ(B
A′∇A)A′ .

The operator P is the directional derivative of the connection ∇ in the

direction of τ . The differential operator DAB is the so-called Sen connection

of ∇ relative to the vector field τ . In view of these definitions one can also write

∇AA′ =
1

2
τAA′P − τA′QDAQ.

The timelike vector τ is completely arbitrary; in particular, it is not assumed

to be hypersurface orthogonal. This has several consequences; most notably, the

Sen connection has, in general, a non-vanishing torsion which can be expressed in

terms of the covariant derivative of τAA′
. Furthermore, even in the case when τ is
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106 Space spinors

hypersurface orthogonal, DAB does not coincide with the Levi-Civita connection

D of the intrinsic 3-metric of the hypersurfaces Sτ orthogonal to τ . Finally,

it is pointed out that DAB is not a real differential operator in the sense that

D+
AB �= −DAB .

The derivative of τAA′

For future use, it is convenient to define

χABCD ≡ 1√
2
τD

C′∇ABτCC′ . (4.17)

Using the split (4.16) one obtains the decomposition

χABCD =
1

2
εABχCD + χ(AB)CD

where

χAB ≡ 1√
2
τB

A′PτAA′ , χ(AB)CD ≡ 1√
2
τD

C′DABτCC′ .

It can be verified that the above spinors satisfy the following symmetry and

reality properties:

χAB = χ(AB) = −χ+
AB , χ(AB)CD = χ(AB)(CD) = χ+

(AB)CD.

The spinor χAB corresponds to the acceleration vector of τ , while χ(AB)CD

is related to the Weingarten tensor of the distribution defined by τ . It can be

checked that the distribution is integrable if and only if χQ
(BC)Q = 0. In this case

τ is hypersurface orthogonal, and χABCD corresponds to the extrinsic curvature

of the orthogonal hypersurfaces Sτ .

The hypersurface orthogonal case

If τ is hypersurface orthogonal, given a spinor μC , the covariant derivative DAB

defined by

DABμC ≡ DABμC +
1√
2
χ(AB)C

QμQ (4.18)

can be verified to be torsion-free. As DABεCD = 0 and using that χABCD =

χAB(CD), one concludes that DABεCD = 0. Thus, DAB is metric and must coin-

cide with the (spinorial counterpart of the) Levi-Civita connection of the leaves

of the foliation defined by τ . It can be further verified from Equation (4.18) that(
DABμC

)+
= −DABμ

+
C ,

so that DAB is a real differential operator in the sense of Section 4.2.1.

Remark. The derivative DAB as defined in Equation (4.18) provides an explicit

example of the notion of space spinor covariant derivative to be introduced in

Section 4.3.3.
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4.3 Calculus of space spinors 107

4.3.2 Space spinor split of the spacetime connection coefficients

Following the notation of Section 3.2.2, let ΓAA′CD denote the spin connection

coefficients of a Levi-Civita connection ∇AA′ with respect to some spin basis

{εAA}. Its space spinor counterpart ΓABCD is defined by

ΓABCD ≡ τB
A′

ΓAA′CD.

The spin coefficients ΓABCD satisfy no specific reality conditions. However,

sometimes it is convenient to have a split of ΓABCD into real and imaginary

parts. One has that

τB
A′

(∇AA′τCC′)τD
C′

= −τB
A′

ΓAA′QCτQC′τD
C′ − τB

A′
Γ̄A′A

Q′
C′τCQ′τD

C′

= −ΓABCD + τB
A′

τC
Q′

τA′EτQ′F τC′GΓ+
EAFGτD

C′

= −ΓABCD − δB
EδC

F δD
GΓ+

EAFG

= −ΓABCD − Γ+
BACD,

where it has been used that eAA′(τCC′) = 0, the identity

Γ̄A′AB′C′ = −τA′EτB′F τC′GΓ+
EAFG,

and the identity (4.13). Hence, it follows that χABCD corresponds, essentially,

to the real part of ΓABCD; that is,

χABCD = − 1√
2
(ΓABCD + Γ+

ABCD).

The reality of the above expression follows from Γ++
ABCD = ΓABCD. The

imaginary part of ΓABCD is given by

ξABCD =
1√
2
(ΓABCD − Γ+

ABCD).

Inverting the definitions of χABCD and ξABCD it follows then that

ΓABCD =
1√
2
(ξABCD − χABCD),

=
1√
2
(ξABCD − χ(AB)CD)− 1

2
√
2
εABχCD.

Observe the symmetry conditions

χABCD = χAB(CD), ξABCD = ξ(AB)(CD).
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108 Space spinors

4.3.3 Intrinsic derivatives

When working with a three-dimensional Riemannian (S,h) it is convenient

to make use of an intrinsic notion of covariant derivative, a so-called space

spinor covariant derivative DAB , compatible with operation of Hermitian

conjugation, which is the spinorial counterpart of the Levi-Civita connection D

of the metric h. One regards DAB as a map

DAB : SC···D
E···F (S) → SC···D

ABE···F (S).

The properties of the operator DAB have to be consistent with those of the

operator defined in Equation (4.18). It is required to satisfy:

(i) Symmetry. Given ζC···D
E···F ∈ S•(S) one has

DABζ
C···D

E···F = D(AB)ζ
C···D

E···F .

(ii) Linearity. Given ζC···D
E···F , η

C···D
E···F ∈ S•(S) one has

DAB(ζ
C···D

E···F + ηC···D
E···F ) = DABζ

C···D
E···F +DABη

C···D
E···F .

(iii) Leibnitz rule. Given ζC···D
E···F , ξ

G···H
P ···Q ∈ S•(S) one has

DAB(ζ
C···D

E···F ξ
G···H

P ···Q) = ξG···H
P ···QDABζ

C···D
E···F

+ ζC···D
E···FDABζ

G···H
P ···Q.

(iv) Reality. Given ζC···D
E···F ∈ S•(S) one has

(
DABζ

C···D
E···F

)+
= −DABζ

+C···D
E···F

(v) Action on scalars. Given a scalar φ ∈ X(S), then DABφ is the spinorial

counterpart of Diφ.

(vi) Representation of derivations. Given a derivation D, there exists a

spinor ξAB ∈ S•(S) such that

DζC···D
E···F = ξPQDPQζ

C···D
E···F

for all ζC···D
E···F ∈ SC···D

E···F .

(vii) Compatibility with the ε-spinor. The operator DAB satisfies

DABεCD = 0 so that, in addition, DABhCDEF = 0.

(viii) No torsion. For φ ∈ X(S) one has that DABDCDφ = DCDDABφ.
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4.3 Calculus of space spinors 109

The space spinor spin coefficients

Let {ei} and {ωi} denote, respectively, an h-orthonormal basis and cobasis on S.
One defines the spatial connection coefficients γi

k
j via the equation

Diej = γi
k
jek. (4.19)

In what follows, it will be assumed that the connection D has spinorial

counterpart DAB satisfying conditions (i)–(viii) of the previous section. Let

{eAB} and {ωAB} denote, respectively, the vector basis and cobasis obtained

from {ei} and {ωi} through the correspondences in (4.12) and let DAB denote

the associated covariant directional derivative.

The spinorial counterpart of the spatial connection coefficients γAB
CD

EF

can be obtained by contraction of γi
k
j with the spatial Infeld-van der Waerden

symbols so that the reality condition

γ+
AB

CD
EF = −γAB

CD
EF (4.20)

holds. Now, defining the space spinor directional covariant derivative

DAB ≡ σi
ABDi, the spinorial counterpart of (4.19) can be written as

DABeEF = γAB
CD

EF eCD.

Hence, one has

γAB
CD

EF = 〈ωCD, DABeEF 〉,

so that γAB
CD

EF has the symmetries

γAB
CD

EF = γ(AB)
(CD)

(EF ).

Now, as DABhCDEF = 0, it follows then from

DABhCDEF = eAB(hCDEF )− γAB
PQ

CDhPQEF − γAB
PQ

EF hCDPQ,

that

γABCDEF = −γABEFCD.

This antisymmetry can be exploited to obtain the decomposition

γAB
CD

EF =
1

2
γAB

PD
PF δE

C +
1

2
γAB

CP
EP δF

D

= γAB
D

F δE
C + γAB

C
EδF

D,

where the space spinor spin coefficients, γAB
D

F = γ(AB)
D

F , have been

defined by

γAB
D

F ≡ 1

2
γAB

PD
PF . (4.21)

Observing the reality condition (4.20) and that ε+AB = εAB , it follows that

γ+
AB

C
D = −γAB

C
D;
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110 Space spinors

that is, the space spinor connection coefficients are imaginary. A computation

similar to the one performed in Section 3.2.2 to express the spacetime spin

coefficients in terms of derivatives of the spin basis shows that

γAB
C

D = εCQDABεD
Q = −εD

QDABεCQ.

From these expressions, it can be shown that given spinors κA and μA with

components κA and μA with respect to the space spinor basis {εAA}, one has

DABκC = eAB(κC)− γAB
Q

CκQ,

DABμC = eAB(μC) + γAB
C

QμQ,

where DABκC ≡ εC
QDABκQ and DABμC ≡ εCQDABμQ.

The three-dimensional curvature spinors

As D is being assumed to be the Levi-Civita connection of a three-dimensional

negative definite metric h, it follows that the spinorial counterpart rABCDEFGH

of the Riemann tensor rijkl of D satisfies the antisymmetry property

rABCDEFGH = −rCDABEFGH .

Hence, one has the decomposition

rABCDEFGH = −rACEFGHεBD − rBDEFGHεAC , (4.22)

with

rACEFGH ≡ 1

2
rAQC

Q
EFGH , rACEFGH = r(AC)EFGH .

Now, as rABCDEF = −rABEFCD one has further that

rABCDEF = rABCEεDF + rABDF εCE ,

with

rABCE =
1

2
rABCQE

Q, rABCE = rAB(CE).

As a consequence of the symmetry rABCDEFGH = rEFGHABCD, the spinor

rABCD inherits the symmetry rABCD = rCDAB . Taking into account all

these symmetries in the general decomposition for a general valence-4 spinor,

Equation (3.8), one concludes that

rABCD = r(ABCD) +
1

3
rPQ

PQhABCD.

In what follows let sABCD and r denote, respectively, the spinorial coun-

terpart of the trace-free Ricci tensor and the Ricci scalar of the

connection D. One has that

sABCD = r(ABCD), r = −4rPQ
PQ.
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4.4 Further reading 111

Hence, one finds that rABCDEF can be written as

rABCDEF =

(
1

2
sABCE − 1

12
rhABCE

)
εDF +

(
1

2
sABDF − 1

12
rhABDF

)
εCE .

(4.23)

Using an argument similar to the one employed in Section 3.2.3 one finds that

the commutator of the covariant derivative DAB satisfies

(DABDCD −DCDDAB)μ
E = rEFABCDμF .

Finally, for completeness it is noticed that the three-dimensional second Bianchi

identity takes, in the present context, the form

DPQsPQAB =
1

6
DABr.

This last expression can be obtained from multiplying by εijk the tensorial

Bianchi identity

Dirjklm +Djrkilm +Dkrijlm = 0,

and considering its spinorial counterpart using Equations (4.22) and (4.23).

4.4 Further reading

The notions of space spinor and space spinor splits were originally introduced in

Sommers (1980); see also Sen (1981). A monograph on space spinors is Torres

del Castillo (2003). An alternative discussion, having applications in quantum

gravity in mind, is given in an appendix of Ashtekar (1991). The space spinor

formalism was first used in Friedrich (1988, 1991) to analyse the conformal field

equations. Further developments can be found in Friedrich (1995, 1998c), and a

slightly different perspective on these ideas is given in Frauendiener (1998a).
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5

Conformal geometry

Conformal geometry is concerned with the properties of angle-preserving geomet-

ric transformations. Conformal geometry, as a branch of differential geometry,

has a long story going back to the work of Cotton, Schouten and Weyl; see,

for example, Cotton (1899), Schouten (1921) and Weyl (1918, 1968). It remains

an active area of research; compare the monograph by Fefferman and Graham

(2012).

The approach to the use of conformal methods in general relativity followed

in this book goes back to the seminal work by R. Penrose in the 1960s; see

Penrose (1963, 1964). Penrose’s ideas allowed to reformulate, in a geometric

manner, the study of the asymptotic behaviour of the gravitational field. Since

then, conformal methods have provided a valuable tool for the analysis of global

aspects of the Einstein field equations and their solutions. Conformal methods

have also been useful in the construction of exact solutions to the Einstein field

equations; see Stephani et al. (2003).

This chapter provides an introduction to the notions of conformal geometry

to be used in the later parts of this book. The organisation of this chapter is

geared towards applications.

5.1 Basic concepts of conformal geometry

This section discusses the basic notions of conformal geometry that will be used

throughout this book.

5.1.1 Conformal rescalings and transformations

The key notion in conformal geometry is that of a conformal rescaling . In

what follows, let g̃ and g denote two metrics on a manifold M̃. The metrics
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5.1 Basic concepts of conformal geometry 113

g̃ and g are said to be conformally related (or simply conformal) to each

other if there exists a positive Ξ ∈ X(M̃) such that

g = Ξ2g̃. (5.1)

The scalar Ξ is called the conformal factor. Throughout this book, the symbol

Ξ will be used to denote a generic conformal factor on a four-dimensional

manifold.

The conformal rescaling in Equation (5.1) gives rise to an equivalence relation

among the set of metrics over M̃. The conformal class of a metric g̃, to be

denoted by [g̃], is the collection of metrics conformally related to g̃. A conformal

class is also called a conformal structure. From Equation (5.1) it follows that

the contravariant metrics g̃� and g� are related by

g� = Ξ−2g̃�;

that is, gab = Ξ−2g̃ab, so as to ensure that g̃abg̃
bc = δa

c and gabg
bc = δa

c.

Closely related to the notion of conformally related metrics is the concept

of conformal transformations. To discuss this idea, let M̃ and M denote two

manifolds with metrics g̃ and g, respectively. A conformal transformation

(also called conformorphism) is a diffeomorphism ϕ : M̃ → M such that the

pull-back of g is conformal to g̃. That is, one has that

ϕ∗g = Ξ2g̃. (5.2)

Notice that as ϕ is a diffeomorphism, then (ϕ∗)−1 is well defined and the last

expression could have been written, alternatively, as g = (ϕ∗)−1
(
Ξ2g̃
)
.

A special case of the previous discussion occurs when g̃ is a flat metric – in the

Lorentzian four-dimensional case the Minkowski metric η and in the Riemannian

three-dimensional case the Euclidean metric δ. In these cases one then says that

g is conformally flat . Determining whether a given conformal class contains

the flat metric is a classical problem in conformal geometry; see Section 5.2.3.

The conformal group

As before, let [g̃] denote the conformal class of a Lorentzian metric g̃ on a

manifold M̃. Consider a frame {ẽa} which is orthonormal with respect to g̃. If

{ω̃a} denotes the associated coframe, one has that

g̃ = ηabω̃
a ⊗ ω̃b, that is, g̃(ẽa, ẽa) = ηab.

In order to investigate the type of transformations of {ω̃a} which lead to another

metric g ∈ [g̃], write

ω̃a = Ka
cω

c,
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114 Conformal geometry

with (Ka
c) denoting some transformation matrix and {ωa} another orthonormal

frame. The condition on the matrix (Ka
c) so that it leads to another member

of the conformal class, say, g = Ξ2g̃, is then given by

g̃ = ηabK
a
cK

b
dω

c ⊗ ωd = Ξ−2ηcdω
c ⊗ ωd.

The latter expression suggests writing

Ka
b = Ξ−1Λa

b,

where (Λa
b) is a Lorentz transformation; that is, Λa

cΛ
b
dηab = ηcd. The

group of (four-dimensional) Lorentz transformations will be denoted

by O(1, 3). It follows that at a point p ∈ M̃ the group of transformations

taking a g̃-orthonormal frame to a frame which is orthonormal with respect

to another metric in the conformal class [g], the so-called conformal group

CO(1, 3), is given by CO(1, 3) = R+ × O(1, 3). The previous discussion can

be adapted to the case of three-dimensional Riemannian metrics. In that case,

the conformal group, denoted by CO(3), is given by CO(3) = R+ ×O(3), where

O(3) denotes the group of three-dimensional orthogonal transformations

(rotations).

5.1.2 Conformal extensions and conformal compactifications

If a smooth mapping ϕ : M̃ → M satisfying condition (5.2) is injective

but not surjective (i.e. ϕ(M̃) � M), then one says that M is a conformal

extension of M̃. An important type of conformal extensions are the so-called

conformal compactifications. A conformal compactification of a manifold M̃
with metric g̃ is a conformal transformation ϕ : M̃ → U where U is a relatively

compact (i.e. the closure of U is compact), connected, open set of a manifold M
such that

g = (ϕ∗)−1(Ξ2g̃) in U ,

with a conformal factor Ξ such that:

(i) Ξ > 0 in U .
(ii) Ξ = 0 on ∂U , the boundary of the open set U . The set ∂U is called the

conformal boundary of M̃.

Examples of conformal extensions will be discussed in Chapter 6.

5.2 Conformal transformation formulae

The discussion of Section 2.4.4 can be applied to obtain the transformation

formulae relating the curvature tensors of the Levi-Civita connections ∇̃ and ∇
of two metrics g̃ and g related to each other by Equation (5.1).
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5.2 Conformal transformation formulae 115

5.2.1 Transformation formulae for the connection

As a first step, one needs to find the specific form of the transition tensor Qa
c
b

– see Equation (2.13). The first observation is that as the connections ∇̃ and

∇ are torsion free, it follows from Equation (2.15) that the transition tensor is

symmetric; that is, one has that

Qa
c
b = Q(a

c
b).

Using formula (2.14) one has that

∇agbc − ∇̃agbc = −Qa
d
bgdc −Qa

d
cgbd.

From ∇agbc = 0 and ∇̃agbc = ∇̃a(Ξ
2g̃bc) = 2Ξ∇̃aΞg̃bc (as ∇̃ag̃bc = 0) one finds

that

2(Ξ−1∇aΞ)gbc = Qa
d
bgdc +Qa

d
cgbd.

Two further companion equations can be obtained from the latter by permuting

cyclically the indices abc. Adding two of them and subtracting the third one, one

can solve for Qa
c
b to find

Qa
c
b = Ξ−1(∇aΞδb

c +∇bΞδa
c −∇dΞg

dcgab).

This last expression can be rewritten in a more concise form as

Qa
c
b = Sab

cd(Ξ−1∇dΞ), (5.3)

where

Sab
cd ≡ δa

cδb
d + δa

dδb
c − gabg

cd.

To simplify the presentation of the various transformation formulae, let

Υa ≡ Ξ−1∇aΞ, Υa
c
b ≡ Sab

cdΥd.

Hence, one can write schematically that

∇− ∇̃ = S(Υ), (5.4)

and Equation (5.3) yields Qa
c
b = Υa

c
b. The tensor S appeared in Section

2.5.2 in the decomposition of the Riemann tensor; see Equation (2.21b). Using

Equation (5.1) one finds that

δa
cδb

d + δa
dδb

c − gabg
cd = δa

cδb
d + δa

dδb
c − g̃abg̃

cd.

Hence, the tensor S is independent of the representative of the conformal class;

that is, it is an invariant of [g̃].
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116 Conformal geometry

5.2.2 Transformation formulae for the curvature

Combining the results of Section 2.4.4 with the expression for the transition

tensor of Equation (5.3) one obtains a transformation rule for the Riemann

tensor:

Rc
dab − R̃c

dab = 2(∇[aΥb]
c
d +Υ[a

c
|e|Υb]

e
d). (5.5)

Some of the transformation formulae for the various concomitants of the

Riemann tensor are dimension dependent; thus, they are analysed separately.

The 4-dimensional case

In the four-dimensional case one has that the Ricci and Schouten tensors and

Ricci scalar of the connections ∇̃ and ∇ are related to each other, respectively,

by the expressions

Rab − R̃ab = − 2

Ξ
∇a∇bΞ− gabg

cd

(
1

Ξ
∇c∇dΞ− 3

Ξ2
∇cΞ∇dΞ

)
, (5.6a)

Lab − L̃ab = − 1

Ξ
∇a∇bΞ +

1

2Ξ2
∇cΞ∇cΞ gab, (5.6b)

R− 1

Ξ2
R̃ = − 6

Ξ
∇c∇cΞ +

12

Ξ2
∇cΞ∇cΞ. (5.6c)

Using the tensor Sab
cd, one can rewrite the transformation formula for the

Schouten tensor, Equation (5.6b), in the alternative form

Lab − L̃ab = ∇aΥb +
1

2
Sab

cdΥcΥd. (5.7)

By letting ϑ ≡ Ξ−1, the transformation rule for the Ricci tensor can be

rewritten as

6∇a∇aϑ−Rϑ = −R̃ϑ3.

Using the irreducible decomposition of the Riemann tensor, Equation (2.21b), as

a definition for the Weyl tensor, together with Equations (5.5) and (5.6b), one

finds that

Cc
dab = C̃c

dab.

In other words, the Weyl tensor is an invariant of the conformal class [g̃]. Using

this invariance and the transformation law for the connection, a calculation leads

to the important identity

∇a(Ξ
−1Ca

bcd) = Ξ−1∇̃aC
a
bcd. (5.8)

A further tensor which will play a role in the present treatment of conformal

geometry is the so-called Cotton tensor of ∇̃. This tensor is defined as

Ỹabc ≡ ∇̃aL̃bc − ∇̃bL̃ac.
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5.2 Conformal transformation formulae 117

Notice that by construction Ỹabc = Ỹ[ab]c. The Cotton tensor is closely related

to the Weyl tensor. To see this, consider the second Bianchi identity

∇̃[eR̃
a
|b|cd] = 0, (5.9)

satisfied by the Riemann tensor of the metric g̃; see Section 2.4.3. Now, as seen

in Section 2.5.2, for a Levi-Civita connection, the Riemann tensor R̃a
bcd can be

decomposed in terms of the Weyl tensor Ca
bcd and the Schouten tensor L̃ab as

R̃a
bcd = Ca

bcd + 2(g̃a[cL̃d]b − g̃b[cL̃d]
a). (5.10)

Substituting the latter into Equation (5.9) one obtains

2(g̃b[c∇̃eL̃d]
a − g̃a[c∇̃eL̃d]b) = ∇̃[eC

a
|b|cd].

Contracting the indices a and e one obtains

∇̃cL̃db − ∇̃dL̃cb = ∇̃aC
a
bcd. (5.11)

That is,

Ỹcdb = ∇̃aC
a
bcd. (5.12)

In particular, one sees that if Ca
bcd =0, then Ỹcdb =0. Moreover, as a consequence

of the first Bianchi identity for the Weyl tensor, Ỹ[abc] =0. The Riemann tensor

Ra
bcd of the connection ∇ satisfies equations analogous to (5.9) and (5.10). It

follows by the same computation described above that

∇cLdb −∇dLcb = ∇aC
a
bcd. (5.13)

Alternatively, defining the Cotton tensor of ∇, Ycdb ≡ ∇cLdb −∇dLcb, one can

write

Ycdb = ∇aC
a
bcd. (5.14)

Combining Equations (5.8), (5.12) and (5.14) one finds that the transformation

rule for the Cotton tensor is given by:

Ycdb − Ỹcdb = ΥaC
a
bcd. (5.15)

The three-dimensional case

In the case of a three-dimensional manifold, let h = Ω2h̃ – throughout, the

symbol Ω will be used to denote a generic conformal factor on a manifold of

dimension three. One has that

rij − r̃ij = − 1

Ω
DiDjΩ− hijh

kl

(
1

Ω
DkDlΩ− 2

Ω2
DkΩDlΩ

)
, (5.16a)

lij − l̃ij = − 1

Ω
DiDjΩ+

1

2Ω2
DkΩD

kΩ hij , (5.16b)

r − 1

Ω2
r̃ = − 4

Ω
DiD

iΩ+
6

Ω2
DiΩD

iΩ. (5.16c)
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118 Conformal geometry

where Di denotes the Levi-Civita covariant derivative of the metric h, and

rij , lij , r correspond to its Ricci and Schouten tensors and its Ricci scalar,

respectively. The transformation law of the Schouten tensor is of particular

interest. Comparing Equations (5.6b) and (5.16b) one sees that although the

definition of the Schouten tensor is dimension dependent, its transformation

formula is not.

Letting ϑ ≡ Ω−1/2, the transformation law for the Ricci scalar can be recast as

8DiD
iϑ− rϑ = −r̃ϑ5. (5.17)

This expression plays an important role in the discussion of the Einstein

constraint equations; see Chapter 11.

Given the three-dimensional Schouten tensor l̃ij , its associated Cotton tensor

ỹijk is given by

ỹijk ≡ D̃i l̃jk − D̃j l̃ik. (5.18)

Using the transformation rule (5.16b), a computation shows that

yijk = ỹijk.

That is, in three dimensions the Cotton tensor is conformally invariant.

Sometimes it is more convenient to work with its Hodge dual, the so-called

Cotton-York tensor , given by

ỹij = −1

2
ỹkljεi

kl.

It can be readily verified that

yij = yji, yi
i = 0, Diyij = 0.

Moreover, the Cotton-York tensor satisfies the transformation rule

yij = Ω−1ỹij . (5.19)

5.2.3 Characterising conformal flatness

Given a conformal class [g] on a manifold M, an important question is whether

the flat metric belongs to it, so that g is conformally flat. Conformally flat metrics

are a source of geometric intuition in general relativity as they have a simpler

curvature tensor depending on the Schouten tensor only. Conformal flatness is

characterised by the following classical result:

Theorem 5.1 (Weyl-Schouten theorem)

(i) Let (M, g) be a manifold with metric of dimension n ≥ 3. The metric g is

conformally flat if and only if the Cotton tensor of g vanishes.

(ii) Let (M, g) be a manifold with metric of dimension n ≥ 4. The metric g is

conformally flat if and only if the Weyl tensor of g vanishes.
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5.3 Weyl connections 119

Proof A direct computation shows that if a metric is conformally flat, then

both its Cotton and Weyl tensors vanish; this proves the if part.

In order to prove the only if part, one uses the fact that if the Weyl tensor

vanishes then, for dimensions n ≥ 4, the Cotton tensor vanishes; compare

Equation (5.14). In view of Equation (5.15) one concludes that the vanishing

of the Cotton tensor holds for any metric in the conformal class. From this point

onwards, the proofs for the various dimensions are similar. For simplicity, only

the four-dimensional case is considered.

Given a metric g in the conformal class, one needs to find a conformal factor

Ξ such that g = Ξ2η where η is the flat Minkowski metric. Motivated by

the transformation law for the Schouten tensor, Equation (5.6b), consider the

equation

∇aαb + αaαb −
1

2
αcα

cgab = −Lab. (5.20)

The latter can be read as an overdetermined partial differential equation for the

covector αa. Given a solution to Equation (5.20), an antisymmetrisation yields

that ∇[aαb] = 0 so that αa is a closed covector. Thus, locally αa is exact and

can be written as αa = ∇a(ln Ξ) = Ξ−1∇aΞ for some function Ξ. Comparing

Equation (5.20) with (5.6b) one concludes that the Schouten tensor of the metric

g̃ = Ξ−2g must vanish. As Ca
bcd = 0, the whole Riemann tensor of g̃ must

vanish. Consequently, one concludes that g̃ = η.

Hence, to conclude the proof one needs to show that Equation (5.20) admits

a solution under the assumption that Ca
bcd = 0 and Yabc = 0. Applying ∇c

to Equation (5.20), antisymmetrising on ca and finally using the commutator of

covariant derivatives, one finds the integrability condition

Rd
bcaαd + 2α[a∇c]αb + 2αe∇[cα

ega]b = 0. (5.21)

Now, as Ca
bcd = 0 one has that

Ra
bcd = 2(δa[cLd]b − gb[cLd]

a).

Using the latter expression for the Riemann tensor together with Equation (5.20),

one finds that the integrability condition (5.21) is automatically satisfied.

A general version of the Frobenius theorem ensures the existence of a solution

αb to Equation (5.20); see, for example, Choquet-Bruhat et al. (1982) or Spivak

(1970).

5.3 Weyl connections

As in the previous sections, let ∇̃ denote the Levi-Civita connection of a metric

g̃ on M̃. Some of the applications of conformal geometry to be considered in this

book give rise to connections which are not necessarily the Levi-Civita connection
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120 Conformal geometry

of a metric but, nevertheless, respect the conformal class. A Weyl connection

is a torsion-free connection ∇̂ such that

∇̂ag̃bc = −2 f̃ag̃bc, (5.22)

for some arbitrary covector f̃a.

The transition tensor Qa
c
b relating the connections ∇̃ and ∇̂ can be obtained

using an argument similar to the one employed in Section 5.2.1 to compute the

transition tensor of a conformal rescaling. One finds that

Qa
c
b = Sab

cdf̃d.

Schematically one writes

∇̂− ∇̃ = S(f̃).

If the covector f̃ is exact, so that on suitable open sets it can be written in the

form f = −Ξ−1dΞ with some smooth function Ξ > 0, then the Weyl connection

∇̂ is, in fact, the Levi-Civita connection of the metric g = Ξ2g̃.

The condition ∇̂aδb
c = 0 satisfied by a generic connection together with

the relation δb
c = g̃bdg̃

dc and the defining property of a Weyl connection,

Equation (5.22), show that

∇̂ag̃
bc = 2 f̃ag̃

bc.

Using the above expressions one readily obtains that

∇̂eSab
cd = ∇̂e(δa

cδb
d + δb

cδa
d − g̃abg̃

cd)

= −∇̂e(g̃abg̃
cd) = −∇̂eg̃abg̃

cd − g̃ab∇̂eg̃
cd = 0.

In what follows, let R̂a
bcd denote the Riemann tensor of the Weyl connection

∇̂. This tensor possesses the basic symmetry R̂a
bcd = −R̂a

bdc. As the connection

∇̂ has vanishing torsion, it follows that R̂a
bcd satisfies the first and second

Bianchi identities in the form:

R̂a
[bcd] = 0, (5.23a)

∇̂[eR̂
a
|b|cd] = 0. (5.23b)

5.3.1 Weyl propagation

To investigate the relation between Weyl connections and the conformal class [g̃],

consider a curve γ with parameter s ∈ I ⊆ R on (M̃, g̃) with tangent ẋ ∈ T (M̃).

A vector u ∈ T (M̃) is said to be Weyl propagated along γ if it is parallely

propagated along γ with respect to a Weyl connection ∇̂; that is, u satisfies the

equation

∇̂ẋu = 0.
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5.3 Weyl connections 121

Writing the latter in terms of the Levi-Civita connection ∇̃ one has that

ẋa∇̃au
b = −ẋaSac

beucf̃e,

= g̃cdu
cẋdf̃ b − ucf̃cẋ

b − ẋcf̃cu
b.

In index-free notation one has that

∇̃ẋu = g̃(u, ẋ)f̃
� − 〈f̃ ,u〉ẋ− 〈f̃ , ẋ〉u.

Let {ea} denote an arbitrary frame which is Weyl propagated along γ so that

∇̂ẋea =0. Letting g̃ab ≡ g̃(ea, eb), a computation then shows that

∇̂ẋg̃ab = ∇̂ẋ(g̃(ea, eb)) = −2〈f̃ , ẋ〉g̃ab. (5.24)

Consequently, one obtains ∇̂ẋ(ln g̃ab) = −2〈f̃ , ẋ〉. The latter equation can be

solved to give

g̃ab(η) = g̃ab(η�) exp

(
−2

∫ s

s�
〈f̃ , ẋ〉ds′

)
along the curve x(s). Thus, one finds that Weyl connections respect the conformal

class in the sense that parallel propagation of a metric using a Weyl connection

leads to a metric in the same conformal class. Notice also that Equation (5.24)

allows one to conclude that if the frame is orthogonal at some point along the

curve, then it is orthogonal elsewhere on γ – the normalisation, however, is lost.

5.3.2 Transformation formulae for the curvature

The transformation formulae between the curvature tensors of the Levi-Civita

connection ∇̃ and the Weyl connection ∇̂ follow directly from the general

discussion of Section 2.4.4.

In what follows let f̃a
c
b ≡ Sab

cdf̃d. If R̂
a
bcd denotes the Riemann tensor of ∇̂,

then one has that

R̂a
bcd −Ra

bcd = 2(∇̃[cf̃d]
a
b + f̃e

a
[cf̃d]

e
b), (5.25a)

= 2(δa[c∇̃d]f̃b + ∇̃[cf̃
ag̃d]b − δab∇̃[cf̃d]

−δa[cf̃d]f̃b + g̃b[cf̃d]f̃
a + δa[cg̃d]bf̃ef̃

e). (5.25b)

Note that the above transformation law involves both the symmetric and

antisymmetric parts of the covariant derivative ∇̃af̃b.

A transformation formula for the Ricci tensor R̂bd ≡ R̂a
bad can be obtained

directly from Equation (5.25b):

R̂cd − R̃cd = −3∇̃df̃c + ∇̃cf̃d + 2 f̃cf̃d − g̃cd

(
∇̃ef̃

e + 2 f̃ef̃
e
)
. (5.26)
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122 Conformal geometry

Now, as there is no canonical metric to lower or raise indices in expressions

involving a Weyl connection, it is conventional to choose a representative of the

conformal class, say, g̃, and use it to compute traces. In this spirit one defines

the Ricci scalar of the Weyl connection via R̂ ≡ g̃abR̂ab. It can then be directly

computed that

R̂− R̃ = −6∇̃af̃
a − 6 f̃af̃

a. (5.27)

Combining the transformation formula for the Riemann tensor, Equa-

tion (5.25a), with the irreducible decomposition of the Riemann tensor R̃a
bcd

given by Equation (2.21b), one can find an analogous decomposition for the

Riemann tensor R̂a
bcd of ∇̂:

R̂c
dab = Cc

dab + 2Sd[a
ceL̂b]e,

= Cc
dab + 2(g̃c[aL̂b]d − δcdL̂[ab] − g̃d[aL̂b]

c), (5.28a)

where

L̂ab =
1

2

(
R̂(ab) −

1

2
R̂[ab] −

1

6
g̃abR̂

)

is the Schouten tensor of the Weyl connection ∇̂. This definition is

independent of the choice of the representative of the conformal class. Making

use of the transformation laws for the Ricci tensor and scalar, Equations (5.26)

and (5.27), one finds that

L̃ab − L̂ab = ∇̃af̃b − f̃af̃b +
1

2
g̃abf̃

cf̃c, (5.29a)

= ∇̃af̃b −
1

2
Sab

cdf̃cf̃d, (5.29b)

= ∇̂af̃b +
1

2
Sab

cdf̃cf̃d. (5.29c)

Finally, it is observed that letting R̂abcd ≡ g̃aeR̂
e
bcd, it follows from the

discussion in the previous paragraphs that

R̂abcd = R̂[ab]cd + 2g̃ab∇̂[cfd], (5.30a)

= R̂[ab]cd − 2g̃abL̂[cd]. (5.30b)

These formulae show in an explicit way how the usual symmetries of the

curvature tensor are obstructed by the covector defining a Weyl connection.

5.4 Spinorial expressions

This section discusses the spinorial counterparts of the tensorial expressions

obtained in the previous sections of this chapter.
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5.4 Spinorial expressions 123

5.4.1 Conformal rescalings

As in previous sections, let g̃ and g denote two metrics on M̃ related to each

other by the conformal rescaling (5.1). Following the discussion of Chapter 3,

the spinorial counterparts of g̃ and g are given by

g̃AA′BB′ = ε̃AB ε̃A′B′ , gAA′BB′ = εABεA′B′ ;

compare Equation (3.15). Hence, it is natural to consider the transformation

laws

εAB = Ξε̃AB , εAB = Ξ−1ε̃AB ,

εA′B′ = Ξε̃A′B′ , εA
′B′

= Ξ−1ε̃A
′B′

.

Let {õA, ι̃A} and {oA, ιA} denote two spin bases satisfying, respectively, the

conditions

ε̃AB = õAι̃B − ι̃AõB , εAB = oAιB − ιAoB .

There are several possible transformation rules between the two spin bases which

are consistent with the above equations and with the rescaling (5.1). Namely,

one has:

oA = õA, ιA = Ξι̃A, oA = Ξ−1õA, ιA = ι̃A, (5.31a)

oA = ΞõA, ιA = ι̃A, oA = õA, ιA = Ξ−1ι̃A, (5.31b)

oA = Ξ1/2õA, ιA = Ξ1/2ι̃A, oA = Ξ−1/2õA, ιA = Ξ−1/2ι̃A. (5.31c)

The choice of the most convenient transformation rule depends on the nature of

the application at hand; see, for example, Chapter 10.

Transformation rules for the connection and curvature

In what follows let ΥAA′ ≡ Ξ−1∇AA′Ξ denote the spinorial counterpart of the

covector Υa. Let also Υa
c
b ≡ Sab

cdΥd. Its spinorial counterpart is given by

ΥAA′CC′
BB′ = δA

CδA′C
′
ΥBB′ + δB

CδB′C
′
ΥAA′ − εABεA′B′ΥCC′

.

By rewriting

δA
CδA′C

′
ΥBB′ + δB

CδB′C
′
ΥAA′ = δA

CεA′C
′
εB′D

′
ΥBD′ + δB

CεB′C
′
εA′D

′
ΥAD′ ,

and using the Jacobi identity (3.5), one finds that

ΥAA′CC′
BB′ = ΥAA′CBδB′C

′
+ ῩA′A

C′
B′δB

C ,

where

ΥAA′CB ≡ δA
CΥBA′ .
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124 Conformal geometry

The reduced coefficient ΥAA′CB can be used to obtain the transformation laws

relating the covariant derivatives of spinors. In particular, one has for arbitrary

spinors κA, μA′ , ξA and ηA
′
that

∇̃AA′κB = ∇AA′κB +ΥBA′κA,

∇̃AA′μB′ = ∇AA′μB′ +ΥAB′μA′ ,

∇̃AA′ξB = ∇AA′ξB − δA
BΥCA′ξC ,

∇̃AA′ηB
′
= ∇AA′ηB

′ − δA′B
′
ΥAC′ηC

′
.

These expressions can be extended, in a direct way, to higher valence spinors.

For the curvature spinors, it can be verified that

Ψ̃ABCD = ΨABCD,

Φ̃AA′BB′ = ΦAA′BB′ + Ξ−1∇A(A′∇B′)BΞ.

5.4.2 Weyl connections

In what follows, let ∇̂AA′ denote the spinorial counterpart of the Weyl connection

∇̂ defined by Equation (5.22). To determine expressions for ∇̂AA′ ε̃BC and

∇̂AA′ ε̃BC one notices that the spinorial version of Equation (5.22) is

∇̂AA′(ε̃BC ε̃B′C′) = −2 f̃AA′ ε̃BC ε̃B′C′ ,

so that

ε̃B′C′∇̂AA′ ε̃BC + ε̃BC∇̂AA′ ε̃B′C′ = −2 f̃AA′ ε̃BC ε̃B′C′ .

The latter is satisfied if one sets

∇̂AA′ ε̃BC = −f̃AA′ ε̃BC .

From this expression and using that ∇̂AA′δB
C = 0, one can readily compute

∇̂AA′ ε̃BC . One finds that

∇̂AA′ ε̃BC = f̃AA′ ε̃BC .

Decomposition of the spin connection coefficients of a Weyl connection

Let {ε̃AA} denote a spin basis with respect to ε̃AB . Following the general discus-

sion on spin connection coefficients of Section 3.2.2 – compare Equation (3.33)

– the spinorial counterparts of the connection coefficients Γ̃a
b
c and Γ̂a

b
c admit

the decompositions

Γ̃AA′BB′
CC′ = Γ̃AA′BCδC′B

′
+ ¯̃ΓAA′B

′
C′δC

B,

Γ̂AA′BB′
CC′ = Γ̂AA′BCδC′B

′
+

¯̂
ΓAA′B

′
C′δC

B.
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5.4 Spinorial expressions 125

The spinorial counterpart of the equation

Γ̂a
b
c = Γ̃a

b
c + δa

bf̃c + δc
bf̃a − ηacf̃

b

is given by

Γ̂AA′BB′
CC′ = ΓAA′BB′

CC′ + δA
BδA′B

′
f̃CC′

+δC
BδC′B

′
f̃AA′ − εACεA′C′ f̃BB′

.

Now, by rewriting

δA
BδA′B

′
f̃CC′ = δA

BεA′B
′
εC′D

′
f̃CD′ , δC

BδC′B
′
f̃AA′ = δC

BεC′B
′
εA′D

′
f̃AD′

and using the Jacobi identity (3.5), one finds that

δA
BδA′B

′
f̃CC′ + δC

BδC′B
′
f̃AA′ − εACεA′C′ f̃BB′

= δA
BδC′B

′
f̃CA′ + δC

BδA′B
′
f̃AC′ .

Hence,

Γ̂AA′BB′
CC′ = (Γ̃AA′BC + δA

B f̃CA′)δC′B
′

+(¯̃ΓAA′B
′
C′ + δA′B

′
f̃AC′)δC

B,

so that

Γ̂AA′BC = Γ̃AA′BC + δA
B f̃CA′ . (5.32)

In particular, as Γ̃AA′BC = Γ̃AA′(BC), it follows that

Γ̂AA′QQ = f̃AA′ .

Decomposition of the curvature tensors

The discussion of the decomposition of the spinorial counterpart of a general

Riemann tensor given in Section 3.2.3 can be applied to the case of a Weyl

connection. In particular, if R̂AA′
BB′CC′DD′ denotes the spinorial counterpart

of the Riemann tensor of a Weyl connection ∇̂, one has that Equation (3.35)

gives, in the present context, the decomposition

R̂AA′BB′CC′DD′ = εA′B′R̂ABCC′DD′ + εAB
¯̂
RA′B′CC′DD′ ,

where

R̂ABCC′DD′ ≡ R̂(AB)CC′DD′ +
1

2
εAB(∇̂CC′ f̃DD′ − ∇̂DD′ f̃CC′),

= R̂(AB)CC′DD′ − 1

2
εAB(L̂CC′DD′ − L̂DD′CC′),
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126 Conformal geometry

and L̂AA′BB′ denotes the spinorial counterpart of the Schouten tensor of ∇̂.

A more detailed expression is given by

R̂ABCC′DD′ = −ΨABCDεC′D′ + L̂BC′DD′εAC − L̂BD′CC′εAD. (5.33)

The spinorial counterpart L̂AA′BB′ of the Schouten tensor admits, in turn, the

decomposition

L̂AA′BB′ = ΦAA′BB′ − 1

24
RεABεA′B′ +ΦABεA′B′ + Φ̄A′B′εAB

where ΦAA′BB′ represents the trace-free part of 1
2 R̂(ab), while ΦAB describes the

antisymmetric tensor 1
4 R̂[ab].

5.5 Conformal geodesics

This section discusses a class of invariants of the conformal structure of a

spacetime (M̃, g̃). To motivate the discussion let x(s), s ∈ I ⊂ R, denote a

curve on M̃ with tangent given by x′ ≡ dx/ds. The curve x(s) is a geodesic

if it satisfies the equation ∇̃x′x′ = 0. The transformation rule of the covariant

derivative ∇̃ under the conformal rescaling (5.1) implies, in turn, the equation

∇x′x′ = 2〈Υ,x′〉x′ − g(x′,x′)Υ�. (5.34)

Let τ = τ(s) denote a new parameter. Writing ẋ ≡ dx/dτ and τ ′ ≡ dτ/ds, the

chain rule yields x′ = τ ′ẋ, so that Equation (5.34) implies

τ ′2∇ẋẋ = (2〈Υ, ẋ〉τ ′2 − τ ′′)ẋ− τ ′2g(ẋ, ẋ)Υ�.

This last expression suggests choosing the parameter τ so that it satisfies the

condition

τ ′′ = 2〈Υ, ẋ〉τ ′2.

As Υ is known along the curve, this equation can be read as a second-order

ordinary differential equation for τ . Thus, it can always be solved locally so that

τ ′2∇ẋẋ = −τ ′2g(x′,x′)Υ�.

It follows that only when the curve x(s) is null (i.e. g(x′,x′) = 0) is it possible

to reparametrise so that x(s) is a geodesic. Hence, timelike or spacelike geodesics

are not, in general, conformal invariants.
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5.5.1 Basic definitions

A conformal geodesic on a spacetime (M̃, g̃) is a pair (x(τ),β(τ)) consisting

of a curve x(τ) on M̃, τ ∈ I ⊂ R, with tangent ẋ(τ) and a covector β(τ) along

x(τ) satisfying the equations

∇̃ẋẋ = −2〈β, ẋ〉ẋ+ g̃(ẋ, ẋ)β�, (5.35a)

∇̃ẋβ = 〈β, ẋ〉β − 1

2
g̃�(β,β)ẋ� + L̃(ẋ, ·), (5.35b)

where L̃ denotes the Schouten tensor of the Levi-Civita connection ∇̃. Associ-

ated to a conformal geodesic, it is convenient to consider a frame {ea} which is

Weyl propagated along x(τ) so that

∇̃ẋea = −〈β, ea〉ẋ− 〈β, ẋ〉ea + g̃(ea, ẋ)β
�. (5.36)

Initial data for the conformal geodesic Equations (5.35a) and (5.35b) consist

of an initial position, an initial direction for the curve and an initial value for

the covector:

x� ∈ M̃, ẋ� ∈ T |x�
(M̃), β� ∈ T ∗|x�

(M̃). (5.37)

Piccard’s theorem – see, for example, Hartman (1987) – ensures the existence of

a unique conformal geodesic (x(τ),β(τ)) near x� satisfying for given τ� ∈ R

x(τ�) ≡ x�, ẋ(τ�) ≡ ẋ�, β(τ�) ≡ β�.

A direct computation using Equations (5.35a) and (5.35b) yields the relations

∇̃ẋ (g̃(ẋ, ẋ)) = −2〈β, ẋ〉g̃(ẋ, ẋ), (5.38a)

∇̃ẋ〈β, ẋ〉 = −〈β, ẋ〉2 + 1

2
g̃(ẋ, ẋ)g̃�(β,β) + L̃(ẋ, ẋ), (5.38b)

∇̃ẋ

(
g̃�(β,β)

)
= 〈β, ẋ〉g̃�(β,β) + 2L̃(ẋ,β�). (5.38c)

In particular, from Equation (5.38a) it follows that if g̃(ẋ, ẋ) = 0 at some point

along the conformal geodesic, one has that g̃(ẋ, ẋ) = 0 everywhere else. This

null conformal geodesic can, in turn, be reparametrised so that it coincides with

a null geodesic of g̃.

Expressions in abstract index notation

For later use, it is observed that the conformal geodesic equations can be written

in abstract index notation using the tensor Sab
cd as

ẋc∇̃cẋ
a = −Sef

acẋeẋ fβc,

ẋc∇̃cβa =
1

2
Sca

efβeβf ẋ
c + L̃caẋ

c,

ẋc∇̃cea
a = −Scd

afea
dẋcβf .
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128 Conformal geometry

5.5.2 Conformal geodesics and changes of connection

The motivation behind the notion of conformal geodesics is not directly apparent

from the defining Equations (5.35a) and (5.35b). Their relevance becomes

apparent only once one considers their transformation rules under conformal

rescalings and transitions to Weyl connections.

As in the previous section, let (x(τ),β(τ)) denote a solution to the conformal

geodesic Equations (5.35a) and (5.35b) on a spacetime (M̃, g̃). Given f̌ ∈ T ∗(M̃)

one can define a Weyl connection ∇̌ via the relation

∇̌ ≡ ∇̃+ S( f̌). (5.39)

A computation using Equations (5.35a) and (5.35b) shows that (x(τ), β̌(τ)) with

β̌(τ) ≡ β(τ)− f̌(τ) (5.40)

is a solution to the ∇̌-conformal geodesic equations :

∇̌ẋẋ = −2〈β̌, ẋ〉ẋ+ g̃(ẋ, ẋ)β̌
�
,

∇̌ẋβ̌ = 〈β̌, ẋ〉β̌ − 1

2
g̃�(β̌, β̌)ẋ� + Ľ(ẋ, ·),

where Ľ denotes the Schouten tensor of the Weyl connection ∇̌. The latter is

given by

Ľab = L̃ab − ∇̌af̌b −
1

2
Sab

cdf̌cf̌d.

Thus, one concludes that conformal geodesics are invariants of [g̃]. Notice, in

particular, that one could have chosen f̌ = −Ξ−1dΞ for some positive Ξ ∈ X(M̃)

so that the change of connections given by Equation (5.39) corresponds, in fact,

to a conformal rescaling of g̃.

Now, choosing f̌(τ) = β(τ) one has that β̌(τ) = 0, so that the ∇̌-conformal

geodesic equations reduce to:

∇̌ẋẋ = 0, Ľ(ẋ, ·) = 0. (5.41)

Moreover, the frame propagation Equation (5.36) yields

∇̌ẋea = 0.

Hence, given a congruence of conformal geodesics on (M̃, g̃), there exists a Weyl

connection ∇̌ on [g̃] with respect to which the curves x(τ) are (affine) geodesics

and the frame {ea} is parallely propagated. This observation justifies the name

conformal geodesics given to a solution to Equations (5.35a) and (5.35b). Thus,

conformal geodesics not only are an invariant of the conformal structure, but

also single out a particular Weyl connection on the conformal class [g].
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5.5.3 Reparametrisations

Given two solutions to the conformal geodesic Equations (5.35a) and (5.35b),

(x(τ),β(τ)) and (x̄(τ̄), β̄(τ̄)), it is natural to ask under which conditions x(τ)

and x̄(τ̄) coincide locally (as sets of points) so that τ = τ(τ̄) and x(τ(τ̄)) = x̄(τ̄).

Let ẋ ≡ dx/dτ and x̄′ ≡ dx̄/dτ̄ denote the corresponding tangent vectors and

assume that g̃(ẋ, ẋ) �= 0 and g̃(x̄′, x̄′) �= 0. By definition, the tangent vector x′

satisfies

∇̃x̄′ x̄′ = −2〈β̄, x̄′〉x̄′ + g̃(x̄′, x̄′)β̄
�
, (5.42a)

∇̃x̄′ β̄ = 〈β̄, x̄′〉β̄ − 1

2
g̃�(β̄, β̄)x̄′� + L̃(x̄′, ·). (5.42b)

Now, letting τ ′ ≡ dτ/dτ̄ one has that

x̄′ = τ ′ẋ, ∇̃x̄′ x̄′ = τ ′′ẋ+ τ ′2∇̃ẋẋ.

Substituting the latter into Equation (5.42a) and using (5.35a) to eliminate ∇̃ẋẋ

one obtains

τ ′′ẋ+ 2τ ′2〈β̄ − β, ẋ〉ẋ+ τ ′2g̃(ẋ, ẋ)(β� − β̄
�
) = 0. (5.43)

It follows from this last equation that the difference β̄
� − β� has components

only along ẋ. Hence, one can write

β̄ − β = αẋ�, (5.44)

for some scalar α. Substituting into Equation (5.43) one obtains the differential

equation

τ ′′ + ατ ′2g̃(ẋ, ẋ) = 0. (5.45)

Combining Equations (5.35a), (5.35b), (5.42b) and (5.44) one obtains

α̇ = 2〈β, ẋ〉α+
1

2
g̃(ẋ, ẋ)α2. (5.46)

Equations (5.44), (5.45) and (5.46) encode the requirement that the curves x(τ)

and x̄(τ̄) coincide as sets. Using Equation (5.38a) together with Equation (5.46)

one finds that

∇̃ẋ (αg̃(ẋ, ẋ)) =
1

2
(αg̃(ẋ, ẋ))

2
.

This last equation can be solved to give

αg̃(ẋ, ẋ) =
2α�g̃(ẋ�, ẋ�)

1− α�g̃(ẋ�, ẋ�)(τ − τ�)
,
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130 Conformal geometry

where α� ≡ α(τ�), ẋ� ≡ ẋ(τ�) and τ� denotes some fiducial value of the

parameter τ . Using Equations (5.44) and (5.45) one finally finds that:

x̄′ =
4κ

1 + 2κα�g̃(ẋ�, ẋ�)(τ − τ�)
ẋ, (5.47a)

β̄ = β +
2α�g̃(ẋ�, ẋ�)

(1− α�g̃(ẋ�, ẋ�)(τ − τ�)) g̃(ẋ, ẋ)
ẋ�, (5.47b)

τ = τ� +
4κ(τ̄ − τ̄�)

1 + 2κα�g̃(ẋ, ẋ)(τ̄ − τ̄�)
, (5.47c)

with κ a non-zero real constant. One can summarise the previous discussion in

the following lemma:

Lemma 5.1 (admissible reparametrisations of conformal geodesics)

The admissible reparametrisations taking (non-null) conformal geodesics into

(non-null) conformal geodesics are given by fractional transformations of the

form

τ �→ aτ + b

cτ + d
, (5.48)

with a, b, c, d ∈ R.

If α� = 0, then Equation (5.47c) shows that the reparametrisation reduces to

an affine parameter transformation. Notice also, that with a suitable choice of

constants, it is always possible to choose a parametrisation such that τ → ∞ for

a given value of τ̄ . This property of conformal geodesics is in stark contrast to

the behaviour of standard geodesics.

A final remark concerning the reparametrisation of conformal curves follows

from evaluating Equations (5.47a) and (5.47b) at τ�. One finds that x̄′
� = 4κẋ�

and β̄� = β̄� + α�ẋ
�
�. Consequently, the transformations of initial data given by

ẋ� �→ 4κẋ�, β� �→ β� + α�ẋ
�
�, (5.49)

preserve the set of points covered by the conformal geodesics. From the discussion

in the previous paragraphs it follows that the transformation of initial data (5.49)

implies a reparametrisation of the resulting curves.

5.5.4 Geodesics as conformal geodesics

It is of natural interest to investigate the relation between conformal geodesics

and metric geodesics. For a null conformal geodesic this relation can be readily

established. If (x̄(τ̄), β̄(τ̄)) denotes a null conformal geodesic, it follows readily

from Equation (5.42a) that

∇̃x̄′ x̄′ = −2〈β, x̄′〉x̄′.
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5.5 Conformal geodesics 131

Thus, using an argument similar to the one discussed at the beginning of Section

5.5, one finds that null conformal geodesics are, up to a reparametrisation, null

geodesics.

The situation for non-null conformal geodesics is more complicated and

requires restrictions of the Schouten tensor of the spacetime. One has the

following result (see Friedrich and Schmidt (1987)):

Lemma 5.2 (standard geodesics as conformal geodesics) Any non-null

g̃-geodesic in an Einstein spacetime (M̃, g̃) is, up to a reparametrisation, a non-

null conformal geodesic.

Proof Let x(τ) denote a solution to the metric geodesic equation ∇̃ẋẋ = 0.

Consider a reparametrisation of the curve of the form τ = τ(τ̄). The analysis

in Section 5.5.3 suggests completing x(τ̄) to a conformal geodesic using an

ansatz of the form β̄ = α(τ̄)ẋ�. Writing, as in the previous section, x̄′ = τ ′ẋ,

Equation (5.42a) readily leads to the condition

τ ′′ + ατ ′2g̃(ẋ, ẋ) = 0,

where it is noticed that g̃(ẋ, ẋ) is constant along the curve as it is a g̃-geodesic.

To obtain an equation for α one substitutes the ansatz for β̄ into (5.42b) and

notices that ∇̃ẋβ̄ = α′ẋ� so that

α′ẋ� =
1

2
α2τ ′g̃(ẋ, ẋ)ẋ� + τ ′L̃(ẋ, ·).

The solvability of this equation depends on the available information about L̃.

In the case of an Einstein space one has that L̃(ẋ, ·) = 1
6λẋ

� so that one obtains

α′ =
1

2
α2τ ′g̃(ẋ, ẋ) +

1

6
λτ ′,

which can always be solved – at least locally.

A partial converse of Lemma 5.2 is given by:

Lemma 5.3 (conformal geodesics as metric geodesics) Let (M̃, g̃) be a

Einstein spacetime and let g = Ξ2g̃ be a further metric on M̃. A conformal

geodesic (x̄(τ̄), β̄(τ̄)) with respect to the metric g is, up to a reparametrisation,

a g̃-geodesic if there exists a function α(τ̄) such that

β̄ = −Υ+ αx̄′�.

Proof The geodesic equation ∇̃ẋẋ = 0 implies, under the conformal rescaling

g = Ξ2g̃, the equation

∇ẋẋ = 2〈Υ, ẋ〉ẋ− g(ẋ, ẋ)Υ�. (5.50)
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132 Conformal geometry

It follows from the analysis of Section 5.5.3 that, to reparametrise the conformal

geodesic equations for the metric g to yield Equation (5.50), one needs to have

a parameter α such that β̄ = −Υ+ αx̄′�.

5.5.5 Conformal factors associated to congruences

of conformal geodesics

In what follows, for simplicity it will be assumed that the spacetime (M̃, g̃)

can be covered by a non-intersecting congruence of conformal geodesics. The

congruence of conformal geodesics can be used to single out a metric g ∈ [g̃] by

means of a conformal factor Θ such that

g(ẋ, ẋ) = 1, g = Θ2g̃. (5.51)

That is, the tangent vector field of the congruence of conformal geodesics is g-

normalised – accordingly, the parameter τ of the geodesics corresponds to the

g-proper time. It follows by applying ∇̃ẋ to the first equation in (5.51) and using

the conformal geodesic Equation (5.35a) that

Θ̇ = 〈β, ẋ〉Θ, (5.52)

where Θ̇ ≡ ∇̃ẋΘ. Thus, by prescribing Θ� ≡ Θ(τ�) at some fiduciary value τ� ∈ R

along the conformal geodesic one finds that the value of Θ is fully determined

by Equation (5.52). If the initial value Θ� is chosen to vary smoothly along the

curves on the congruence, one readily obtains a conformal factor for the whole of

the spacetime. It is important to remark that this conformal factor depends on

the particular congruence of conformal geodesics; a different choice of congruence

would lead to a different Θ and, hence, to a different conformal metric g. Thus, if

the congruence of conformal geodesics is specified by a prescription of initial data

of the form given in (5.37) on an initial hypersurface S, then g is determined in

an implicit way by the initial data for the congruence and by Θ�. In the remainder

of this section it will be shown that for metrics g̃ satisfying the vacuum Einstein

equations this correspondence can be made explicit.

A direct consequence of Equations (5.38a) and (5.52) is that

∇̃ẋ (g(ẋ, ẋ)) = 0.

Hence, one sees that a conformal geodesic that is, respectively, timelike, null

or spacelike at a given point in M̃ preserves its causal character through-

out the whole curve. Further computations using the conformal geodesic

Equations (5.35a) and (5.35b) and the relations (5.38a)–(5.38c) and (5.52) show

that

Θ̈ =
1

2
Θg̃(ẋ, ẋ)g̃�(β,β) + ΘL̃(ẋ, ẋ), (5.53a)

...
Θ =

(
∇̃ẋ(L̃(ẋ, ẋ)) + L̃(ẋ,β�)g̃(ẋ, ẋ) + 〈β, ẋ〉L̃(ẋ, ẋ)

)
Θ. (5.53b)
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5.5 Conformal geodesics 133

Moreover, if {ea} denotes a g-orthonormal frame, that is, g(ea, eb) = ηab,

propagated according to Equation (5.36) with e0 = ẋ, one readily finds that

∇̃ẋ(Θ〈β, ea〉) = ΘL̃(ẋ, ea) +
1

2
Θg̃�(β,β)g̃(ẋ, ea). (5.54)

Notice that for the frame {ea} one has, in addition, that ∇̃ẋ(g(ea, eb)) = 0. The

expressions discussed in the previous paragraph lead to the following result first

proven in Friedrich (1995):

Proposition 5.1 (the canonical conformal factor associated to a

conformal geodesic) Let (M̃, g̃) denote an Einstein spacetime. Suppose that

(x(τ),β(τ)) is a solution to the conformal geodesic equations (5.35a) and (5.35b)

and that {ea} is a g-orthonormal frame propagated along the curve according to

Equation (5.36). If g = Θ2g̃ is such that g(ẋ, ẋ) = 1, then the conformal factor

Θ satisfies

Θ(τ) = Θ� + Θ̇�(τ − τ�) +
1

2
Θ̈�(τ − τ�)

2, (5.55)

where the coefficients Θ� ≡ Θ(τ�), Θ̇� ≡ Θ̇(τ�) and Θ̈� ≡ Θ̈(τ�) are constant

along the conformal geodesic and are subject to the constraints

Θ̇� = 〈β�, ẋ�〉Θ�, Θ�Θ̈� =
1

2
g̃�(β�,β�) +

1

6
λ. (5.56)

Furthermore, along each conformal geodesic

Θβ0 = Θ̇, Θβi = Θ�βi�, (5.57)

where βa ≡ 〈β, ea〉.

Proof For an Einstein spacetime the Schouten tensor is given by L̃ = 1
6λg̃.

Substituting this expression into Equation (5.53b), one finds that
...
Θ = 0 so that

Equation (5.55) follows. The constraints (5.56) follow from Equations (5.52) and

(5.53a). Finally, the relations in (5.57) follow from (5.52) and (5.54).

5.5.6 The g̃-adapted equations

As a consequence of the normalisation condition (5.51), the parameter τ is the

g-proper time of the curve x(τ). In some computations it is more convenient to

consider a parametrisation in terms of a g̃-proper time τ̃ . To this end, consider

the parameter transformation τ̃ = τ̃(τ) given by

dτ

dτ̃
= Θ, so that τ̃ = τ̃� +

∫ τ

τ�

ds

Θ(s)
, (5.58)

with inverse τ = τ(τ̃). In what follows, write x̃(τ̃) ≡ x(τ(τ̃)). It can then be

verified that

x̃′ ≡ dx̃

dτ̃
=

dτ

dτ̃

dx

dτ
= Θẋ, (5.59)
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134 Conformal geometry

so that g̃(x̃′, x̃′) = 1. Hence, τ̃ is, indeed, the g̃-proper time of the curve x̃. Now,

consider, consistent with Equation (5.47b), the split

β = β̃ +�ẋ�, � ≡ 〈β, ẋ〉
g̃(ẋ, ẋ)

, (5.60)

where the covector β̃ satisfies

〈β̃, ẋ〉 = 0, g�(β,β) = 〈β, ẋ〉2 + g�(β̃, β̃). (5.61)

It can be readily verified that

g̃(ẋ, ẋ) = Θ−2, 〈β, ẋ〉 = Θ−1Θ̇, � = ΘΘ̇. (5.62)

Using the split (5.60) in Equations (5.35a) and (5.35b) and taking into account

the relations in (5.59), (5.61) and (5.62), one obtains the following g̃-adapted

equations for the conformal geodesics :

∇̃x̃′ x̃′ = β̃
�
, (5.63a)

∇̃x̃′ β̃ = β2x̃′� + L̃(x̃′, ·)− L̃(x̃′, x̃′)x̃′�, (5.63b)

with β2 ≡ −g̃�(β̃, β̃) – observe that as a consequence of (5.61) the covector β̃

is spacelike, and, thus, the definition of β2 makes sense. The Weyl propagation

Equation (5.36) can also be cast in a g̃-adapted form. A calculation shows that

∇̃x̃′(Θea) = −〈β̃,Θea〉x̃′.

Equation (5.63a) provides a clear-cut interpretation of the covector β̃ – it

corresponds to the physical acceleration of the conformal curve. Recalling that

g̃ = Θ2g and using (5.61) together with Equation (5.57) of Proposition 5.1 one

finds that

β2 = −g̃�(β̃, β̃) = −Θ2g�(β̃, β̃) = Θ2δijβiβj = Θ2
�δ

ijβi�βj�. (5.64)

That is, β2 is a constant along the conformal geodesic. Using Equation (5.63a) to

eliminate β̃ in Equation (5.63b), one obtains a third-order differential equation

for the curve x̃(τ̃):

∇̃x̃′∇̃x̃′ x̃′ = β2x̃′ + L̃
�
(x̃′, ·)− L̃(x̃′, x̃′)x̃′. (5.65)

A computation making use of the expressions derived in this section shows that

∇̃x̃′
(
g̃(β̃, β̃)

)
= 2L̃(x̃′, β̃).

Consequently, unless (M̃, g̃) is an Einstein spacetime the acceleration of the

curve cannot be constant. This is related to an open question concerning the

behaviour of conformal geodesics discussed in Tod (2012): if a conformal geodesic

γ enters every neighbourhood of a point p, does γ necessarily pass through

p with a finite limiting velocity and acceleration? This potential pathological

behaviour is known as spiralling ; see Figure 5.1. This does not happen for
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U

γ

U

γ

Figure 5.1 Spiralling of conformal geodesics: (left) a standard geodesic γ
entering a geodesically convex ball U must leave it in finite proper time; (right)
by contrast, a conformal geodesic γ′ may not leave U and spiral towards a
point.

standard geodesics, for if a geodesic enters a geodesically convex ball, then it

must leave it too; see Section 11.6.2 for a discussion of the notion of geodesically

convex ball. Using Piccard’s existence theorem for ordinary differential equations

– see, for example, Hartman (1987) – on Equation (5.65), it follows that spiralling

can occur only if either β̃ or x̃′ diverge.

5.5.7 The conformal geodesic deviation equations

An important issue arising in applications involving congruences of conformal

geodesics is that of deciding whether the congruence develops caustics, that

is, points where it becomes singular. To address this one needs to consider the

conformal geodesic deviation equations for the congruence. The deviation of these

equations is analogous to the one leading to the geodesic deviation equation for

standard geodesics; see Section 2.4.5.

In what follows let

(xη(τ),βη(τ)) ≡ (x(τ, η),β(τ, η))

denote a family of conformal geodesics depending smoothly on a parameter η ∈
R. Following the notation used in previous sections for fixed η, let ẋ denote

the tangent vector to the curves of the congruence. The deviation vector and

deviation covector are defined, respectively, by

z ≡ ∂ηx, ζ ≡ ∇̃zβ. (5.66)

A short computation shows that

[ẋ, z] = ∇̃ẋz − ∇̃zẋ = 0, (5.67)

so that z is a well-defined deviation vector ; compare Section 2.4.5. Moreover,

making use of the definition of the Riemann tensor given by Equation (2.9), one

has that
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136 Conformal geometry

Riem[g̃](ẋ, z)ẋ = ∇̃ẋ∇̃zẋ− ∇̃z∇̃ẋẋ. (5.68)

Hence,

∇̃ẋ∇̃ẋz = ∇̃ẋ∇̃zẋ = ∇̃z∇̃ẋẋ+Riem[g̃](ẋ, z)ẋ,

as a consequence of Equations (5.67) and (5.68). Now, using the conformal

geodesic equation (5.35a) in the form ∇̃ẋẋ = −S(β; ẋ, ẋ), where S(β; ẋ, ẋ)

corresponds to Sab
cdẋaẋbβc in abstract index notation, one finds that

∇̃ẋ∇̃ẋz = −∇̃z(S(β; ẋ, ẋ)) +Riem[g̃](ẋ, z)ẋ

= −S(∇̃zβ; ẋ, ẋ)− 2S(β; ∇̃zẋ, ẋ) +Riem[g̃](ẋ, z)ẋ. (5.69)

A similar computation shows that

∇̃ẋζ = ∇̃ẋ∇̃zβ = ∇̃z∇̃ẋβ − β ·Riem[g̃](ẋ, z)

=
1

2
∇̃z(β · S(β; ẋ, ·)) + ∇̃z(L̃(ẋ, ·))− β ·Riem[g̃](ẋ, z)

= −β ·Riem[g̃](ẋ, z) + ∇̃zL̃(ẋ, ·) + L̃(∇̃zẋ, ·) +
1

2
∇̃zβ · S(β; ẋ, ·)

+
1

2
β · S(∇̃zβ; ẋ, ·) +

1

2
β · S(β; ∇̃ẋz, ·) (5.70)

where, in the third line, Equation (5.35b) in the form

∇̃ẋβ =
1

2
β · S(β; ẋ, ·) + L̃(ẋ, ·)

has been used. Finally, taking into account the definitions in (5.66) in

Equations (5.69) and (5.70), one obtains the conformal geodesic deviation

equations:

∇̃ẋ∇̃ẋz = Riem[g̃](ẋ, z)ẋ− S(ζ; ẋ, ẋ)− 2S(β; ẋ, ∇̃ẋz), (5.71a)

∇̃ẋζ = −β ·Riem[g̃](ẋ, z) + ∇̃zL̃(ẋ, ·) + L̃(∇̃zẋ, ·) +
1

2
ζ · S(β; ẋ, ·)

+
1

2
β · S(ζ; ẋ, ·) + 1

2
β · S(β; ∇̃ẋz, ·), (5.71b)

where

S(β;u,v) ≡ 〈β,u〉v + 〈β,v〉u− g̃(u,v)β�,

α · S(β;u, ·) ≡ 〈α,u〉β + 〈β,u〉α− g̃�(α,β)u�,

for u,v ∈ T (M̃) and α ∈ T ∗(M̃). In standard abstract index notation S(β;u,v)

corresponds to the expression Sab
cduavbβc, while α · S(β;u, ·), to Sab

cduaβcαd.

A caustic in a conformal geodesic is a point along the curve for which z = 0.

Caustics of conformal geodesics are more complicated than caustics of metric

geodesics since, for a given tangent vector, there exists a three-parameter family

of conformal geodesics with the same tangent vector. Moreover, the analysis
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5.6 Further reading 137

of Equation (5.71a) requires the simultaneous consideration of the evolution

equation of the deviation covector ζ, Equation (5.71b). This feature can be

useful in applications: Equation (5.71a) has two extra terms, −S(ζ; ẋ, ẋ) and

−2S(β; ẋ, ∇̃ẋz), not appearing in the standard geodesic deviation equation;

under suitable circumstances these terms may be used to counteract the natural

tendency of the curvature to develop caustics.

The g̃-adapted conformal geodesic deviation equations

Following the strategy discussed in Section 5.5.6, one can rewrite the conformal

geodesic deviation equations in a way adapted to the metric g̃. To this end define

the g̃-adapted deviation vector and covector

z̃ ≡ ∂λx̃, ζ̃ ≡ ∇̃z̃β̃.

Now, observing that [x̃′, z̃] = 0, a computation taking into account the g̃-

adapted conformal geodesic Equations (5.63a) and (5.63b) and the commutator

of covariant derivatives leads to the following g̃-adapted conformal geodesic

deviation equations:

∇̃x̃′∇̃x̃′ z̃ = Riem[g̃](x̃′, z̃)x̃′ + ζ̃
�
, (5.72a)

∇̃x̃′ ζ̃ = −β̃ ·Riem[g̃](x̃′, z̃) + (∇̃z̃β
2)x̃′� + β2∇̃x̃′ z̃�. (5.72b)

A computation exploiting the fact that the connection ∇̃ is assumed to be torsion

free gives

∇̃x̃′∇̃z̃β
2 = ∇̃z̃∇̃x̃′β2 = 0,

where the last equality follows from the fact that β2 is constant along a given

conformal geodesic; see Equation (5.64). Hence, the components of the terms

with x̃′� and ∇̃x̃′ z̃� in Equation (5.72b) are constant and can be evaluated at

some fiducial time.

5.6 Further reading

Basic references for applications of conformal geometry in general relativity

are Penrose and Rindler (1984, 1986) and Stewart (1991). A discussion of the

properties of the Weyl and Cotton tensor can be found in Garćıa et al. (2004).

The first systematic treatments of conformal geodesics in the context of general

relativity can be found in Schmidt (1986) and Friedrich and Schmidt (1987).

A discussion of Weyl connections making use of the more general language of

fibre bundles is given in Friedrich (1995); a brief presentation of the subject

in the spirit of this chapter can be found in Friedrich (2002). A discussion of

the properties of conformal geodesics in the context of general relativity can be

found in Friedrich (2003a); a more technical discussion can be found in the earlier
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138 Conformal geometry

reference Friedrich (1995). Properties of conformal geodesics have been explored

from a different perspective in Tod (2012).

The results of Proposition 5.1 strongly depend on the hypothesis that (M̃, g̃) is

an Einstein space – in other words, g̃ satisfies the vacuum Einstein equations. To

get around this restriction, a more general class of curves has been introduced in

Lübbe and Valiente Kroon (2012). These curves are a suitable generalisation

of the conformal geodesics which allow the recovery of the conclusions of

Proposition 5.1 for general spacetimes and, thus, provide a systematic way of

identifying the conformal boundary of non-vacuum spacetimes. A discussion

of the associated deviation equations with explicit expressions for the case of

warped-product spacetimes is given in Lübbe and Valiente Kroon (2013a).

A detailed mathematical theory of conformal connections can be found in

Ogiue (1967) and Kobayashi (1995). A more recent monograph on the subject

is Fefferman and Graham (2012). Conformal geometry is naturally related to

twistor theory; a discussion of this and related topics such as tractors can be

found in Eastwood (1996).

The reader interested in surveys on research in conformal geometry is referred

to Kulkarni and Pinkall (1988), Chang et al. (2007) and Branson et al. (2004)

as suitable entry points to the literature in the subject.
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6

Conformal extensions of exact solutions

Exact solutions to the Einstein field equations are the prime source of geometric

and physical intuition in general relativity. This chapter revisits some of the

classical exact solutions of general relativity (the Minkowski, de Sitter, anti-

de Sitter and Schwarzschild spacetimes) from the point of view of conformal

geometry. In addition, a general discussion of the construction of Penrose

diagrams of static spherically symmetric spacetimes is provided. Most of the

material in this chapter can be considered as classic – complementary discussions

can be found in, for example, Hawking and Ellis (1973) and Griffiths and

Podolský (2009). In view of the applications in the later parts of the book,

particular emphasis is given to the construction of explicit congruences of

conformal geodesics in the exact solutions.

6.1 Preliminaries

6.1.1 Spherical symmetry

In what follows, let SO(3) denote the group of homogeneous linear transfor-

mations of R3 onto itself which preserve the Euclidean length of vectors and

the orientation of the space. A spacetime (M, g) is said to be spherically

symmetric if the group SO(3) acts by isometry on (M, g) with simply

connected, complete, spacelike two-dimensional orbits; see, for example, Ehlers

(1973). Two points p, q ∈ SO(3) are said to be in the same orbit if there is

an element of the group SO(3) taking p to q. Given a spherically symmetric

spacetime it is natural to introduce the quotient manifold Q ≡ M/SO(3),

that is, the manifold obtained from M by identifying points on the same orbit.

The manifold Q inherits from (M, g) a two-dimensional Lorentzian metric γ,

the quotient metric. Let Γ denote the subset of Q corresponding to the fixed

points of the action of SO(3). If Γ is non-empty, then it can be shown that it is

a connected timelike boundary of Q – the centre of symmetry . A spherically

spacetime can have none, one or two centres; see Künzle (1967).
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142 Conformal extensions of exact solutions

Given a spherically symmetric spacetime (M, g), there exists a function � :

Q → R such that the spacetime metric g can be written in the warped product

form

g = γ + �2σ, (6.1)

where σ is the standard metric of S2 given, in the usual spherical coordinates

(θ, ϕ), by

σ = dθ ⊗ dθ + sin2 θdϕ⊗ dϕ.

The function � is not necessarily an areal coordinate.

6.1.2 The 3-sphere

The unit 3-sphere S3 is the three-dimensional submanifold of R4 defined by

S3 ≡ {(w, x, y, z) ∈ R4 |w2 + x2 + y2 + z2 = 1}.

The standard Euclidean metric in R4 induces, in a natural way, a 3-metric

h̄ on S3, the standard metric of S3. The metric h̄ is best expressed using

spherical coordinates (ψ, θ, ϕ) such that

w = cosψ, x = sinψ cos θ, y = sinψ sin θ cosϕ, z = sinψ sin θ sinϕ,

taking the range 0 ≤ ψ ≤ π, 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. For simplicity of

presentation, in what follows the degeneracy of the spherical coordinate system

(ψ, θ, ϕ) will be ignored as it can be dealt with by introducing further coordinate

charts. In terms of these coordinates one has

h̄ = dψ ⊗ dψ + sin2 ψσ.

Conventionally, the point given by ψ = 0 will be called the north pole, while

the one with ψ = π will be called the south pole.

At every point p ∈ S3 the restriction of the coordinates (w, x, y, z) can be

used to construct suitable local coordinates. For example, if w(p) > 0, then the

coordinates (xα) = (x, y, z) constitute a well-defined system of local coordinates

on the northern hemisphere of S3.

A frame on S3

A direct computation shows that the vector fields on T (R4)

c1 ≡ w
∂

∂z
− z

∂

∂w
+ x

∂

∂y
− y

∂

∂x
, (6.2a)

c2 ≡ w
∂

∂y
− y

∂

∂w
+ z

∂

∂x
− x

∂

∂z
, (6.2b)

c3 ≡ w
∂

∂x
− x

∂

∂w
+ y

∂

∂z
− z

∂

∂y
, (6.2c)
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are linearly independent and tangent to S3; hence, they can be regarded as

globally defined vectors on T (S3). This point of view will be used systematically

in this book. As ci �= 0 on S3 one has, in fact, a globally defined frame on the

3-sphere. Moreover, it can be shown that

h̄(ci, cj) = δij .

Accordingly, the vectors {ci} are h̄-orthogonal. A direct calculation shows that

[c1, c2] = 2c3, [c2, c3] = 2c1, [c3, c1] = 2c2.

The above expressions can be more concisely written as

[ci, cj ] = 2εij
kck,

where εijk denotes the components of the volume form in R3. In particular,

one has that ε123 = 1. The above commutators can be combined with

the Cartan structure equations – see Equations (2.41) and (2.42) – to compute

the connection coefficients γi
j
k with respect to the frame {ci}. One obtains the

concise expression

γi
j
k = −εi

j
k.

The compactification of R3 into S3

An important example of conformal compactification is the so-called point

compactification of the Euclidean space R3 into S3. Let

δ = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

denote the standard (negative definite) three-dimensional Euclidean metric in

spherical coordinates with 0 ≤ r < ∞, 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.

An explicit computation shows that the Cotton tensor – see Equation (5.18) –

of the metrics δ and h̄ vanish so that they must be conformally related; compare

Theorem 5.1. In order to make this correspondence explicit, write

h̄ = ω2δ (6.3)

where ω is a conformal factor to be determined. Expressing the radial coordinate

as r = r(ψ), one finds from Equation (6.3) the conditions

ω2r′2 = 1, r2ω2 = sin2 ψ, (6.4)

where ′ denotes the derivative with respect to ψ. A solution to the equations in

(6.4) is given by

ω =
2

α
sin2

ψ

2
, r(ψ) = α cot

ψ

2
, (6.5)

where α is a real constant. Notice that r → ∞ as ψ → 0. Thus, the transformation

given by (6.5) is a compactification of R3 sending the north pole of S3 to the
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144 Conformal extensions of exact solutions

point at infinity in R3, while the south pole of S3 is sent to the origin of R3. An

alternative solution to equations (6.4), sending the south pole to the point at

infinity and the north pole to the origin, is given by

ω =
2

α
cos2

ψ

2
, r(ψ) = α tan

ψ

2
, (6.6)

as can be verified by an explicit computation.

6.1.3 The Einstein static universe

The Einstein static universe – sometimes also called the Einstein cosmos

or Einstein cylinder – is the spacetime (ME , gE ) given by

ME ≡ R× S3, gE ≡ dT ⊗ dT − h̄. (6.7)

It can be readily verified that ∂T is a timelike Killing vector of gE so that the

solution is indeed static. Moreover, as (S3,σ) is a homogeneous and isotropic

Riemannian manifold, it follows that (ME , gE ) is spatially homogeneous and

isotropic.

A computation shows that

Weyl[gE ] = 0, R[gE ] = −6, (6.8a)

Schouten[gE ] =
1

2
(dT ⊗ dT + h̄). (6.8b)

Hence, one sees that (ME , gE ) is conformally flat. A discussion of the properties

of the Einstein static universe as a solution to the Einstein field equations with a

perfect fluid matter source can be found in, for example, Griffiths and Podolský

(2009) and Hawking and Ellis (1973).

Finally, it is observed that the Einstein static universe is spherically symmetric.

Comparing the metric gE in (6.7) with the warped product metric (6.1) it is

natural to set

γE ≡ dT ⊗ dT − dψ ⊗ dψ, �E ≡ sinψ,

so that (T, ψ) can be used as coordinates of the quotient manifold QE ≡ (R ×
S3)/SO(3) ≈ R× [0, π].

A class of conformal geodesics in the Einstein static universe

In what follows, consider the congruence of curves on (ME , gE ) given by

x(τ) = (τ, x�), τ ∈ R, (6.9)

with x� ∈ S3 fixed. Varying x� over S3 one obtains a non-intersecting timelike

congruence covering the whole of ME . It can be verified that the curves (6.9)

are geodesics for gE with proper time τ and tangent vector ẋ = ∂T .
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6.2 The Minkowski spacetime 145

The curves (6.9) can be recast as conformal geodesics. To see this, one follows

the argument of Lemma 5.2 and introduces a parameter τ̄ such that τ = τ(τ̄)

and makes use of the ansatz

β̄ ≡ α(τ̄)ẋ� = α(τ̄)dT.

Substituting the above expression into the conformal geodesic Equations (5.42a)

and (5.42b) and taking into account formula (6.8b) for the Schouten tensor of

the Einstein universe one finds the equations

τ ′′ + ατ ′2 = 0, α′ =
1

2
τ ′(α2 + 1),

with ′ denoting differentiation with respect to τ̄ . A solution to the above

equations is given by

τ = 2arctan
τ̄

2
, α =

τ̄

2
. (6.10)

Now, one has that 〈β̄,x′〉 = ατ ′ so that the conformal factor Θ̄ satisfying

the condition Θ̄2gE (x
′,x′) = 1 obeys the equation Θ̄′ = 〈β̄,x′〉Θ̄ with initial

condition Θ̄� = 1. The differential equation for Θ̄ can be solved to give

Θ̄ = 1 +
1

4
τ̄2. (6.11)

It can be verified that

β̄ =
1

2
τ̄dT = Θ̄−1dΘ̄.

Using the conformal factor Θ̄ one obtains a conformal representation of the

Einstein universe with metric ḡE ≡ Θ̄2gE so that

ḡE = dτ̄ ⊗ dτ̄ −
(
1 +

1

4
τ̄2
)2

h̄,

where the parameter τ̄ has been introduced as the new time coordinate.

This conformal representation of the Einstein cylinder will be known as the

expanding Einstein cylinder. Notice that x′ = Θ̄−1ẋ so that ḡE (x
′,x′) = 1.

It can be readily verified that the congruence is integrable and that the curves

are orthogonal to the surfaces of constant τ̄ .

6.2 The Minkowski spacetime

The Minkowski solution (M̃, η̃) is the spacetime given by M̃ = R4 and

η̃ = ημνdx
μ ⊗ dxν , (6.12)

where (xμ) = (t, x, y, z) and ημν ≡ diag(1,−1,−1,−1). Alternatively, using

spherical coordinates one can write

η̃ = dt⊗ dt− r2dr ⊗ dr − r2σ. (6.13)
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146 Conformal extensions of exact solutions

Using the expression of the Minkowski metric in Cartesian coordinates one

readily sees that Riem[η̃] = 0 so that, in particular, Ric[η̃] = 0; that is, η̃

is a solution to the vacuum Einstein field equations with vanishing cosmological

constant. Moreover, one has that Weyl[η̃] = 0 so that η̃ is conformally flat and,

thus, conformal to the metric of the Einstein cylinder. This relation is analysed

in the next section.

6.2.1 The compactification into the Einstein cylinder

A standard procedure for the construction of conformal extensions of Lorentzian

manifolds is to make use of pairs of so-called null coordinates . In the present case

a convenient choice is given by

u ≡ t− r, v ≡ t+ r. (6.14)

Conventionally, the coordinate is called a retarded time, while v is an advanced

time. It can be readily verified that η̃�(du,du) = η̃�(dv,dv) = 0. It follows that

η̃ =
1

2
(du⊗ dv + dv ⊗ du)− 1

4
(v − u)2σ.

In order to have r ≥ 0 one has the restriction u ≤ v. The present analysis is

mainly concerned with the behaviour at infinity; thus, it is natural to introduce

a further transformation of coordinates:

u ≡ tanU, v ≡ tanV, U, V ∈ (− 1
2π,

1
2π), U ≤ V.

From the relations

du =
1

cos2 U
dU = (1 + u2)dU, dv =

1

cos2 V
dV = (1 + v2)dV,

and the identity

v − u = tanV − tanU =
sin(V − U)

cosU cosV
,

one obtains

η̃ =
1

4 cos2 U cos2 V

(
2(dU ⊗ dV + dV ⊗ dU)− sin2(U − V )σ

)
.

This last expression suggests defining the unphysical metric η ≡ Ξ2
M η̃ where

ΞM ≡ 2 cosU cosV, (6.15)

so that

η = 2(dU ⊗ dV + dV ⊗ dU)− sin2(U − V )σ.

The conformal factor ΞM vanishes whenever U = ± 1
2π or V = ± 1

2π. In order

to investigate the situation in more detail one introduces the final change of

coordinates

ψ ≡ V − U, T ≡ V + U.
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Γ i0

I+

I−

i+

i−

R×S3

M

Figure 6.1 Conformal extension of the Minkowski spacetime. Left, conformal
embedding of the Minkowski spacetime in the Einstein cylinder: the shaded
region corresponds to the set MM of equation (6.21). Right, Penrose diagram
of the Minkowski spacetime: the line Γ corresponds to the axis of symmetry,
the points i0, i+ and i− are spatial infinity, future timelike infinity and past
timelike infinity, respectively. Finally, I + and I − are future and past null
infinity; see main text for further details.

Using standard trigonometric identities, one can rewrite the conformal factor

(6.15) in terms of the coordinates T and ψ to obtain

ΞM = cosT + cosψ. (6.16)

Thus, one ends up with the metric

η = dT ⊗ dT − dψ ⊗ dψ − sin2 ψσ. (6.17)

Thus, one has that η = gE . Consequently, the rescaling procedure described in

the previous paragraphs compactifies the Minkowski spacetime into a region of

the Einstein cylinder ; see Figure 6.1, left panel. The standard coordinates (t, r)

on the Minkowski spacetime are related to the (T, ψ) coordinates on the Einstein

cylinder via the formulae:

t =
sinT

cosT + cosψ
, r =

sinψ

cosT + cosψ
. (6.18)

It follows from the previous discussion that the Minkowski spacetime (R4, η̃)

is conformal to the domain

M̃M ≡
{
p ∈ ME | 0 ≤ ψ(p) < π, ψ(p)− π < T (p) < π − ψ(p)

}
,

on which ΞM > 0. In addition to M̃M , it is convenient to single out a number of

subsets ofME playing a special role in the discussion of the asymptotic behaviour

of the Minkowski spacetime:
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148 Conformal extensions of exact solutions

(a) Future and past null infinity are defined as the hypersurfaces

I ± ≡
{
p ∈ ME | 0 < ψ(p) < π, T (p) = ±(π − ψ(p))

}
, (6.19)

on which ΞM = 0. A calculation shows that

dΞM = − sinTdT − sinψdψ, (6.20)

so that dΞM �= 0 on I ±. It can, however, be verified that

gE (dΞM ,dΞM )|I ± = 0,

so that I ± are null hypersurfaces.

(b) Spatial infinity is defined by

i0 ≡
{
p ∈ ME | ψ(p) = π, T (p) = 0

}
.

Inspection of expression (6.7) for the metric gE shows that the radius of the

2-sphere defined by T = 0 and ψ = 0 vanishes. Accordingly, i0 consists of a

single point. Evaluating the differential (6.20) at i0 one finds that

dΞM |i0 = 0, HessΞM |i0 = −gE |i0 .

(c) Future and past timelike infinity is defined as

i± ≡
{
p ∈ ME | ψ(p) = 0, T (p) = ±π

}
.

Again, from the metric (6.7) it follows that the 2-spheres defined by T = ±π

and ψ = 0 have vanishing radius so that both i+ and i− correspond to points.

Using (6.20) one finds that

dΞM |i± = 0, HessΞM |i± = gE |i± .

The motivation for the above definitions follows from the analysis of geodesics;

see below. It is important to point out that by convention i0, i± /∈ I ±. Finally,

it is convenient to define the manifold with boundary

MM = M̃M ∪ I + ∪ I − ∪ i+ ∪ i− ∪ i0, (6.21)

which will be called the conformally extended Minkowski manifold.

The Penrose diagram of the Minkowski spacetime

The spherical symmetry of the Minkowski spacetime can be exploited to provide

a diagrammatic representation of the global structure of the spacetime known

as a Penrose (or Penrose-Carter) diagram. It follows from the discussion

in Section 6.1.1 that the action of the group SO(3) on MM gives rise to the

quotient manifold with coordinates (T, ψ) given by

QM ≡
{
p ∈ QE | 0 ≤ ψ(p) ≤ π, ψ(p)− π ≤ T (p) ≤ π − ψ(p)

}
.

In what follows, in a slight abuse of notation, the projections of I ±, i±, i0 ⊂
MM on the quotient manifold QM will be denoted, again, by the same symbols.
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6.2 The Minkowski spacetime 149

Clearly, I +, i±, i0 ⊂ ∂QM ; however, ∂QM has a further component consisting

of the centre of symmetry

Γ ≡
{
p ∈ QM |ψ(p) = 0, −π < T (p) < π}.

As the conformal metric η is the standard one on the Einstein cylinder, it follows

from the discussion in Section 6.1.3 that the quotient metric inherited by η on

QM is the two-dimensional Minkowski metric

γM = dT ⊗ dT − dψ ⊗ dψ.

Given the above, the Penrose diagram of the Minkowski spacetime is simply

the depiction of QM as a subset of R2 as shown in Figure 6.1, right panel. A

discussion of the construction of Penrose diagrams for more general spacetimes

is given in Section 6.5.2.

Analysis of the behaviour of geodesics

Intuition on the various features of the construction described in the previous

paragraphs can be obtained by analysing the behaviour of various types of

physical metric geodesics. To this end one notices the following formulae that can

be verified using the coordinate transformations taking the original Minkowski

metric of Equation (6.13) into the metric (6.17):

sinT =
2t√

(1 + (t− r)2) (1 + (t+ r)2)
, (6.22a)

cosT =
1− t2 + r2√

(1 + (t− r)2) (1 + (t+ r)2)
, (6.22b)

cosψ =
1 + t2 − r2√

(1 + (t− r)2) (1 + (t+ r)2)
. (6.22c)

(a) Spacelike geodesics. Radial spacelike geodesics in the Minkowski space-

time can be described using the radial coordinate r as a parameter. It follows

then that the time coordinate of the curves is given by

t = ar + t�, a2 < 1, t� ∈ R.

For r → ∞ it follows from (6.22a)–(6.22c) that

sinT → 0, cosT → 1, cosψ → −1.

Hence one concludes that T → 0 and ψ → π as the curve escapes to infinity.

Thus, in the unphysical picture, spacelike radial geodesics finish at the same

point, spatial infinity i0, independently of the value of a.
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150 Conformal extensions of exact solutions

(b) Timelike geodesics. For concreteness, consider the family of geodesics

described by

t = ar + t�, |a| > 1.

It can be verified that as r → ∞ one has the limits

sinT → 0, cosT → −1, cosψ → 1.

Depending on whether sinT approaches 0 from the right or the left, the

latter limits correspond to either T → π and ψ → 0 or T → −π and ψ → 0.

Thus, the timelike geodesics start and finish, respectively, at i− and i+.

(c) Null geodesics. Consider, for example, the family of outgoing null geodesics

described by the condition u = u�, where u� is a constant and u is the null

coordinate defined in (6.14). Now, taking the limit v → ∞ one finds that

sinT → 1√
1 + u2

�

, cosT → u�√
1 + u2

�

, cosψ → − u�√
1 + u2

�

.

Thus, in the limit one has that T = π − ψ, corresponding to future null

infinity I +. Similarly, for incoming geodesics described by the condition

v = v�, v� a constant and with v as defined in (6.14), one finds that the

limit points lie on the line T − ψ = π, corresponding to past null infinity

I −. Summarising, incoming null geodesics start at I − while outgoing null

geodesics end at I +.

6.2.2 Compactifications adapted to spatial infinity

The discussion of the structure of spatial infinity is better carried out in

an alternative conformal representation. Intuitively, the region of spacetime

associated with the spatial infinity of the Minkowski spacetime (R4, η̃) is

contained in the domain D̃ ≡ {p ∈ R4 | ημνxμ(p)xν(p) < 0}, the complement of

the light cone through the origin, where (xμ) denote the standard Cartesian

coordinates. Now, consider the coordinate inversion defined by

yμ = − xμ

X2
, xμ = − yμ

Y 2
,

where X2 ≡ ημνx
μxν and Y 2 ≡ ημνy

μyν . This coordinate transformation maps

D̃ onto itself. Moreover, a computation yields

dyμ = − 1

X2

(
δμλ − 2

X2
xμηλνx

ν

)
dxλ,

so that

ημνdy
μ ⊗ dyν = X−4ημνdx

μ ⊗ dxν .
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i0

I−

I+

Figure 6.2 The Minkowski spacetime close to null and spatial infinity: the
conformal boundary corresponds to the surface of the cones, while the interior
of the spacetime corresponds to the exterior of the light cones; see main text
for further details.

This computation suggests introducing the conformal factor Ξ = 1/X2. Hence,

one concludes that

η = Ξ2η̃ = Ξ2ημνdx
μ ⊗ dxν .

Hence, one has a conformal representation of the Minkowski spacetime which is

also flat. An inspection shows that the boundary ∂D̃ decomposes into the sets

I + = {p ∈ R4 | y0(p) > 0, ημνy
μ(p)yν(p) = 0},

I − = {p ∈ R4 | y0(p) < 0, ημνy
μ(p)yν(p) = 0},

i0 = {p ∈ R4 | (yμ(p)) = (0, 0, 0, 0)};

see Figure 6.2. An analysis similar to the one carried out in Section 6.2.1 shows

that these sets admit the interpretation of future null infinity, past null infinity

and spatial infinity, respectively. More precisely, I + (I −) can be thought of as

being generated by the end points of future (past) directed null geodesics while

all spatial geodesics eventually run into the point i0. The null hypersurfaces I +

form the null cone through the point i0. Defining the manifold with boundary

D ≡ D̃∪∂D̃ one observes that the conformal metric η extends smoothly through

the boundary.

6.2.3 Conformal geodesics in the Minkowski spacetime

Conformal geodesics in the Minkowski spacetime can be computed using the

version of the equations adapted to the physical metric; see Section 5.5.6. Using

standard Cartesian coordinates so that all the Christoffel symbols vanish, the

third-order Equation (5.65) reduces to

x̃′′′ = β2x̃′, β2 ≡ −η̃�(β̃, β̃), (6.23)
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152 Conformal extensions of exact solutions

where it is recalled that β2 is constant along the conformal geodesic and ′ denotes

differentiation with respect to the physical proper time τ̃ . Regarding (6.23) as a

second-order equation for x̃′ one has that

x̃′ = v1 cosh(βτ̃) + v2 sinh(βτ̃),

where v1 and v2 are two constant vectors on the Minkowski spacetime. Making

use of the initial conditions x̃′′(0) = β̃
�

� and x̃′(0) = x′
� one finds that

x̃′ = x′
� cosh(βτ̃) + β−1β̃

�

� sinh(βτ̃).

A final integration taking into account the initial condition x̃(0) = x� and

Equation (5.63a) yields

x̃(τ̃) = x� + β−1x′
� sinh(βτ̃) + β−2β̃

�

� cosh(βτ̃)− β2β̃
�

�,

β̃(τ̃) = βx′�
� sinh(βτ̃) + β̃� cosh(βτ̃),

where in the first expression, in an abuse of notation, the vectors x′
� and β̃

�

� are

understood as describing points in R4. To rewrite this general solution in terms

of the unphysical proper time τ one makes use of formula (5.58). A computation

yields the formulae:

x(τ) = x� +Θ�Θ
−1(τ)

(
ẋ�τ +

1

2
η̃(ẋ�, ẋ�)β

�
�τ

2

)
, (6.24a)

β(τ) =
(
1 + τ〈β�, ẋ�〉

)
β� −

1

2
η̃�(β�,β�)ẋ�τ, (6.24b)

where

Θ(τ) = Θ�

(
1 + 〈β�, ẋ�〉τ +

1

4
η̃(ẋ�, ẋ�)η̃

�(β�,β�)τ
2

)
.

Conformal geodesics which satisfy η̃(ẋ, ẋ) = 0 at some point coincide, following

the discussion of Section 5.5.4, with null geodesics. Those with β� = 0 are

standard geodesics of the Minkowski spacetime. Now, if ẋ� is spacelike or

timelike one can assume, without loss of generality, that 〈β�, ẋ�〉 = 0 –

following the discussion of Section 5.5.3 this can always be achieved through a

reparametrisation of the form given by Equation (5.48) of Lemma 5.1. If ẋ� and

β�
� generate a timelike 2-surface and ẋ� is timelike, then the conformal geodesic

is a hyperbola in the plane tangent to that 2-surface. An example of such type

of curve is given by the expression

x(τ) =

(
4τ

4− a2τ2
,
1

a
+

2aτ2

4− a2τ2
, 0, 0

)
, |τ | ≤ 2

a
(6.25)

where a−2 ≡ −η̃(ẋ, ẋ). Examples of these conformal geodesics are depicted in

Figure 6.3.
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t

r

a=2 a=1 a=4
5

i0
Γ

i+

i−

I+

I−

Figure 6.3 Examples of conformal geodesics in the Minkowski spacetime: left,
plot in (t, r)-coordinates of the curve (6.25) for the parameter choices a =
4
5
, 1, 2; right, location of the curves in the Penrose diagram of the Minkowski

spacetime. Notice that the curves intersect the conformal boundary at the
same points. The diagram is quantitatively correct.

A special class of conformal geodesics

As a consequence of the transformation properties of the conformal geodesic

equations, the family of curves on the Einstein cylinder given by Equation (6.9)

defines a congruence of conformal geodesics on the Minkowski spacetime.

Recalling that ḡE ≡ Θ̄2gE and gE ≡ Ξ2
M η̃ where Θ̄ and ΞM are the conformal

factors given, respectively, by Equations (6.11) and (6.16), one has that ḡE =

Θ2
M η̃ with ΘM ≡ ΞM Θ̄. Along the conformal curves one has that

ΞM = cos τ + cosψ =

(
4− τ̄2

4 + τ̄2

)
+ cosψ,

where the second equality is obtained from the reparametrisation formula

(6.10) and standard trigonometric identities. Moreover, one finds that along the

conformal geodesics

ΘM = 2 cos2
ψ

2

(
1− 1

4
tan2

ψ

2
τ̄2
)
.

To obtain the covector βM associated to the solution of the η̃-conformal geodesic

equations let

ΥM ≡ Ξ−1
M dΞM = − sin τdT + sinψdψ

cos τ + cosψ
.

Recalling that τ = 2arctan 1
2 τ̄ it follows, using standard trigonometric identities,

that
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154 Conformal extensions of exact solutions

Figure 6.4 A class of conformal geodesics ruling the Einstein cylinder; see
main text for further details.

ΥM = −Θ−1
M

(
τ̄dT +

(
1 +

1

4
τ̄2
)
sinψdψ

)
.

Finally, defining βM ≡ β̄+ΥM , one concludes from the transformation formulae

for the solutions of the conformal geodesic equations that the pair (x(τ̄),βM (τ̄))

with

x(τ̄) =

(
2arctan

τ̄

2
, x�

)
,

βM (τ̄) =
(
arctan

τ̄

2
−Θ−1

M τ̄
)
dT −Θ−1

M

(
1 +

1

4
τ̄2
)
sinψdψ,

is a solution to the η̃-conformal geodesic equations. Notice, in particular, that

βM (0) = − sinψ

1 + cosψ
dψ.

A depiction of the above class of conformal geodesics is given in Figure 6.4.

6.2.4 Hyperboloids in the Minkowski spacetime

An important class of spacelike hypersurfaces in the Minkowski spacetime is

given by the standard hyperboloids

Hk = {p ∈ R4 | t2(p)− r2(p) = k}, k > 0. (6.26)

A direct computation reveals that the unit normal vector to these hypersurfaces

is given by

ν� =
1√
k
(t∂t + r∂r).

Using this expression one can verify that the extrinsic curvature of the

hyperboloids is pure trace, that is, proportional to the intrinsic metric of Hk.

The mean curvature (i.e. the trace of the extrinsic curvature) is given by
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k=1
2

k=1
4

k= 1
10

t

r

i0Γ

i+

i−

I+

I−

k=1

Figure 6.5 Examples of hyperboloids in the Minkowski spacetime: left, the
standard hyperboloids Hk with k = 1, 1

2
, 1

4
, 1

10
in (t, r)-coordinates (see

Equation (6.26)); right, location of the hyperboloids in the Penrose diagram.
The diagram is quantitatively correct.

K̃ =
3√
k
.

That is, the standard hyperboloids are surfaces of constant mean curvature.

Making use of the coordinates (U, V ) introduced in Section 6.2.1, the defining

equation for the hyperboloids can be rewritten as tanU tanV = k. The

hyperboloids intersect null infinity whenever V = 1
2π. It follows that, in this

case, U = 0. Thus, the hyperboloids Hk intersect null infinity at the same points

independent of the value of k. The hypersurfaces differ from each other by the

angle α at which they intersect null infinity. One can compute that

tanα = −dU

dV
= k.

In particular, if k2 = 1, one has that α = 1
4π. This particular hyperboloid

corresponds to a horizontal line T = 1
2π in the Penrose diagram of the Minkowski

spacetime; see Figure 6.5.

A more general class of hyperboloids can be obtained by translating the

standard hyperboloids (6.26). To this end, one considers the defining equation

k = (t−t�)
2−r2 for fixed k and t�. Varying t� one obtains a family of translated

hyperboloids Ht�,k. The intersection of the Ht�,k now depends on the value of

t�: if V = 1
2π, it follows that U = arctan t�.

6.3 The de Sitter spacetime

The de Sitter spacetime (M̃dS , g̃dS) is the solution to the vacuum Einstein

field equations Ric[g̃] = λg̃ with negative constant Ricci scalar, in the signature
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156 Conformal extensions of exact solutions

conventions of this book. The spacetime manifold is given by M̃dS = R×S3 and

there exist coordinates where the metric is given by

g̃dS = dt⊗ dt− a2 cosh2(t/a) h̄, a ≡
√

3

|λ| , −∞ < t < ∞, (6.27)

with h̄ denoting the standard metric of the 3-sphere. Alternatively, there exist

further coordinates (t̄, r̄) in terms of which the metric of the de Sitter spacetime

takes the form

g̃dS =

(
1 +

1

3
λr̄2
)
dt̄⊗ dt̄−

(
1 +

1

3
λr̄2
)−1

dr̄ ⊗ dr̄ − r̄2σ. (6.28)

This metric is static for r̄2 > − 1
3λ. A discussion of the relation between various

systems of coordinates can be found in Griffiths and Podolský (2009).

To construct a conformal extension of the de Sitter spacetime it is convenient

to introduce a new coordinate T via the condition

dt = a cosh(t/a)dT.

Fixing the constant of integration by requiring that T = 0 if t = 0 one obtains

T = 2a arctan et − 1

2
aπ, t = ln tan

(
T

2a
+

1

4
π

)
,

or, equivalently tan(T/2) = tanh(t/2a). Using standard trigonometric identities

the latter can be recast as

cosT =
1

cosh(t/a)
.

Thus, one concludes that

g̃dS = a2 cosh2 t (dT ⊗ dT − h̄) .

The latter expression suggests introducing the conformal factor

ΞdS =
1

a cosh(t/a)
=

1

a
cosT, (6.29)

so that the conformal metric Ξ2
dS g̃ is, again, that of the Einstein cylinder. It

follows that the locus of points for which ΞdS = 0 corresponds to T = ± 1
2π;

notice that T → ± 1
2π as t → ±∞. In view of the latter, one defines future and

past conformal infinity, respectively, as

I ±
dS ≡

{
p ∈ ME

∣∣∣∣ T (p) = ±π

2

}
. (6.30)

The terminology for these sets will be justified in the next section. From the

previous discussion it follows that the de Sitter spacetime is conformal to the

domain

M̃dS ≡
{
p ∈ ME

∣∣∣∣ − π

2
< T (p) <

π

2

}
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Γ2 Γ1

I+
dS

I−
dS

R×S3

M

Figure 6.6 Conformal extension of the de Sitter spacetime. Left, conformal
embedding of the de Sitter spacetime in the Einstein cylinder: the shaded
region corresponds to the set MdS of Equation (6.31). Right, Penrose diagram
of the de Sitter spacetime: the lines Γ1 and Γ2 correspond to the axes of
symmetry, while I +

dS and I −
dS denote, respectively, future and past conformal

infinity; see main text for further details.

of the Einstein cylinder. Moreover, one sets

MdS ≡ M̃dS ∪ I +
dS ∪ I −

dS . (6.31)

To construct the Penrose diagram of the de Sitter spacetime one considers the

quotient domain QdS ≡ MdS/SO(3). The boundary ∂QdS of the quotient

manifold consists of the projection of the conformal boundary (to be denoted

again by I ±
dS) and the two centres of symmetry Γ1 and Γ2 given, respectively,

by the conditions ψ = 0 and ψ = π. A depiction of the Penrose diagram of the

de Sitter spacetime is given in Figure 6.6, right panel.

6.3.1 Behaviour of geodesics

As in the case of the Minkowski spacetime, intuition about the conformal

representation of the de Sitter spacetime can be obtained through the analysis

of the behaviour of geodesics. For simplicity set λ = −3 so that a = 1 in the line

element (6.27). The geodesic equations can be found to be

t′2 − cosh2 t ψ′2 = ε, ψ′ =
�

cosh2 t
,

where � is a constant, ε takes the values 1, 0 or −1 depending on whether one

considers timelike, null or spacelike geodesics and ′ denotes differentiation with

respect to an affine parameter s. As in the case of the Minkowski spacetime one

distinguishes the following three cases:
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158 Conformal extensions of exact solutions

(a) Spacelike geodesics. The geodesic equations can be solved to yield

t(s) = arcsinh
(√

�2 − 1 sin(s− s�)
)
,

ψ(s) = ψ� + arctan
(
� tan(s− s�)

)
,

with s� and ψ� real constants. Thus, it follows that the range of the

coordinates is bounded and the geodesics remain in a compact region

following the same path over and over.

(b) Timelike geodesics. For concreteness, consider future-pointing geodesics

– the past pointing case is similar. The geodesic equations can be solved to

give:

t(s) = arcsinh
(√

�2 + 1 sinh(s− s�)
)
,

ψ(s) = ψ� + arctan
(
� tanh(s− s�)

)
.

It follows that for s → ∞ one has t → ∞. Thus, one obtains the limit points

T =
π

2
, ψ = ψ� + arctan �.

The geodesics approach a definite point on the spacelike hypersurface I +
dS

defined in (6.30).

(c) Null geodesics. In this case, the geodesic equations give the solution

t(s) = arcsinh s,

ψ(s) = ψ� + arctan(�s).

From these expressions it follows, on the one hand, that if s → ∞, then

t → ∞, T → π

2
, ψ → ψ� +

π

2
,

while on the other, if s → −∞, then

t → −∞, T → −π

2
, ψ → ψ� −

π

2
.

Hence, the null geodesics start and finish, respectively, at I −
dS and I +

dS , in

antipodal points on S3.

6.3.2 Conformal geodesics in the de Sitter spacetime

As a consequence of the conformal invariance of conformal geodesics, the curves

in the Einstein universe discussed in Section 6.1.3 are also conformal geodesics

of the de Sitter spacetime.

Making use of the relations gE = Ξ2
dS g̃dS and ḡE = Θ̄2gE where Θ̄ and ΞdS

are the conformal factors given, respectively, by Equations (6.11) and (6.29), one
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6.4 The anti-de Sitter spacetime 159

finds that ḡE = Θ2
dS g̃dS with ΘdS ≡ Θ̄ΞdS . A calculation using the first of the

equations in (6.10) shows that

ΞdS = a cos τ = a

(
4− τ̄2

4 + τ̄2

)
,

where in a slight abuse of notation the coordinate T has been replaced by the

parameter of the curves τ . Hence, one finds that

ΘdS = a

(
1− 1

4
τ̄2
)
,

so that ΘdS vanishes at τ̄ = ±2. To construct the covector associated to the

congruence of conformal geodesics consider ΥdS ≡ ΞdS
−1dΞdS . A calculation

then shows that

ΥdS = − 16τ̄

16− τ̄4
dτ̄ = − 4τ̄

4− τ̄2
dτ.

Letting βdS ≡ β̄ + ΥdS , it follows from the transformation laws for conformal

geodesics in Section 5.5.2 that the pair (x(τ̄),βds(τ̄)), with

x(τ̄) =
(
2arctan

τ̄

2
, x�

)
, βdS(τ̄) = −

(
2τ̄

4− τ̄2

)
dτ̄ , (6.32)

is a solution to the g̃dS-conformal geodesic equations with parameter τ̄ . Notice,

in particular, that at the Cauchy surface given by τ̄ = 0 one has that βdS(0) = 0.

Following the discussion from the previous paragraph, the surface given by the

condition τ̄ = −2 represents past null infinity I −
dS . In some applications, one

needs to prescribe initial data for the congruence of conformal geodesics at I −
dS .

In this case, it is convenient to introduce the further reparametrisation τ̂ = τ̄ +2

so that

ΘdS = τ̂ − 1

4
τ̂2, βdS = −

(
2τ̂ − 4

4τ̂ + τ̂2

)
dτ̂ .

6.4 The anti-de Sitter spacetime

The anti-de Sitter spacetime is given by the manifold M̃adS ≈ R4 equipped

with the metric

g̃adS = cosh2 r dt⊗ dt− a2
(
dr ⊗ dr + sinh2 rσ

)
, a ≡

√
3

λ
,

with t ∈ R and r ∈ (0,∞). Strictly speaking, this spacetime is the so-called

universal covering space of the anti-de Sitter spacetime – the classical

anti-de Sitter spacetime has a periodic time coordinate and, thus, closed timelike

curves. As in the case of the de Sitter spacetime, it is possible to introduce

coordinates (t̄, r̄) in terms of which the metric takes the form

g̃adS =

(
1 +

1

3
λr̄2
)
dt̄⊗ dt̄−

(
1 +

1

3
λr̄2
)−1

dr̄ ⊗ dr̄ − r̄2σ. (6.33)
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160 Conformal extensions of exact solutions

As (in the signature conventions used in this book) λ > 0, there are no horizons

in the anti-de Sitter spacetime; see, for example, Griffiths and Podolský (2009).

To obtain a conformal representation of this spacetime, it is convenient to

consider a new radial coordinate via the condition

dr = cosh rdψ,

so that ψ = 2arctan er − 1
2π. This condition is equivalent to tanψ = sinh r.

Hence, one has that ψ ∈ [0, 1
2π]. Setting T = t/a, a calculation then shows that

g̃adS = a2 cosh2 r (dT ⊗ dT − h̄) .

The latter suggests introducing the conformal factor

ΞadS =
a

cosh r
= a cosψ. (6.34)

Thus, the conformal metric Ξ2
adS g̃ is, again, that of the Einstein cylinder. From

the previous discussion it follows that the anti-de Sitter spacetime is conformal

to the domain

M̃adS =

{
p ∈ ME

∣∣∣∣ 0 ≤ ψ(p) <
π

2

}
,

of the Einstein cylinder. Notice, however, that in contrast to the conformal

representation of the de Sitter spacetime, the conformal anti-de Sitter spacetime

does not cover the whole spatial sections of the cylinder. In particular, one has

that the conformal factor ΞadS vanishes at ψ = 1
2π; that is, the conformal

boundary is, in this case, a timelike hypersurface. Following standard usage,

define the conformal infinity of the anti-de Sitter spacetime as

IadS ≡
{
p ∈ ME

∣∣∣∣ ψ(p) = π

2

}
.

One also defines

MadS ≡ M̃adS ∪ IadS . (6.35)

The Penrose diagram for the anti-de Sitter spacetime is constructed by consider-

ing the quotient domain QadS ≡ MadS/SO(3) with boundary ∂QadS = IadS∪Γ
where IadS denotes the projection of null infinity onto QE and Γ denotes the

centre of symmetry given by the condition ψ = 0. A depiction of the Penrose

diagram is given in Figure 6.7.

6.4.1 Geodesics in the anti-de Sitter spacetime

In what follows, for simplicity assume that λ = 3 so that a = 1. Radial geodesics

in the anti-de Sitter spacetime are described by the equations

cosh2 r T ′2 − r′2 = ε, T ′ =
�

cosh2 r
.
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6.4 The anti-de Sitter spacetime 161

Γ IadS

R×S3

MadS

Figure 6.7 Conformal extension of the anti-de Sitter spacetime. Left, confor-
mal embedding of the anti-de Sitter spacetime in the Einstein cylinder: the
shaded region corresponds to the set MadS of Equation (6.35). Right, Penrose
diagram of the anti-de Sitter spacetime: the line Γ corresponds to the axis of
symmetry, while IadS denotes conformal infinity; see main text for further
details.

These equations can be obtained from those of the de Sitter spacetime by the

replacements t �→ r, ψ �→ T and ε �→ −ε; see Section 6.3.1. Again, one has three

cases to consider:

(a) Spacelike geodesics. In this case, the geodesic equations can be solved to

give

r(s) = arcsinh
(√

�2 + 1 sinh(s− s�)
)
,

T (s) = T� + arctan
(
� tanh(s− s�)

)
,

with s� and T� real constants. Thus, for s → ∞ one obtains the limits

r → ∞, ψ → π

2
, T → T� + arctan �.

As a consequence, in the conformal representation, radial spacelike geodesics

approach the conformal boundary IadS .

(b) Timelike geodesics. For simplicity only future-oriented geodesics are

considered. The solution to the geodesic equations is then given by

r(s) = arcsinh
(√

�2 − 1 sin(s− s�)
)
,

T (s) = T� + arctan
(
� tan(s− s�)

)
.

Accordingly, the coordinate r is periodic while τ grows unbounded – the

limit points of these curves are not in the Einstein cylinder.

(c) Null geodesics. In this case, the solution to the geodesic equations is

r(s) = arcsinh s,

T (s) = T� + arctan s.
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162 Conformal extensions of exact solutions

As a consequence of these equations one has the limits

r → ∞, ψ → π

2
, T → T� +

π

2
,

as s → ∞. Thus, in the conformal representation, the null geodesics end at

the conformal boundary IadS .

6.4.2 Conformal geodesics in the anti-de Sitter spacetime

The methods used to construct conformal geodesics in the Minkowski and the de

Sitter spacetimes can also be used in the anti-de Sitter spacetime. For conciseness,

the discussion is restricted to the class of conformal geodesics arising from the

curves (6.9) in the Einstein universe.

Using that gE = Ξ2
adS g̃adS and that ḡE = Θ̄2gE where Θ̄ and ΞadS are the

conformal factors given by Equations (6.11) and (6.34), one finds that ḡE =

Θ2
adsg̃adS , where

ΘadS ≡ Θ̄ΞadS = a cosψ

(
1 +

1

4
τ̄2
)
.

Letting

ΥadS ≡ Ξ−1
adSdΞadS = − tanψdψ,

one finds that the associated covector is given by

βadS ≡ β̄ +ΥadS =
1

2
τ̄dT − tanψdψ

=
2τ̄

4 + τ̄2
dτ̄ − tanψdψ.

The expression for the actual curve is, as in the case of the de Sitter spacetime,

given by

x(τ̄) =
(
2arctan

τ̄

2
, x�

)
. (6.36)

An important property of this non-intersecting congruence of conformal geodesics

is that curves that for some value of the parameter τ̄ are at the conformal

boundary IadS remain in it for all values of τ̄ ; this observation follows from the

fact that the curve given by Equation (6.36) is constant in the spatial directions.

Remark. As arctan 1
2 τ̄ → 1

2π as τ̄ → ∞ and τ = 2arctan 1
2 τ̄ , the parameter τ̄

does not cover the whole Einstein cylinder and only exhausts the slab [−π, π]×S3.

In order to continue the conformal geodesic to other portions of the anti-de Sitter

spacetime one has to introduce a reparametrisation of the curve by means of a

fractional transformation as discussed in Lemma 5.1.
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6.5 Conformal extensions of static and stationary black hole spacetimes 163

6.5 Conformal extensions of static and stationary

black hole spacetimes

A natural extension of the discussion of the previous sections is the analysis

of the conformal structure of spacetimes describing black holes. The more

complicated topology of these spacetimes and the presence of singularities and

horizons make this analysis a much more challenging endeavour. In fact, several

aspects of the conformal structure of static and stationary black holes are open

research questions.

6.5.1 The Schwarzschild spacetime

The Schwarzschild spacetime, being static and spherically symmetric, is the

simplest type of black hole spacetime. The Birkhoff theorem states that any

spherically symmetric solution to the vacuum Einstein field equations with

vanishing cosmological constant is, in fact, isometric to the Schwarzschild

spacetime; see, for example, Misner et al. (1973). Moreover, the black hole

uniqueness theorems show that the Schwarzschild spacetime is the only static

black hole spacetime; see, for example, Chruściel et al. (2012b) for an entry point

to the extensive literature on this topic.

The Schwarzschild metric is given in standard (t, r) coordinates by the line

element

g̃S =

(
1− 2m

r

)
dt⊗ dt−

(
1− 2m

r

)−1

dr ⊗ dr − r2σ, (6.37)

with m the so-called mass parameter. The reader interested in a discussion of

the various aspects of the Schwarzschild spacetime is referred to, for example,

Griffiths and Podolský (2009) and Hawking and Ellis (1973).

To obtain a conformal extension of the Schwarzschild spacetime it is convenient

to make use of coordinates adapted to the light-cone structure of the spacetime.

Accordingly, one introduces the advanced and retarded null Eddington-

Finkelstein coordinates

u ≡ t− r − 2m log |r − 2m| , v ≡ t+ r + 2m log |r − 2m| ,

so that the line element (6.37) transforms into

g̃S =
1

2

(
1− 2m

r

)
(du⊗ dv + dv ⊗ du)− r2σ,

where the relation between r and the coordinates (u, v) is given implicitly by the

condition

r + 2m log |r − 2m| = 1

2
(v − u).
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164 Conformal extensions of exact solutions

The singular behaviour of the metric at r = 2m is then removed by means of a

reparametrisation of the null coordinates. Namely, one sets

U ≡ −4me−u/4m, V ≡ 4mev/4m,

so that one obtains

g̃S =
m

r
e−r/2m(dU ⊗ dV + dV ⊗ dU)− r2σ, (6.38)

where r is now given implicitly by the condition

UV = −8m(r − 2m)er/2m.

The horizon is then given by the condition UV = 0 while the singularity

corresponds to UV = 16m2. The line element in Equation (6.38) is the so-

called Kruskal-Székeres form of the Schwarzschild spacetime. It provides the

maximal analytic extension of the Schwarzschild metric (6.37). Inspection of

the admissible range of coordinates in Equation (6.38) shows that the resulting

maximal manifold has the topology of R× R× S2.

To compactify the Kruskal-Székeres form of the Schwarzschild metric one

introduces a further coordinate transformation:

Ū ≡ arctan

(
U

4m

)
, V̄ ≡ arctan

(
V

4m

)
where

−1

2
π < Ū <

1

2
π, −1

2
π < V̄ <

1

2
π, −1

2
π < Ū + V̄ <

1

2
π.

It follows then that

dU = 4m sec2 ŪdŪ , dV = 4m sec2 V̄ dV̄ ,

so that the line element (6.38) transforms into

g̃S = sec2 Ū sec2 V̄

(
16m3

r
e−r/2m(dŪ ⊗ dV̄ + dV̄ ⊗ dŪ)− r2 cos2 Ū cos2 V̄ σ

)
.

It is, therefore, natural to consider a conformal factor of the form

ΞS = cos Ū cos V̄ ,

so that gS = Ξ2
S g̃S is given by

gS =
16m3

r
e−r/2m(dŪ ⊗ dV̄ + dV̄ ⊗ dŪ)− r2 cos2 Ū cos2 V̄ σ,

where r = r(Ū , V̄ ). This conformal metric is singular at r = 0 (the singularity).

In order to discuss the structure of the conformal boundary of the Schwarzschild

spacetime, it is convenient to introduce the coordinates

T ≡ V̄ + Ū , ψ ≡ V̄ − Ū ,
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6.5 Conformal extensions of static and stationary black hole spacetimes 165

so that T ∈ [−π, π], ψ ∈ [−π, π]. One sees that the maximal analytic extension

of the Schwarzschild spacetime is conformal to the interior of the domain MS ⊂
(−π, π)× [−π, π]× S2 with boundary given by

∂MS = I +
1 ∪ I +

2 ∪ I −
1 ∪ I −

2 ∪ i01 ∪ i02 ∪ i+1 ∪ i+2 ∪ i−1 ∪ i−2 ,

where by analogy with the analysis of the conformal boundary of the Minkowski

spacetime one defines the various components of null infinity as

I +
1 ≡

{
V̄ =

1

2
π

}
, I +

2 ≡
{
Ū =

1

2
π

}
,

I −
1 ≡

{
Ū = −1

2
π

}
, I −

2 ≡
{
V̄ = −1

2
π

}
,

and the two components of spatial infinity as

i01 ≡ {T = 0, ψ = π}, i02 ≡ {T = 0, ψ = −π}.

Finally, the timelike infinities are given by

i±1 ≡
{
T = ±π, ψ =

1

2
π

}
, i±2 ≡

{
T = ±π, ψ = −1

2
π

}
.

An analysis of the geodesics on the Schwarzschild spacetime justifies the name

given to the various components of ∂MS . Observe that the singularities at r = 0

are not included as part of the boundary ∂MS . In this representation, the spatial

infinities i01 and i02 can be seen to correspond to two points on the conformal

manifold. Further properties of the conformal structure of the Schwarzschild

spacetime – in particular, the nature of i0 – will be analysed in the context of the

conformal Einstein field equations in Chapter 20. Finally, the Penrose diagram of

the Schwarzschild spacetime can be readily obtained by considering the quotient

manifold QS = MS /SO(3); the resulting diagram is given in Figure 6.8.

Conformal geodesics in the Schwarzschild spacetime

A detailed analysis of a class of conformal geodesics in this spacetime can be

found in Friedrich (2003a) where it is shown that the Schwarzschild spacetime

can be completely covered by a (non-singular) congruence of conformal geodesics.

This congruence is adapted to the spherical symmetry of the spacetime.

6.5.2 Conformal extensions of other static, spherically

symmetric spacetimes

The procedure to construct a conformal extension of the Schwarzschild spacetime

discussed in Section 6.5.1 can be generalised to include a wide class of static,

spherically symmetric spacetimes. In this section, an adaptation of a general

procedure given on Walker (1970) is discussed. This discussion illuminates the

conformal diagram of a number of spacetimes.
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i01i02

I+
1

i
+
1i

+
2

I+
2

H +
2 H +

1

I−
1I−

2

i−2

H −
2 H −

1

i−1

Figure 6.8 Penrose diagram of the Schwarzschild spacetime. The null hyper-
surfaces I ±

1 and I ±
2 correspond to the four different components of null

infinity, while the points i01, i
0
2 and i±1 , i

±
2 denote, respectively, the various

locations of spatial and timelike infinities. The serrated lines denote the
singularities, and H ±

1 and H ±
2 correspond to the various components of the

horizon; see the main text for further details.

In what follows, let (M̃, g̃) denote a spherically symmetric spacetime endowed

with a further Killing vector ∂t. The following considerations will be independent

of the matter content of the spacetime; hence, the spacetime is not assumed to

be a vacuum. Attention will be restricted to spacetimes in which it is possible

to find coordinates (t, r) such that the metric g̃ takes the form

g̃ = F (r)dt⊗ dt− F (r)−1dr ⊗ dr − r2σ.

The coordinate r is an areal coordinate; that is, the area of a 2-sphere described

by the conditions t = constant, r = constant is 4πr2. The function F (r) is the

norm of the Killing vector ∂t. When F (r) > 0 the Killing vector ∂t is timelike,

and, thus, the metric g̃ is static.

To simplify the presentation, the subsequent analysis will make use of the

quotient manifold Q̃ = M̃/SO(3). The two-dimensional quotient metric γ̃

induced by g̃ on Q̃ is given by

γ̃ = F (r)dt⊗ dt− F (r)−1dr ⊗ dr.

The Levi-Civita connection associated to the Lorentzian metric γ̃ will be

denoted by ˜�D. Let ẋ = (ṫ, ṙ) denote the tangent vector to an affinely parametrised

geodesic in Q̃; here, and in what follows, a dot ( ˙ ) denotes differentiation with

respect to an affine parameter. The geodesic equation ˜�Dẋẋ = 0 can be integrated

once to yield

ṫ = κF, ṙ =
√

κ2 − εF ,

where κ is a constant and ε ≡ γ̃(ẋ, ẋ). As γ̃ is a two-dimensional metric, the

only invariant of the curvature of γ̃ is the Ricci scalar R[γ̃] = F ′′, where ′ denotes
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differentiation with respect to r. In the remainder of this section it will be shown

that if F and F ′′ are finite for all r ∈ R, then every geodesic in Q̃ can be extended

until it is complete. If, on the other hand, F or F ′′ become unbounded for some

value r�, then only those geodesics along which r = r� within a finite affine

distance from some point in Q̃ are incomplete and inextendible; hence, Q̃ and

also M̃ are singular. The extensions obtained from the following considerations

are maximal.

Elementary blocks. In what follows, assume that F has a finite number of

zeros, to be denoted by ai, i = 1, . . . , n with a1 < · · · < an. If F approaches a

constant finite value as r → ∞, so that R[γ̃] = F ′′ → 0, then one can redefine

coordinates so that limr→∞ F = ±1. In this case Q̃ is asymptotically flat and a

null conformal boundary similar to that of the Minkowski spacetime can be

constructed; an analogous discussion can be made in the case r → −∞. A

different possible asymptotic behaviour occurs when F becomes unbounded as

r → ∞. Using the de Sitter and the anti-de Sitter metrics in static form as

given by Equations (6.28) and (6.33) one sees that the behaviour F → −∞ and

F → ∞ as r → ∞ corresponds, respectively, to de Sitter-like and anti-de Sitter-

like asymptotic regions. These regions can be compactified to obtain conformal

boundaries similar to those of the de Sitter and anti-de Sitter spacetimes, that

is, given, respectively, by spacelike and timelike hypersurfaces.

When F vanishes, the orbits of the timelike Killing vector become null; that

is, one has a Killing horizon . This suggests dividing Q̃ into n + 1 regions

(blocks). Each of these regions is bounded by two of the Killing horizons, by a

Killing horizon and conformal infinity, or by a Killing horizon and a singular line

at r = r� for r� fixed. The maximal extension of Q̃ is found by gluing together

elementary blocks along their boundaries (seams). In what follows, for a non-

singular seam it will be understood one where F = 0 and F ′′ is finite, while

a singular seam will be one where F or F ′′ (or both) are unbounded. Blocks

can be glued together only along non-singular seams across which F ′′ is smooth.

In each region

Q̃i ≡
{
(t, r) ∈ Q̃ | t ∈ R, r ∈ [ai, ai+1]

}
,

fix some value ri ∈ (ai, ai+1) of r and define null coordinates via

ui ≡ t−
∫ r

ri

F−1(s)ds, vi ≡ t+

∫ r

ri

F−1(s)ds.

In terms of these new coordinates the metric γ̃ takes the form

γ̃ =
1

2
F (r)(dui ⊗ dvi + dvi ⊗ dui).

This form of the metric is smooth for ui, vi ∈ R if F (r) is smooth. The coordinate

r will be regarded as a function of (ui, vi) given, implicitly, as the solution to the

equations
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1

2
(vi − ui) =

∫ r

ri

F−1(s)ds,
1

2
(ui + vi) = t. (6.39)

The construction can be extended to singular blocks by setting ri = r�.

In the non-singular case, the integrals∫ r

ai

F−1(s)ds,

∫ ai+1

ri

F−1(s)ds,

are divergent as the points r = ai, ai+1 are poles of the integrand. From this

observation together with the formulae in (6.39), assuming F > 0 in Q̃i, one

deduces the limits:

(a) If r → ai+1 and vi is finite, then ui → −∞ and t → −∞.

(b) If r → ai+1 and ui is finite, then vi → +∞ and t → +∞.

(c) If r → ai and vi is finite, then ui → +∞ and t → +∞.

(d) If r → ai and ui is finite, then vi → −∞ and t → −∞.

The setting described by the above limits is depicted in Figure 6.9, left panel.

The coordinates (ui, vi) can be compactified via

Ui ≡ arctanui, Vi ≡ arctan vi,

with Ui, Vi ∈ [− 1
2π,

1
2π] so that γ̃ can be rewritten as

γ̃ =
1

2
F (r) sec2 Ui sec

2 Vi(dUi ⊗ dVi + dVi ⊗ dUi). (6.40)

In what follows, for simplicity, given a regular block Q̃i with coordinate r ∈
[ai, ai+1], it is assumed that the zeros of F (r) are such that

F (r) sec2 Ui sec
2 Vi < ∞ as Ui → ±1

2
π or Vi → ±1

2
π.

F >0 F<0

r=ai

r=ai

r=ai+1

r=ai+1 r=ai+1 r=ai+1

r=ai r=ai

r= const.

r= const.

u= const.

v= const.

v= const.

u= const.

u=+∞

u=−∞
v=+∞

v=−∞

v=+∞
u=+∞

v=−∞

u=−∞

Figure 6.9 Coordinates in a regular block without asymptotic regions; see
main text for details.
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(a) (b)

(e) (f)

(c) (d)

Figure 6.10 Elementary blocks for the construction of Penrose diagrams: (a)
non-singular block without asymptotic regions; (b) non-singular block with a
null I ; (c) non-singular block with a spacelike I ; (d) non-singular block with
a timelike I ; (e) block with a timelike singularity; (f) block with a spacelike
singularity.

In the case of blocks Q̃i with r ∈ [ai,±∞) corresponding to asymptotic regions,

the metric (6.40) allows us to read out a conformal factor. The particular form

of the conformal factor depends on the particular nature of the asymptotic end:

Ξi =

⎧⎪⎪⎨
⎪⎪⎩

cosUi cosVi if F (r) → 1 as r → ∞

cosUi cosVi√
F (r)

if F (r) → ∞ as r → ∞.

The resulting construction can be depicted in a conformal diagram.

The discussion of the case F < 0 in Q̃i is analogous. In this case the orbits

of the Killing vector ∂t are spacelike, and the hypersurfaces of constant r are

timelike. The behaviour of the various coordinates in a regular elementary block

is summarised in Figure 6.9, right panel. A depiction of the various elementary

blocks is given in Figure 6.10.

Flipping of blocks. The convention used in drawing the diagrams in Figure 6.9

is that the coordinate r increases from left to right (if F > 0) and from bottom to

top (if F < 0). As this is a mere convention, it is possible to flip the blocks about

ri. This operation effectively interchanges the roles of u and v. In addition, as

the metric γ̃ is independent of the coordinate t, one has the discrete symmetry

t �→ −t which allows further flipping of blocks with respect to the surfaces of

constant t – vertically if F > 0 and horizontally if F < 0.

Gluing blocks. All geodesics such that r = ai for some finite value of the affine

parameter are incomplete. These geodesics can be extended by gluing blocks

along non-singular seams. The convention followed in gluing the blocks is that

the time coordinate in each block, t if F (r) > 0 and r if F (r) < 0, changes
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Q̃i Q̃i+1

(b)

1 1

1

1

(a)

0 0

2

2

Figure 6.11 The two ways of gluing elementary blocks as discussed in the main
text. In the configuration (1) the block Q̃i+1 has been flipped about ri, while
in configuration (2) it is necessary to invert its time orientation; see the main
text for further details.

vertically. Consider, for example, the gluing of a block Q̃i+1 with F (r) > 0

and a block Q̃i with F (r) < 0. By suitably flipping the blocks, they can be

glued together in the two ways shown in Figure 6.11. Under the assumption

that F ′′ is smooth at r = ai+1 (and hence also the curvature), the gluing of

blocks is equivalent to showing that the null hypersurfaces are continuous along

the seams, that is, that there is a coordinate system covering both blocks in a

neighbourhood of r = ai+1 in a smooth fashion. This construction is implemented

through Eddington-Finkelstein type coordinates.

As a first example consider configuration (1) of Figure 6.11 where the block

Q̃i is glued to a block Q̃i+1 which has been flipped about ri. Direct inspection

reveals that while advanced null coordinates exhaust at the gluing seam (i.e.

they become infinite), a null retarded coordinate extends to the two blocks Q̃i

and Q̃i+1. Accordingly, one sets

du = dt− F−1(r)dr,

so that

γ̃ = F (r)du⊗ du+ (du⊗ dr + dr ⊗ du). (6.41)

Now, allowing r ∈ [ai, ai+2] one finds that the coordinates (u, r) cover both

blocks in configuration (1) of Figure 6.11 – the resulting combined block is shown

in configuration (1) of Figure 6.12. In particular, the coordinate u is finite at

r = ai+1 and the metric (6.41) is smooth for r ∈ (ai, ai+2).

In order to perform the gluing in configuration (2) of Figure 6.11, one needs to

flip the block Q̃i+1 about t. Direct inspection shows that for this configuration

retarded null coordinates exhaust at the gluing seam. Accordingly, one introduces

advanced null coordinates

dv = dt+ F−1(r)dr,

so as to obtain

γ̃ = F (r)dv ⊗ dv − (dv ⊗ dr + dr ⊗ dv). (6.42)
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(a) (b)2

1

11

1

2

2

2

1

1

1

0

0

0

0

Figure 6.12 The two composite blocks obtained from the the gluing procedures
in Figure 6.11.

0

0

0

2
2

1

1

1

1

Figure 6.13 Gluing applied to three blocks simultaneously. A fourth block can
be glued using the Kruskal construction – see the main text for further details.

The coordinate v is finite at r = ai+1. Thus, the pair (v, r) covers the composite

block. One can verify that the metric (6.42) is smooth for r ∈ (ai, ai+2); the

resulting combined block is shown in configuration (2) of Figure 6.12.

Gluing à la Kruskal. The gluings discussed in the last paragraphs can be

performed simultaneously; the resulting configuration is shown in Figure 6.13.

In addition, one could also glue a further region Q̃i+1 obtained from Q̃i+1 by

applying the reflection in the time coordinate. Notice, however, that the point

p is not covered by either of the coordinates (u, r) and (v, r). Depending on the

particular form of F (r) it may be possible to obtain a single coordinate patch for

the four blocks; this is the case, for example, in the Schwarzschild spacetime. The

procedure to do this makes use of a generalisation of the Kruskal coordinates;

see Figure 6.13. The general strategy is to find coordinates (U, V ) such that the

metric takes the form
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γ̃ = G(r)(dU ⊗ dV + dV ⊗ dU),

where G is bounded and non-zero at r = ai+1. Since U = U(t, r) and V = V (t, r)

one readily finds the conditions

G∂tU∂tV = F, ∂rU∂tV + ∂tU∂rV = 0, G∂rU∂rV = −F−1.

It can be verified that a solution to the above is given by

U(t, r) = a exp

(
bt+ b

∫
dr

F (r)

)
, V (t, r) =

1

a
exp

(
−bt+ b

∫
dr

F (r)

)
,

G(r) =
F (r)

b2
exp

(
−2b

∫
dr

F (r)

)
,

where a and b are constants. The function G(r) given by the above formulae

can be singular. The key point in the construction is to analyse whether the

constant b can be chosen so that G(r) is bounded and non-zero at r = ai+1. As

an illustration, in the case of the Schwarzschild spacetime one has that

F (r) = 1− 2m

r
so that G(r) =

1

b2r
(r − 2m)1−4mbe−2br.

Hence, choosing b = 1/4m one has

G(r) =
16m2

r
e−r/2m,

which is bounded and non-zero at r = 2m, the location of the horizon.

By contrast, in the case of the extremal Reissner-Nordström spacetime – see

Equation (6.43) – one has

F (r) =
(
1− m

r

)2
so that G(r) =

1

b2
(r −m)2−4mb exp

(
−2br +

6m2b

r −m

)
.

In this case one cannot find a value of b which makes G(r) finite and non-zero

at r = m. In particular, the choice b = 1/2m yields

G(r) =
1

4m2
exp

(
− r

m
+

3m

r −m

)
,

which is singular at r = m. More generally, if F (r) is a rational function, it can

be shown that the value b can be chosen so that G(r) is finite and non-zero at

r = ai+1 if ai+1 is a non-repeated zero of F (r); see Walker (1970) for the details

of the proof.
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Some examples

The procedure described in the previous paragraphs can be employed to

construct the Penrose diagrams and conformal compactifications of a number of

well-known spherically symmetric spacetimes. In particular, one has the following

(details can be found in the given references):

The non-extremal Reissner-Nordström spacetime. This is the solution to

the Einstein-Maxwell field equations given by the metric

g̃ =

(
1− 2m

r
+

q2

r2

)
dt⊗ dt−

(
1− 2m

r
+

q2

r2

)−1

dr ⊗ dr − r2σ,

with q2 < m2. In this case F (r) = 1−2m/r+q2/r2 has two zeros. One can identify

three elementary blocks: an asymptotically flat region, a standard regular block

and a block with a timelike singularity. In this case Kruskal’s construction can

be employed to glue four blocks simultaneously. The resulting Penrose diagram

is given in Figure 6.14; see Carter (1973).

Figure 6.14 Penrose diagram of the Reissner-Nordström spacetime in the non-
extremal (q2 < m2) case. The points i0 correspond to the various spatial
infinities, the points i± to future and past timelike infinity, respectively, and
the lines I ± to the various components of null infinity. The dashed lines
H ± correspond to the various horizons. Finally, the serrated lines denote the
singularities.
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174 Conformal extensions of exact solutions

Figure 6.15 Penrose diagram of the Reissner-Nordström spacetime in the
extremal case (q2 = m2). The point i0 corresponds to spatial infinity, the
points i± to future and past timelike infinity, respectively, and the lines I ±

to the various components of null infinity. The dashed lines labeled by H
correspond to the various horizons. Finally, the serrated lines denote the
singularities.

The extremal Reissner-Nordström spacetime. This is the particular case

of the Reissner-Nordström spacetime for which q2 = m2. The metric is given by

g̃ =
(
1− m

r

)2
dt⊗ dt−

(
1− m

r

)−2

dr ⊗ dr − r2σ. (6.43)

In this case, one has a double zero of F (r) = (1 − m/r)2. Thus, one cannot

make use of Kruskal’s construction. One can identify two elementary blocks: an

asymptotically flat one and a block with a timelike singularity. The resulting

Penrose diagram is given in Figure 6.15; see Carter (1966a, 1971). An interesting

property of the extremal Reissner-Nordström spacetime is that it is conformally

invariant under a certain spatial inversion; see Couch and Torrence (1984). This

discrete conformal symmetry can be used to relate properties of null infinity with

properties of the horizon; see Bizon and Friedrich (2012). A similar symmetry

exists for a particular combination of the parameters in the Reissner-Nordström-

de Sitter spacetime; see Brännlund (2004).

The Schwarzschild-de Sitter and Schwarzschild-anti de Sitter space-

times. The metric for these spacetimes is given by

g̃ =

(
1− 2m

r
+

1

3
λr2
)
dt⊗ dt−

(
1− 2m

r
+

1

3
λr2
)−1

dr ⊗ dr − r2σ,

where it is assumed that m > 0. If λ > 0 (the anti-de Sitter case), then it can be

verified that F (r) = 1− 2m/r−λr2/3 has only one real root corresponding to a

black hole-type horizon. The resulting diagram is given in Figure 6.16. If λ < 0

(the de Sitter case) and 0 < −9λm2 < 1, then F (r) can be shown to have two
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6.5 Conformal extensions of static and stationary black hole spacetimes 175

Figure 6.16 Penrose diagram of the Schwarzschild-anti de Sitter spacetime.
The vertical lines I denote the two components of conformal infinity, while
the dashed lines labeled by H ± denote the various components of the horizon.
The serrated lines denote the singularities.

Figure 6.17 Penrose diagram of the Schwarzschild-de Sitter spacetime. The
horizontal lines labeled by I ± correspond to the various components of
conformal infinity. The dashed lines Hc and Hb denote, respectively, the
cosmological and black hole horizons. The serrated lines indicate the location
of the singularities.

positive real roots corresponding, respectively, to a black hole-type horizon and

a cosmological type horizon. The resulting blocks can be arranged in a periodic

diagram as given in Figure 6.17; see, for example, Griffiths and Podolský (2009).

In this case it is also possible to make topological identifications; see Beig and

Heinzle (2005). The cases −9λm2 = 1 and −9λm2 > 1 correspond, respectively,

to the so-called extremal and hyperextremal cases.

Other examples of spacetimes amenable to the general construction described

in this section are the Nariai solution, the Reissner-Nordström-de Sitter and the

Reissner-Nordström-anti de Sitter solutions; see, for example, Brill and Hayward

(1994) for a detailed discussion.

6.5.3 Extending across the conformal boundary

In Schmidt and Walker (1983) it has been observed that the conformal represen-

tations of some spacetimes can be extended across the conformal boundary. In

the case of the Schwarzschild solution this is best seen by considering the metric

written in terms of a retarded null coordinate:

g̃S =

(
1− 2m

r

)
du⊗ du+ (du⊗ dr + dr ⊗ du)− r2σ, (6.44)
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176 Conformal extensions of exact solutions

where, in particular, u ∈ R. Defining � ≡ 1/r, a calculation yields that

�2g̃S = �2 (1− 2m�)du⊗ du− (du⊗ d�+ d�⊗ u)− σ. (6.45)

In this representation, future null infinity I + is given by the condition � = 0.

The key observation is that the metric (6.45) can be analytically extended by

allowing � to take negative values. To identify the spacetime on the other side

of I + one undoes the conformal rescaling to obtain

ḡS = (1− 2m�)du⊗ du− 1

�2
(du⊗ d�+ d�⊗ du)− 1

�2
σ,

where � ∈ (−∞, 0). To bring the metric to a more familiar form one introduces

new coordinates r̄ = −1/�, v̄ = u and defines m̄ = −m, so that

ḡS =

(
1− 2m̄

r̄

)
dv̄ ⊗ dv̄ − (dv̄ ⊗ dr̄ + dr ⊗ dv̄)− r̄2σ, (6.46)

with r̄ ∈ (0,∞) and v̄ ∈ R. The metric (6.46) corresponds to the negative

mass Schwarzschild spacetime in advanced null coordinates. The null

hypersurface I + of the conformal extension of the original (positive mass)

Schwarzschild spacetime corresponds to the null hypersurface I − of the negative

mass Schwarzschild spacetime. It is important to point out that the spacetimes

described by the metrics (6.44) and (6.46) are causally disconnected; however,

at the level of the conformal structure, they are an extension of each other. This

situation is depicted, at the level of Penrose diagrams, in Figure 6.18.

The ideas described in the previous paragraphs can be used to construct so-

called maximal conformal extensions of the Schwarzschild spacetime.

Further details can be found in Schmidt and Walker (1983). The construction

described in this section can be adapted to other spacetimes, for example, the

Reissner-Nordström solution.

Figure 6.18 Extending the conformal structure of the Schwarzschild spacetime
through null infinity. The future null infinity of the positive mass Schwarzschild
spacetime is identified with the past null infinity of the negative mass
Schwarzschild spacetime, see main text for further details. The points denoted
by white dots are excluded from the discussion.
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6.6 Further reading

The discussion presented in this chapter has been restricted to the analysis of the

conformal structure of static, spherically symmetric spacetimes. Some aspects of

this discussion can be adapted to the analysis of other exact solutions like the

Kerr and Kerr-Newman spacetimes; this is discussed in, for example, Carter

(1973), Hawking and Ellis (1973) and Griffiths and Podolský (2009). Another

class of spacetimes amenable to an explicit discussion of its conformal structure is

that of the Friedman-Lemâıtre-Robertson-Walker (FLRW) cosmological models;

see again Hawking and Ellis (1973) and Griffiths and Podolský (2009).

An alternative discussion of Penrose diagrams of spherically symmetric

spacetimes which allows for dynamic configurations can be found in appendix C

of Dafermos and Rodnianski (2005). The idea of a Penrose diagram can be

adapted to the analysis of suitable two-dimensional timelike totally geodesic

hypersurfaces of non-spherically symmetric spacetimes. This idea has been

particularly fruitful in the case of the Kerr and Kerr-Newman spacetime; see,

for example, Carter (1966b, 1968, 1973), Hawking and Ellis (1973) and Griffiths

and Podolský (2009). This strategy, has been adapted to a variety of situations

in Chruściel et al. (2012a).
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7

Asymptotic simplicity

The analysis of the conformal structure of exact solutions carried out in

Chapter 6 exhibited a number of common features among the various spacetimes

considered. The most conspicuous one is that they all admit a smooth conformal

extension which attaches a boundary to the spacetime. This conformal boundary

represents points at infinity. It is natural to ask whether this property is

shared by a larger class of spacetimes. This question leads to the notion of

asymptotic simplicity. In formulating this notion one tries to strike a delicate

balance: the definition should be strong enough so that it excludes clearly

pathological situations, but at the same time it should leave enough room to

include interesting spacetimes that go beyond the obvious explicit examples.

The original definition of asymptotic simplicity is due to Penrose (1963, 1964,

1965). This definition has had a lasting influence on the field of mathematical

relativity, in general, and in the applications of conformal methods to the analysis

of global properties of spacetimes, in particular.

7.1 Basic definitions

The following definition of asymptotic simplicity is adapted from Hawking and

Ellis (1973):

Definition 7.1 (asymptotically simple spacetimes) A spacetime (M̃, g̃) is

said to be asymptotically simple if there exists a smooth, oriented, time-

oriented, causal1 spacetime (M, g) and a smooth function Ξ on M such

that:

(i) M is a manifold with boundary I ≡ ∂M.

(ii) Ξ > 0 on M\ I , and Ξ = 0, dΞ �= 0 on I .

1 A causal spacetime is one in which there exist no closed timelike or null (i.e. causal) curves;
see also Chapter 14.
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7.1 Basic definitions 179

(iii) There exists an embedding ϕ : M̃ → M such that ϕ(M̃) = M\ I and

ϕ∗g = Ξ2g̃.

(iv) Each null geodesic of (M̃, g̃) acquires two distinct endpoints on I .

The spacetime (M̃, g̃) is called the physical spacetime, while (M, g) is

known as the unphysical spacetime. The boundary I is generally known as

conformal infinity. In the cases where I corresponds to a null hypersurface

one calls it null infinity. More informally, I is also called scri2 – a shortened

version of script I. In a slight abuse of notation, one usually identifies M̃ and

M\ I so that one writes g = Ξ2g̃; see, for example, the examples discussed in

Chapter 6. In what follows phrases like “at infinity” are to be understood as

meaning in a suitable neighbourhood of I in M.

Definition 7.1 allows for a non-vanishing matter content. Spacetimes for which,

in addition, one has that Rab = 0 in a neighbourhood of I in ϕ−1(M) are

sometimes called asymptotically empty and simple.

Remarks

(a) Restriction on the conformal class. Definition 7.1 imposes restrictions

only on the conformal class of the admissible spacetimes (M̃, g̃). It does not

single out any specific conformal representation; that is, it does not provide

a canonical unphysical spacetime (M, g).

(b) Conformal infinity is a hypersurface. The boundary I as introduced

in point (i) in Definition 7.1 is a well-defined three-dimensional hypersurface

of M with normal given by dΞ. In particular, sets where dΞ = 0 – such as

spatial infinity i0 and the timelike infinities i± of the Minkowski spacetime –

are excluded from I . Points of this type, if present, will still be regarded as

belonging to the conformal boundary but will be treated separately.

(c) Conformal infinity is at infinity. Points (ii) and (iii) of Definition 7.1

ensure that the boundary I shares the key properties of the null infinity of

the Minkowski, de Sitter and anti-de Sitter spacetimes. To see that this is the

case one needs to analyse the behaviour of null geodesics. The transformation

behaviour of null geodesics under conformal rescalings has already been

discussed in Section 5.5. In what follows, let s̃ and s denote, respectively,

g̃-affine and g-affine parameters of a null geodesic γ ⊂ M̃. It follows then

that s̃ and s are related to each other by the equation

ds̃

ds
=

1

Ξ2
.

Without loss of generality, one can choose the unphysical affine parameter

s to vanish at I ; that is, Ξ = O(sα) along the null geodesic with α > 0.

2 Remarkably, the word scri is pronounced in the same way as the Polish word scraj meaning
boundary.
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180 Asymptotic simplicity

Now, as dΞ �= 0 at I , one concludes that, in fact, α ≥ 1. Hence, s̃ → ∞ as

Ξ → 0 – that is, from the physical point of view (as measured by the affine

parameter s̃) the null geodesic never reaches the conformal boundary I .

Thus, the conformal boundary lies at infinity from the perspective of the

physical metric g̃.

(d) Smoothness of the conformal extension and decay. As will be

discussed in Chapter 10 the smoothness assumption in Definition 7.1 imposes

a sharp decay behaviour on the gravitational field at infinity – in particular,

it leads to what is known as the peeling behaviour of the Weyl tensor.

There are variations of Definition 7.1 in which the smoothness requirement

is relaxed to admit conformal extensions of class Ck for some suitable

positive integer k; see Penrose and Rindler (1986). The physical relevance

of these weaker regularity conditions is a delicate technical point which

cannot be satisfactorily assessed by just looking at specific examples. These

weaker regularity conditions lead to a different asymptotic behaviour of the

gravitational field.

(e) Matter and causal nature of null infinity. As already mentioned,

Definition 7.1 allows for the presence of matter in the spacetime. If the

energy-momentum tensor of the matter models has a suitable decay at

infinity, then the causal nature of I is fixed by the sign of the cosmological

constant λ: it is spacelike if λ < 0, null if λ = 0 and timelike if λ > 0; see

Theorem 10.1.

(f) The completeness requirement. Point (iv) in Definition 7.1 is a com-

pleteness condition which, in particular, excludes spacetimes such as the

Schwarzschild solution in which there exist null geodesics which do not reach

I – not only those falling into the black hole region, but also those lying in

the photon sphere at r = 3m; see Wald (1984).

(g) Regular solutions which are not asymptotically simple. That a

spacetime is smooth and geodesically complete is not a guarantee that it

admits a smooth conformal extension. An example of this is given by the

so-called Nariai spacetime described by

M̃ = R× (S1 × S2), g̃ = dt⊗ dt− cosh2 tdψ ⊗ dψ − σ, (7.1)

which is a solution to the vacuum Einstein field equations with λ = −1.

In addition to being geodesically complete, the Nariai spacetime is also

globally hyperbolic; see Section 14.1. Remarkably, the Nariai spacetime does

not even admit a patch of a conformal boundary. To see this, assume one has

a conformal extension with the required properties. The standard conformal

transformation laws imply that

C̃abcdC̃
abcd = Ξ4CabcdC

abcd.

Thus, if the solution admits a smooth conformal extension, then

C̃abcdC̃
abcd = 0. On the other hand, a direct computation with the line
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7.2 Other related definitions 181

element (7.1) shows that C̃abcdC̃
abcd = constant �= 0. This is a contradiction,

and accordingly there cannot exist a piece of conformal boundary which

is C2. This argument is adapted from Friedrich (2015a); an alternative

topological argument has been given in Beyer (2009a).

In order to consider spacetimes for which the completeness condition (iv)

in Definition 7.1 does not hold, one introduces the further notion of weakly

asymptotically simple spacetimes, that is, spacetimes whose asymptotic

region is diffeomorphic to that of an asymptotically simple spacetime. More

precisely, one has the following:

Definition 7.2 (weakly asymptotically simple spacetimes) A spacetime

(M̃, g̃) is said to be weakly asymptotically simple if there exists an asymp-

totically simple spacetime (M̃′, g̃′) and a neighbourhood U ′ of I ′ ≡ ∂M′ such

that ϕ−1(U ′) ∩ M̃′ is isometric to an open subspace Ũ of M̃.

Basic examples of asymptotically simple spacetimes have been given in

Chapter 6. Notoriously, all the given examples are time independent. More

generally, it can be shown that stationary solutions to the vacuum equations

Rab = 0 with a suitable behaviour at infinity are at least weakly asymptotically

simple; see Damour and Schmidt (1990) and Dain (2001b). Thus, it is natural

to ask whether there are dynamic solutions to the Einstein field equations. At

the level of exact solutions, the closest examples are given by the spacetimes

known as boost-rotation symmetric spacetimes – see, for example, Bičák

and Schmidt (1989), Bičák (2000) and Griffiths and Podolský (2009) – and in

particular the so-called C-metric – see Ashtekar and Dray (1981). All these

exact solutions contain some pathologies (e.g. naked singularities, piercing of

null infinity) which prevent them from being true examples of asymptotically

simple spacetimes.

A detailed discussion of the properties of asymptotic simple spacetimes

requires the conformal Einstein field equations and is deferred to Chapter 10.

7.2 Other related definitions

The definition of asymptotic simplicity makes neither reference to nor restricts

the behaviour of the conformal spacetime (M, g) at spatial infinity. Several

authors have introduced more refined definitions of asymptotic simplicity in

which further requirements on the behaviour of the gravitational field at null

infinity are prescribed, as in, for example, Persides (1979), or at spatial infinity,

as in the concept of asymptotically empty and flat spacetime at null and

spatial infinity of Ashtekar and Hansen (1978); see also Persides (1980). Similar

ideas have been pursued by a number of authors in an attempt to analyse the

structure of timelike infinity; see, for example, Persides (1982a,b), Porrill (1982),

Cutler (1989) and Herberthson and Ludwig (1994).
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182 Asymptotic simplicity

The aim of the definitions mentioned in the previous paragraph and similar

other proposals for the analysis of the asymptotic structure of spacetime is to

identify a minimal number of assumptions on the asymptotic structure which, in

turn, can be used to develop a formalism to construct physical and geometrical

notions of interest. A critique to this approach is that, a priori, they do not

provide any information on the genericity of the assumptions or on the size of the

class of spacetimes they contain. Moreover, it is not clear how these spacetimes

can be constructed. As pointed out in Geroch (1976), pages 3–4:

Conditions too strong will have the effect of eliminating solutions which

would seem clearly to represent isolated systems; conditions too weak may

have the effect of admitting too many solutions, or what is worse, may

result in a structure which is so weak that potentially useful aspects of the

asymptotic behaviour of one’s fields are lost in a sea of bad behaviour · · ·
There are no correct or incorrect definitions, only more or less useful ones.

The point of view pursued in this book is that rather than making assumptions

on the nature of spatial, null or timelike infinity, the structures of the conformal

boundary of a spacetime should arise as a result of the evolution of some initial

data set for the Einstein field equations.

7.3 Penrose’s proposal

Asymptotically empty and simple spacetimes (i.e. spacetimes with a vanish-

ing cosmological constant and matter suitably decaying at infinity) play an

important role in the approach to the analysis of isolated systems in general

relativity put forward by Penrose (1963, 1964). The notion of an isolated system

is a convenient idealisation of astrophysical systems where the effects of the

cosmological expansion are ignored. This notion allows one to define concepts of

clear physical interest such as the total energy of a system or its mass loss

due to gravitational radiation. Intuitively, an isolated system should behave

asymptotically like the Minkowski spacetime. Penrose, based on earlier work by

Bondi et al. (1962) and Sachs (1962b), takes this idea further; see also Friedrich

(2002, 2004):

Penrose’s proposal. Far fields of isolated gravitating systems behave like those

of asymptotically simple spacetimes in the sense that they can be smoothly

extended to null infinity after a suitable conformal rescaling.

In other words, if a spacetime (M̃, g̃) describes an isolated system, then it

should be weakly asymptotically simple.

As pointed out in Remark (d) earlier in the chapter, the requirement of

smoothness results in a very definite decay behaviour of the gravitational field at

infinity. Whether this behaviour is actually realised in solutions to the Einstein

equations, and if so to what extent, is a delicate question which will be analysed

in later chapters of this book.
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7.4 Further reading 183

7.4 Further reading

The literature on asymptotic simplicity and other definitions of asymptotic

flatness is dauntingly vast and is best accessed through reviews. There are a good

number of references covering various periods and aspects of the topic. Penrose

(1964, 1967) gives an overview of the early ideas and results on asymptotic

simplicity; Geroch (1976) provides a good discussion on the physical motivation

of the study of isolated systems in general relativity, the notion of conserved

quantities and asymptotic symmetries; Schmidt (1978), Newman and Tod (1980)

and Ashtekar (1980, 1984) provide alternative discussions of these topics and

Friedrich (1992, 1998a, 1999) provides reviews of the notion of asymptotic

simplicity from the point of view of the conformal Einstein field equations and

the construction of global solutions. More recent reviews of the topic can be

found in Frauendiener (2004), Ashtekar (2014) and Friedrich (2015a).
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8

The conformal Einstein field equations

To use conformal rescalings to analyse the global existence of asymptotically

simple spacetimes one requires a suitable conformal representation of the

Einstein field equations. The naive direct approach to this problem is to make use

of the transformation law of the Ricci tensor. However, this leads to equations

which are singular at the conformal boundary, so that the standard theory

of partial differential equations (PDEs) cannot be applied. Remarkably, by

introducing new variables, it is possible to obtain a system of equations for

various conformal fields which is regular even at the conformal boundary and

whose solutions imply, in turn, solutions to the Einstein field equations – this

construction was first done in Friedrich (1981b). These equations are known as

the conformal Einstein field equations.

This chapter provides derivations of two versions of the conformal field

equations introduced by Friedrich: the so-called standard conformal Einstein field

equations written in terms of the Levi-Civita connection of a conformally rescaled

(unphysical) spacetime, and the extended conformal field equations which are

given in terms of a Weyl connection. These two versions of the conformal

equations can be expressed in tensorial, frame or spinorial form. The presentation

in this chapter allows for the presence of general classes of matter models. It also

provides a discussion of some basic properties of the equations, in particular,

their conformal covariance and their relation to the Einstein field equations.

8.1 A singular equation for the conformal metric

Assume one has two spacetimes (M̃, g̃) and (M, g) which are related to each

other by means of a conformal transformation given by

gab = Ξ2g̃ab. (8.1)

Following the conventions of Section 7.1, (M̃, g̃) is called the physical space-

time, while (M, g) is known as the unphysical spacetime . For simplicity, the

discussion in this section is restricted to the case R̃ab = 0.
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8.2 The metric regular conformal field equations 185

From the discussion in Chapter 5, the conformal rescaling (8.1) implies the

transformation law

Rab = R̃ab − 2Ξ−1∇a∇bΞ− gabg
cd
(
Ξ−1∇c∇dΞ− 3Ξ−2∇cΞ∇dΞ

)
(8.2)

for the Ricci tensor. Combining this expression with the vacuum Einstein field

equations one obtains the following conformal vacuum Einstein field equation:

Rab −
1

2
Rgab = −2Ξ−1 (∇a∇bΞ−∇c∇cΞgab)− 3Ξ−2∇cΞ∇cΞgab. (8.3)

The latter equation can be interpreted as an Einstein field equation for the

unphysical metric g with an unphysical matter with energy-momentum tensor

Tab given by

Tab ≡ −2Ξ−1 (∇a∇bΞ−∇c∇cΞgab)− 3Ξ−2∇cΞ∇cΞgab.

Equation (8.3) contains factors of Ξ−1 which become singular at Ξ = 0. Following

the discussion of Chapter 7, such points correspond to the conformal boundary of

the spacetime – a region of the unphysical spacetime (M, g) for which one would

like to be able to make analytic statements. This is not possible for Equation (8.3)

as the standard theory of PDEs assumes equations which are formally regular. It

is important to observe that multiplying Equation (8.3) by Ξ2 does not improve

the state of affairs as one has then an equation whose principal part (i.e. the

terms containing the higher order derivatives) vanishes at Ξ = 0.

8.2 The metric regular conformal field equations

In what follows, it will be shown that by introducing new variables and

reinterpreting old ones, it is possible to obtain a set of equations which is regular

even at the conformal boundary. Under suitable conditions, a solution of this

system implies a solution to the physical Einstein field equations.

The analysis of this section assumes a general matter content of the spacetime

so that

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab (8.4)

and

∇̃aT̃ab = 0.

From the above it follows directly that

R̃ = 4λ− T̃ , (8.5a)

L̃ab ≡
1

2
R̃ab +

1

12
R̃g̃ab =

1

2
T̃ab +

1

6
(λ− T̃ )g̃ab, (8.5b)

where T̃ ≡ g̃abT̃ab and L̃ab denotes the physical Schouten tensor.
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186 The conformal Einstein field equations

8.2.1 The regularisation of the transformation law

for the Schouten tensor

The starting point of the construction is the singular transformation law for

the Ricci tensor given by Equation (8.2). In practice, it is more convenient to

work with the Schouten tensor than with the Ricci tensor. The analogue of

Equation (8.2) for the Schouten tensor is given by

Lab = L̃ab − Ξ−1∇a∇bΞ +
1

2
Ξ−2∇cΞ∇cΞ gab. (8.6)

Formally, the most singular term in this equation is 1
2Ξ

−2∇cΞ∇cΞ. From the

transformation law

R = Ξ−2R̃− 6Ξ−1∇c∇cΞ + 12Ξ−2∇cΞ∇cΞ, (8.7)

it follows that

Ξ−2∇cΞ∇cΞ =
1

12

(
R− Ξ−2R̃

)
+

1

2
Ξ−1∇c∇cΞ. (8.8)

The right-hand side of the last expression contains the singular term − 1
12Ξ

−2R̃.

Yet substituting Equation (8.8) into (8.6), some cancellations occur. Making use

of Equation (8.5b) one obtains

Lab =
1

2
T̃ab+

1

6
(λ− T̃ )g̃ab−Ξ−1∇a∇bΞ+

1

24

(
R− Ξ−2R̃

)
gab+

1

4
Ξ−1∇c∇cΞgab.

Now, defining the Friedrich scalar

s ≡ 1

4
∇c∇cΞ +

1

24
RΞ, (8.9)

and writing Ξ−2R̃gab = R̃g̃ab, one obtains

Lab =
1

2
T̃ab +

(
1

6
λ− 1

6
T̃ − 1

24
R̃

)
g̃ab − Ξ−1∇a∇bΞ + Ξ−1sgab,

=
1

2
T̃ab −

1

8
T̃ g̃ab − Ξ−1∇a∇bΞ + Ξ−1sgab, (8.10)

where in the last expression, Equation (8.5a) has been used. The last expression

brings about the question of the transformation law for the energy-momentum

tensor T̃ab upon the conformal rescaling g = Ξ2g̃. As T̃ab is not a geometric object

derived from the metric g̃ and concomitants thereof, one is free to choose the

transformation law which best suits the analysis. As will be further elaborated in

Chapter 9, a convenient choice is to define the unphysical energy-momentum

tensor Tab as

Tab ≡ Ξ−2T̃ab.

It follows then that

1

2
T̃ab −

1

8
T̃ g̃ab = Ξ2

(
1

2
Tab −

1

8
Tgab

)
=

1

2
Ξ2T{ab}, (8.11)
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8.2 The metric regular conformal field equations 187

where T ≡ gabTab so that T̃ = Ξ4T and T{ab} denotes the g-trace-free part of

Tab. Substituting Equation (8.11) into Equation (8.10) one obtains

Lab =
1

2
Ξ2T{ab} − Ξ−1∇a∇bΞ + Ξ−1sgab. (8.12)

This last equation still contains formally singular terms. To get around this

problem, one reads it not as determining the components of the conformal metric

g contained in Lab, but as conditions on the second covariant derivative of the

conformal factor Ξ. Adopting this point of view, and multiplying Equation (8.12)

by Ξ one obtains

∇a∇bΞ = −ΞLab + sgab +
1

2
Ξ3T{ab}. (8.13)

Equation (8.13) promotes the fields s and Lab to the level of unknowns for which

suitable equations need to be constructed. This will be done in the following

sections.

8.2.2 The equation for s

In order to construct an equation for s, one applies ∇c to Equation (8.13) and

obtains

∇c∇a∇bΞ = −∇cΞLab − Ξ∇cLab +∇csgab

+
3

2
Ξ2∇cΞT{ab} +

1

2
Ξ3∇cT{ab}. (8.14)

By commuting covariant derivatives, the right-hand side of this equation can be

rewritten as

∇c∇a∇bΞ = ∇a∇c∇bΞ−Rd
bca∇dΞ.

Hence, contracting the indices b and c one finds that Equation (8.14) implies

∇a(∇c∇cΞ) +Rca∇cΞ = −Lca∇cΞ− Ξ∇cLac +∇as

+
3

2
Ξ2∇cΞT{ac} +

1

2
Ξ3∇cT{ac}. (8.15)

Now, the definition of the field s, Equation (8.9), implies that

∇a(∇c∇cΞ) = 4∇as−
1

6
Ξ∇aR− 1

6
R∇aΞ.

Using this expression in (8.15) and observing that

Rab = 2Lab +
1

6
Rgab, (8.16)

one obtains

3∇as−
1

6
Ξ∇aR = −3Lac∇cΞ− Ξ∇cLac +

3

2
Ξ2∇cΞT{ac} +

1

2
Ξ3∇cT{ac}.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


188 The conformal Einstein field equations

Now, let Gab ≡ Rab− 1
2Rgab denote the Einstein tensor of the metric g. One has

that ∇aGab = 0. This last equation can be rewritten in terms of the Schouten

tensor as

∇cLca −
1

6
∇aR = 0. (8.17)

Making use of this last expression one obtains

∇as = −Lac∇cΞ +
1

2
Ξ2∇cΞT{ac} +

1

6
Ξ3∇cT{ca}. (8.18)

This is a suitable equation for s.

8.2.3 The equations for the curvature

Equation (8.13) brings the unphysical Schouten tensor Lab into play. Thus, one

needs to obtain an equation which can be regarded as a differential condition

on Lab. The natural place to look for such an equation is the second Bianchi

identity; see Section 2.4.3. In Section 5.2.2, it has been shown that the second

Bianchi identity together with the decomposition of the Riemann tensor in terms

of the Weyl and Schouten tensors lead to the expressions

∇̃cL̃db − ∇̃dL̃cb = ∇̃aC
a
bcd,

∇cLdb −∇dLcb = ∇aC
a
bcd;

compare Equations (5.11) and (5.13). As it stands, the second of the above

equations is not a satisfactory differential condition for Lab as it contains, in

its right-hand side, the divergence of the Weyl tensor. One needs to find an

expression for the latter in terms of undifferentiated fields. Observe that the

right-hand side of this equation can be expressed in terms of the physical energy-

momentum tensor T̃ab using formula (8.5b). This will not be done at this point.

Instead, it is more convenient to expresses it in terms of the physical Cotton

tensor Ỹcdb ≡ ∇̃cL̃db − ∇̃dL̃cb, so that

∇̃aC
a
bcd = Ỹcdb. (8.19)

Now, one would like to express the divergence ∇̃aC
a
bcd in terms of an expression

involving the covariant derivative ∇. For this, one makes use of the identity

∇a(Ξ
−1Ca

bcd) = Ξ−1∇̃aC
a
bcd;

see Equation (5.8). Making use of the latter in Equation (8.19) one obtains

∇a(Ξ
−1Ca

bcd) = Ξ−1Ỹcdb.

This equation seems to lead to a dead end because of the Ξ−1 terms appearing on

both sides, and which do not cancel out. However, defining the rescaled Weyl

tensor

dabcd ≡ Ξ−1Ca
bcd, (8.20)
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8.2 The metric regular conformal field equations 189

and the rescaled Cotton tensor

Tcdb ≡ Ξ−1Ỹcdb, (8.21)

one obtains the formally regular equation

∇ad
a
bcd = Tcdb. (8.22)

This last equation suggests that theWeyl tensor Ca
bcd be replaced by the rescaled

Weyl tensor dabcd in the construction of a regular set of conformal field equations.

In Chapter 10 it will be seen that the definitions of dabcd and Tcdb are justified in

the sense that under suitable assumptions the tensors dabcd and Tcdb are regular

at the points where Ξ = 0; see, in particular, Theorem 10.3.

One is now in the position of returning to the analysis of the equation for the

Schouten tensor. Writing Ca
bcd in terms of dabcd one obtains

∇cLdb −∇dLcb = ∇a(Ξd
a
bcd)

= ∇aΞd
a
bcd + Ξ∇ad

a
bcd.

Finally, using Equation (8.22) in the last term yields

∇cLdb −∇dLcb = ∇aΞd
a
bcd + ΞTcdb, (8.23)

which, again, is formally regular if Ξ = 0.

8.2.4 The regularised transformation rule for the Ricci scalar

To relate solutions of the conformal field equations to solutions of the Einstein

field equations, one also needs to consider a regularised version of the transfor-

mation rule for the Ricci scalar, Equation (8.7). Multiplying this transformation

law by Ξ2 and rearranging the various terms one obtains

R̃ = Ξ2R+ 6Ξ∇c∇cΞ− 12∇cΞ∇cΞ.

Finally, using Equations (8.5a) and (8.9) one concludes that

λ = 6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T. (8.24)

To understand the role of this equation it is useful to compute the derivative

of its right-hand side. One has that

∇a

(
6Ξs− 3∇cΞ∇cΞ +

1

4
Ξ4T

)
= 6∇aΞs+ 6Ξ∇as− 6∇a∇cΞ∇cΞ + Ξ3∇aΞT +

1

4
Ξ4∇aT

= Ξ4(∇cTca + Ξ−1∇aΞT ),

where in the second equality Equations (8.13) and (8.18) have been used to

remove, respectively, the terms ∇a∇cΞ and ∇aΞ.
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190 The conformal Einstein field equations

As will be further discussed in Chapter 9, the tensors T̃ab and Tab satisfy the

relation

gbc∇bTca = Ξ−4g̃bc(∇̃bT̃ca − Ξ−1∇̃aΞT̃bc).

Hence, if ∇̃bT̃ba = 0 it follows that

∇cTca + Ξ−1∇aΞT = 0. (8.25)

This last relation implies that

∇a

(
6Ξs− 3∇cΞ∇cΞ +

1

4
Ξ4T

)
= 0.

One has the following result:

Lemma 8.1 (propagation of the cosmological constant) If Equations

(8.13), (8.18) and (8.25) are satisfied on M and, in addition, Equation (8.24)

holds at a point p ∈ M, then Equation (8.24) is also satisfied on M.

Thus, Equation (8.24) plays the role of a constraint which is preserved, upon

evolution, by virtue of the other conformal field equations.

8.2.5 Properties of the metric conformal field equations

The discussion of the previous sections is summarised in the following list of

equations:

∇a∇bΞ = −ΞLab + sgab +
1

2
Ξ3T{ab}, (8.26a)

∇as = −Lac∇cΞ +
1

2
Ξ2∇cΞT{ac} +

1

6
Ξ3∇cT{ca}, (8.26b)

∇cLdb −∇dLcb = ∇aΞd
a
bcd + ΞTcdb, (8.26c)

∇ad
a
bcd = Tcdb, (8.26d)

6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T = λ. (8.26e)

These are known as the (regular) metric conformal Einstein field equa-

tions. Equations (8.26a)–(8.26e) should be read as differential conditions for the

fields Ξ, s, Lab, d
a
bcd. As already mentioned, Equation (8.26e) plays the role of

a constraint. At the points where Ξ �= 0, these equations are complemented by

the physical conservation equation ∇̃aT̃ab = 0 expressed in terms of conformal

quantities:

∇cTca + Ξ−1∇aΞT = 0. (8.27)

Observe that in contrast to Equations (8.26a)–(8.26e), Equation (8.27) is not

formally regular at Ξ = 0. This equation will be analysed in more detail in

Chapter 9.
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8.2 The metric regular conformal field equations 191

In what follows, for a solution to the metric conformal Einstein field

equations it will be understood that a collection of fields

(gab,Ξ, s, Lab, d
a
bcd, Tab)

satisfies Equations (8.26a)–(8.26e) and (8.27).

Remark. The discussion so far has not considered an equation for the

components of the metric gab. To obtain the required condition assume that

the Schouten tensor Lab is determined through Equation (8.26c) and consider

the relation (8.16) expressed in terms of some local coordinates (xμ):

Rμν = 2Lμν +
1

6
Rgμν .

Recalling that the components Rμν can be expressed in terms of second-order

derivatives of the components of the metric, one can read the previous expression

as a differential condition for gμν . To cast this equation in the form of some

recognisable type of PDE one needs to make a particular choice of coordinates;

see the discussions in Section 13.5.1 and in the Appendix of Chapter 13 on the

reduced Einstein field equations.

The conformal vacuum Einstein field equations

An important particular case of Equations (8.26a)–(8.26e) occurs when T̃ab = 0

on the whole of M̃. Then one also has that Tabc = 0, and the conformal field

equations reduce to:

∇a∇bΞ = −ΞLab + sgab, (8.28a)

∇as = −Lac∇cΞ, (8.28b)

∇cLdb −∇dLcb = ∇aΞd
a
bcd, (8.28c)

∇ad
a
bcd = 0, (8.28d)

6Ξs− 3∇cΞ∇cΞ = λ. (8.28e)

Equations (8.28a)–(8.28e) are known as the conformal vacuum Einstein field

equations.

The metric conformal field equations and the Einstein field equations

Any solution to the Einstein field equations satisfies Equations (8.26a)–(8.26e)

for any (smooth) choice of conformal factor Ξ. The converse of this observation

is given in the following result.

Proposition 8.1 (solutions of the conformal Einstein field equations as

solutions to the Einstein field equations) Let

(gab,Ξ, s, Lab, d
a
bcd, Tab)
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192 The conformal Einstein field equations

denote a solution to Equations (8.26a)–(8.26d) and (8.27) such that Ξ �= 0 on an

open set U ⊂ M. If, in addition, Equation (8.26e) is satisfied at a point p ∈ U ,
then the metric g̃ab = Ξ−2gab is a solution to the Einstein field Equations (8.4)

on U .

Proof It will be first shown that the Schouten tensor L̃ab of the metric g̃ab =

Ξ−2gab satisfies Equation (8.5b). Notice that the metric g̃ab is well defined on

U as Ξ �= 0. The transformation law for the Schouten tensor under conformal

rescalings gives

L̃ab = Lab + Ξ−1∇a∇bΞ− 1

2
Ξ−2∇cΞ∇cΞgab.

Using Equations (8.26a) and (8.26b) the latter simplifies to

L̃ab =
1

2
T̃ab +

1

6
(λ− T̃ )g̃ab,

as required. In order to conclude that the Einstein field equations hold, one also

needs to compute the Ricci scalar of the metric g̃ab. As a consequence of Lemma

8.1 one has that Equation (8.26e) holds on the whole of U . From the latter, again

using (8.26a) and (8.26b) and recalling that T̃ = Ξ4T , it follows that R̃ = 4λ−T̃ .

Combining the obtained expressions for L̃ab and R̃ one readily concludes that

(8.4) is indeed satisfied.

Conformal freedom and conformal gauge

Consider a solution (gab,Ξ, s, Lab, d
a
bcd, Tab) to the metric conformal field

Equations (8.26a)–(8.26e) and (8.27). As a consequence of Proposition 8.1, one

has that g̃ = Ξ−2g and T̃ab = Ξ2Tab, give rise to a solution of the Einstein

field equations as long as Ξ �= 0. Consider now another conformal factor Ξ́.

From Ξ́, together with the physical fields g̃ab and T̃ab, one can construct, by

direct computation using the definitions of Sections 8.2.1–8.2.3, a collection of

conformal fields (ǵab, Ξ́, ś, Ĺab, d́
a
bcd, T́ab). In particular, one has that ǵab = Ξ́2g̃ab

and T́ab = Ξ−2Tab. These fields constitute, in turn, a solution to the metric

conformal field equations. That is, they satisfy

∇́a∇́bΞ́ = −Ξ́Ĺab + śǵab +
1

2
Ξ́3T́{ab},

∇́aś = −Ĺac∇́cΞ́ +
1

2
Ξ́2∇́cΞ́T́{ac} +

1

6
Ξ́3∇́cT́{ca},

∇́cĹdb − ∇́dĹcb = ∇́aΞd́
a
bcd + Ξ́T́cdb,

∇́ad́
a
bcd = T́cdb,

6Ξ́ś− 3∇́cΞ́∇́cΞ́ +
1

4
Ξ́4T́ = λ,

∇́cT́ca + Ξ́−1∇́aΞ́T́ = 0.
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8.2 The metric regular conformal field equations 193

The unphysical metrics g and ǵ are conformally related to each other: one has

that ǵ = κ2g with κ ≡ Ξ́Ξ−1, Ξ �= 0. Using the transformation formulae of

Chapter 5, one can express the solution (ǵab, Ξ́, ś, Ĺab, d́
a
bcd, T́ab) in terms of

(gab,Ξ, s, Lab, d
a
bcd, Tab) and κ. One has that

Ξ́ = κΞ, ǵab = κ2gab, (8.29a)

ś = κ−1s+ κ−2∇cκ∇cΞ +
1

2
κ−3Ξ∇cκ∇cκ, (8.29b)

Ĺab = Lab − κ−1∇a∇bκ+
1

2
κ−2∇cκ∇cκ gab, (8.29c)

d́abcd = κdabcd, (8.29d)

T́ab = κ−2Tab. (8.29e)

The two sets of solutions to the metric conformal field equations are said to be

conformally related.

From the discussion of the previous paragraphs it follows that there exists an

infinite number of solutions to the metric conformal field equations giving rise

to the same solution of the Einstein field equations. This is a manifestation of

the conformal invariance of the equations. This conformal invariance is tied

to a conformal freedom (or gauge) which, in turn, manifests itself in the

properties of the unphysical metric g. This conformal freedom has to be fixed

in some way if one is to apply the theory of PDEs to the metric conformal field

equations.

The issue of the conformal gauge discussed in the previous paragraph is

closely related to the Ricci scalar R of the unphysical metric g. The scalar

R does not explicitly appear in the conformal Equations (8.26a)–(8.26e) and

(8.27). Hence, it is not determined by the equations. Of course, given a solution

(gab,Ξ, s, Lab, d
a
bcd, Tab), one can readily compute R. In general, conformally

related solutions to the metric conformal field equations will give rise to different

Ricci scalars. In order to understand better the connection between the conformal

gauge and the Ricci scalar, consider a metric ǵ conformally related to g via ǵ =

κ2g. The transformation law for the Ricci scalar under conformal transformations

implies that

6∇a∇aκ−Rκ = −Ŕκ3, (8.30)

from where Ŕ can be determined. Alternatively, if Ŕ is an arbitrary scalar on M,

then Equation (8.30) can be read as a linear wave equation for κ. Given suitable

initial data for this equation, it can be solved locally. The solution κ gives, in

turn, the metric ǵ = κ2g. From this point of view, the scalar field Ŕ plays the

role of a conformal gauge source function. In particular, one could choose

Ŕ = 0. As will be seen in later chapters of this book, this choice, despite its

simplicity, is not necessarily the best one.
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194 The conformal Einstein field equations

8.3 Frame and spinorial formulation of the conformal field equations

8.3.1 The frame formulation

This section provides a discussion of a frame formulation of the conformal

Einstein field equations. This version of the field equations is more flexible than

the metric one.

General definitions, frame fields

In what follows, consider a set of frame fields {ea}, a = 0, . . . ,3 which is

orthonormal with respect to the metric g. Frames of this type will be said to be

g-orthonormal. One has that

g(ea, eb) = ηab = diag(1,−1,−1,−1).

Following the conventions of Chapter 2, let Γa
c
b = 〈ωc,∇aeb〉 denote the

connection coefficients of the connection ∇. As a consequence of the metric

compatibility of ∇ one has that

Γa
d
bηdc + Γa

d
cηbd = 0.

The components, Σa
c
b of the torsion of ∇ are given by the relation

Σa
c
bec = [ea, eb]− (Γa

c
b − Γb

c
a)ec.

In the case of ∇ one naturally has that Σa
c
b = 0.

The geometric and the algebraic curvature

The discussion of the conformal field equations in terms of a frame formalism

requires the expression of the components Rc
dab of the Riemann tensor Rc

dab

with respect to the frame {ea}; see Equation (2.31). Let P c
dab denote the right-

hand side of equation (2.31), namely,

P c
dab ≡ ea(Γb

c
d)− eb(Γa

c
d)

+Γf
c
d(Γb

f
a − Γa

f
b) + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f .

In what follows, P c
dab will be known as the geometric curvature. To complete

the discussion one also needs to consider the decomposition of the Riemann

tensor in terms of the Weyl tensor Cc
dab and the Schouten tensor Lab; see

Equation (2.21b). The frame version of the decomposition is given by

Rc
dab = Cc

dab + 2Sd[a
ceLb]e,

where, consistent with the general conventions of Chapter 2, Cc
dab and Lab

denote, respectively, the components of the tensors Cc
dab and Lab with respect

to {ea}. The components ρcdab of the algebraic curvature are given by

ρcdab ≡ Ξdcdab + 2Sd[a
ceLb]e.
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8.3 Frame and spinorial formulation of the conformal field equations 195

In the above definition it has been used that Cc
dab = Ξdcdab. The geometric

and algebraic curvature serve as useful shorthands of expressions which will be

repeatedly used. Observe, in particular, that the equation P c
dab = ρcdab encodes

the idea that the fields Cc
dab and Lab correspond to the components of the Weyl

and Schouten tensor of the connection defined by Γa
b
c.

The frame zero quantities and the frame conformal field equations

The frame version of the conformal field Equations (8.26a)–(8.26e) and (8.27)

are readily obtained by contraction with the frame {ea} and the coframe {ωa}.
One obtains

∇a∇bΞ = −ΞLab + sηab +
1

2
Ξ3T{ab},

∇as = −Lac∇cΞ +
1

2
Ξ2∇cΞT{ac} +

1

6
Ξ3∇cT{ca},

∇cLdb −∇dLcb = ∇aΞd
a
bcd + ΞTcdb,

∇ad
a
bcd = Tcdb,

6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T = λ,

and

∇cTca + Ξ−1∇aΞT = 0,

where the directional derivative ∇a acts on components of tensorial fields

according to the rules in (2.28). The above frame conformal field equations will

be complemented by the structure equations

Σa
c
bec = 0,

P c
dab = ρcdab,

which express that for the connection∇, its torsion must vanish and its geometric

and algebraic curvature must coincide.

For convenience of the subsequent discussion one introduces a set of zero

quantities:

Σab ≡ Σa
c
bec, (8.31a)

Ξc
dab ≡ P c

dab − ρcdab, (8.31b)

Zab ≡ ∇a∇bΞ + ΞLab − sηab −
1

2
Ξ3T{ab}, (8.31c)

Za ≡ ∇as+ Lac∇cΞ− 1

2
Ξ2∇cΞT{ac} −

1

6
Ξ3∇cT{ca}, (8.31d)

Δcdb ≡ ∇cLdb −∇dLcb −∇aΞd
a
bcd − ΞTcdb, (8.31e)

Λbcd ≡ ∇ad
a
bcd − Tcdb, (8.31f)

Z ≡ 6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T − λ, (8.31g)

Ma ≡ ∇cTca + Ξ−1∇aΞT. (8.31h)
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196 The conformal Einstein field equations

In terms of the above zero quantities, the frame version of the conformal

field equations can be compactly written as

Σab = 0, Ξc
dab = 0, Zab = 0, Za = 0, (8.32a)

Δcdb = 0, Λbcd = 0, Z = 0, Ma = 0. (8.32b)

Accordingly, a solution to the frame conformal Einstein field equa-

tions is a collection (ea,Γa
b
c,Ξ, s, Lab, d

a
bcd, Tab) satisfying Equations (8.32a)

and (8.32b). The equations associated to the zero quantities Σab and Ξc
dab

provide differential conditions for the components of the frame vectors {ea} and

for the connection coefficients Γa
b
c. The role of the equations associated to the

zero quantities Zab, Za, Δcdb, Λbcd, Z and Ma is similar to that of their metric

counterparts in Section 8.2.

By considering a frame version of the conformal field equations, one introduces

a further gauge freedom into the system. This gauge freedom corresponds to the

Lorentz transformations preserving the g-orthonormality of the frame vectors

{ea}. In this case one speaks of a frame gauge freedom. As in the case of the

conformal freedom discussed in Section 8.2.5, this freedom needs to be fixed in

order to be able to apply the methods of the theory of PDEs. These issues will

be discussed further in Chapter 13.

The frame conformal field equations and the Einstein field equations

As in the case of the metric conformal field equations, a solution to the frame

conformal field equations implies, under suitable conditions, a solution to the

Einstein field equations; see Proposition 8.1. More precisely, one has:

Proposition 8.2 (solutions to the frame conformal field equations as

solutions to the Einstein field equations) Let

(ea,Γa
b
c,Ξ, s, Lab, d

a
bcd, Tab)

denote a solution to the frame conformal field Equations (8.32a) and (8.32b)

with Γa
c
b satisfying the metric compatibility condition

Γa
d
bηdc + Γa

d
cηbd = 0,

and such that

Ξ �= 0, det(ηabea ⊗ eb) �= 0,

on an open set U ⊂ M. Then the metric g̃ = Ξ−2ηabω
a ⊗ ωb, where {ωa} is

the dual frame to {ea}, is a solution to the Einstein field Equations (8.4) on U .

Proof As a consequence of the metric compatibility assumption and Σab = 0,

the coefficients Γa
c
b can be interpreted as the connection coefficients of a

Levi-Civita connection with respect to the frame {ea}. By the uniqueness of
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8.3 Frame and spinorial formulation of the conformal field equations 197

the Levi-Civita connection, g = ηabω
a ⊗ ωb is the metric associated to this

connection. Notice that by assumption g is well defined on U . Furthermore,

because of Ξc
dab = 0 and exploiting the uniqueness of the decomposition of the

Riemann tensor in terms of the Weyl and the Schouten tensors, it follows that Lab

are the components, with respect to the frame {ea}, of the Schouten tensor of the

metric g. From here, following arguments analogous to those used in the proof of

Proposition 8.1 one concludes that g̃ = Ξ−2ηabω
a⊗ωb and T̃ab = Ξ2ωa

aω
b
bTab

give a solution to the Einstein field Equations (8.4) on U .

8.3.2 Spinorial formulation of the conformal field equations

The frame conformal field equations lead, in a natural way, to a spinorial

formulation. This formulation of the equations reveals in a more clear fashion

the inherent algebraic structure of the equations and provides a systematic

procedure for the construction of evolution equations. The formulation discussed

in this section is not an abstract spinor formulation, but rather a frame spinor

formulation.

General remarks concerning the spinorial formulation

Following the discussion in Section 3.1.13, the g-orthonormal frame {ea} gives

rise to a frame {eAA′} such that g(eAA′ , eBB′) = εABεA′B′ ; that is, {eAA′} is

a null tetrad. In what follows, let

ΣAA′CC′
BB′ , PCC′

DD′AA′BB′ , ρCC′
DD′AA′BB′ , TAA′BB′ ,

LAA′BB′ , dAA′
BB′CC′DD′ , TAA′BB′CC′ ,

denote, respectively, the spinorial counterparts of the fields

Σa
c
b, P c

dab, ρcdab, Tab, Lab, dabcd, Tabc.

The spinorial counterpart of the geometric curvature, PCC′
DD′AA′BB′ , is

expressed in terms of the spinorial connection coefficients ΓAA′BB′
CC′ . These,

in turn, can be expressed in terms of the reduced spin connection coefficients

ΓAA′BC ; see formula (3.33). As the connection ∇ is metric, it follows that

ΓAA′BC = ΓAA′(BC); compare Section 3.2.2. By analogy to the split of the

spinorial counterpart of the curvature tensor – Equation (3.35) – one can split

the geometric curvature as

PCC′
DD′AA′BB′ = PC

DAA′BB′δD′C
′
+ P̄C′

D′AA′BB′δD
C .

In what follows, the discussion will make use only of the reduced spinorial

geometric curvature

PC
DAA′BB′ ≡ eAA′(ΓBB′CD)− eBB′(ΓAA′CD)

−ΓFB′CDΓAA′FB − ΓBF ′CDΓ̄AA′F
′
B′ + ΓFA′CDΓBB′FA

+ΓAF ′CDΓ̄BB′F
′
A′ + ΓAA′CFΓBB′FD − ΓBB′CFΓAA′FD.
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198 The conformal Einstein field equations

The spinorial algebraic curvature has a similar split. Its information is encoded

in the field

ρCDAA′BB′ ≡ −ΨC
DABεA′B′ + LDB′AA′δB

C − LDA′BB′δA
C ,

where it is recalled that ΨABCD is the Weyl spinor; see Equation (3.43). One

then introduces the totally symmetric rescaled Weyl spinor φABCD as

φABCD ≡ Ξ−1ΨABCD.

Consistent with Equation (3.43), φABCD is related to the spinorial counterpart

of dabcd via

dAA′BBCC′DD′ = −φABCDεA′B′εC′D′ − φ̄A′B′C′D′εABεCD. (8.33)

Hence, the reduced spinorial algebraic curvature can be written as

ρCDAA′BB′ ≡ −ΞφC
DABεA′B′ + LDB′AA′δB

C − LDA′BB′δA
C .

The spinorial counterpart of T{ab}, the symmetric trace-free part of Tab,

is given by T(AB)(A′B′); compare Equation (3.12). Finally, exploiting the

antisymmetry Tcdb = −Tdcb of the rescaled Cotton tensor, one has the split

TCC′DD′BB′ = TCDBB′εC′D′ + T̄C′D′BB′εCD, (8.34)

where TCDBB′ ≡ 1
2TCQ′D

Q′
BB′ . Observe that TCDBB′ = T(CD)BB′ .

The spinorial zero quantities

The spinorial counterparts of the frame conformal Einstein field equations are

obtained by suitable contraction with the Infeld-van der Waerden symbols.

Simpler expressions are obtained if one takes into account the remarks made

in the previous subsection. It is convenient to introduce the following spinorial

zero quantities:

ΣAA′BB′ ≡ [eAA′ , eBB′ ]− (ΓAA′CC′
BB′ − ΓBB′CC′

AA′)eCC′ , (8.35a)

ΞC
DAA′BB′ ≡ PC

DAA′BB′ − ρCDAA′BB′ , (8.35b)

ZAA′BB′ ≡ ∇AA′∇BB′Ξ + ΞLAA′BB′ − sεABεA′B′

− 1

2
Ξ3T(AB)(A′B′), (8.35c)

ZAA′ ≡ ∇AA′s+ LAA′CC′∇CC′
Ξ

− 1

2
Ξ2∇CC′

ΞT(AC)(A′C′) −
1

6
Ξ3∇CC′

T(AC)(A′C′), (8.35d)

ΔCC′DD′BB′ ≡ ∇CC′LDD′BB′ −∇DD′LCC′BB′ (8.35e)

−∇AA′ΞdAA′
BB′CC′DD′ − ΞTCC′DD′BB′ , (8.35f)
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8.3 Frame and spinorial formulation of the conformal field equations 199

ΛBB′CC′DD′ ≡ ∇AA′dAA′
BB′CC′DD′ − TCC′DD′BB′ , (8.35g)

Z ≡ 6Ξs− 3∇CC′∇CC′
+

1

4
Ξ4T − λ, (8.35h)

MAA′ ≡ ∇CC′
TCC′AA′ + Ξ−1∇AA′ΞT. (8.35i)

Hence, the spinorial conformal Einstein field equations are given in terms of the

above zero quantities as

ΣAA′BB′ = 0, ΞC
DAA′BB′ = 0, ZAA′BB′ = 0, ZAA′ = 0, (8.36a)

ΔCC′DD′BB′ = 0, ΛBB′CC′DD′ = 0, Z = 0, MAA′ = 0. (8.36b)

A reduced set of zero quantities can be obtained by explicitly making use of the

antisymmetry of several of the spinorial zero quantities. In particular, it is noticed

that as ΔCC′DD′BB′ = −ΔDD′CC′BB′ and ΛBB′CC′DD′ = −ΛBB′DD′CC′

one can write

ΔCC′DD′BB′ = ΔCDBB′εC′D′ + Δ̄C′D′BB′εCD,

ΛBB′CC′DD′ = ΛBB′CDεC′D′ + Λ̄B′BC′D′εCD,

where

ΔCDBB′ ≡ 1

2
ΔCQ′D

Q′
BB′ , ΛBB′CD ≡ 1

2
ΛBB′CQ′D

Q′
.

A direct computation using the splits (8.33) and (8.34) yields

ΔCDBB′ = ∇(C
Q′

LD)Q′BB′ +∇Q
B′ΞφCDBQ + ΞTCDBB′ , (8.37a)

ΛBB′CD = ∇Q
B′φBCDQ + TCDBB′ . (8.37b)

Thus, an equivalent spinorial formulation of the conformal field equations is

given by

ΣAA′BB′ = 0, ΞC
DAA′BB′ = 0, ZAA′BB′ = 0, ZAA′ = 0 (8.38a)

ΔCDBB′ = 0, ΛBB′CD = 0, Z = 0, MAA′ = 0. (8.38b)

The antisymmetry of the zero quantities ΣAA′BB′ and ΞC
DAA′BB′ can also

be exploited to obtain reduced zero quantities ΣAB = Σ(AB) and ΞC
DAB =

ΞC
D(AB). This strategy will not be pursued further.

The spinorial conformal field equations and the Einstein field equations

As a consequence of the equivalence between spinorial and frame expressions

discussed in Section 3.1.9, it follows that each of the two spinorial formulations

of the conformal field Equations (8.36a) and (8.36b) or (8.38a) and (8.38b) is

equivalent to the frame conformal field Equations (8.32a) and (8.32b). Thus, an

analogue of Proposition 8.2 holds for the spinorial conformal field equations with

the metric

g̃ = Ξ−2εABεA′B′ωAA′ ⊗ ωBB′
,
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200 The conformal Einstein field equations

yielding the required solution to the Einstein field equations. In this last

expression {ωAA′} denotes the duals of the frame {eAA′}.

8.3.3 Conformal freedom in the frame and spinorial

conformal field equations

The transformation laws for the various conformal fields under a conformal gauge

change follow from the tensorial version given in (8.29a)–(8.29e). As before,

assume that one has two metrics g and ǵ such that g = κ2ǵ. Consider now

a g-orthonormal frame {ea} with associated coframe {ωa}. From

g(ea, eb) = κ2ǵ(ea, eb) = ηab,

it follows that {éa} and {ώa}, with

éa ≡ κea, ώa ≡ κ−1ωa,

are a ǵ-orthonormal frame and a ǵ-orthonormal coframe, respectively. As a con-

sequence, the tensorial transformation formulae (8.29a)–(8.29e) may pick up fac-

tors of κ depending on whether they are contracted with ea or éa. For, example

d́abcd ≡ ώa
aéb

béc
céd

dd́abcd

= κ3ωa
aeb

bec
ced

ddabcd = κ3dabcd.

Similar considerations lead to

Ĺab = κ2Lab + κ2∇a(κ
−1∇bκ)−

1

2
Sab

cd∇cκ∇dκ,

T́ab = κ2Tab,

where

Sab
cd ≡ ea

aeb
bωc

cω
d
dSab

cd

≡ δa
cδb

d + δa
dδb

c − ηabη
cd.

The spinorial counterparts of the conformal fields obey similar transforma-

tions. If {εAA} and {έAA} denote the spin dyads associated, respectively, to the

frame vectors {ea} and {éa}, then

έA
A = κεA

A.

As a consequence one has, for example, that

Ψ́ABCD = κ3ΨABCD.

8.4 The extended conformal Einstein field equations

The conformal Einstein field equations discussed in the previous sections are

expressed in terms of the Levi-Civita connection of the unphysical metric g.

This section provides a more general version of the equations by rewriting them
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8.4 The extended conformal Einstein field equations 201

in terms of a Weyl connection. The resulting system of equations is known as the

extended conformal Einstein field equations. The use of Weyl connections

introduces a further freedom in the equations. This freedom can be exploited to

incorporate conformally privileged gauges. The idea of reexpressing the vacuum

conformal field equations in terms of a Weyl connection was first introduced

in Friedrich (1995). Further discussions can be found in Friedrich (1998c, 2002,

2004). The extension of these ideas to the matter case has been given in Lübbe

and Valiente Kroon (2012, 2013b).

In what follows, for ease of presentation, the discussion in this section is

restricted to the vacuum case.

Basic setting

As in the previous sections of this chapter, let g denote an unphysical Lorentzian

metric related to a physical metric g̃ via g = Ξ2g̃. The metric g̃ is assumed to

satisfy the vacuum Einstein field equations. Let ∇ and ∇̃ denote, respectively,

the Levi-Civita connections of the metrics g and g̃.

In what follows, consider a Weyl connection ∇̂ defined via

∇̂−∇ = S(f), (8.39)

where f is a smooth covector. As

∇− ∇̃ = S(Ξ−1dΞ),

it follows that ∇̂− ∇̃ = S(f + Ξ−1dΞ). Hence, defining

β ≡ f + Ξ−1dΞ,

one has that

∇̂− ∇̃ = S(β).

It is convenient to define

d ≡ Ξf + dΞ, (8.40)

so that d = Ξβ.

As the Weyl connection ∇̂ is torsion free, it follows that its Riemann curvature

tensor R̂c
dab can be decomposed in terms of its Schouten tensor L̂ab and the Weyl

tensor of the conformal class of Cc
dab; see Equation (5.28a). Using the latter and

recalling the definition of the rescaled Weyl tensor dcdab, Equation (8.20), one

obtains the equation

R̂c
dab = 2Sd[a

ceL̂b]e + Ξdcdab.

Consistent with the discussion in Section 5.3.2, Equations (5.29a)–(5.29c), the

Schouten tensors of the connections ∇̃, ∇ and ∇̂ are related to each other via
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202 The conformal Einstein field equations

L̂ab − Lab = ∇afb −
1

2
Sab

cdfcfd,

L̂ab − L̃ab = ∇̂aβb +
1

2
Sab

cdβcβd,

Lab − L̃ab = ∇a(Ξ
−1∇bΞ) +

1

2
Ξ−2Sab

cd∇cΞ∇dΞ.

Taking into account the above expressions and recalling that ∇̂S = 0 one has

that

∇̂cL̂db − ∇̂dL̂cb = (∇̂cLdb − Scd
effeLfb − Scb

effeLdf )

−(∇̂dLcb − Sdc
effeLfb − Sdb

effeLcf )

= ∇̂cL̂db − ∇̂dL̂cb + (∇̂c∇̂d − ∇̂d∇̂c)fb

+Sdb
effe(∇̂cff − Lcf )− Scb

effe(∇̂dff − Ldf ).

A further computation using Equation (5.29a) and the definition of the tensor

S yields

Sdb
effe(∇̂cff − Lcf )− Scb

effe(∇̂dff − Ldf ) = (Scb
ef L̂df − Sdb

ef L̂cf )fe

= 2Sb[c
ef L̂d]ffe.

Hence, recalling the split (5.28a) of the Riemann tensor one obtains

∇̂cL̂db − ∇̂dL̂cb = ∇cLdb −∇dLcb + faC
a
bcd.

Thus, the Weyl connection version of the vacuum Cotton equation is given by

∇̂aL̂bc − ∇̂bL̂ac = ded
e
cab.

Now, for the Bianchi Equation (8.22) one has that

∇̂ad
a
bcd = ∇ad

a
bcd − Sah

faffd
h
bcd + Sab

fhffd
a
hcd

+Sac
fhffd

a
bhd + Sad

fhffd
a
bch

= ∇ad
a
bcd − fad

a
dcb + fad

a
cdb

= ∇ad
a
bcd − fad

a
bcd,

where in the last line it has been used that dabcd satisfies the first Bianchi identity

dabcd+dacdb+dadbc = 0. Hence, Equation (8.22) expressed in terms of the Weyl

connection ∇̂ takes the form:

∇̂ad
a
bcd = fad

a
bcd.

As a summary of this section one has the two equations:

∇̂aL̂bc − ∇̂bL̂ac = ddd
d
cab, (8.41a)

∇̂dddcab = fdd
d
cab. (8.41b)

These two equations will be regarded as the core of the extended conformal

Einstein field equations. They provide differential conditions on the Schouten

tensor of the Weyl connection and the rescaled Weyl tensor.
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8.4 The extended conformal Einstein field equations 203

8.4.1 The frame version of the extended conformal field equations

Equations (8.41a) and (8.41b) need to be supplemented with equations which

provide information about the metric g associated to the conformal factor Ξ and

which also allow to determine the covector f giving rise to the Weyl connection

∇̂. The most convenient way of doing this is to make use of a frame formalism.

As in Section 8.3.1 let {ea}, a = 0, . . . ,3 denote a frame field which is

g-orthonormal so that g(ea, eb) = ηab. As ∇ is the Levi-Civita connection of g,

its connection coefficients, Γa
c
b = 〈ωc,∇aeb〉, satisfy the metric compatibility

condition of Equation (2.29).

Let now ∇̂ denote the Weyl connection constructed from the Levi-Civita

connection ∇ and the covector f using Equation (8.39). If Γ̂a
c
b = 〈ωc, ∇̂aeb〉

denotes the connection coefficients of ∇̂ with respect to the frame {ea}, one has
that

Γ̂a
c
b = Γa

c
b + Sab

cdfd, (8.42a)

= Γa
c
b + δa

cfb + δb
cfa − ηabη

cdfd. (8.42b)

In particular, one has that

fa =
1

4
Γ̂a

b
b, (8.43)

as Γa
b
b = 0 in the case of a metric connection.

Let Σ̂a
c
b denote the torsion of the connection ∇̂. Using the transformation

formula for the torsion under change of connections, Equation (2.15), together

with Equation (8.42a), one obtains

Σ̂a
c
b − Σa

c
b = −2S[ab]

cdfd = 0.

Thus,

Σ̂a
c
b = 0,

as Σa
c
b = 0. As in Section 8.3.1 it is convenient to distinguish between the

geometric curvature P̂ c
dab – that is, the expression for the components of the

Riemann tensor of the connection ∇̂ in terms of the connection coefficients Γ̂a
c
b

– and the algebraic curvature ρ̂cdab – that is, the expression of the Riemann

tensor in terms of the Schouten and Weyl tensors. These are given by

P̂ c
dab ≡ ea(Γ̂b

c
d)− eb(Γ̂a

c
d)

+Γ̂f
c
d(Γ̂b

f
a − Γ̂a

f
b) + Γ̂b

f
dΓ̂a

c
f − Γ̂a

f
dΓ̂b

c
f ,

ρ̂cdab ≡ Ξdcdab + 2Sd[a
ceL̂b]e.

In analogy to the discussion of Section 8.3.1, it is convenient to introduce a set

of geometric zero quantities associated to the various equations. In the present

case let:
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204 The conformal Einstein field equations

Σ̂ab ≡ [ea, eb]− (Γ̂a
c
b − Γ̂b

c
a)ec, (8.44a)

Ξ̂c
dab ≡ P̂ c

dab − ρcdab, (8.44b)

Δ̂cdb ≡ ∇̂cL̂db − ∇̂dL̂cb − dad
a
bcd, (8.44c)

Λ̂bcd ≡ ∇̂ad
a
bcd − fad

a
bcd. (8.44d)

Now, taking into account Equation (8.43) one has that

Ξ̂c
cab = ea(Γ̂b

c
c)− eb(Γ̂a

c
c) + Γ̂d

c
c(Γ̂b

d
a − Γ̂a

d
b)− 2Sc[a

ceL̂b]e,

= 4
(
ea(fb)− eb(fa)− fd(Γ̂b

d
a − Γ̂a

d
b)− L̂ba + L̂ab

)
,

= 4
(
∇̂afb − ∇̂bfa − L̂ba + L̂ab

)
.

In view of the latter, it is convenient to define

Ξ̂ab ≡ 1

4
Ξ̂c

cab = ∇̂afb − ∇̂bfa − L̂ab + L̂ba. (8.45)

In terms of the zero quantities discussed in the previous paragraphs, one defines

the extended conformal vacuum Einstein field equations as the conditions

Σ̂ab = 0, Ξ̂c
dab = 0, Δ̂cdb = 0, Λ̂bcd = 0. (8.46)

These equations yield differential conditions, respectively, for the components

of the frame {ea}, the spin coefficients Γ̂a
c
b (including the components fa of

the covector f), the components of the Schouten tensor L̂ab and the components

of the rescaled Weyl tensor dabcd. In contrast to the standard conformal field

Equations (8.32a) and (8.32b), there are no equations which can be regarded as

differential conditions on the conformal factor Ξ and the components da of the

covector d. As will be seen in Chapter 13, these objects will be fixed through

gauge conditions.

In order to relate the extended conformal field Equations (8.46) to the Einstein

field equations, one introduces further zero quantities:

δa ≡ da − Ξfa − ∇̂aΞ, (8.47a)

γab ≡ L̂ab − ∇̂aβb −
1

2
Sab

cdβcβd +
1

6
λΞ−2ηab, (8.47b)

ςab ≡ L̂[ab] − ∇̂[afb]. (8.47c)

The associated equations

δa = 0, γab = 0, ςab = 0, (8.48)

will be treated as constraints. The first equation expresses the relation between

the covectors d, f and the conformal factor Ξ. The second equation encodes the

relation between the components of the Schouten tensor of the Weyl connection

L̂ab and the physical Schouten tensor via the Einstein field equations – this

constraint is the analogue of the standard conformal equation Zab = 0. The role
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8.4 The extended conformal Einstein field equations 205

of the equations in (8.48) is similar to that of the equation Z = 0 of the standard

conformal field equations.

In the particular case when fa = 0 it follows from (8.40) that da = ∇aΞ.

Hence, one has that ∇̂ = ∇. Under these circumstances the extended conformal

field Equations (8.46) reduce to

Σab = 0, Ξc
dab = 0, Δcdb = 0, Λbcd = 0,

where the zero quantities Σab, Ξ
c
dab, Δcdb and Λbcd are as defined in Section

8.3.1.

The conformal covariance of the equations

As in the case of the standard conformal field equations, the extended conformal

field equations discussed in the previous section are conformally covariant. To

make this statement more precise, consider a spacetime (M̃, g̃) and two metrics

g and ǵ conformally related to g̃ via

g = Ξ2g̃, ǵ = Ξ́2g̃,

so that g = κ2ǵ with κ ≡ ΞΞ́−1. Let ∇, ∇́ denote, respectively, the Levi-Civita

connections of the metrics g and ǵ. One has that

∇− ∇̃ = S(Ξ−1dΞ), ∇́− ∇̃ = S(Ξ́−1dΞ́), (8.49)

and, furthermore,

∇− ∇́ = S(κ−1dκ).

In addition, consider the covectors f and f́ and define by means of these two

the Weyl connections ∇̂ and ∇̌ via

∇̂−∇ = S(f), ∇̌− ∇́ = S(f́). (8.50)

Combining Equations (8.49) and (8.50) one finds that the relation between the

physical connection ∇̃ and the Weyl connections ∇̂ and ∇̌ is given by

∇̂− ∇̃ = S(β), ∇̌− ∇̃ = S(β́),

where

β ≡ f + Ξ−1dΞ, β́ ≡ f́ + Ξ́−1dΞ́.

Combining these expressions one finds that

∇̂− ∇̌ = S(β − β́)

= S(k + κ−1dκ),

with k ≡ f − f́ . Hence, letting d = Ξβ and d́ = Ξ́β́, one concludes that

d = κ−1d́+ κΞ́k + Ξ́dκ. (8.51)
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206 The conformal Einstein field equations

Assume now that the fields (ea, Γ̂a
b
c, L̂ab, d

a
bcd,Ξ, da) constitute a solu-

tion to the extended conformal field Equations (8.46). Then, proceeding

in analogy to the discussion in Section 8.3.3, one finds that the fields

(éa, Γ̌a
b
c, Ľab, d́

a
bcd, Ξ́, d́a) with

éa = κea

Γ̌a
b
c = κΓ̂a

b
c + δc

b∇̂aκ− κSac
bd(kd + κ−1∇̂dκ),

Ľab = κ2L̂ab − κ2∇̂a(kb + κ−1∇̂bκ)

− 1

2
κ2Sab

cd(kc + κ−1∇̂cκ)(kd + κ−1∇̂dκ),

d́abcd = κ3dabcd,

Ξ́ = κ−1Ξ,

d́a = κda − Ξ∇̂aκ− κΞka,

are also a solution of the extended conformal equations. Observe that the

∇̂-quantities are components with respect to the frame {ea} which is

g-orthonormal, while the ∇̌-quantities are components on the {éa} frame which

is ǵ-orthonormal.

8.4.2 The spinorial version of the extended conformal field equations

The frame formulation of the extended conformal field equations discussed in

the previous subsection leads directly to its spinorial counterpart. The strategy

is analogous to the one adopted in Section 8.3.2.

The spinorial counterpart of the g-orthogonal frame {ea} is given by the null

tetrad {eAA′} satisfying g(eAA′ , eBB′) = εABεA′B′ . Furthermore, let ∇̂AA′ ≡
eAA′a∇̂a. Similarly, let

Σ̂AA′CC′
BB′ , P̂CC′

DD′AA′BB′ , ρ̂CC′
DD′AA′BB′ ,

L̂AA′BB′ , dAA′ , fAA′ ,

denote, respectively, the spinorial counterparts of the fields

Σa
c
b, P c

dab, ρcdab, L̂ab, da, fa.

The spinorial counterpart of the geometric curvature, P̂CC′
DD′AA′BB′ , is given

in terms of the spinorial connection coefficients Γ̂AA′BB′
CC′ . These, in turn, can

be expressed in terms of the reduced spin connection coefficients Γ̂AA′BC by

Γ̂AA′BB′
CC′ = Γ̂AA′BCδC′B

′
+

¯̂
ΓA′A

B′
C′δC

B, (8.52)

consistent with formula (3.33). The reduced Weyl spin connection coefficients

are related to the unphysical spin connection coefficients via

Γ̂AA′BC = ΓAA′BC + δA
BfCA′ , Γ̂AA′QQ = fAA′ ;

see Equation (5.32).
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8.4 The extended conformal Einstein field equations 207

The geometric and algebraic Weyl curvature admit, respectively, the splits

P̂CC′
DD′AA′BB′ = P̂C

DAA′BB′δD′C
′
+ P̄C′

D′AA′BB′δD
C ,

ρ̂CC′
DD′AA′BB′ = ρ̂CDAA′BB′δD′C

′
+ ¯̂ρC

′
D′AA′BB′δD

C .

The formula giving the reduced geometric curvature P̂C
DAA′BB′ in terms of

the reduced spin connection coefficients is identical to that for a Levi-Civita

connection. Namely, one has that

P̂C
DAA′BB′ ≡ eAA′(Γ̂BB′CD)− eBB′(Γ̂AA′CD)

− Γ̂FB′CDΓ̂AA′FB − Γ̂BF ′CD
¯̂
ΓAA′F

′
B′ + Γ̂FA′CDΓ̂BB′FA

+ Γ̂AF ′CD
¯̂
ΓBB′F

′
A′ + Γ̂AA′CEΓ̂BB′ED − Γ̂BB′CEΓ̂AA′ED.

In particular, it can be verified that

P̂Q
QAA′BB′ = eAA′(fBB′)− eBB′(fAA′) + Γ̂AA′QBfQB′ +

¯̂
ΓAA′Q

′
B′fBQ′

− Γ̂BB′QAfQA′ − ¯̂
ΓBB′Q

′
A′fAQ′

= ∇̂AA′fBB′ − ∇̂BB′fAA′ .

Hence, one can write

P̂ABCC′DD′ = P̂(AB)CC′DD′ +
1

2
εAB(∇̂CC′fDD′ − ∇̂DD′fCC′).

The reduced algebraic curvature spinor satisfies a similar expression. Namely,

one has that

ρ̂ABCC′DD′ = ρ̂(AB)CC′DD′ − 1

2
εAB(L̂CC′DD′ − L̂DD′CC′),

with

ρ̂(AB)CC′DD′ = −ΞφABCDεC′D′ + L̂BC′DD′εAC − L̂BD′CC′εAD;

compare Equation (5.33).

The objects discussed in the previous paragraphs can be used, in turn, to

define the zero quantities:

Σ̂AA′BB′ ≡ [eAA′ , eBB′ ]− (Γ̂AA′CC′
BB′ − Γ̂BB′CC′

AA′)eCC′ , (8.53a)

Ξ̂C
DAA′BB′ ≡ P̂C

DAA′BB′ − ρ̂CDAA′BB′ , (8.53b)

Δ̂CC′DD′BB′ ≡ ∇̂CC′L̂DD′BB′ − ∇̂DD′L̂CC′BB′ (8.53c)

− dAA′dAA′
BB′CC′DD′ , (8.53d)

Λ̂BB′CC′DD′ ≡ ∇̂AA′dAA′
BB′CC′DD′

− fAA′dAA′
BB′CC′DD′ (8.53e)
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208 The conformal Einstein field equations

One can exploit the symmetries of some of the above zero quantities to obtain

reduced zero quantities. In particular, one can write

Λ̂BB′CC′DD′ = Λ̂BB′CDεC′D′ +
¯̂
ΛB′BC′D′εCD,

with

Λ̂BB′CD ≡ 1

2
Λ̂BB′CQ′D

Q′
.

A similar idea can be applied to Σ̂AA′BB′ , Ξ̂C
DAA′BB′ and Δ̂CC′DD′BB′ . This

idea will not be pursued here.

The spinorial version of the extended conformal Einstein field equations is

expressed in terms of the above zero quantities as:

Σ̂AA′BB′ = 0, Ξ̂C
DAA′BB′ = 0, Δ̂CC′DD′BB′ = 0, (8.54a)

Λ̂BB′CD = 0. (8.54b)

Finally, let δAA′ , ςAA′BB′ and γAA′BB′ denote the spinorial counterparts of the

zero quantities δa and γab. One then requires that

δAA′ = 0, ςAA′BB′ = 0, γAA′BB′ = 0. (8.55)

8.4.3 The extended conformal Einstein field equations and the

Einstein field equations

As in the case of the other versions of the conformal field equations discussed in

this chapter, it is important to analyse the precise relation between the extended

conformal field equations and the (physical) Einstein field equations. One has the

following:

Proposition 8.3 (solutions to the extended conformal field equations

as solutions to the Einstein field equations) Let

(ea, Γ̂a
b
c, L̂ab, d

a
bcd)

denote a solution to the extended conformal field Equations (8.46) for some

choice of the conformal gauge fields (Ξ, da) satisfying the supplementary

Equations (8.48). Furthermore, suppose

Ξ �= 0, det(ηabea ⊗ eb) �= 0,

on an open subset U ⊂ M. Then the metric g̃ = Ξ−2ηabω
a⊗ωb, where {ωa} is

the dual frame to {ea}, is a solution to the Einstein field equations (8.4) on U .

Proof As a consequence of the conformal equation Σ̂ab = 0, the fields Γ̂a
b
c can

be interpreted as the connection coefficients, with respect to the frame field {ea},
of a torsion-free connection ∇̂. In order to show that ∇̂ is a Weyl connection, one
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8.5 Further reading 209

needs to compute ∇̂aηbc. This is best done using spinors. As eAA′(εBC) = 0,

one has that

∇̂AA′εBC = −Γ̂AA′QBεQC − Γ̂AA′QCεBQ = −Γ̂AA′CB + Γ̂AA′BC

= −Γ̂AA′QQεBC = −fAA′εBC .

Recalling that εABεA′B′ is the spinorial counterpart of ηab and observing the

split (8.52) one concludes that ∇̂aηbc = −2faηbc; that is, ∇̂ is a Weyl connection.

Now, as Ξ̂c
dab = 0, the fields L̂ab and Ξdcdab obtained as a solution to the

extended conformal field equations correspond to, respectively, the Schouten

tensor and the Weyl tensor of the connection ∇̂, as a consequence of the

uniqueness of the decomposition in terms of irreducible components.

Given the Weyl connection ∇̂, one can define a new connection ∇ via ∇ ≡
∇̂−S(f). By construction, this connection is metric. The Schouten tensor of ∇
is then given by

Lab = L̂ab −∇afb +
1

2
Sab

cdfcfd.

As Ξ̂c
dab = 0, it follows that Ξ̂ab as defined by Equation (8.45) also vanishes. As

∇̂ is torsion free, so is ∇. Hence, one concludes that ∇ must be the Levi-Civita

connection of the metric g ≡ ηabω
a⊗ωb. The latter expression is a well-defined

Lorentzian metric on U as its determinant is, by hypothesis, non-vanishing.

Finally, one defines a physical connection ∇̃ via ∇̃ ≡ ∇ − S(Ξ−1dΞ). As

δa = 0 it follows that da = fa + ∇̂aΞ so that ∇̃ is the Levi-Civita connection of

the metric g̃ ≡ Ξ−2ηabω
a ⊗ωb. The latter is well defined as long as Ξ �= 0. The

Schouten tensor of ∇̃ is given by

L̃ab = Lab −∇a(Ξ
−1∇bΞ)− Ξ−2Sab

cd∇cΞ∇dΞ.

As a consequence of δa = 0 and γab = 0 one concludes that

L̃ab =
1

6
λΞ−2ηab.

Thus, g̃ is a solution to the vacuum Einstein field equations on U .

Remark. Given the equivalence between the frame and spinorial versions of the

extended conformal field equations, the latter result also provides the connection

between the spinorial extended conformal field equations and the Einstein field

equations.

8.5 Further reading

The standard conformal Einstein field equations were first introduced in Friedrich

(1981a,b, 1982). General aspects of the Cauchy problem of the conformal

equations were first discussed in Friedrich (1983); see also Friedrich (1984).

A systematic discussion of gauge issues and hyperbolic reductions of the

equations has been given in Friedrich (1985). A discussion of the conformal field
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210 The conformal Einstein field equations

equations with trace-free matter was first given in Friedrich (1991). The extended

conformal field equations were introduced in Friedrich (1995). Reviews discussing

various aspects of the conformal field equations can be found in Friedrich (2002,

2004). The extended conformal field equations with (trace-free) matter were first

discussed in Lübbe and Valiente Kroon (2012).

The conformal field equations can be related to other geometrical objects

(twistors); see Frauendiener and Sparling (2000). The extended conformal field

equations can be set in a more geometrical framework involving the language of

differential forms. A discussion of this has been given in Friedrich (1995). Certain

applications of the conformal equations require the use of a lift of the equations

to a suitable fibre bundle. A discussion of this type of procedure can be found

in Friedrich (1986b, 1998c).

A different approach to the construction of regular conformal field equations

based on the Fefferman-Graham obstructions – see, for example, Graham and

Hirachi (2005) – has been elaborated in Anderson (2005a) and Anderson and

Chruściel (2005). This approach gives rise to suitable field equations for an

arbitrary number of odd space dimensions and has been used to prove (global and

semi-global) existence and stability results of higher dimensional asymptotically

simple spacetimes.

In the context of conformal geometry, given a metric g, it is natural to ask

whether there exists a further metric in the conformal class [g] which is an

Einstein space. This problem has been addressed in, for example, Baston and

Mason (1987), Kozameh et al. (1985) and Mason (1986).
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9

Matter models

This chapter provides a discussion of various matter models amenable to a

treatment by means of conformal techniques. These matter models can be used

as matter sources for the conformal Einstein field equations discussed in Chapter

8. The matter models to be considered are the electromagnetic field, radiation

perfect fluids and the conformally invariant scalar field. These matter models

share the property of having an energy-momentum tensor which is trace free.

This property leads to simple transformation laws for the equations satisfied by

the matter models. Moreover, the unphysical equations obtained by means of

these transformations are regular at points where the conformal factor vanishes.

9.1 General properties of the conformal treatment

of matter models

The fundamental object in the description of a matter model in general relativity

is its energy-momentum tensor T̃ab. The equations describing the model are

then given by

∇̃aT̃ab = 0. (9.1)

The energy-momentum tensor is related to the curvature of the spacetime via

the Einstein field equations; see Equation (8.4). Despite this connection, a

conformal transformation g = Ξ2g̃ does not directly imply a transformation

rule for the physical energy-momentum tensor T̃ab. Nevertheless, it is

convenient to define an unphysical energy-momentum tensor Tab when

rewriting Equation (9.1) in terms of geometric quantities derived from the

rescaled metric g.

9.1.1 The unphysical energy-momentum tensor

There is considerable freedom in a possible definition of Tab. Guiding principles

are simplicity in both the definition and the resulting form of the unphysical
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212 Matter models

version of Equation (9.1). Arguably, the simplest definition of the unphysical

energy-momentum tensor is one which is homogeneous with respect to the

conformal factor Ξ. Accordingly, set

Tab = Ξ−2T̃ab. (9.2)

It follows then that

gab∇aTbc = Ξ−4g̃ab∇̃aT̃bc − Ξ−5∇̃cΞg̃
abT̃ab. (9.3)

Hence, Equation (9.1) implies the equation ∇aTab = 0 only if

T̃ = 0, T̃ ≡ g̃abT̃ab.

This observation justifies definition (9.2) and the importance given in this chapter

to trace-free matter models. As a result of the homogeneous nature of the

transformation law in Equation (9.2), Tab is trace free if T̃ab is trace free.

In the case of matter models with T̃ab �= 0, define T ≡ gabTab, so that T =

Ξ−4T̃ . It follows from Equations (9.1) and (9.3) that

∇aTab = Ξ−1∇bΞT.

This is an equation which is formally singular at the points where Ξ = 0. Dealing

with this singularity is the essential problem faced in the analysis of general

matter models by means of conformal methods.

9.1.2 The rescaled Cotton tensor

As discussed in Chapter 8, the matter fields couple to the conformal Einstein field

equations through the rescaled Cotton tensor Tabc; compare Equations (8.22)

and (8.23). Recall that the physical Cotton tensor is given by Tabc = Ξ−1Ỹabc

where

Ỹabc = ∇̃aL̃bc − ∇̃bL̃ac;

compare Equation (8.21). One readily finds that

Tabc =
1

2
Ξ−1

(
∇̃aT̃bc − ∇̃bT̃ac

)
− 1

6
Ξ−1

(
∇̃aT̃ g̃bc − ∇̃bT̃ g̃ac

)
,

where it has been used that the physical Schouten tensor L̃ab is related to the

physical energy-momentum tensor via Equation (8.5b). In what follows, attention

will be restricted to the trace-free matter case so that

Tabc =
1

2
Ξ−1

(
∇̃aT̃bc − ∇̃bT̃ac

)
.

The latter can be reexpressed in terms of the unphysical connection ∇ and the

unphysical energy-momentum tensor Tab. A computation using the methods of

Chapter 5 yields

Tabc = Ξ∇[aTb]c +∇[aΞTb]c + gc[aTb]e∇eΞ. (9.4)
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9.2 The Maxwell field 213

From the above expression it follows that Tabc is regular whenever Ξ = 0 if Tab

is smooth at the conformal boundary.

Equation (9.4) can be expressed in terms of derivatives of the (conformal)

matter fields. This feature complicates the construction of suitable conformal

evolution equations as it introduces further derivatives of the fields into the

principal part of the equations. This difficulty can be overcome by introducing

evolution equations for the derivatives of the matter fields which cannot be

eliminated with the equation ∇aTab = 0. This analysis depends on the specific

properties of the matter model under consideration.

9.2 The Maxwell field

The electromagnetic or Maxwell field is the prototype of a relativistic matter

model that can be treated by means of conformal methods. The Maxwell field is

described by an antisymmetric tensor F̃ab – the Faraday tensor . In terms of

the latter, the source-free Maxwell equations are given by

∇̃aF̃ab = 0, (9.5a)

∇̃[aF̃bc] = 0. (9.5b)

Multiplying Equation (9.5b) by the volume form ε̃dabc, one obtains the alternative

expression

∇̃aF̃ ∗
ab = 0, (9.6)

where F̃ ∗
ab ≡ − 1

2 ε̃ab
cdF̃cd denotes the dual Faraday tensor . Now, introducing

the self-dual Faraday tensor

F̃ab ≡ F̃ab + iF̃ ∗
ab,

it follows from (9.5a) and (9.6) that

∇̃aF̃ab = 0. (9.7)

This last equation contains the same information as Equations (9.5a) and (9.5b).

The energy-momentum tensor of the electromagnetic field is quadratic in the

Faraday tensor. It is given by

T̃ab = F̃acF̃b
c − 1

4
g̃abF̃cdF̃

cd.

It can be readily verified that T̃ = 0. Making use of the dual F̃ ∗
ab one obtains the

alternative expressions

T̃ab =
1

2

(
F̃acF̃b

c + F̃ ∗
acF̃

∗
b
c
)

(9.8a)

=
1

2
F̃ac

¯̃Fb
c. (9.8b)

It can be readily verified that the Maxwell Equations (9.5a) and (9.5b) imply

that ∇̃aT̃ab = 0.
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214 Matter models

Conformal transformation properties

The source-free Maxwell Equations (9.5a), (9.5b) and (9.6) are conformally

invariant. In order to see this, assume that (M, g) is a conformal extension

of a spacetime (M̃, g̃) with g = Ξ2g̃, and define the conformal (unphysical)

Faraday tensor via

Fab ≡ F̃ab. (9.9)

It follows from this definition that F ∗
ab = F̃ ∗

ab. Moreover, using the transfor-

mation laws between the connections ∇̃ and ∇ one finds that Equations (9.5a),

(9.5b) and (9.6) imply

∇aFab = 0, ∇[aFbc] = 0, ∇aF ∗
ab = 0, (9.10)

which shows the conformal invariance of the equations. Let ∇̂ be a Weyl

connection defined via ∇̂−∇ = S(f) with f a covector. A further computation

yields

∇̂aFab = 0, ∇̂[aFbc] = 0, ∇̂aF ∗
ab = 0.

Consistent with the transformation law (9.2) for the energy-momentum tensor

one finds that

Tab = FacFb
c − 1

4
gabFcdF

cd =
1

2
(FacFb

c + F ∗
acF

∗
b
c) .

Substituting the last expression in Equation (9.4) for the rescaled Cotton tensor

one obtains

2Tabc = ∇[aFb]dFc
d + Fd[a∇b]Fc

d +∇[aF
∗
b]dF

∗
c
d + F ∗

d[a∇b]F
∗
c
d

+∇[aΞFb]dFc
d +∇[aΞF

∗
b]dF

∗
c
d

+ gc[aFb]eFd
e∇dΞ + gc[aF

∗
b]eF

∗
d
e∇dΞ.

A direct inspection shows that the first four terms of the right-hand side

contain derivatives of the Faraday tensor which cannot be eliminated using

the (conformal) Maxwell Equations (9.10). Thus, it is necessary to consider

equations for the derivatives of Fab. A suitable equation can be obtained from the

commutator of covariant derivatives applied to Fab. More precisely, one has that

∇a∇bFcd −∇b∇aFcd = −Re
cabFed −Re

dabFce.

In view of this equation one introduces the auxiliary field Fabc ≡ ∇aFbc so that

∇aFbcd −∇bFacd = −Re
cabFed −Re

dabFce. (9.11)

By construction one has that

Fabc = Fa[bc], F[abc] = 0, F a
ac = 0.
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9.2.1 The spinorial form of the Maxwell equations

The spinorial treatment of the Maxwell field is a direct consequence of the

decomposition of spinors in irreducible components; see Section 3.1.6. The

spinorial formulation of the Maxwell equations offers a number of computational

advantages and makes more evident the similarities between the gravitational

and electromagnetic fields.

In what follows, let F̃AA′BB′ denote the spinorial counterpart of the Fara-

day tensor F̃ab. By exploiting the antisymmetry of F̃ab, it follows from Equation

(3.13) that there exists a symmetric spinor φ̃AB , theMaxwell spinor, such that

F̃AA′BB′ = φ̃AB ε̃A′B′ +
¯̃
φA′B′ ε̃AB , φ̃AB =

1

2
F̃AQ′B

Q′
. (9.12)

Using the decomposition (9.12) it follows that

F̃AA′BB′ = 2φ̃AB ε̃A′B′ ,

where F̃AA′BB′ is the spinorial counterpart of the self-dual Faraday tensor F̃ab.

Taking into account Equation (9.7) one obtains

∇̃A
A′ φ̃AB = 0. (9.13)

This last equation is known as the spinorial Maxwell equation. A further

computation using Equation (9.8b) shows that the spinorial counterpart of the

energy-momentum tensor takes the simple form

T̃AA′BB′ = φ̃AB
¯̃
φA′B′ .

Behaviour under conformal rescalings

The definition of the unphysical (conformal) Faraday tensor given in Equation

(9.9) suggests introducing the unphysical Maxwell spinor φAB as

φAB ≡ Ξ−1φ̃AB . (9.14)

The factor Ξ−1 in the above definition is necessary to compensate for the factor

Ξ picked up by the spinor ε̃AB in Equation (9.12). It follows from Equation (9.13)

and the transformation law of the connection upon conformal rescalings g = Ξ2g̃

given in Section 5.4 that

∇Q
A′φBQ = 0. (9.15)

That is, the transformation rule (9.14) makes the spinorial Maxwell Equation

(9.13) conformally invariant – this result was to be expected in view of the

equations in (9.10). One readily sees the similarities between Equation (9.15) and

the spinorial Bianchi identity ∇AA′
φABCD = 0. Consistent with Equation (9.2)

one finds that the spinorial counterpart of the unphysical energy-momentum

tensor is given by

TAA′BB′ = φABφ̄A′B′ .
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Equation (9.15) can be expressed in terms of a Weyl connection ∇̂ = ∇+S(f) as

∇̂Q
A′φBQ = fQ

A′φBQ.

In order to write a spinorial version of Equation (9.11) it is observed that the

action of the commutator of covariant derivatives on the spinor φAB is given by

∇AA′∇BB′φCD −∇BB′∇AA′φCD = −φQDRQ
CAA′BB′ − φCQR

Q
DAA′BB′ .

Letting ψAA′BC ≡ ∇AA′φBC , one obtains

∇AA′ψBB′CD −∇BB′ψAA′CD = −2φQ(CR
Q
D)AA′BB′ .

By construction, the auxiliary spinor ψAA′BC possesses the symmetries

ψAA′BC = ψAA′CB , ψQ
A′BQ = 0.

9.3 The scalar field

A scalar field φ̃ satisfying the wave equation

∇̃a∇̃aφ̃ = 0 (9.16)

is a convenient matter model to couple to the Einstein field equations. It provides

a way of incorporating dynamical degrees of freedom in spherically symmetric

configurations; see, for example, Choptuik (1993) and Gundlach and Mart́ın-

Garćıa (2007). This idea has been exploited in a number of analyses of cosmic

censorship and the formation of black holes through gravitational collapse; see,

for example, Christodoulou (1986) and Dafermos (2003, 2005).

Unfortunately, as a direct computation shows, Equation (9.16) does not

have good conformal transformation properties. This difficulty can be fixed by

considering a modified version – the so-called conformally invariant scalar

field equation

∇̃a∇̃aφ̃− 1

6
R̃φ̃ = 0, (9.17)

where R̃ denotes the Ricci scalar of the physical spacetime metric g̃. Letting, as

usual, g = Ξ2g̃ and defining the unphysical (conformal) scalar φ as

φ ≡ Ξ−1φ̃,

one finds, after a calculation using the transformation rule for the Ricci scalar

Equation (5.6c), that

∇a∇aφ− 1

6
Rφ = 0, (9.18)

where R denotes the Ricci scalar of g. An energy-momentum tensor for Equation

(9.17) is given by

T̃ab = ∇̃aφ̃∇̃bφ̃− 1

4
g̃ab∇̃cφ̃∇̃cφ̃− 1

2
φ̃∇̃a∇̃bφ̃+

1

2
φ̃2L̃ab. (9.19)
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A peculiarity of the above expression is the presence of the curvature terms

L̃ab in the right-hand side of the energy-momentum tensor. Using the Einstein

field Equations (8.4), the Schouten tensor can be reexpressed in terms of the

energy-momentum tensor, so that Equation (9.19) takes the form

T̃ab =

(
1− 1

4
φ̃2

)−1(
∇̃aφ̃∇̃bφ̃− 1

4
g̃ab∇̃cφ̃∇̃cφ̃− 1

2
φ̃∇̃a∇̃bφ̃+

1

12
(λ− T̃ )φ̃2g̃ab

)
.

Taking the trace of Equation (9.19) one finds that

T̃ ≡ g̃abT̃ab = −1

2
φ̃

(
∇̃a∇̃aφ̃− 1

6
R̃φ̃2

)
.

Thus, the energy-momentum tensor of Equation (9.19) is trace free if and

only if the conformally invariant wave Equation (9.17) is satisfied. A lengthier

computation using the commutator of covariant derivatives and the Bianchi

identity in the form ∇̃aL̃ab =
1
6∇̃bR̃ shows that

∇̃aT̃ab = ∇̃bφ̃

(
∇̃c∇̃cφ̃− 1

6
R̃φ̃

)
− 1

2
φ̃∇̃b

(
∇̃c∇̃cφ̃− 1

6
R̃φ̃

)
.

One concludes that T̃ab is divergence free if and only if Equation (9.17) holds.

Finally, using the transformation law for the Schouten tensor under conformal

rescalings, Equation (5.6b), one finds that

Tab = ∇aφ∇bφ− 1

4
gab∇cφ∇cφ− 1

2
φ∇a∇bφ+

1

2
φ2Lab,

so that Tab = Ξ−2T̃ab. It follows from the previous discussion that

∇aTab = 0, gabTab = 0.

Spinorial description

The straightforward spinorial counterpart of Equation (9.19) is given by

T̃AA′BB′ = ∇̃AA′ φ̃∇̃BB′ φ̃− 1

4
ε̃AB ε̃A′B′∇̃PP ′ φ̃∇̃PP ′

φ̃

− 1

2
φ̃∇̃AA′∇̃BB′ φ̃+

1

2
φ̃2L̃AA′BB′ .

Applying the decomposition formula (3.12) to ∇̃AA′ φ̃∇̃BB′ φ̃ and ∇̃AA′∇̃BB′ φ̃

one finds that

∇̃AA′ φ̃∇̃BB′ φ̃ = ∇̃A(A′ φ̃∇̃B′)Bφ̃+
1

4
ε̃AB ε̃A′B′∇̃PP ′ φ̃∇̃PP ′

φ̃,

∇̃AA′∇̃BB′ φ̃ = ∇̃A(A′∇̃B′)Bφ̃+
1

4
ε̃AB ε̃A′B′∇̃PP ′∇̃PP ′

φ̃,

where it has been used that

∇̃P (A′ φ̃∇̃P
B′)φ̃ = 0, ∇̃P (A′∇̃P

B′)φ̃ = 0.
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The above formulae, together with the wave equation (9.17), imply the following

alternative spinorial expression for the energy-momentum tensor:

T̃AA′BB′ = ∇̃A(A′ φ̃∇̃B′)Bφ̃− 1

2
φ̃∇̃A(A′∇̃B′)Bφ̃+

1

2
φ̃2Φ̃AA′BB′

where Φ̃AA′BB′ is the (physical) trace-free Ricci spinor. The unphysical spacetime

version of the above equation follows directly by removing the ˜ of the various

fields.

9.3.1 Equations for the derivatives of the scalar field

As in the case of the electromagnetic field, the coupling of the conformally

invariant scalar field to the conformal field equations through the rescaled Cotton

tensor Tabc involves derivatives of φ. Indeed, a calculation exploiting the fact that

∇[a∇b]φ = 0 shows that

∇[aTb]c =
3

2
∇[bφ∇a]∇cφ− 1

2
gc[b∇a]∇eφ∇eφ+ φ∇[aφLb]c

− 1

2
φ∇[a∇b]∇cφ+

1

2
φ2∇[aLb]c.

The terms in the second line of the preceding equation can be rewritten using

the commutator

∇[a∇b]∇cφ = −1

2
Re

cab∇eφ

and the Cotton Equation (8.23). Putting everything together in Equation (9.4)

and rearranging one obtains(
1− 1

4
φ2Ξ2

)
Tabc =

3

2
Ξ∇[bφ∇a]∇cφ− 1

2
Ξgc[b∇a]∇eφ∇eφ+ φ∇[aφLb]c

+
1

4
ΞφRe

cab∇eφ+
1

4
Ξφ2∇eΞR

e
cab+∇[aΞTb]c+gc[aTb]e∇eΞ.

The above expression contains first and second derivatives of φ which cannot be

eliminated using the wave Equation (9.18). Accordingly, field equations for these

derivatives need to be constructed.

In what follows, let φa ≡ ∇aφ, φab ≡ ∇a∇bφ. As ∇ is torsion free one has

that φ[ab] = 0 and one can write

φab = φ{ab} +
1

4
gabφe

e = φ{ab} +
1

24
gabRφ, (9.20)

where in the second equality one has used Equation (9.18) in the form φe
e = 1

6Rφ.

Regarding φa and φab as further field unknowns one obtains the field equations

∇aφ− φa = 0, ∇aφb − φ{ab} −
1

24
gabRφ = 0, ∇eφe −

1

6
Rφ = 0.
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To obtain equations for φab one considers the commutator of covariant derivatives

applied to ∇cφ in the form

∇[aφb]c = −1

2
Rd

cabφd.

Letting ψab ≡ φ{ab} and using the decomposition (9.20) one obtains

∇[aψb]c −
1

24

(
Rgc[aφb] + φgc[b∇a]R

)
= −1

2
Rd

cabφd.

Finally, an equation for the trace term φe
e is obtained by differentiating Equation

(9.18) so that

∇aφe
e − 1

6
(φaR+ φ∇aR) = 0.

9.3.2 Relation to other wave equations

Solutions to the conformally invariant wave Equation (9.17) on a spacetime

(M̃, g̃) are related to solutions of the standard wave equation on a conformally

related spacetime (M̀, g̀) through a transformation first discussed in Bekenstein

(1974): the scalar field φ̃ can be used to define a metric ĝ conformally related to

g̃ via

g̀ = Ξ̀2g̃, Ξ̀ ≡ 1− 1

4
φ̃2.

It follows from a direct computation that the scalar field

φ̀ ≡
√
6 arctan

1

2
φ̃

is a solution of the equation

∇̀a∇̀aφ̀ = 0.

As noticed in Bičák et al. (2010), this observation can be turned into a procedure

to construct solutions to the Einstein-scalar field equations out of vacuum static

solutions; see also Buchdahl (1959).

9.4 Perfect fluids

Perfect fluids constitute an important class of matter models for the Einstein

field equations. In the cosmological context, perfect fluids are used to describe

the matter content of the universe at a suitably large scale; see, for example,

Ellis et al. (2012). Given a spacetime (M̃, g̃), the energy-momentum tensor

of a perfect fluid with 4-velocity ũa, pressure p̃ and density �̃ is given by

T̃ab = (�̃+ p̃)ũaũb − p̃g̃ab, (9.21)
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with ũa satisfying the normalisation condition ũaũ
a = 1. The equations of motion

for the fields ũa, �̃ and p̃ are given by ∇̃aT̃ab = 0. This last equation gives four

equations for six unknowns. The normalisation of ũa can be used to eliminate

one of the components of the 4-velocity (usually the time component). To close

the system a phenomenological constitutive relation linking the pressure and the

density must be prescribed. A standard assumption made on perfect fluids is to

have the density and the pressure related to each other by means of a barotropic

equation of state p̃ = f(�̃) with f a smooth function of the density �̃. From

Equation (9.21) it follows that T̃ = �̃− 3p̃. Thus, the energy-momentum tensor

of a perfect fluid is trace free if and only if

p̃ =
1

3
�̃. (9.22)

This constitutive relation is known as the equation of state of radiation.

In what follows, the discussion will be restricted to perfect fluids satisfying the

equation of state (9.22). To discuss the perfect fluid in the conformally rescaled

spacetime (M, g) with g = Ξ2g̃ it is convenient to consider the following

unphysical conformal fields

ua ≡ Ξũa, � ≡ Ξ−4�̃, p ≡ Ξ−4p̃.

The above definitions are consistent with the transformation law for the energy-

momentum tensor of Equation (9.2). Moreover, it follows that p = 1
3�, so that

the unphysical energy-momentum tensor takes the form

Tab =
4

3
�uaub −

1

3
�gab with ∇aTab = 0. (9.23)

Moreover, one has that uau
a = 1, so that differentiating along ua one finds that

ua∇a(ubu
b) = 0.

From this expression it follows that if uau
a = 1 at some point in a flow line, then

uau
a = 1 everywhere along the flow line. From Equation (9.23) it readily follows

that

4

3
(uau

c∇c�+ �ua∇cu
c + �uc∇cua)−

1

3
∇a� = 0.

Contracting this equation, respectively, with ua and gab − uaub one obtains

ua∇a�+
4

3
�∇au

a = 0,

4

3
�uc∇cua +

1

3
uau

c∇c�−
1

3
∇a� = 0.

These equations are the conformal versions of the equation of energy

conservation and the equations of motion ; see, for example, Choquet-

Bruhat (2008). A discussion on how to use these equations to construct suitable

evolution equations for the fields � and the spatial components ui of the fluid

4-velocity can be found in the same reference.
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9.5 Further reading

A further matter model amenable to a treatment by means of conformal methods

is the Yang-Mills field. The Yang-Mills equations can be regarded as a suitable

generalisation of the Maxwell equations; see, for example, Frankel (2003) for a

discussion. The conformal field equations with matter source given by a Yang-

Mills field of arbitrary gauge group have been discussed in Friedrich (1991). The

discussion of the Maxwell field presented in this chapter is adapted from that

reference. A treatment of the conformal Einstein-Maxwell system by means of

Weyl connections is given in Lübbe and Valiente Kroon (2012).

The discussion of the conformal field equations coupled to the conformally

invariant wave equation was first given in Hübner (1995). An alternative

approach to the analysis of the conformal Einstein field equations with a scalar

field can be found in Bičák et al. (2010). In Friedrich (2015b) it has been shown

that the Einstein–massive scalar field system has good conformal properties if

the mass of the scalar field and the cosmological constant satisfy the relation

3m2 = −2λ.

Finally, the conformal Einstein-Euler equations have been analysed in Lübbe

and Valiente Kroon (2013b) and used to prove the future non-linear stability

of perturbations of Friedman-Lemâıtre-Robinson-Walker cosmological models

with a radiation fluid. Analyses of the Einstein-Euler system not making use

of conformal methods can be found in Rodnianski and Speck (2013) and Speck

(2012).

The purpose of this chapter has been to present a discussion of matter

models with properties which make them suitable sources for the conformal field

equations. However, conformal methods have also been used for other types of

constructions. As an example, one has Bičák and Krtouš (2001, 2002) where the

conformal invariance of the Maxwell equations has been exploited to construct

the analogue of the Born solution (describing the motion of a pair of uniformly

accelerated charges) in the de Sitter spacetime.
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10

Asymptotics

This chapter discusses some basic consequences of the notion of asymptotic

simplicity introduced in Chapter 7. As already mentioned, the main motivation

behind this definition is to provide a characterisation of a broad class of

spacetimes in which universal structures can be identified. Once this has been

done, the idea is to use these structures to define in a rigorous manner concepts

of physical interest.

The characterisation of the gravitational field through the analysis of its

asymptotic behaviour has a long tradition dating back to the early works by

Bondi et al. (1962), Sachs (1962b) and Newman and Penrose (1962). These

studies culminated in the identification of gravitational radiation as a real

physical phenomenon. The developments of this classical theory have been

treated extensively in the literature; see, for example, Geroch (1976), Penrose and

Rindler (1986), Stewart (1991) and Frauendiener (2004). The readers interested

in the historic development of this idea are referred to Kennefick (2007).

Despite the important insights provided by the classical theory of asymptotics

of general relativity, this approach has the weakness of being, to some extent,

formal. More precisely, it relies on a number of assumptions about the nature

of solutions to the Einstein field equations – say, for example, the regularity

of the conformal boundary – which are hard to verify for a suitably large class

of spacetimes. This point is key: the theory of asymptotics of the gravitational

field comes fully into life when combined with the (conformal) field equations

and methods of the theory of partial differential equations. This remark does

not disown the fundamental insights into the behaviour of the gravitational field

that formal asymptotic analyses have produced, but rather insists on the need

to carry the subject further.

Arguably, the most important consequence of asymptotic simplicity is the

set of results collectively known as peeling – that is, a detailed description

of the asymptotic behaviour of the gravitational field expressed in terms of the

components of the Weyl tensor. The peeling behaviour is the main subject of this
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10.1 Basic set up: general structure of the conformal boundary 223

chapter. The basic assumptions behind the peeling results are the main subject

of Chapter 20. Complementary to the discussion of the peeling behaviour, this

chapter contains a detailed discussion of a gauge prescription for the analysis of

the structure of the gravitational field at the conformal boundary of Minkowski-

like spacetimes, the so-called NP gauge. The chapter concludes with a brief

overview of other aspects of the theory of the asymptotics of the gravitational

field which are sligthly outside the main focus of this book: the Bondi mass, the

BMS group and the so-called Newman-Penrose constants.

10.1 Basic set up: general structure of the conformal boundary

In what follows let (M̃, g̃) be an asymptotically simple spacetime in the sense of

Definition 7.1 and let (M, g,Ξ) denote an associated conformal extension. As in

Section 7.1, let I denote part of the conformal boundary characterised by the

requirements

Ξ = 0, dΞ �= 0. (10.1)

Much of the analysis of the present chapter is based on the evaluation of the

various conformal field equations at I . In what follows, the notation � will be

used to indicate that a certain equality holds at I . In terms of this notation, the

conditions in (10.1) can be rewritten as

Ξ � 0, dΞ �� 0.

The basic observation concerning the set I is that its causal nature is

determined by the sign of the cosmological constant λ. This result follows from

a direct inspection of the conformal Einstein field equations; see, for example,

Equations (8.26a)–(8.26e) in Section 8.2.5. One has that:

Theorem 10.1 (causal nature of the conformal boundary) Suppose that

the Friedrich scalar s is finite at I and that T = o(Ξ−4). Then I is a null,

spacelike or timelike hypersurface, respectively, depending on whether λ = 0,

λ < 0 or λ > 0.

Proof The normal to the hypersurface I is given by∇aΞ. From Equation (8.24)

one directly has that

∇aΞ∇aΞ � −1

3
λ, (10.2)

as by hypothesis Ξ4T → 0 if Ξ → 0 and s is finite at I .

A discussion of the order symbols o and O used in the previous and other

results of this chapter can be found in the Appendix to Chapter 11.

Remark. Spacetimes with λ = 0 will be said to be Minkowski-like, those with

λ < 0 de Sitter-like and those with λ > 0 anti-de Sitter-like.
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The regularity of s at I can be rephrased in terms of a sufficiently rapid decay

of the physical energy-momentum tensor T̃ab. Using the conformal field Equation

(8.13) it follows that a sufficient condition for ∇a∇bΞ and s to be finite at I is

that T{ab} = o(Ξ−3). In this case one concludes that

∇a∇bΞ � sgab. (10.3)

It follows from the transformation formulae of the energy-momentum tensor,

Equation (9.2), that if T{ab} = o(Ξ−3), then, in fact, T̃{ab} = O(Ξ3); see also the

discussion in Stewart (1991). If, in addition, one has that R is finite at I , then

expression (10.3) reduces to

∇a∇bΞ � 1

4
∇c∇cΞgab.

The spinorial version of the above expression is

∇A(A′∇B′)BΞ � 0. (10.4)

The latter is usually known as the asymptotic Einstein condition ; see, for

example, Penrose and Rindler (1986).

10.1.1 Topology of the conformal boundary

As will be seen in Chapter 15, there exists considerable freedom in the

specification of the topology of de Sitter-like spacetimes. By contrast, the case

of a vanishing cosmological constant is much more restrictive:

Theorem 10.2 (topology of I for asymptotically Minkowskian space-

times) Let (M̃, g̃) denote an asymptotically simple spacetime with λ = 0 and let

(M, g,Ξ) denote a conformal extension thereof. Then I consists of two disjoint

components I − and I +, each one having the topology of R× S2.

A discussion of the proof of the above theorem goes beyond the scope of this

book. The interested reader is referred to Newman (1989) for a proof and for a

discussion on pitfalls in earlier arguments in Penrose (1965) and Geroch (1971b,

1976); see also Hawking and Ellis (1973). Remarkably, this result depends on

the satisfactory resolution of the so-called Poincaré conjecture; see, for example,

Gowers (2008) for an introduction to this (now solved) classical problem in

mathematics. Vacuum spacetimes with a vanishing cosmological constant and a

conformal infinity with sections which are toroidal, that is, having the topology

of R × S × S have been considered in the literature; see Schmidt (1996). Note

that as a consequence of Theorem 10.2 these spacetimes must exhibit some type

of pathology – and, in particular, they cannot be asymptotically simple.

The behaviour of points in the conformal extension of an asymptotically simple

spacetime for which both Ξ = 0 and dΞ = 0 will be analysed from various

perspectives in Chapters 16, 18 and 20.
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10.1 Basic set up: general structure of the conformal boundary 225

10.1.2 Further properties of the case λ = 0

In this section let λ = 0 throughout so that the asymptotically simple spacetime

(M̃, g̃) has a null conformal boundary. For ease of the exposition, attention is

restricted to the vacuum case.

As a consequence of Theorem 10.1 the physical spacetime manifold M̃ must

lie either towards the past or the future of I – intuitively, this assertion seems

natural; however, a detailed argument requires the ideas of the discussion on

Lorentzian causality in Chapter 14. Consistent with the discussion of conformal

extensions of exact solutions in Chapter 6, I + (i.e. future null infinity) will

denote the set on which null geodesics attain a future endpoint while I − (i.e.

past null infinity) corresponds to the set of past endpoints of null geodesics. A

null hypersurface has the property of being generated by null geodesics; that is,

each p ∈ I ± lies on exactly one null geodesic which is everywhere tangent

to I ±. Accordingly, each of I + and I − can be regarded as the union of

these generators (or rays). Complementary to the latter is the notion of a

cut of null infinity , that is, a two-dimensional surface C which intersects each

generator exactly once. As a result of Theorem 10.2 one has that C ≈ S2.

The subsequent discussion will, for simplicity, be restricted to I + – an

analogous discussion follows, mutatis mutandis, for I −. By definition, the

normal to I + is given by dΞ. As g�(dΞ,dΞ) � 0, it follows that the vector

N ≡ −g�(dΞ, ·) satisfies 〈dΞ,N 〉 = 0 and, thus, is tangent to I + – and, in

particular, to its null generators.

As I + is a hypersurface of M, there exists an embedding ϕ : I + → M. Let

q ≡ ϕ∗g denote the metric induced on I + by g. The metric q is degenerate. To

see this, write dΞ in coordinates adapted to I +; it follows that ϕ∗(dΞ) = 0 so

that ϕ∗(N �) = 0. Thus, from N � = g(N , ·) one concludes that q(N , ·) = 0 as

claimed – observe that asN is tangent to I +, it follows that it has a well-defined

pull-back.

To analyse the behaviour of the metric q along the generators of I + consider

the Lie derivative £Nq. To compute it start from

£Ngab = N c∇cgab +∇cNagcb +∇cNbgac

= ∇bNa +∇aNb = 2∇aNb,

as ∇a∇bΞ = −∇aNb = −∇bNa. Hence, using Equation (10.3) it follows that

£Nq = −sq. (10.5)

The trace-free part of £Nq is called the shear tensor ς of the congruence

of generators of I + – it describes the tendency of a sphere of points in the

congruence to be deformed into an ellipsoid with the same volume. As Equation

(10.5) is pure trace, it follows that ς = 0. Thus, the congruence of generators of

I + is shear free. This result is a consequence of the conformal field equations via

Equation (10.3) so that from the conformal invariance of the equations it follows
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226 Asymptotics

that the shear-freeness of the congruence of generators is a property independent

of the particular choice of conformal factor.

The conformal gauge freedom inherent in the construction of a conformal

extension can be exploited to gain further insight into the structure of null

infinity. Given a conformal extension (M, g,Ξ) consider ϑ > 0 and define a

conformally related metric g′ via g′ = ϑ2g. The transformation rule of the

Friedrich scalar s – see Equation (8.29b) – yields that

s′ � ϑ−1s− ϑ−2N c∇cϑ.

Thus, if initially s �= 0, one can always find a further conformal representation

(M, g′,Ξ′) for which s′ = 0 if one imposes the condition

N c∇cϑ = ϑs. (10.6)

Notice that the above equation can be rewritten as £N ϑ = ϑs, and, accordingly,

it can be read as an ordinary differential equation along the generators of null

infinity. It is important to observe that once condition (10.6) has been imposed,

one is still left with the freedom of specifying a further rescaling g′′ = κ2g′ such

that £N ′ κ = 0.

The conformal gauge implied by condition (10.6) yields, together with

Equation (10.5), that

£N ′q′ = 0; (10.7)

that is, the intrinsic metric of I + is Lie dragged along the generators of null

infinity. Each of the cuts C of null infinity inherits from the metric q on I +

a metric k which is non-degenerate. As a consequence of Equation (10.7), if

one considers any other cut C ′, one obtains the same induced metric k. Now,

any metric on a two-dimensional surface which is topologically S2 is conformal

to the standard metric of S2, σ – this fact is a consequence of the so-called

Riemann mapping theorem ; see, for example, Krantz (2006), chapter 4.

Hence, one can write k = θ2σ for some conformal factor θ > 0 on S2. Under

a further conformal gauge transformation g′′ = κ2g′ such that £N ′ κ = 0 (see

the previous paragraph), one can then always assume that the gauge has been

chosen so that k = σ. Under these circumstances the conformal gauge freedom

is reduced to a function κ such that κ � 1.

10.2 Peeling properties

One of the most important results of the theory of asymptotics of the

gravitational field is the so-called Peeling theorem – a precise prescription

of the decay of the Weyl tensor of an asymptotically simple spacetime. The

Peeling theorem is based on the important observation that the Weyl tensor of

an asymptotically simple spacetime must vanish on I . As will be seen in the
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10.2 Peeling properties 227

following, this observation follows in a quite straight forward manner if λ �= 0.

A more subtle argument is required if λ = 0.

In what follows, let ΨABCD denote the Weyl spinor, and recall that ΨABCD =

ΞφABCD. The subsequent analysis is best carried out with the spinorial

conformal Einstein field equations expressed with respect to a spin dyad {εAA};
see Section 8.3.2. In this formulation of the field equations the fields are scalars.

Hence, they can readily be evaluated at the conformal boundary without the need

of pull-backs. One has the following:

Theorem 10.3 (vanishing of the Weyl tensor at I ) Assume that ΨABCD

is smooth at I . If λ �= 0 and the physical Cotton tensor satisfies Ỹabc = o(Ξ−1)

at I , then ΨABCD = 0 at I . If λ = 0, the same conclusion follows if Ỹabc =

o(Ξ−1) and ∇dỸabc = o(Ξ−1).

Proof (case λ �= 0) The starting point of the analysis is the Bianchi equation

∇Q
A′φABCQ + TBCAA′ = 0;

compare the spinorial conformal Einstein Equation (8.37b). Now, recalling that

φABCD = Ξ−1ΨABCD and TBCAA′ = Ξ−1ỸBCAA′ it follows that

∇Q
A′ΞΨABCQ − Ξ∇Q

A′ΨABCQ = ΞỸBCAA′ . (10.8)

Hence, using Ỹabc = o(Ξ−1) one finds that ∇Q
A′Ξ ΨABCQ � 0. Contracting

with ∇DA′Ξ one obtains

∇DA′Ξ∇Q
A′

Ξ ΨQ
ABC � 0. (10.9)

Now, using Equation (10.2) one has

∇DA′Ξ∇Q
A′

Ξ =
1

2
∇PP ′Ξ∇PP ′

Ξ εDQ � −3

2
λ εDQ.

Substituting the latter in (10.9) one finds that λΨABCD�0. Hence, ΨABCD = 0

on I .

Proof (case λ = 0) Again, one has that

∇AA′
Ξ ΨABCD � 0. (10.10)

In this case, however, ∇AA′
Ξ is the spinorial counterpart of a null vector. Hence,

there exists a spinor ιA such that

∇AA′
Ξ = ιAῑA

′
. (10.11)

It follows from Equation (10.10) that there exists a scalar field ψ such that

ΨABCD � ψιAιBιCιD. (10.12)
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228 Asymptotics

In order to extract further information consider Equation (10.8) – which is also

valid in the case λ = 0 – and apply ∇EE′ to both sides. The assumptions on

ỸCDBB′ imply that

∇EE′∇Q
B′ΞΨABCQ +∇Q

B′Ξ∇EE′ΨABCQ −∇EE′Ξ∇Q
B′ΨABCQ � 0.

Symmetrising on E′ and B′ , and using the asymptotic Einstein condition (10.4)

one concludes that

∇Q
(B′Ξ∇E′)EΨABCQ −∇E(E′Ξ∇Q

B′)ΨABCQ � 0. (10.13)

Now, using identity (3.6) to interchange the indices E and Q one obtains

∇Q
(B′Ξ∇E′)QΨABCE −∇Q(E′Ξ∇Q

B′)ΨABCE

− εEQεST
(
∇Q

(B′Ξ∇E′)SΨABCT +∇S(E′Ξ∇Q
B′)ΨABCT

)
� 0,

which in view of Equation (10.13) reduces to

∇Q
(B′Ξ∇E′)QΨABCE � 0.

Using the decomposition (10.11) in this last equation one obtains

ιQῑ(B′∇E′)QΨABCE � 0.

Contracting the latter with ῑB
′
and observing that ῑE′ �= 0, one concludes that

ιQῑB
′∇QB′ΨABCE � 0. (10.14)

Thus,

ιQ∇QE′ΨABCE � α ῑE′ζABCE

for some scalar α and a spinor ζABCE �= 0. Substituting back into (10.14) one

concludes that α = 0 so that one has

ιQ∇QE′ΨABCE � 0. (10.15)

In order to bring this last result into a more convenient form one completes the

spinor ιA to a spin basis {εAA} = {oA, ιA} with oAι
A = 1 so that ιA = δ1

A and

oA = δ0
A. Thus, contracting Equation (10.15) with ōE

′
and substituting (10.12)

into Equation (10.15) one obtains

ιQōE
′∇QE′(ψιAιBιCιE) = ∇10′(ψιAιBιCιE) � 0. (10.16)

The above expression is to be regarded as a differential equation for ψ over the

cuts of I +. To conclude the argument one makes use of the formalism of the

ð and ð̄ operators as discussed in the Appendix to this chapter. Accordingly,

in what follows it is assumed that one has a conformal representation for which

the cuts are metric unit spheres S2. Contracting (10.16) with oAoBoCoE one

obtains

ð̄ψ � 0.
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10.2 Peeling properties 229

Now, from ψ = ΨABCDoAoBoCoD it follows that ψ has spin-weight 2. Hence,

using Lemma 10.1 in the Appendix to this chapter it follows that ψ � 0 and

thus ΨABCD vanishes at I .

Remark. The above result strongly depends on the fact that for an asymptoti-

cally simple spacetime with λ = 0 one has that I ≈ R× S2. For the spacetimes

with toroidal null infinities considered in Schmidt (1996), the crucial Lemma

10.1 does not hold – see Frauendiener and Szabados (2001) – and the desired

conclusion cannot be obtained.

A more detailed description

To obtain a more detailed description of the peeling behaviour, it is necessary

to introduce further structure. In what follows, consider a null geodesic γ in

(M, g) reaching I at a point p and let γ̃ denote the corresponding null geodesic

on (M̃, g̃). At a point q ∈ γ̃ one can choose a spin dyad {õ, ι̃} such that the

tangent to γ̃ is given by the vector l̃ with spinorial counterpart l̃AA′
= õA ¯̃oA

′
.

The spin dyad can be naturally propagated along γ̃ by requiring

D̃õA = 0, D̃ι̃A = 0, (10.17)

where D̃ ≡ l̃a∇̃a = õA ¯̃oA
′∇̃AA′ in standard Newman-Penrose (NP) notation.

Now, let r̃ denote an affine parameter along γ̃. It follows that D̃ = d/dr̃. In

order to rewrite the above expressions in terms of quantities defined on the

unphysical spacetime (M, g) it is convenient to consider the transformation

oA = õA, oA = Ξ−1õA, ιA = Ξι̃A, ιA = ι̃A; (10.18)

compare Equations (5.31a)–(5.31c) in Chapter 5. Using the transformation laws

under conformal transformations for the covariant derivatives it follows from

(10.17) that

DoA = 0, DιA =
(
Ξ−1δ̄Ξ

)
oA,

where δ̄ ≡ m̄a∇a = ιAōA
′∇AA′ . The second of the above expressions is

potentially singular at I – observe, however, that as Ξ � 0, it follows that

δ̄Ξ � 0 as m̄ is intrinsic to I . Thus, the spin dyad {o, ι} is well defined and

regular at I . Now, from DoA = 0 it follows that the null geodesic γ is affinely

parametrised. Let r denote a possible affine parameter. Its origin and scaling can

be chosen so that

r = 0, and DΞ =
dΞ

dr
= −1 at p ∈ I .

From Remark (c) in Section 7.1 it follows that

dr̃

dr
=

1

Ξ2
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230 Asymptotics

where r̃ is an affine parameter in the physical spacetime (M̃, g̃). Hence, one

concludes that

r̃ = O(Ξ−1) near I . (10.19)

Making use of the above relations one obtains the following, more detailed,

version of the peeling behaviour:

Theorem 10.4 (Peeling theorem) Let (M̃, g̃) denote an asymptotically

simple spacetime with λ = 0 for which the hypotheses of Theorem 10.3 hold.

Moreover, let

ψ̃0 ≡ ΨABCDõAõB õC õD, ψ̃1 ≡ ΨABCD ι̃AõB õC õD, ψ̃2 ≡ ΨABCD ι̃Aι̃B õC õD,

ψ̃3 ≡ ΨABCD ι̃Aι̃B ι̃C õD, ψ̃4 ≡ ΨABCD ι̃Aι̃B ι̃C ι̃D,

then

ψ̃0 = O(r̃−5), ψ̃1 = O(r̃−4), ψ̃2 = O(r̃−3)

ψ̃3 = O(r̃−2), ψ̃4 = O(r̃−1).

Proof Let

ψ0 ≡ ΨABCDoAoBoCoD, . . . ψ4 ≡ ΨABCDιAιBιCιD.

It follows from Theorem 10.3 that ψk = O(Ξ). Now, using the transformation

rules (10.18) one has that

ψ̃k = Ξ4−kψk.

Thus, recalling (10.19), one finds the desired result.

Combining the definitions of the fields ψ̃k with the corresponding decays given

by Theorem 10.4 one obtains a detailed expression for the asymptotic behaviour

of the Weyl spinor. It can be written schematically as

ΨABCD =
[N ]ABCD

r̃
+

[III]ABCD

r̃2
+

[II]ABCD

r̃3
+

[I]ABCD

r̃4
+O(r̃−5), (10.20)

where [N ]ABCD, [III]ABCD, [II]ABCD and [I]ABCD represent, respectively,

totally symmetric spinors of Petrov type N , III, II and I; for a concise

discussion of the Petrov classification of the Weyl tensor using spinors,

see Stewart (1991). For Petrov type N Weyl tensors the spinor ΨABCD has

four repeated principal null directions. They are associated to gravitational

plane waves. Similarly, a spacetime with a Weyl spinor of Petrov type III has

three repeated principal null directions; one of Petrov type II has two principal

directions, while one of Petrov type I is algebraically general. The observation

that a repeated principal null direction is lost at each order in the expansion

(10.20) justifies the name of peeling in analogy to the peeling of a fruit; see

Figure 10.1.
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10.3 The Newman-Penrose gauge 231

Figure 10.1 Schematic representation of the Peeling theorem: the leading
behaviour of the Weyl tensor corresponds to that of a plane wave (Petrov
type N). More general behaviour is observed as one looks into higher order
terms.

Remark. The key assumption in the derivation of the peeling behaviour is the

smoothness of the Weyl tensor at I +. A careful inspection of the arguments in

the previous sections shows that the smoothness requirement can be relaxed and

that the conclusions of Theorems 10.3 and 10.4 can be recovered if it is assumed

that ΨABCD is of class Ck∗ at I + for some positive integer k∗. A determination

of a sharp value of k∗ will not be pursued here. One of the challenges in the

construction of spacetimes satisfying the peeling behaviour or, more generally,

spacetimes which are asymptotically simple is to ensure that their Weyl tensor

has the required regularity at the conformal boundary. The latter will be a

recurrent idea in the remainder of this book. The analysis of the non-linear

stability of the Minkowski spacetime in Christodoulou and Klainerman (1993)

renders a Weyl tensor with a limited regularity at I + for which only a partial

peeling behaviour of the form

ψ̃0 = O(r̃−1), ψ̃1 = O(r̃−2), ψ̃2 = O(r̃−3),

ψ̃3 = O(r̃−7/2), ψ̃4 = O(r̃−7/2),

can be recovered; see, for example, Friedrich (1992) for a discussion.

10.3 The Newman-Penrose gauge

The analysis leading to the Peeling theorem shows the advantages of using a

gauge which is adapted to the geometry of null infinity. In this section this idea

is further elaborated. The resulting Newman-Penrose gauge allows one to

obtain further insights into the properties of asymptotically simple spacetimes.

10.3.1 The construction of the gauge

As in the previous section let (M, g,Ξ) denote a conformal extension of an

asymptotically simple spacetime (M̃, g̃) with λ = 0. For conciseness, the

subsequent discussion will be restricted to future null infinity I +. An analogous

discussion can be readily adapted for I −.
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232 Asymptotics

Figure 10.2 Schematic representation of the setting for the construction of
the NP gauge. The NP gauge is based on a fiduciary cut C� on I + and is
valid in a neighbourhood U of the conformal boundary. The vector e11′ is
tangent to the generators of null infinity, while e00′ generates the outgoing
null hypersurfaces Nu• . See the main text for further details.

In what follows, let {eAA′} be a frame satisfying g(eAA′ , eBB′) = εABεA′B′

defined in a neighbourhood U of I +. The frame will be said to be adapted to

I + if – see Figure 10.2:

(i) The vector e11′ is tangent to I + and is parallely propagated along its

generators; that is, one has

∇11′e11′ � 0.

(ii) On U there exists a function u (a retarded time) which can be regarded

as an affine parameter of the generators of I + such that e11′(u) � 1.

The retarded time is constant on null hypersurfaces transverse to I + and

satisfies e00 = g�(du, ·). It follows that e00 is tangent to the hypersurfaces

Nu• = {p ∈ U |u(p) = u•},

where u• is a constant. Moreover, e00′ is tangent to the null generators of

Nu• .

(iii) The fields {eAA′} are tangent to the cuts Cu• ≡ Nu• ∩ I + and parallely

propagated along the direction of e00′ . That is, one has

∇00′eAA′ = 0 on Nu• .

Using the definition of the spin-connection coefficients it follows from the above

requirements that

Γ10′11 � 0, Γ11′11 � 0, (10.21a)

Γ10′00 = Γ̄1′00′0′ , Γ11′00 = Γ̄1′00′1′ + Γ01′01 on U , (10.21b)

Γ00′AB = 0 on U . (10.21c)
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10.3 The Newman-Penrose gauge 233

The condition Γ10′11 � 0 is, in fact, another way of expressing the fact that the

congruence of null generators of I + is shear free. This can be seen by evaluating

the conformal field Equation (8.35c)

∇AA′∇BB′Ξ = −ΞLAA′BB′ + sεABεA′B′ (10.22)

at I + for AA′ BB′ = 10′10′ . It follows that Γ10′11e00′(Ξ) � 0, but e00′(Ξ) �� 0

so that one concludes Γ10′11 � 0 as claimed.

Remark. The discussion of the previous sections shows that an adapted frame

can always be obtained in a neighbourhood U of I +. The key observation is

that N = g�(dΞ, ·) is tangent to the null generators of I + so that one can set

e11′ proportional to N . A suitable choice of affine parameter for N renders the

retarded time u and hence the frame vector e00′ . The rest of the frame is then

naturally completed by looking at a basis on the tangent bundle of the cuts Cu• .

Following the ideas of Section 10.1.2, the gauge can be further specialised by

considering a suitable conformal rescaling. Accordingly, consider

g �→ g′ = ϑ2g, Ξ �→ Ξ′ = ϑΞ. (10.23)

The above rescaling will be used to obtain an improved adapted frame {e′AA′}.
For an arbitrary conformal factor ϑ > 0 and an arbitrary function κ > 0 which

is constant along the generators of I + set

e′11′ � ϑ−2κe11′ ; (10.24)

compare the discussion in Section 10.1.2. In addition, define a further parameter

u′ = u′(u) such that du′/du = κ−1ϑ2. Integrating along the generators of null

infinity one finds that

u′ =
1

κ

∫ u

u�

ϑ2(s)ds + u′
�.

The real constants u� and u′
� are fixed so that they identify a certain fiduciary

cut C� ≡ Cu�
. In what follows, for convenience, the symbol

�� is used to denote

equality at C�. It can be verified that e′11′ is parallely propagated and that

e′11′(u′) = 1. The transformation rule (10.24) is supplemented at C� by

e′00′
�� κ−1e00′ , e′01′

�� ϑ−1e01′ . (10.25)

It can be verified that g′(e′AA′ , e′BB′) = εABεA′B′ on C�.

As seen in Section 10.1.2, C� ≈ S2 so that the metric k� induced by g′ on C�

is conformal to the standard metric σ of S2. Accordingly, the conformal factor

ϑ can be chosen on C� so that k�
�� σ. A calculation using the transformation

laws of Chapter 5 shows that the rescaling (10.23) and the conditions (10.24)

and (10.25) imply on C�

Γ′
10′00 = κ−1

(
Γ10′00 − ϑ−1e00′(ϑ)

)
, (10.26a)

Γ′
01′11 = κϑ−2

(
Γ01′11 + ϑ−1e11′(ϑ)

)
. (10.26b)
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234 Asymptotics

Hence, by a suitable choice of dϑ and κ it is possible to ensure that

Γ′
10′00

�� 0, Γ′
01′11

�� 0, e′00′(Ξ′)
�� constant �= 0. (10.27)

A convenient way of prescribing the conformal factor ϑ off C� follows from

the transformation law for the trace-free part of the Ricci tensor Φab under the

rescaling (10.23):

Φ′
ab −Φab =− 2ϑ−1

(
(∇a∇bϑ− 2ϑ−1∇aϑ∇bϑ)−

1

4
gab(∇c∇c)ϑ− 2ϑ−1∇cϑ∇cϑ)

)
;

see Equation (5.6a). Transvecting this last equation with e11′ ⊗ e11′ it follows

that if ϑ satisfies the equation

e11′(e11′(ϑ))− 2ϑ−1
(
e11′(ϑ)

)2 � ϑΦ22, (10.28)

then Φ′
22 � 0. By means of the substitution z = ϑ−1, Equation (10.28) can

be read as a second-order linear ordinary differential equation for ϑ−1 along

the generators of I +. Thus, this equation can always be solved, at least in a

neighbourhood of C� on I + to ensure that

Φ′
22 � 0. (10.29)

This last construction also fixes the value of e′01′(ϑ) on I +.

The initial data for Equation (10.28) on the fiduciary cut C� is chosen so that

e11′(ϑ)
�� −Γ01′11 consistent with Equation (10.27); compare Equation (10.26b).

Now, taking into account Equations (10.21a) and (10.29), one has that the

Ricci identity – compare the conformal field Equation (8.35b) of Chapter 8 –

gives for the values AA′ = 11′ , BB′ = 01′ and CD = 11 that

e11′(Γ′
01′11) +

(
Γ′
01′11

)2
+ Γ′

01′11Γ̄
′
1′10′1′ = 0.

The latter equation can be interpreted as a homogeneous differential equation

along the generators of I + for the reduced spin connection coefficient Γ′
01′11. As

a consequence of the initial condition (10.27) on C�, it follows that Γ
′
01′11 � 0.

The construction described in the previous paragraphs provides a specification

of the conformal factor ϑ and of the function κ which fixes the frame vector e′11′

completely on I +. Notice, however, that the vectors e′01′ and e′10′ (tangent to

the cuts Cu•) are determined up to a rotation of the form

e′01′ �→ eice′01′ , e′10′ �→ e−ice′10′ , (10.30)

with c a real phase on I +. A rotation on T (Cu•) can be exploited to obtain

additional simplifications in the spin connection coefficients. A calculation using

the definition of the spin connection coefficients and taking into account that

∇11′e′11 � 0 gives that

Γ′
11′01 � −1

2
〈ω′10,∇′

11′e′10′〉.
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10.3 The Newman-Penrose gauge 235

Under the rotation (10.30) the above relation transforms as

Γ′
11′01 �→ i

2
e′11′(c)− 1

2
Γ′
11′01, on I +.

Thus, given a particular choice of vectors e′01′ and e′10′ on I +, by solving the

equation

e′11′(c) � − i

2
Γ′
11′01, with c

�� 0,

along the generators of I +, it is always possible to rotate the basis according

to (10.30) so as to ensure that Γ′
11′01 � 0. In the following, it will be assumed

that e′01′ and e′10′ have been chosen so that the latter is the case.

The choice of vectors e′01′ and e′10′ has some further consequences. Evaluating

the primed version of Equation (10.22) at I + for AA′ = 01′ and BB′ = 10′ one

finds that ∇′
01′∇′

10′Ξ′ � −s′. Now, as Ξ′ = 0 on I + and e′01 is tangent to I +,

it follows from ∇′
01′∇′

10′Ξ′ = ∇′
01′e′10′(Ξ′) � 0 that s′ � 0 and that

∇′
AA′∇′

BB′Ξ′ � 0. (10.31)

This last expression can be regarded as a strengthened version of the asymptotic

Einstein condition (10.4). In particular, for AA′ = 11′ and BB′ = 00′ Equation

(10.31) implies that ∇′
11′
(
e00′(Ξ′)

)
� 0 so that e00′(Ξ′) is constant along the

generators of I +. Moreover, setting AA′ = 00′ and BB′ = 01′ and using that

e01′(Ξ′) � 0 one finds that

Γ′
01′

Q
0e

′
Q0′(Ξ′) + Γ̄′

1′0
Q′

0′e′0Q′(Ξ′) � 0.

Expanding and using, again, that e01′(Ξ′) � 0 and recalling (10.21b) one finds

that Γ′
11′00e

′
00′(Ξ′) � 0. However, e′00′(Ξ′) �� 0 so that one concludes that

Γ′
11′00 � 0.

To conclude, it is observed that although Equation (10.28) fixed the derivative

e′11′(ϑ) along I +, the derivative e′00′(ϑ) still remains free. A convenient way of

fixing e′00′(ϑ) can be obtained from the transformation law for the Ricci scalar

– see Equation (5.6c) – which, in the present context, takes the form

R[g′] = ϑ−2R[g] + 12ϑ−2∇′
aϑ∇′aϑ− 6ϑ−1∇′

a∇′aϑ.

A natural requirement is to set R[g′] = 0 on I + so that along the generators of

I + one obtains the equation

e′11′
(
e′00′(ϑ)

)
− 2ϑ−1e′11′(ϑ)e′00′(ϑ) � F ′, (10.32)

where

F ′ ≡ Re

(
e′01′

(
e′10′(ϑ)

)
− 2Γ′

01′01e
′
10(ϑ)− 2ϑ−1e′01′(ϑ)e′10(ϑ) +

1

12
ϑ−1R[g]

)
.

Equation (10.32) can be regarded as a linear differential equation for e′00′(ϑ)

along the generators of I + with a non-homogeneous term F ′ which consists of
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236 Asymptotics

quantities which are already known along I +. Equation (10.32) is supplemented

by the condition e′00′(ϑ) = κ−1ϑΓ10′00
�� 0 consistent with Equation (10.27). It

follows that

R[g′] � 0. (10.33)

Using the Ricci identity, Equation (8.35b), taking into account the conformal

gauge condition (10.33) and the conditions on the spin connection coefficients,

gives for the values AA′ = 11′ , BB′ = 10′ and CD = 00 a homogeneous ordinary

differential equation for Γ′
10′00 along the generators of I +. Observing the initial

condition (10.27) the latter implies that Γ′
10′00 � 0. Finally, a further use of the

Ricci identities gives Φ′
12 = Φ21 � 0.

The construction of the previous paragraphs is rounded up with the introduc-

tion of adapted coordinates. On the fiduciary cut C� ≈ S2 one chooses some

coordinates θ = (θA) A = 2, 3 and extends them along I + by requiring them

to be constant along the null generators. On the hypersurfaces Nu′ transverse

to I + it is natural to identify an affine parameter r′ of the null generators of

these hypersurfaces in such a way that e′00′(r′) = 1 and r′ � 0. The coordinates

θ = (θA) are propagated off I + in such a way that they are constant along

the generators of Nu′ . As a result of this construction one obtains Bondi

coordinates x = (u′, r′, θA) in the neighbourhood U of I +.

Summary of the construction

The lengthy construction in this section can be summarised in the following

proposition (for ease of presentation the ′ in the objects associated to the

improved adapted frame has been dropped from the expressions):

Proposition 10.1 (the NP gauge at I +) Let (M̃, g̃) denote an asymptoti-

cally simple spacetime. Locally, it is always possible to find a conformal extension

(M, g,Ξ) for which

R[g] � 0

and an adapted frame {eAA′} such that the associated spin connection coeffi-

cients ΓAA′BC satisfy

Γ00′BC � 0, Γ11′BC � 0,

Γ01′11 � 0, Γ10′00 � 0, Γ10′11 � 0

Γ̄1′00′1′ + Γ01′01 � 0.

In addition, one has that

Φ12 � 0, Φ22 � 0,

and e00′(Ξ) is constant on I +.
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10.3 The Newman-Penrose gauge 237

A quick inspection reveals that in the gauge associated to Proposition 10.1

the only non-zero spin connection coefficients on I + are given by Γ01′00, Γ00′01

and Γ10′01 which in standard NP notation correspond, respectively, to σ, α, β.

On I + the connection coefficients α and β satisfy α + β̄ � 0 and describe,

essentially, the connection of the intrinsic metric of the cuts of I +; that is,

the connection of the standard metric of S2, σ. The remaining spin connection

coefficient, σ = Γ01′00, encodes the (non-trivial) dynamical degrees of freedom

in the set up. Its relation with the notion of gravitational radiation will be

briefly explored in the next subsection.

10.3.2 The radiation field and the news function

To explore the relation between the spin connection coefficient σ and the notion

of gravitational radiation it is convenient to expand the Ricci, Cotton and Bianchi

identities – that is, the conformal field Equations (8.35b), (8.37a) and (8.37b) – in

terms of the gauge given by Proposition 10.1. An inspection of the components

of the Ricci identity not used in the derivation of the NP gauge, taking into

account that ΨABCD � 0, provides the relations

Φ00 � −σσ̄, Φ01 � −ð̄σ, Φ02 � −σ̇,

where ˙ denotes differentiation with respect to the retarded time u. In addition,

one also finds

Φ11 � δα− δ̄β + 4αβ.

As α and β describe the Levi-Civita connection of the standard metric of S2, it

can be readily verified that Φ11 corresponds, essentially, to the curvature of S2 –

recall that in two-dimensional manifolds the curvature is encoded in the Ricci

scalar.

The relation between σ and the components of the rescaled Weyl tensor can

be established by inspection of the Bianchi identity (8.37b) at I +. Choosing,

for convenience Ξ so that e00′(Ξ) � −1, one finds that

φ4 � −¨̄σ, φ3 � −ð ˙̄σ.

Moreover, one also obtains the constraint

φ2 + σ ˙̄σ + ð2σ̄ � φ̄2 + σ̄σ̇ + ð̄2σ.

In view of the Peeling theorem, Theorem 10.4, the component φ4 describes

the leading term of the gravitational field – the so-called radiation field or

outgoing field . In particular, if ˙̄σ is constant along I + one has that φ4 � 0,

φ3 � 0, and one interprets this situation as describing the absence of gravitational

radiation – that is why ˙̄σ is sometimes called the news function . The

component φ2 is interpreted as describing the Coulomb part of the gravitational

field while φ1 and φ0 are associated with incoming radiation ; see Szekeres

(1965).
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238 Asymptotics

10.4 Other aspects of asymptotics

The present chapter provides a minimalistic account of the theory of asymptotics

of the gravitational field. A detailed account would go beyond the scope of this

book. It is, nevertheless, of interest to briefly highlight certain topics.

10.4.1 The Bondi mass

The analysis of the asymptotics of the gravitational field allows one to describe

in a rigorous manner the loss of energy of an isolated system due to gravitational

radiation. This physical process is described in terms of the so-called Bondi mass;

see Trautman (1958), Bondi et al. (1962), Sachs (1962b) and also Penrose (1965).

In terms of the notation introduced in this chapter, the Bondi mass mB over

a cut C of I + is given by the surface integral

mB ≡ −1

2

∫
C

(
φ2 + σ ˙̄σ

)
dS.

A concise deduction of the above expression can be found in Stewart (1991).

Moreover, it can be shown that under suitable assumptions mB ≥ 0; see

Ludvigsen and Vickers (1981, 1982). A further calculation renders that

ṁB = −1

2

∫
C

|σ̇|2dS ≤ 0.

The above inequality is called the Bondi mass-loss formula and encodes the

loss of mass of an isolated system due to the energy that is carried away by

(outgoing) gravitational radiation.

10.4.2 The Bondi-Metzner-Sachs group

As already mentioned, one of the central objectives of the theory of asymptotics

of the gravitational field is to identify universal structures in a wide class of

spacetimes and, in turn, use these to extract physical insight into the behaviour

of isolated systems in general relativity. An example of this type of universal

structures is given by the so-called Bondi-Metzner-Sachs (BMS) group;

see Sachs (1962a), Bondi et al. (1962)and Newman and Penrose (1966).

In what follows let (u, r, θA) denote a Bondi coordinate system defined in

a neighbourhood of the future null infinity I + of an asymptotically simple

spacetime. The BMS group is defined by the following transformations on the u

and θ = (θA) coordinates:

u′ = K(θ)
(
u− α(θ)

)
, (10.34a)

θ′A = θ′A(θ2, θ3), (10.34b)

where the map (θA) �→ (θ′A) is a conformal transformation of S2 onto itself, and

K(θ) is the associated conformal factor so that

σ′ = K2σ,

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core
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and where α(θ) is an arbitrary smooth real function on S2. The particular

BMS transformations for which θ′A = θA are called supertranslations. Under

a supertranslation, the system of null hypersurfaces Nu• with u• constant is

transformed into a different system Nu′
• . Expanding the function α(θ) in terms

of spherical harmonics Ylm – see the Appendix to this chapter – one finds that

α(θ) =
∞∑
l=0

l∑
m=−l

alm Ylm,

with alm ∈ C. Thus, the supertranslations are an infinite-dimensional subgroup

of the BMS group. The particular (four-dimensional) case for which alm = 0 for

l > 2 is called the translations subgroup.

Generic asymptotically simple spacetimes do not possess Killing vectors – in

the conformal picture Killing vectors of the physical spacetime correspond to

conformal Killing vectors . The BMS group arises from a notion of asymptotic

symmetries which ensures the existence of non-trivial solutions for generic

spacetimes, that is, a diffeomorphism ϕ : I + → I + satisfying the conditions

ϕ∗q = ϑ2q, ϕ∗N = ϑ−1N , (10.35)

for some function ϑ > 0 and where the tensor fields q and N are as given

in Section 10.1.2. It can be verified that the BMS transformations (10.34a)

and (10.34b) satisfy the conditions in (10.35) with K = ϑ. A particular type

of asymptotic symmetries corresponds to those generated by an asymptotic

Killing vector , that is, a field ξ on I + satisfying the conditions

£ξq = 2ϑq, £ξN = −ϑN .

Given an asymptotically simple spacetime (M̃, g̃) endowed with a Killing

vector ξ̃, let (M, g,Ξ) denote a conformal extension thereof. Given that 0 =

£ξ̃g̃ = £ξ̃(Ξ
−2g), it follows that

£ξ̃ g = 2
(
Ξ−1ξ̃(Ξ)

)
g, (10.36)

for Ξ �= 0, so that ξ̃ is a conformal Killing vector of g on M̃. Since this vector

is determined by the smooth metric g, it extends smoothly to I + as a vector

ξ. Now, the left-hand side of Equation (10.36) extends smoothly to I +, and,

therefore, the right-hand side does so too. It follows that

ξ(Ξ) = α′Ξ, (10.37)

with α′ a smooth function such that α = O(Ξ0) so that ξ is tangent to I +.

From Equation (10.36) one concludes that

£ξq = 2α′q, £ξN = −α′N .

Accordingly, any Killing vector of (M̃, g̃) admits a unique extension to a

vector on I + and which defines an asymptotic Killing vector. The maximum
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240 Asymptotics

number of linearly independent Killing vectors in a four-dimensional manifold

is 10. Accordingly, Killing vectors can give rise, at most, to 10 asymptotic

Killing vectors. By means of a direct calculation, it is possible to show that

the function α′ in Equation (10.37) and the function α appearing in (10.34a)

are the same. Thus, the BMS transformations (10.34a) and (10.34b) are

asymptotic symmetries. In particular, the translations subgroup can be put in

correspondence with the asymptotic Killing vectors arising from translations in

the Minkowski spacetime.

For further details on the structure and properties of the BMS group, see, for

example, Penrose and Rindler (1986) and Schmidt et al. (1975). A discussion

of the properties of Killing vectors in asymptotically simple spacetimes can be

found in Ashtekar and Xanthopoulos (1978) and Ashtekar and Schmidt (1980).

10.4.3 Newman-Penrose constants

In Newman and Penrose (1965) – see also Newman and Penrose (1968) and

Penrose and Rindler (1986) – it has been shown that in an asymptotically simple

spacetime (M̃, g̃) there exists a set of ten quantities defined as integrals over

cuts of null infinity which are absolutely conserved in the sense that their value

is independent of the particular cut C on which they are evaluated – the so-

called Newman-Penrose constants. In terms of the adapted frame {eAA′}
of Proposition 10.1 these constants are given by

Gm ≡
∫

C
2Ȳ2me00(φ0)dS, m = −2, . . . , 2,

where 2Y2m is a spin-weighted spherical harmonic; see the Appendix to

this chapter. A discussion of the relation between the above expression and the

original formula of Newman and Penrose can be found in Friedrich and Kánnár

(2000a).

There exists no general consensus about the physical meaning or interpretation

of the Newman-Penrose constants. An explicit computation for stationary

spacetimes shows that they are of the form

(mass)× (quadrupole)− (dipole)2;

see, for example, Bäckdahl (2009). Evaluations of the Newman-Penrose space-

times for dynamic spacetimes can be found in Friedrich and Schmidt (1987) and

Friedrich and Kánnár (2000a). In particular, in the former reference it is shown

that for spacetimes possessing a conformal extension which includes the points

i+ and i− the Newman-Penrose constants correspond, essentially, to the value of

the rescaled Weyl spinor φABCD at those points. Electrovacuum asymptotically

simple spacetimes have a suitable generalisation of these absolutely conserved

constants; see Exton et al. (1969).
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10.5 Further reading

An excellent introduction to the theory of asymptotics of the gravitational field

is given in Stewart (1991) where the subject is called “asymptopia”. A related

account can be found in Penrose and Rindler (1986). A convenient entry point to

the extensive literature on the subject can be found in the review of Frauendiener

(2004). A detailed discussion of the ideas and general philosophy behind the

treatment of the asymptotics of the gravitational field by means of conformal

methods can be found in Geroch (1976). Accounts similar in spirit to the latter

can be found in Ashtekar (1980, 1987). A slightly different perspective on the

subject can be found in Friedrich (1992); see also Friedrich (1998a, 1999). A

recent review on the subject of asymptotics is given in Ashtekar (2014).

Appendix: spin-weighted functions

Let {o, ι} denote a spinorial dyad defined on a spacetime (M, g) and let

{l,n,m, m̄} denote the associated null tetrad. As discussed in Section 3.1.10, the

null vectors m and m̄ span a spacelike subspace of T (M) which is orthogonal to

both l and n. Of particular interest is the case when this subspace corresponds

to the tangent bundle of a compact two-dimensional submanifold C of M. In

the following it is assumed that this is the case. From the expression

g = l⊗ n+ n⊗ l−m⊗ m̄− m̄⊗m

of the metric g in terms of the null tetrad, it follows that the intrinsic metric σ

induced by g on C is given by

σ = −m⊗ m̄− m̄⊗m.

There is a certain gauge freedom in the above expression since spin-boosts of

the form

o �→ e
1
2 ico, ι �→ e−

1
2 icι, (10.38)

with arbitrary c ∈ R which imply the transition

m �→ eicm, m̄ �→ e−icm̄,

leave the metric σ unchanged.

Given a spinor ηA1···AnA′
1···A′

m
of valence n +m, it is natural to consider the

behaviour of its components with respect to the dyad {o, ι} under the spin boost

(10.38). For example, given p, q, r, t ∈ N such that p + q = n, r + t = m, the

scalar

η ≡ ηA1···ApB1···BqA′
1···A′

rB
′
1···B′

t
oA1 · · · oApιB1 · · · ιBq ōA

′
1 · · · ōA′

r ῑB
′
1 · · · ῑB′

t

(10.39)

has a transformation given by

η �→ e
1
2 i(p+t−q−r)ϑη.
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242 Asymptotics

One says, then, that η has spin weight s = 1
2 (p+t−q−r). The spin weight of all

the possible components of ηA1···AnA′
1···A′

m
lies in the range −m−n ≤ s ≤ m+n.

In what follows, we adopt the standard Newman-Penrose conventions to denote

the directional covariant derivatives with respect to m and m̄ and let δ ≡ ma∇a,

δ̄ ≡ m̄a∇a. Generically, the directional derivatives δ and δ̄ acting on a spin-

weighted scalar do not give rise to scalars with a well-defined spin weight. To

amend this deficiency it is convenient to define operators ð and ð̄ which, acting

on scalars with a given spin weight, give rise to new scalars with a well-defined

spin weight. Given the spin-weighted scalar η of Equation (10.39), the action of

ð and ð̄ is defined to be

ðη ≡ oA1 · · · oApιB1 · · · ιBq ōA
′
1 · · · ōA′

r ῑB
′
1 · · · ῑB′

t

× δ(η ιA1
· · · ιAp

oB1
· · · oBq

ῑA′
1
· · · ῑA′

r
ōB′

1
· · · ōB′

t
), (10.40a)

ð̄η ≡ oA1 · · · oApιB1 · · · ιBq ōA
′
1 · · · ōA′

r ῑB
′
1 · · · ῑB′

t

× δ̄(η ιA1
· · · ιAp

oB1
· · · oBq

ῑA′
1
· · · ῑA′

r
ōB′

1
· · · ōB′

t
). (10.40b)

The operators ð and ð̄ are complex conjugates of each other in the sense that

ðη = ð̄η̄. If the scalar η has spin weight s, one can verify that ðη and ð̄η have,

respectively, spin weights s + 1 and s − 1. Furthermore, ðη and ð̄η satisfy the

Leibnitz rule. In order to obtain alternative expressions for ðη and ð̄η let

α ≡ oAδ̄ιA = ιAδ̄oA, β ≡ oAδιA = ιAδoA,

consistent with standard Newman-Penrose notation. Expanding (10.40a) and

(10.40b) and using the above definitions one obtains

ðη = (−1)p+r (δη + ((q − p)β + (t− r)ᾱ) η) ,

ð̄η = (−1)p+r
(
δ̄η +

(
(q − p)β̄ + (t− r)α

)
η
)
.

A computation with the above expressions shows that

(ð̄ð− ðð̄)η = sη.

The above expressions are convenient for the discussion of spin-weighted

harmonics. In terms of standard spherical harmonics Ylm, these are given by

0Ylm ≡ Ylm,

and for s �= 0

sYlm ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)s

√
2s(l − s)!

(l + s)!
ðsYlm 0 < s ≤ l√

(l + s)!

2s(l − s)!
ð̄−sYlm −l ≤ s < 0

0 otherwise;

see, for example, Stewart (1991) for further discussion.

Of special relevance for Theorem 10.3 is the following result:
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10.5 Further reading 243

Lemma 10.1 Assume C to be diffeomorphic to S2 and let η denote a smooth

scalar on C having spin weight s. If ðη = 0 and s < 0, then η = 0. Similarly, if

ð̄η = 0 and s > 0, then η = 0.

Proofs of this result can be found in Penrose and Rindler (1984) and Stewart

(1991). Remarkably, the result depends on the topology (genus) of C ; see

Frauendiener and Szabados (2001). For example, the above result is not valid

for surfaces diffeomorphic to the 2-torus S × S. It is of interest to point out

that Lemma 10.1 is equivalent to the statement that there exist no non-zero

symmetric trace-free, divergence-free, rank 2 tensor fields on S2; see Beig (1985)

and Frauendiener and Szabados (2001).
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Part III

Methods of the theory of partial
differential equations

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


11

The conformal constraint equations

This chapter analyses the intrinsic equations implied by the conformal Einstein

field equations on non-null hypersurfaces. These equations are known as the con-

formal constraint equations. They play an essential role in the construction

of initial data sets for the conformal field equations and in the identification of

boundary conditions. Not surprisingly, these conformal constraint equations are

closely related to the standard Einstein constraint equations – consequently,

this chapter starts by considering the properties of the latter.

The solvability and behaviour of solutions to the conformal constraint

equations is closely related to the nature of the underlying three-dimensional

manifold on which the equations are imposed. As a consequence, this chapter

also provides a discussion of general properties of asymptotically Euclidean and

asymptotically hyperboloidal 3-manifolds from a conformal point of view. The

systematic analysis of the constraint equations relies on methods of elliptic

partial differential equations. Hence, this chapter provides a discussion of some

of the basic notions of this theory.

An important aspect of the conformal constraint equations – the so-called

propagation of the constraints – is discussed in Chapter 13. The analysis of the

constraint equations on null hypersurfaces is treated in Chapter 18.

11.1 General setting and basic formulae

Let (M̃, g̃) denote a spacetime satisfying the Einstein field equations. In what

follows, it will be assumed that (M̃, g̃) can be conformally extended to an

unphysical spacetime (M, g). Accordingly, there exists an embedding φ : M̃ →
M and a conformal factor Ξ such that φ∗g = Ξ2g̃. Now, let S̃ denote a three-

dimensional submanifold of M̃ and let ϕ : S̃ → M̃ denote the associated

embedding. As the composition φ ◦ ϕ : S̃ → M is also an embedding, the

three-dimensional manifold S̃ can be regarded, in turn, as a submanifold of M.

As discussed in Section 2.7.3, the spacetime metric g̃ induces a metric h̃ on S̃ via
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248 The conformal constraint equations

h̃ = ϕ∗g̃. Similarly, regarding S̃ as a hypersurface on M, the unphysical metric

g also induces a metric h via the pull-back h = (φ ◦ ϕ)∗g. A calculation shows

that

h = (φ ◦ ϕ)∗g = (ϕ∗ ◦ φ∗)g = ϕ∗(Ξ2|S̃ g̃) = Ω2ϕ∗g̃

where Ω ≡ Ξ2|S̃ is the restriction of Ξ to the hypersurface S̃. Following the

conventions of previous chapters, h = Ω2ϕ∗g̃ will often be written as

h = Ω2g̃.

Now, let ν̃ and ν denote, respectively, the g̃-unit and g-unit normals of S̃ and

define

ε ≡ g̃(ν̃, ν̃) = g(ν,ν).

In accordance with the signature convention (+ − −−), the hypersurface S̃ is

spacelike if ε = 1 and timelike if ε = −1. It follows that

ν = Ξν̃, ν� = Ξ−1ν̃�

or, using index notation, νa = Ξν̃a and νa = Ξ−1ν̃a. In what follows, the indices

of objects in M̃ are raised/lowered using the metric g̃, while the indices of objects

on M are moved using g.

11.1.1 The transformation formulae for the extrinsic curvature

Having discussed the relation between the 3-metrics and the unit normals to S̃,
one is in the position to consider the relation between the extrinsic curvatures

K̃ and K. Given spatial vectors u, v ∈ T (S̃) – so that 〈ν̃,u〉 = 〈ν̃,v〉 = 0 – one

has that

K̃(u,v) = 〈∇̃uν̃,v〉, K(u,v) = 〈∇uν,v〉;

see Equation (2.43). Recalling that ∇− ∇̃ = S(Υ) one readily has that

∇uν = ∇̃uν − S(Υ,ν;u);

the minus sign arises from the fact that ν is a covector. In abstract index notation

S(Υ,ν;u) is given by Sab
cdΥcνdu

b from where a short calculation gives that

Sab
cdΥcνdu

b = Sab
cd∇̃cΞν̃du

b,

= ∇̃bΞν̃au
b − g̃abu

bg̃cd∇̃cΞν̃d

= (uc∇̃cΞ)ν̃a − ΞΣg̃acu
c,

where

Σ ≡ gab∇aΞνb = g�(dΞ,ν) = Ξ−1g̃�(dΞ, ν̃)
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11.1 General setting and basic formulae 249

is the derivative of Ξ in the direction of the g-unit normal to S̃. Accordingly, one
has that

S(Υ,ν;u) = u(Ξ)ν̃ − ΞΣg̃(u, ·),

from where, recalling that u, v ∈ T (S̃) so that g̃(u,v) = h̃(u,v), it follows that

K(u,v) = 〈∇̃uν,v〉 − u(Ξ)〈ν̃,v〉+ΩΣ〈g̃(u, ·),v〉

= Ω〈∇̃uν̃,v〉+ΩΣh̃(u,v)

= Ω
(
K̃(u,v) + Σh̃(u,v)

)
,

where to pass from the first to the second line it has been used that 〈ν̃,v〉 = 0

as T (S̃).
Summarising, the calculations in the previous paragraphs show that

hij = Ω2h̃ij , (11.1a)

Kij = Ω
(
K̃ij +Σh̃ij

)
. (11.1b)

These are the basic transformation formulae for the remainder of this chapter.

Taking the trace of the transformation formula for the extrinsic curvature,

Equation (11.1b), it follows that

ΩK = K̃ + 3Σ,

where K̃ ≡ h̃ijK̃ij and K ≡ hijKij – these scalars are sometimes called,

respectively, the physical and unphysical mean curvature of S̃ . The scalars

Σ, K admit a geometric interpretation: if Σ = K = 0, then, necessarily, K̃ = 0

and the hypersurface S̃ is maximal in M̃ with respect to both the metrics g̃

and g – that is, it encloses a maximum volume for a given area.

11.1.2 Decompositions in electric and magnetic parts

A key ingredient in the analysis of the conformal constraint equations is the

decomposition in electric and magnetic parts of tensors with antisymmet-

ric pairs of indices. Let S denote a hypersurface on a spacetime (M, g), and let

ν denote the unit normal to the hypersurface. The projector to S is the tensor

ha
b given by

ha
b ≡ δa

b − ενaν
b.

It follows that

ha
bνb = 0, ha

bhb
c = ha

c.

Furthermore, using the properties of the spacetime volume form εabcd – see

Section 2.5.3 – one can deduce that

ha
[chb

d] = −1

2
εabeε

cde, (11.2)
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250 The conformal constraint equations

where εabe ≡ εfabeν
f is the three-dimensional volume form.

Now, let Fab denote an antisymmetric tensor of rank 2 and let F ∗
ab ≡

− 1
2εab

cdFcd denote its Hodge dual. Its electric andmagnetic parts are defined,

respectively, to be

Fa ≡ Fcbν
bha

c, F ∗
a ≡ F ∗

cbν
bha

c.

It can be verified that

Faν
a = F ∗

a ν
a = 0, ha

bFb = Fa, ha
bF ∗

b = F ∗
a ,

so that the electric and magnetic parts are said to be spatial tensors. Together,

Fa and F ∗
a encode the same information as the original tensor Fab. In order to

see this, one writes

Fab = Fcdδa
cδb

d = Fcd(ha
c + ενaν

c)(hb
d + ενbν

d)

= Fcdha
chb

d + εFcdha
cνbν

d + εFcdhb
dνaν

c

= 2εF[aνb] + Fcdha
chb

d. (11.3)

The term Fcdha
chb

d is, in turn, manipulated using the identity (11.2) as follows:

Fcdha
chb

d = Fcdha
[chb

d] = −1

2
Fcdε

fcdeνf εabe

= F ∗
efν

f εab
e = F ∗

e εab
e. (11.4)

Thus, combining Equations (11.3) and (11.4), one concludes that

Fab = 2εF[aνb] + F ∗
e ε

e
ab.

The decomposition in electric and magnetic parts can be extended to tensors

Wabcd with the same symmetries as the Weyl tensor; such tensors are sometimes

known as Weyl candidates. By analogy to the rank-2 case one defines the

ν-electric and ν-magnetic parts of Wabcd to be

Wac ≡ Webfdν
bνdha

ehc
f , W ∗

ac ≡ W ∗
ebfdν

bνdha
ehc

f ,

with W ∗
abcd ≡ − 1

2εcd
efWabef denoting the right Hodge dual of Wabcd. In the

subsequent discussion it is convenient to consider

Wabc ≡ Wefghν
fha

ehb
ghc

h.

It can be verified that

W ∗
ab = −1

2
Wacdεb

cd.
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11.1 General setting and basic formulae 251

As in the rank-2 case, the tensors Wab and W ∗
ab (or, alternatively, Wab

and Wabc) encode the same information as Wabcd. The argument to show this

equivalence is similar to that of the rank-2 case:

Wabcd = Wefghδa
eδb

fδc
gδd

h

= Wefgh(ha
e + ενaν

e)(hb
f + ενbν

f )(hc
g + ενcν

g)(hd
h + ενdν

h)

= Wefghha
ehb

fhc
ghd

h + εWcabνd − εWdebha
eνc + εWacdνb

+Wacνbνd −Wadνbνc − εWbcdνa −Wbcνaνd +Wbdνaνc. (11.5)

From the definition of the magnetic part W ∗
ab it follows that

Wabc = εebcW
∗
ae. (11.6)

Moreover, using that

εabcε
def = −6δa

[dδb
eδc

f ], (11.7)

it follows that

Wefghha
ehb

fhc
ghd

h =
1

4
Wefghε

efzεabzε
ghxεcdx

= ∗W ∗
rzsxν

rνsεab
zεcd

x = −Wzxεab
zεcd

x

= Wcahbd +Wdbhac −Wcbhad −Wdahbc. (11.8)

Combining Equations (11.5), (11.6) and (11.8) one obtains the desired decom-

position of Wabcd in terms of Wab and W ∗
ab:

Wabcd = 2ε(lb[cWd]a − la[cWd]b)− 2(ν[cW
∗
d]eε

e
ab + ν[aW

∗
b]eε

e
cd), (11.9)

where lab ≡ hab − ενaνb. A similar computation renders

W ∗
abcd = 2ν[aWb]eε

e
cd − 4We[aεb]

e
[cνd] − 4ν[aW

∗
b][cνd] −W ∗

ef ε
e
abε

f
cd. (11.10)

Expressions in terms of an adapted frame

The decomposition discussed in the previous paragraphs acquires a particularly

simple form when supplemented with a frame {ea} adapted to the hypersurface

S. For such a frame, the projection of a particular index with respect to the

normal corresponds to replacement of the corresponding frame index with ⊥
while the spatial part of a tensor is given by the replacement of the spacetime

frame indices a, b, c, . . . with the spatial frame indices i, j , k, . . . In particular,

the three-dimensional volume form satisfies εijk = ε⊥ijk, and the electric and

magnetic parts of the antisymmetric tensor Fab are represented, respectively, by

Fi = Fi⊥, F ∗
i = F ∗

i⊥.
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252 The conformal constraint equations

In the case of the Weyl candidate Wabcd one has that the tensors Wab, W
∗
ab and

Wabc correspond to

Wij = Wi⊥j⊥, W ∗
ij = W ∗

i⊥j⊥, Wijk = Wi⊥jk.

11.2 Basic notions of elliptic equations

Elliptic differential operators arise naturally in the study of the constraint

equations of general relativity on spacelike hypersurfaces. In view of this,

some basic properties of elliptic operators on Riemannian manifolds are briefly

discussed.

Let (S,h) denote a Riemannian three-dimensional manifold with h a negative

definite metric. A linear differential operator of order M over S is a map

between tensor bundles

L : Ti1···iS (S) → Tk1···kN
(S), S, N ∈ N,

of the form

(Lv)k1···kN
≡

M∑
r=0

aj1···jri1···iSk1···kN
Dj1 · · ·Djrvi1···iS , (11.11)

for a smooth vi1···iS ∈ Ti1···iS (S) and where the coefficients aj1···jri1···iSk1···kN

are smooth functions over S. The principal part of L consists of the terms in

Equation (11.11) with the highest order derivatives, that is,

aj1···jM i1···iS
k1···kN

Dj1 · · ·DjM vi1···iS .

Closely related to the principal part is the symbol of L, σL(ξ), defined pointwise

on S, for ξ ∈ T ∗|p(S) as the linear map

σL(ξ) : Ti1···iS |p(S) → Tk1···kN
|p(S),

given by

(σL(ξ)v)k1···kN
≡ aj1···jM i1···iS

k1···kN
ξj1 · · · ξjM vi1···iS .

Observe that the symbol is obtained by the formal replacement of the

derivatives Di �→ ξi in the principal part of the operator. The symbol σL(ξ)

determines the nature of the differential operator. In particular, L is said to

be underdetermined elliptic at p ∈ S if σL(ξ) is surjective for all ξ �= 0;

L is overdetermined elliptic at p ∈ S if σL(ξ) is injective. Finally, L is

elliptic if σL(ξ) is bijective, that is, if it is injective and surjective. If the

coefficients aj1···jri1···iSk1···kN
in the operator (11.11) depend not only on the

point on S but also on the derivatives Dj1 · · ·Djl , l < r, then L is said to
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11.3 The Hamiltonian and momentum constraints 253

be quasilinear. The definitions of (underdetermined, overdetermined) elliptic

differential operators extend in a natural way to the quasilinear case.

The paradigmatic example of an elliptic operator is the Laplace operator of

the metric h:

Δhφ ≡ hijDiDjφ, φ ∈ X(S).

In this case the operator is equal to its principal part. Moreover, its symbol

is given by hijξiξj < 0 for ξi �= 0 (as a consequence of negative-definiteness),

from where it follows that the symbol is a bijection and, hence, Δh is an elliptic

operator. Particular examples of overdetermined and underdetermined elliptic

operators are discussed in Section 11.3.3.

Associated to the differential operator L in (11.11) one has its formal adjoint

L∗ given by

(L∗u)i1···iS ≡
M∑
r=0

(−1)rDj1 · · ·Djr (a
j1···jri1···iS

k1···kN
uk1···kN ),

for smooth uk1···kN ∈ Tk1···kN (S). The above expression comes from the identity

between inner products∫
S
(Lv)k1···kN

uk1···kNdμh =

∫
S
vi1···iS (L

∗u)i1···iSdμh, (11.12)

which is obtained by repeated integration by parts. In the previous expression,

dμh denotes the volume element of h. For simplicity, in the identity (11.12)

it is assumed that S is a compact manifold so that the integrals are well

defined. Important for the subsequent discussion is the fact (verifiable using

the definitions given in the previous paragraphs) that L is an underdetermined

elliptic operator if and only if L∗ is overdetermined elliptic. Moreover, if L is

underdetermined elliptic, then L ◦ L∗ is elliptic.

The interested reader is referred to appendix II in Choquet-Bruhat (2008) for

further details on the theory of elliptic equations. An alternative summary can

be found in the appendix of Besse (2008).

11.3 The Hamiltonian and momentum constraints

Before proceeding to analyse the conformal constraint equations, it is convenient

to discuss the intrinsic equations implied by the Einstein field equations

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab

on a non-null hypersurface of a spacetime (M̃, g̃) – the so-called Einstein

constraint equations.
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254 The conformal constraint equations

11.3.1 Derivation of the Einstein constraint equations

Starting from the Gauss-Codazzi identity, Equation (2.47) and contracting with

h̃ik one obtains

r̃jl + K̃K̃jl − K̃k
jK̃kl = h̃ikR̃ijkl

= ηabR̃ajbl − εR̃⊥j⊥l

= R̃jl − εR̃⊥j⊥l.

Contracting this last equation with h̃jl one finally obtains

r̃ + K̃2 − K̃jlK̃
jl = h̃jlR̃jl − εh̃jlR̃⊥j⊥l

= ηabR̃ab − εR̃⊥⊥ − εηabR̃⊥a⊥b

= R̃− 2εR̃⊥⊥.

Similarly, starting from the Codazzi-Mainardi identity, Equation (2.48), and

contracting with h̃ij one has that

D̃jK̃kj − D̃kK̃ = h̃ijR̃i⊥jk

= ηijR̃i⊥jk = R̃⊥k,

where to pass from the first to the second line one uses that R̃⊥⊥jk = 0.

Using the Einstein field equations in the frame component form

R̃ab −
1

2
ηabR̃+ ληab = T̃ab

one obtains the so-called Einstein constraint equations

r̃ + K̃2 − K̃jlK̃
jl = 2(λ− ε�̃), (11.13a)

D̃jK̃kj − D̃kK̃ = j̃k, (11.13b)

where

�̃ ≡ T̃⊥⊥, j̃k ≡ T̃⊥k

are, respectively, the energy density and the components of the energy flux

vector of the energy-momentum tensor in the direction of ν̃. Equations (11.13a)

and (11.13b) are known, respectively, as the Hamiltonian constraint and

the momentum constraint . The tensorial version of Equations (11.13a) and

(11.13b) is given by

r̃ + K̃2 − K̃jlK̃
jl = 2(λ− ε�̃), D̃jK̃kj − D̃kK̃ = j̃k. (11.14)

Finally, it is observed that in index-free notation the constraint equations can

be written as

r[h̃] + (trh̃K̃)2 − |K̃|2
h̃
= 2(λ− ε�̃), divh̃K̃ − grad trh̃K̃ = j̃.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


11.3 The Hamiltonian and momentum constraints 255

In what follows, a collection (S̃, h̃, K̃, �̃, j̃) such that the negative definite

metric h̃ and the symmetric rank-2 tensor K̃ satisfy the Einstein constraints

(11.14) with ε = 1 on the three-dimensional manifold S̃ will be known as an

initial data set for the Einstein field equations. If �̃ = 0 and j̃ = 0, one speaks

of a vacuum initial data set.

An important class of initial data sets is that for which K̃ = 0 and j̃ = 0, so

that one is left only with the Hamiltonian constraint in the form

r[h̃] = 2(λ− ρ̃).

Such an initial data set is called time reflection symmetric (or time

symmetric for short); it follows from the properties of the Einstein reduced

equations that for this type of initial data one has ∂thαβ = 0 on the initial

hypersurface S̃ so that the resulting solution to the Einstein field equations is

invariant under the replacement t �→ −t.

11.3.2 The conformal Hamiltonian and momentum

constraint equations

Regarding, as in Section 11.1, the three-dimensional manifold S̃ as a hypersurface

on both (M̃, g̃) and (M, g), it follows from a computation using the transfor-

mation rules (11.1a) and (11.1b) together with the transformation rules for the

Ricci scalar, Equation (5.16c), that Equation (11.14) can be reexpressed in terms

of unphysical quantities as:

2ΩDiD
iΩ− 3DiΩD

iΩ+
1

2
Ω2r − 3εΣ2

+
1

2
Ω2
(
K2 −KijK

ij
)
+ 2εΩΣK = λ− εΩ4�, (11.15a)

Ω3Di
(
Ω−2Kik

)
− Ω
(
DkK − 2Ω−1DkΣ

)
= Ω3jk, (11.15b)

where

� ≡ Ω−4�̃, jk ≡ Ω−3j̃k, (11.16)

denote, respectively, the unphysical energy density and the flux vector.

11.3.3 The Hamiltonian and momentum constraint

as an elliptic system

The Einstein constraint Equations (11.14) on a spacelike manifold S̃ (i.e. ε = 1)

have been studied extensively in the literature; see, for example, Bartnik and

Isenberg (2004) for a review of the topic and see also Choquet-Bruhat (2008),

chapter 7, and Choquet-Bruhat and York (1980). In this section an adaptation

of the so-called conformal method of Licnerowicz, Choquet-Bruhat and York

to analyse the conformal Hamiltonian and momentum constraints (11.15a) and

(11.15b) will be discussed; see, for example, York (1971, 1972). This approach
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256 The conformal constraint equations

works directly on a compact unphysical manifold S which is a conformal

extension of the physical manifold S̃. The key idea in this analysis is to show

that these constraint equations imply an elliptic system of equations for suitable

conformal fields. Proceeding in this way, one also obtains an insight into the

nature of the freely specifiable data in the Einstein constraints. The use of a

compact manifold S simplifies some of the technical aspects of the analysis. This

approach to the Einstein constraint equations has been advocated in Friedrich

(1988, 1998c, 2004, 2013), Dain and Friedrich (2001) and Beig and O’Murchadha

(1991, 1994).

Following the discussion of the previous paragraph, let (S,h) denote a compact

Riemannian manifold with h negative definite and set ε = 1 so that S can be

regarded as a spacelike hypersurface of an unphysical spacetime (M, g). In what

follows, for simplicity, it is assumed that the matter fields � and j are known

on S.
The first step to transform Equations (11.15a) and (11.15b) into an elliptic

system is given by the transformation law of the three-dimensional Ricci scalar,

Equation (5.17), which suggests introducing a conformal factor ϑ satisfying

Ω=ϑ−2. By substituting this definition into Equation (11.15a) one finds that

Δhϑ− 1

8
r[h]ϑ =

1

8
(KijK

ij −K2)ϑ+
1

4
(ϑ−3�− ϑ5λ) +

3

4
Σ2ϑ5 − 1

2
ϑ3ΣK,

(11.17)

where, as before, Δh ≡ hijDiDj and the notation r[h] has been used to make

explicit the dependence of the Ricci scalar on the metric h. Following the

standard use in the literature, this equation will be known as the Licnerowicz

equation. If the fields h (and hence r[h]), Kij , K, � and Σ are known, this last

equation can be read as a non-linear elliptic equation determining ϑ. For future

use, it is convenient to define the Yamabe operator Lh : X(S) → X(S) as

Lhϑ ≡ Δhϑ− 1

8
r[h]ϑ, (11.18)

so that Equation (11.17) can be rewritten as

Lhϑ =
1

8
(KijK

ij −K2)ϑ+
1

4
(�− λ)ϑ−3 +

1

2
Σϑ3

(
K − 1

6
ϑ2Σ

)
.

The Yamabe operator has nice conformal transformation properties; see

Equation (11.23) below.

Equation (11.15b) suggests that the extrinsic curvature Kij should be split

into a trace-free part multiplied by a power of the conformal factor and a pure

trace part. In this spirit one writes
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11.3 The Hamiltonian and momentum constraints 257

Kij = ϑ−4ψij +
1

3
Khij , hijψij = 0,

which, substituted into (11.15b), yields

Diψij =
2

3
ϑ6Dj(ϑ

−2K)− 2ϑ−6DjΣ+ jj .

In view of the latter, it is convenient to reintroduce the physical trace K̃ = ΩK =

ϑ−2K so that one obtains

Diψij =
2

3
ϑ6DjK̃ − 2ϑ−4DjΣ+ jj . (11.19)

This last equation is to be read as an equation for the trace-free tensor ψij . If

K̃ is a constant and Σ = 0, then Equations (11.17) and (11.19) decouple.

Following the discussion of Section 11.2 it can be verified that the principal part

of Equation (11.19) is underdetermined elliptic. To transform Equation (11.19)

into an elliptic equation one makes use of a so-called York splitting ; see York

(1973). One considers an ansatz for ψij of the form

ψij = Diςj +Djςi −
2

3
hijDkς

k + ψ′
ij , (11.20)

where ςi is some covector on S and ψ′
ij is a freely specifiable symmetric and

trace-free tensor. The operator (Lhς)i defined by

(Lhς)i ≡ Diςj +Djςi −
2

3
hijDkς

k,

is called the conformal Killing operator . It can be verified to be the

formal adjoint of the divergence operator acting on symmetric trace-free tensors.

Substituting the ansatz (11.20) into Equation (11.19) one obtains

Δhςj +DiDjςi −
2

3
DjDkς

k =
2

3
ϑ6DjK̃ − 2ϑ−4DjΣ+ jj −Diψ′

ij . (11.21)

The symbol of this equation can be seen to be

(σdiv◦L(ξ)ς)j = ξiξiςj + ξiξjςi −
2

3
ξjξ

kςk.

Contracting with ξj one immediately finds that

(σdiv◦L(ξ)ς)jξ
j = (ξiξ

i)(ςkς
k) +

1

3
(ςiξ

i)2 > 0 for ξi, ςj �= 0.

Thus, it follows that (11.21) is a linear elliptic equation for the covector ςi.

The freely specifiable data for this equation is the symmetric trace-free tensor

ψ′
ij . As in the case of Equation (11.19) it decouples from the Licnerowicz

Equation (11.17) if K̃ is constant and Σ = 0. The analysis of the coupled system

(11.17)–(11.19) is much more challenging; see, for example, Holst et al. (2008a,b).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


258 The conformal constraint equations

Gauge freedom

The conformal method described in the previous paragraphs has a conformal

gauge freedom. More precisely, if φ is a positive function on S, then a direct

computation shows that the transitions

hij �→ φ4hij , ψij �→ φ−2ψij , Ω �→ φ2Ω, Kij �→ φ2Kij , (11.22a)

Σ �→ φ2Σ, � �→ φ−8�, ji �→ φ−6ji, (11.22b)

yield another solution to the conformal constraint Equations (11.15a) and

(11.15b) with the same physical data (h̃, K̃). This gauge freedom can be

exploited to simplify certain specific computations. In particular, letting

h′ =φ4h, a calculation using the transformation laws for conformal transfor-

mations shows that

φ−5
(
Δh − 1

8
r[h]
)
ϑ =

(
Δh′ − 1

8
r[h′]

)
(φ−1ϑ), (11.23)

that is,

φ−5Lh[ϑ] = Lh′(φ−1ϑ).

11.3.4 The Yamabe problem

A classic question of Differential Geometry is the so-called Yamabe problem

which, given a compact three-dimensional Riemannian manifold (S,h), asks

whether it is possible to conformally rescale the (smooth) metric h to a metric

with constant Ricci scalar; see Yamabe (1960). This problem requires finding a

positive conformal factor ω and a constant r• satisfying the equation

Δhω =
1

8
(r[h]ω − r•ω

5), (11.24)

which follows from the transformation equation for the three-dimensional Ricci

scalar Equation (5.17). The Yamabe problem has been solved in the affirmative;

see Trudinger (1968), Aubin (1976) and Schoen (1984). In particular, one has

the following (e.g. Lee and Parker (1987); O’Murchadha (1988)):

Theorem 11.1 (resolution of the Yamabe problem) Let h be a smooth

Riemannian metric on a compact manifold S. There exists a smooth, positive

definite function ω on S such that r[ω4h] is constant.

Theorem 11.1 allows the classification of Riemannian metrics according to

whether they can be rescaled to a metric with constant Ricci scalar which is

positive, negative or zero – a given metric h cannot be rescaled to two different

metrics with constant curvature of different signs. Thus, the resulting Yamabe

classes are conformal invariants. As will be seen in Section 11.5, this observation

plays a role in the construction of initial data sets on compact manifolds.

Remarkably, the analogous Yamabe problem on non-compact manifolds turns
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11.4 The conformal constraint equations 259

out not to be true as shown by a number of counterexamples; see, for example,

Zhiren (1988).

11.4 The conformal constraint equations

Having analysed the standard Einstein constraint equations, focus is now on the

constraint equations implied by the conformal Einstein field equations. These

equations can be regarded as an extension of the conformal Hamiltonian and

momentum constraints (11.15a) and (11.15b).

11.4.1 The derivation of the equations

In this section the frame version of the conformal Einstein field equations,

Equations (8.32a) and (8.32b), are considered. By making use of an orthonormal

frame adapted to the geometry of the hypersurface under consideration, as

described in Section 2.7.3, the split of the equations follows almost directly.

In what follows, let (M, g) denote an unphysical spacetime and let S denote a

hypersurface thereof. As in Section 11.1.1, let Σ denote the covariant derivative

in the direction of the g-unit normal. The evaluation of a spacetime frame index

in the direction of the unit normal (i.e. the values 0 or 3 depending on the causal

character of S) will be indicated by the symbol ⊥.

The constraints implied by Zab. Given

Zab ≡ ∇a∇bΞ + ΞLab − sηab −
1

2
Ξ3T{ab}, (11.25)

the information of the conformal equation Zab = 0 which is intrinsic to the

hypersurface S is encoded in the components

Zij = 0, Z⊥i = 0. (11.26)

In order to obtain explicit intrinsic expressions for these equations it is observed

that

∇a∇bΞ ≡ ea
aeb

b∇a∇bΞ = ea(eb(Ξ))− Γa
c
bec(Ξ).

Hence, in particular, one has that

∇i∇jΞ = ei(ej(Ξ))− Γi
c
jec(Ξ)

= ei(ej(Ξ))− Γi
k
jek(Ξ)− Γi

⊥
je⊥(Ξ)

= ei(DjΞ)− γi
k
jDkΞ + εKijΣ

= DiDjΞ + εKijΣ, (11.27)
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260 The conformal constraint equations

where, in the last term of the last line, Equation (2.45) for the extrinsic curvature

has been used. A similar computation shows that

∇i∇⊥Ξ = ei(e⊥(Ξ))− Γi
c
⊥ec(Ξ)

= ei(Σ)− Γi
k
⊥ek(Ξ)− Γi

⊥
⊥Σ

= DiΣ− εKi
kDkΞ, (11.28)

where, in the third line, it has been used that Γa
⊥⊥ = 0 as a consequence of the

metricity of the connection and the fact that Ki
k = Γi

k⊥.

Substituting the above expressions into Equation (11.26) and taking into

account definition (11.25) one obtains the constraint equations

DiDjΩ = −εKijΣ− ΩLij + shij +
1

2
Ω

(
Tij −

1

4
Thij

)
,

DjΣ = Kj
kDkΩ− ΩLj +

1

2
Ω3jj ,

where

Li ≡ Li⊥, Ω ≡ Ξ|S .

The constraints implied by Za. Given

Za ≡ ∇as+ Lac∇cΞ− 1

2
Ξ2∇cΞT{ac} −

1

6
Ξ3∇cT{ca}, (11.29)

the intrinsic information of the equation Za = 0 is encoded in the components

Zi = 0. (11.30)

Now, the spatial components of the term Lab∇bΩ in Equation (11.29) can be

expanded as

Lib∇bΩ = Libη
ba∇aΩ

= Li⊥η⊥⊥∇⊥Ω+ Likη
kl∇lΩ

= εLiΣ+ LikD
kΩ.

By similar arguments one concludes that

∇cΞT{ic} = εΣji − TikD
kΩ− 1

4
DiT,

∇cT{ic} = ε∇⊥ji +DkTki −
1

4
DiT.

It is important to observe in ∇cT{ic} the presence of the term ∇⊥ji which

requires further information about the matter model in order to be cast in a

form intrinsic to the hypersurface S. In the case of trace-free matter, one has

that ∇cT{ic} = 0, so that no further considerations are required.
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11.4 The conformal constraint equations 261

From the discussion in the previous paragraphs it follows that Equation (11.30)

can be reexpressed as

Dis = −εLiΣ− LikD
kΩ+

1

2
Ω2
(
εΣji − TikD

kΩ− 1

4
DiT

)
+

1

6
Ω3
(
ε∇⊥ji +DkTki −

1

4
DiT

)
.

The constraints implied by Δcdb. Given

Δcdb ≡ ∇cLdb −∇dLcb −∇aΞd
a
bcd − ΞTcdb, (11.31)

the information intrinsic to the hypersurface S of the conformal equation

Δcdb = 0 is encoded in the components

Δijk = 0, Δij⊥ = 0. (11.32)

A calculation similar to that leading to Equations (11.27) and (11.28) yields

∇iLjk = DiLjk + εKikLj ,

∇iLj = DiLj +Ki
kLkj .

Given the components dabcd of the rescaled Weyl tensor with respect to the

adapted frame {ea}, it is convenient to define

dij ≡ di⊥j⊥, dijk ≡ di⊥jk.

Following the discussion of Section 11.1.2, dij corresponds to the components of

the electric part of the rescaled Weyl tensor, while dijk encodes the information

of the magnetic part. It can be verified that

dij = dji, dii = 0, dijk = −dikj , d[ijk] = 0, (11.33a)

dijkl = 2(hi[kdl]j + hj[ldk]i). (11.33b)

It follows from the latter expressions, together with (11.31), that the

constraints (11.32) can be reexpressed as

DiLjk −DjLik = −εΣdijk +DlΩdlkij − ε(KikLj −KjkLi) + ΩTijk,

DiLj −DjLi = DlΩdlij +Ki
kLjk −Kj

kLik +ΩJij ,

where

Jjk ≡ Tjk⊥.

The constraints implied by Λbcd. Given

Λbcd ≡ ∇ad
a
bcd − Tcdb,
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262 The conformal constraint equations

as a consequence of the decomposition of the Weyl tensor in electric and magnetic

parts, it follows that the information of the equation Λbcd = 0 which is intrinsic

to the hypersurface S is contained in the components

Λ⊥ij = 0, Λ⊥j⊥ = 0. (11.34)

Observing that

∇adaijk = ηab
(
ea(dbijk)− Γa

c
bdcijk − Γa

c
idbcjk − Γa

c
jdbick − Γa

c
kdbijc

)
,

one concludes, by arguments similar to those used to obtain Equations (11.27)

and (11.28), that

∇ad
a
⊥jk = Didijk + ε(Ki

kdji −Ki
jdki),

∇ad
a
⊥j⊥ = Didij −Kikdijk.

It follows from the previous discussion that the constraint Equations (11.34) can

be reexpressed as

Didijk = ε(Ki
jdki −Ki

kdji) + Jjk,

Didij = Kikdijk + Jj ,

where

Jjk ≡ Tjk⊥, Jj ≡ Tj⊥⊥.

The explicit form of Jjk and Jj depends on the matter model under considera-

tion. In the case of the electromagnetic field, they can be expressed in terms of the

electric and magnetic parts of the Faraday tensor and their spatial derivatives.

The constraint Z = 0. Recall that

Z ≡ 6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T − λ.

As discussed in Section 8.2.4 the equation Z = 0 is, in fact, a constraint

equation whose propagation is ensured by the other conformal field equations;

see Lemma 8.1. Following the procedure employed in the decomposition of the

other conformal equations, it can be expressed in terms of quantities intrinsic to

the hypersurface S as

λ = 6Ωs− 3εΣ2 − 3DkΩD
kΩ+

1

4
Ω4T.

11.4.2 The Gauss-Codazzi and Codazzi-Mainardi equations in terms

of conformal fields

The intrinsic equations discussed in the previous section are supplemented by

the Gauss-Codazzi and Codazzi-Mainardi equations, Equations (2.47) and (2.48)
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11.4 The conformal constraint equations 263

Rijkl = rijkl +KikKjl −KilKjk,

Ri⊥jk = DjKki −DkKji,

expressed in terms of conformal fields. As a consequence of the decomposition of

the four-dimensional Riemann tensor Rabcd in terms of the Weyl and Schouten

tensor, Equation (2.21b), one has that

Rabcd = Ξdabcd + ηacLdb − ηadLcb + Lacηdb − Ladηcb,

while the three-dimensional Riemann tensor rijkl can be expressed in terms of

the three-dimensional Schouten tensor lij as

rijkl = hikllj − hillkj + hjllki − hjklli, lij ≡ rij −
1

4
rhij ;

see Equation (2.40). A direct calculation using the above expressions yields the

two additional constraint equations

DjKki −DkKji = Ωdijk + hijLk − hikLj ,

lij = Ωdij + Lij −Kk
k
(
Kij −

1

4
Khij

)
+KkiKj

k − 1

4
KklK

klhij .

These equations provide the link between the spatial curvature tensor lij and

the spacetime curvature as described by dab, dabc, Lab and La.

11.4.3 Summary of the equations and basic properties of the

conformal constraint equations

As a summary of the discussion of the previous sections, the conformal constraint

equations are collected:

DiDjΩ = −εΣKij − ΩLij + shij +
1

2
Ω3

(
Tij −

1

4
Thij

)
, (11.35a)

DiΣ = Ki
kDkΩ− ΩLi +

1

2
Ω3ji, (11.35b)

Dis = −εLiΣ− LikD
kΩ+

1

2
Ω2

(
εΣji − TikD

kΩ− 1

4
DiT

)

+
1

6
Ω3

(
ε∇⊥ji +DkTki −

1

4
DiT

)
, (11.35c)

DiLjk −DjLik = −εΣdkij +DlΩdlkij

− ε(KikLj −KjkLi) + ΩTijk, (11.35d)

DiLj −DjLi = DlΩdlij +Ki
kLjk −Kj

kLik +ΩTij⊥, (11.35e)
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264 The conformal constraint equations

Dkdkij = ε
(
Kk

idjk −Kk
jdik

)
+ Jij , (11.35f)

Didij = Kikdijk + Jj , (11.35g)

λ = 6Ωs− 3εΣ2 − 3DkΩD
kΩ+

1

4
Ω4T, (11.35h)

DjKki −DkKji = Ωdijk + hijLk − hikLj , (11.35i)

lij = Ωdij + Lij −K(Kij −
1

4
Khij) +KkiKj

k − 1

4
KklK

klhij . (11.35j)

Using the identity (11.7) and recalling that d∗ij = − 1
2diklεj

kl, Equations (11.35f)

and (11.35g) can be rewritten in the alternative form

Did∗ij = −εεj
klKi

kdli −
1

2
εj

klJkl, (11.36a)

Didij = εljkK
ikd∗il + Jj . (11.36b)

The conformal constraint Equations (11.35a)–(11.35j) are not independent

since integrability conditions have been used in their derivation. A list of various

relations between the vacuum constraint equations can be found in Friedrich

(1983). In particular, it can be shown that

Di

(
6Ωs− 3εΣ2 − 3DkΩD

kΩ+
1

4
Ω4T

)
= 0,

consistent with the fact that the left-hand side of Equation (11.35h) equals the

cosmological constant λ.

For future reference, it is observed that from Equation (11.35j) it follows that

rij = Ωdij + Lij + Lk
khij −KKij +KikK

k
j , (11.37a)

r = 4Lk
k −K2 +KijK

ij . (11.37b)

The vacuum version of the conformal constraint equations is obtained by

setting the matter fields Tij , T , ji, Tijk, Ji, Jij equal to zero. In the derivation of

the conformal constraint Equations (11.35a)–(11.35j), it has been assumed that

the connection D is the Levi-Civita connection of the intrinsic metric h. Thus,

by analogy to the full conformal field equations one also has the relations

σi
k
j = 0, Πk

lij = πk
lij , (11.38)

where σi
k
j , Π

k
lij and πk

lij denote, respectively, the components of the torsion,

the geometric curvature and the algebraic curvature of the connection D.

Explicitly, one has that

σi
k
jek ≡ [ei, ej ]− (γi

k
j − γj

k
i)ek,

Πk
lij ≡ ei(γj

k
l)− ej(γi

k
l) + γm

k
l(γj

m
i − γi

m
j) + γj

m
lγi

k
m − γi

m
lγj

k
m,

πklij ≡ hikllj − hillkj + hjllki − hjklli.
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11.4 The conformal constraint equations 265

Given a collection of matter fields on S,

m� ≡ (Tij , T, �, ji,∇⊥ji, Ji, Jij),

by a solution to the conformal constraint equations on S it will be

understood a collection

u� ≡ (Ω,Σ, s, ei, γi
k
j ,Kij , Lij , Li, dij , dijk)

satisfying Equations (11.35a)–(11.35j) together with the supplementary condi-

tions (11.38).

The relation between the conformal constraint Equations (11.35a)–(11.35j)

and the conformal Hamiltonian and momentum constraints (11.15a)–(11.15b) is

summarised in the following lemma.

Lemma 11.1 (relation between the solutions to the Einstein constraints

and the conformal constraints) A solution to the conformal constraints

(11.35a)–(11.35j) for a collection m� of matter fields implies a solution to

the conformal Hamiltonian and momentum constraints (11.15a) and (11.15b).

Conversely, a solution of (11.15a) and (11.15b) together with a collection of

matter fields m� gives rise to a solution to (11.35a)–(11.35j) on the points of S
for which Ω �= 0.

Proof Using Equations (11.35a) and (11.35h) to eliminate Lk
k one readily

obtains the conformal Hamiltonian Equation (11.15a). Similarly, starting from

Equation (11.35i) and using Equation (11.35b) to eliminate Li one obtains the

conformal momentum constraint (11.15b). Thus, any solution to the conformal

constraints (11.35a)–(11.35j) implies a solution to the conformal Hamiltonian

and momentum constraints, Equations (11.15a) and (11.15b).

Assume now one has a collection (Ω,h,K,Σ, �, ji) satisfying Equa-

tions (11.15a) and (11.15b) together with a collection (Tij , T, Ji, Jij ,∇⊥ji)

consistent with the matter fields � and ji . Let now {ei} denote an h-orthonormal

frame. Using this frame one can compute the components lij and Kij of the

three-dimensional Schouten tensor and of the extrinsic curvature. If Ω �= 0,

one can use the conformal constraint (11.35h) to compute the field s. Next,

one makes use of Equations (11.35a) and (11.35b) to compute Lij and Li. A

computation using the commutator of the covariant derivative Di shows that

Equation (11.35c) is automatically satisfied. Once the components Lij and Li

are known, one can use Equations (11.35i) and (11.35j), respectively, to compute

dijk and dij – it can be verified that the resulting fields are trace free. A final

computation using the three-dimensional Bianchi identity in the form

Dirij =
1

4
Djr,

together with the irreducible decomposition of the three-dimensional Riemann

tensor rijkl, the decomposition of dijkl into the electric and magnetic parts
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266 The conformal constraint equations

and the commutator of Di shows that Equations (11.35d)–(11.35g) are also

automatically satisfied. Thus, the fields obtained constitute the required solution

to the conformal constraint equations; see Friedrich (1983) for further details.

Remark. In order to make assertions about the behaviour of solutions to

the conformal constraint equations at points where Ω = 0, the equations

need to be supplemented with boundary conditions. Several different classes of

boundary conditions on three-dimensional manifolds will be considered: com-

pact manifolds, asymptotically Euclidean manifolds and hyperboloidal

manifolds.

11.4.4 The conformal constraints at the conformal boundary

By construction, the conformal constraint equations can be evaluated in a regular

manner at a non-null hypersurface belonging to the conformal boundary of

spacetime. By definition such a hypersurface satisfies the conditions

Ω = 0, dΩ �= 0.

Following the convention introduced in Chapter 6 this hypersurface will be

denoted by I . The null case will be discussed in Chapter 18.

The defining properties of the hypersurface I lead to a number of simplifi-

cations in the conformal constraint equations. In particular, dΩ is normal to I

so that, in terms of a tetrad adapted to the hypersurface, one has DiΩ = 0.

Assuming that the matter fields Tij , T and Tijk are smooth at I one finds

that on the hypersurface the conformal constraints (11.35a)–(11.35j) imply the

equations

shij � εΣKij , (11.39a)

DiΣ � 0, (11.39b)

Dis � −εLiΣ, (11.39c)

DiLjk −DjLik � −εΣdijk − ε(KikLj −KjkLi), (11.39d)

DiLj −DjLi � Ki
kLjk −Kj

kLik, (11.39e)

Dkdkij � ε
(
Kk

idjk −Kk
jdik

)
+ Jij , (11.39f)

Didij � Kikdijk + Jj , (11.39g)

λ � −3εΣ2, (11.39h)

DjKki −DkKji � hijLk − hikLj , (11.39i)

lij � Lij −K

(
Kij −

1

4
Khij

)
+KkiKj

k − 1

4
KklK

klhij , (11.39j)

where � denotes equality at the conformal boundary. From Equations (11.39b)

and (11.39h) it follows that Σ is a constant on I with a value given by
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11.4 The conformal constraint equations 267

Σ =
√
−ελ/3 – observe that if ε = 1, then λ < 0, and if ε = −1, then λ > 0,

for the previous expression to make sense. Moreover, from Equation (11.39a) the

extrinsic curvature of I is proportional to the intrinsic metric.

A procedure for constructing solutions to Equations (11.39a)–(11.39j) in the

vacuum case (so that Jjk = 0, Jj = 0) has been given in Friedrich (1986a, 1995).

The fundamental idea is to identify the function s and the 3-metric h on I as

freely specifiable data. Instead of working directly with s, it is more convenient

to use a smooth function κ ∈ X(S) such that

s � Σκ. (11.40)

It follows directly from Equations (11.39a), (11.39c) and (11.39j) that

Kij � εκhij , Li � −εDiκ, Lij � lij +
1

2
κ2hij . (11.41)

Substituting these expressions into Equation (11.39d) one obtains, after some

simplification, that

dijk � −εΣ−1yijk (11.42)

where yijk ≡ Diljk −Dj lik denote the components of the Cotton tensor of the

metric h; see Section 5.2.2. Alternatively, one can write

d∗ij � −εΣ−1yij ,

with yij ≡ − 1
2ykljεi

kl the components of the Bach tensor. It can be verified

that the integrability conditions (11.39e), (11.39f) and (11.39i) are automatically

satisfied by (11.41) and (11.42). Finally, by substituting into Equation (11.39g)

one obtains that

Didij � 0.

This is the only differential condition that has to be solved in this procedure.

This can be done by means of a York splitting so as to obtain an elliptic equation

for the components of a covector.

The discussion of the previous paragraph is summarised in the following:

Proposition 11.1 (solutions to the conformal constraint equations

at the conformal boundary) Given a three-dimensional metric h, an

h-divergence-free and trace-free field dij and a smooth function κ, the fields s,

Kij , Li, Lij , dijk as given by Equations (11.40), (11.41) and (11.42) constitute

a solution to the vacuum conformal constraint equations with Ω = 0.

As will be seen in later chapters, a solution to Equations (11.39a)–(11.39j)

constitutes, in the case of ε = 1 (i.e. I spacelike), initial data at, say, past null

infinity for de Sitter-like spacetimes. In the case ε = −1 (i.e. I timelike), the

solution gives boundary data for an anti-de Sitter-like spacetime.
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268 The conformal constraint equations

Remark. The procedure indicated in the previous paragraphs can be extended

to the matter case if the field Ji is known.

Exploiting the conformal freedom

The conformal freedom inherent to the conformal field equations can be employed

to express the solution to the conformal constraint equations at the conformal

boundary in an even simpler form. Recall the discussion in Section 8.2.5 on the

transformation properties of the various fields appearing in the conformal field

equations. In particular, it follows from Equation (8.29b) that, under a rescaling

of the form g′ = ϑ2g which implies a rescaling

h′ � ϑ2h

of the intrinsic metric of I , the field s on I transforms as

s′ �
(
ϑ−1s+ ϑ−2∇aϑ∇aΞ

)
.

In particular, it is always possible to choose ϑ at I so that locally

s′ � 0.

Accordingly, in this particular conformal gauge one has that Equation (11.40)

implies κ′ = 0 and, moreover,

K ′
ij � 0, L′

i � 0, L′
ij � lij .

11.5 The constraints on compact manifolds

An important class of initial data sets for the Einstein field equations involves

physical 3-manifolds S̃ which are compact. This type of initial data set is of

relevance in the discussion of cosmological models. In particular, in the vacuum

case with negative cosmological constant one expects these initial data sets to

give rise to de Sitter-like spacetimes. Initial data sets on compact manifolds have

been studied extensively in the literature, and there is a good understanding of

the required conditions on the free data in order to ensure existence of solutions

to the Einstein constraint equations; see, for example, Isenberg (1995).

For this type of initial data one can set, without loss of generality, Ω = 1 and

Σ = 0 and let S = S̃. For simplicity of the presentation, in the remainder of this

section the discussion is restricted to the vacuum case. Furthermore, it is assumed

that the physical mean curvature K̃ is constant so that Equations (11.17) and

(11.21) decouple from each other. The fundamental tool in the analysis of the

solvability of the constraint equations is given by the maximum principle for

the Laplacian of a Riemannian metric. A convenient formulation of this result is

given by (see Isenberg (1995)):
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11.5 The constraints on compact manifolds 269

Proposition 11.2 (maximum principle for compact manifolds) Let

(S,h) denote a Riemannian manifold with S compact. Given a smooth ψ ∈ X(S)
such that Δhψ has the same sign on the whole of S, then ψ must be a constant.

As a consequence of the above principle, the equation

Δhψ = F (x, ψ),

with ψ > 0 has no solution if F (x, ψ) does not change sign on S except

for the case where F (x, ψ) = 0. Using this observation it is easy to see that

certain combinations of free data cannot give rise to solutions of the constraint

equations. As an example, consider time-symmetric data (i.e. K̃ = 0) with

vanishing cosmological constant on a compact manifold S. As a consequence

of the conformal gauge freedom given in Equations (11.22a) and (11.22b) and

of the Yamabe theorem, Theorem 11.1, one can assume that r[h] is a negative

constant on S – such a metric is said to be of positive Yamabe class. An

example of this situation is S3 with its standard metric. One is then left with a

Licnerowicz equation of the form

Δhϑ =
1

8
r[h]ϑ.

If ϑ is required to be positive everywhere on S, it follows that Δhϑ< 0 everywhere

so that no positive solution can exist since, as a consequence of the maximum

principle, ϑ must be a constant so that Δhϑ = 0 which is a contradiction. To

get around this situation one can consider initial data with a negative (i.e. de

Sitter-like) cosmological constant. Keeping the time symmetry of the initial data

and the condition r[h] < 0, one obtains the Licnerowicz equation

Δhϑ =
1

8
r[h]ϑ− 1

4
λϑ3. (11.43)

The right-hand side of this equation has no definite sign for positive ϑ, so there

is no obstruction to the existence of solutions. In any case, a further argument

(not discussed here) is required to show that Equation (11.43) does indeed have

a solution.

The methods in Isenberg (1995) allow one to prove the following proposition:

Proposition 11.3 (solvability of the Einstein constraints with cosmolog-

ical constant on a compact manifold) Let (S,h) be a Riemannian manifold

with S ≈ S3 and h conformal to a metric with constant negative Ricci scalar

(positive Yamabe class). Then the vacuum Einstein constraints with de Sitter-

like cosmological constant have a solution for an arbitrary choice of the seed

metric h, trace-free tensor ψ′
ij and constant physical mean curvature K̃.

The initial data sets given by this proposition will be used to construct de

Sitter-like spacetimes in Chapter 15.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


270 The conformal constraint equations

11.6 Asymptotically Euclidean manifolds

Spacetimes with λ = 0 can be thought of as describing isolated systems for which

the effects of cosmological expansion are neglected. An important class of these

spacetimes consists of those solutions to the Einstein field equations which are

asymptotically simple in the sense of Definition 7.1, that is, asymptotically simple

and empty. Proposition 14.3 shows that these spacetimes are globally hyperbolic,

suggesting a systematic procedure for their construction through suitable initial

data prescribed on a Cauchy hypersurface.

In order to develop intuition, it is convenient to look at the Minkowski

spacetime (R4, η̃). A foliation of this spacetime is given by the hypersurfaces

of constant time t. These hypersurfaces are Riemannian manifolds of the form

(R3,−δ). It can be verified that these hypersurfaces are extrinsically flat; that

is, their extrinsic curvature K̃ = 0 vanishes. Of course, these are not the only

possible types of Cauchy hypersurfaces in this spacetime.

As a second example, consider the Schwarzschild spacetime. In terms of the

so-called Schwarzschild isotropic radial coordinate

r̄ ≡ 1

2

(
r −m+

√
r(r − 2m)

)
,

the line element of the spacetime can be rewritten as

g̃S =

(
1−m/2r̄

1 +m/2r̄

)2

dt⊗ dt−
(
1 +

m

2r̄

)4
(dr̄ ⊗ dr̄ + r̄2σ).

An example of a Cauchy hypersurface for this spacetime is given by the t = 0

hypersurface. One can verify that the intrinsic metric and the extrinsic curvature

of this hypersurface are given, respectively, by

h̃S = −
(
1 +

m

2r̄

)4
δ, K̃S = 0. (11.44)

The most general form of the above initial data set is obtained by performing a

translation of the radial coordinate to obtain

h̃S = −
(
1 +

m

2|y − y0|

)4

δ, (11.45)

with |y − y0|2 ≡ (y1 − y10)
2 + (y2 − y20)

2 + (y3 − y30)
2 where (yα) = (y1, y2, y3)

are standard Cartesian coordinates and (yα0 ) ∈ R3 arbitrary. Observe that the

metric h̃S is, in fact, conformally flat and that h̃S → −δ as r̄ → ∞. Moreover,

one has that (
1 +

m

2r̄

)4
= 1 +

2m

r̄
+O

(
1

r̄2

)
. (11.46)

To understand the behaviour as r̄ → 0, it is observed that under the coordinate

inversion r̆ ≡ m2/4r̄ one has that

h̃S = −
(
1 +

m

2r̆

)4
(dr̆ ⊗ dr̆ + r̆2σ).
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11.6 Asymptotically Euclidean manifolds 271

Figure 11.1 Embedding diagram of the Einstein-Rosen bridge in the standard
time-symmetric Schwarzschild hypersurface. The diagram is obtained as the
surface of revolution of the curve z = ±ln(1+

√
r2 − 1); see Morris and Thorne

(1988) for more details.

Thus, the behaviour of the metric h̃ is identical for both r̄, r̆ → ∞. There

is a discrete reflexion symmetry with respect to the two-dimensional surface

{r = m/2}. Thus, the topology of the hypersurface is S ≈ R×S2. One says that

S has a non-trivial topology with two asymptotically flat regions (see next

section) joined by a so-called Einstein-Rosen bridge. A representation of this

is given in Figure 11.1.

An example of an initial data set with non-vanishing extrinsic curvature is

given by the family of conformally flat initial data sets for the Schwarzschild

spacetime with extrinsic curvature given by

K̃αβ =
A

|y|3 (3y
αyβ + |y|2δαβ),

where |y|2 = δαβy
αyβ and (yα) are, again, standard Cartesian coordinates; see

Beig and O’Murchadha (1998), Estabrook et al. (1973) and Reinhart (1973). It

can be verified that K̃ = h̃αβK̃αβ = 0 as hαβy
αyβ = −|y|2. This hypersurface

has the nontrivial topology of R×S2. However, in contrast to the time-symmetric

case, the conformal factor ϑ cannot be written in a closed form. Nevertheless, the

leading terms of its asymptotic expansion are the same as in Equation (11.46)

with |y| playing the role of the radial coordinate r̄.

11.6.1 Definition in terms of physical fields

The hypersurfaces discussed in the previous paragraphs are examples of asymp-

totically Euclidean manifolds . Given a three-dimensional manifold S̃, an

asymptotic end is a subset Ẽ ⊂ S̃ which is diffeomorphic to the complement

of a closed ball on R3; that is,

Ẽ ≈
{
(yα) ∈ R3 | |y| > r0

}
,

where r0 is some positive real number and |y|2 ≡ δαβy
αyβ . By identifying Ẽ with

the complement of a ball, the triple y = (yα) can be used as coordinates on

the asymptotic end – so-called asymptotically Cartesian coordinates. The
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272 The conformal constraint equations

hypersurfaces of the Minkowski and Schwarzschild spacetimes have, respectively,

one and two asymptotic ends. More generally, a three-dimensional manifold S̃ is

said to have N asymptotically flat ends if there exists a compact subset of

S̃ such that its complement is the union of disjoint subsets Ẽk, k = 1, 2, . . . , N ,

each of which is an asymptotic end. In terms of the above concepts one can now

introduce the key definition of this section:

Definition 11.1 (asymptotically Euclidean manifolds) An initial data set

for the vacuum Einstein field equations (S̃, h̃, K̃) is said to be asymptotically

Euclidean if S̃ is a three-dimensional manifold with N asymptotically flat

ends Ẽk, k = 1, . . . , N such that on each Ẽk the 3-metric and the extrinsic

curvature satisfy, in terms of asymptotically Cartesian coordinates on the end,

the asymptotic behaviour

h̃αβ = −
(
1 +

2mk

|y|

)
δαβ +O2

(
1

|y|2
)
, (11.47a)

K̃αβ = O1

(
1

|y|2
)
, (11.47b)

where mk, k = 1, . . . , N are constants.

The notation O1 and O2 in Equations (11.47a) and (11.47b) is explained in the

Appendix to this chapter. More general notions of asymptotic flatness for three-

dimensional manifolds have been considered in the literature; see, for example,

Chaljub-Simon (1982), Chaljub-Simon and Choquet-Bruhat (1980), Choquet-

Bruhat and York (1980) and Christodoulou and O’Murchadha (1981). Their

precise formulation require the use of the notion of weighted Sobolev spaces; see,

for example, appendix I of Choquet-Bruhat (2008) and Bartnik (1986). These

definitions are tailored for the analysis of the elliptic equations arising from the

constraint equations.

The asymptotic conditions in Definition 11.1 ensure the finiteness of the

ADM-linear momentum and ADM-angular momentum1 of each asymp-

totic end. These asymptotic quantities are given, respectively, by the surface

integrals

Pα ≡ 1

8π
lim
r→∞

∫
Sr

(K̃αβ − K̃h̃αβ)n
βdSh̃,

Jα ≡ 1

8π
lim
r→∞

∫
Sr

ε̃αβγy
β(K̃γδ − K̃h̃γδ)nδdSh̃

with

Sr ≡
{
(yα) ∈ S̃ | |y| = r

}
,

1 ADM stands for Arnowitt-Deser-Miser, pioneers of the Hamiltonian formulation of general
relativity; see Arnowitt et al. (1962) and Arnowitt et al. (2008) for a republication of this
classical review.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


11.6 Asymptotically Euclidean manifolds 273

nα its outward pointing normal and dSh̃ the surface element induced by h̃ on Sr.

The constants mk in Definition 11.1 correspond to the ADM mass of each of

the asymptotic ends. They are also computable as surface integrals of the sphere

at infinity via the expression

m = − 1

16π
lim
r→∞

∫
Sr

h̃αβ(∂αh̃βγ − ∂γ h̃αβ)n
γdSh̃.

Strictly speaking, m is the time component of a 4-vector, the ADM

4-momentum, whose spatial components are given by Pα; thus, it is more

accurately described as an energy.

Definition 11.1 can be extended to initial data sets with matter. In these

situations, decay conditions for the matter sources which are compatible with

the decay for h̃ and K̃ are given by (11.47a) and (11.47b). Direct inspection of

the constraint Equation (11.14) suggests that

�̃ = O

(
1

|y|3
)
, j̃α = O

(
1

|y|3
)
.

These conditions can be refined via a more careful analysis of the constraint

equations.

It is possible to have an initial data set with several asymptotic ends, some

of which are not asymptotically Euclidean. The simplest example is given by

the extremal Reissner-Nordström spacetime; see Equation (6.43). The intrinsic

metric of the hypersurface t = 0 is given, in terms of the extremal Reissner-

Nordström isotropic radial coordinate r̄ = r −m, by

h̃ = −
(
1 +

m

r̄

)2
δ. (11.48)

Clearly

(
1 +

m

r̄

)2
= 1 +

2m

r̄
+O

(
1

r̄2

)
as r̄ → ∞.

Thus, for large r̄, the extremal Reissner-Nordström 3-metric (11.48) has an

asymptotically Euclidean end. To discuss the behaviour as r̄ → 0, consider the

new radial coordinate ř = − ln r̄, so that ř → ∞ as r̄ → 0. It follows that in

terms of this coordinate the metric (11.48) can be rewritten as

h̃ = −
(
m+ e−ř

)
(dř ⊗ dř + σ).

This metric approaches a constant multiple of the standard metric of the cylinder

R+×S2 as ř → ∞. Accordingly, one speaks of a cylindrical asymptotic end . A

similar type of asymptotic behaviour can be found, for example, in hypersurfaces

of the extremal Kerr spacetime; see, for example, Dain and Gabach-Clement

(2011).
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274 The conformal constraint equations

11.6.2 Definition using conformal rescalings

The notion of asymptotically Euclidean manifolds can be strengthened by

requiring the physical hypersurface S̃ to have a conformal extension which is

a point compactification . This approach provides a more geometrical setting

for the discussion of the asymptotic behaviour of the various fields, that is,

independent of the use of particular asymptotically Cartesian coordinates. This

point of view was first introduced by Geroch (1972b).

Definition 11.2 (asymptotically Euclidean and regular manifolds) A

three-dimensional Riemannian manifold (S̃, h̃) will be said to be asymptotically

Euclidean and regular if there exists a three-dimensional, orientable, compact

manifold (S,h) with points ik ∈ S, k = 1, . . . , N with N some integer, a

diffeomorphism ϕ : S \ {i1, . . . , iN} → S̃ and a function Ω ∈ C2 such that:

(i) Ω(ik) = 0, dΩ(ik) = 0, HessΩ(ik) = −2h(ik).

(ii) Ω > 0 on S \ {i1, . . . , iN}.
(iii) h = Ω2ϕ∗h̃ on S \ {i1, . . . , iN} with h ∈ C2(S) ∩ C∞(S \ {i1, . . . , iN}).

More generally, a function Λ1/2 such that Λ satisfies conditions (i) in the above

definition is called an asymptotic distance function . The function Λ does not

need to be defined globally on S.
When no confusion arises, condition (iii) in Definition 11.2 will simply be

written as h = Ω2h̃ so that S \ {i1, . . . , iN} and S̃ are identified. As will

be seen in the following, for asymptotically Euclidean and regular manifolds,

suitable neighbourhoods of the points ik – the points at infinity – are mapped

to the asymptotic ends of S̃. Thus, one can use local differential geometry to

discuss the asymptotic properties of the initial data set (S̃, h̃). The question

of the differentiability of Ω and h at i1, . . . , iN will be addressed later in this

subsection. Definition 11.2 is purely Riemannian; that is, it makes no reference

to the extrinsic curvature. The behaviour of the extrinsic curvature at the points

at infinity will be discussed in the subsequent paragraphs.

There is some conformal gauge freedom in Definition 11.2. A replacement

of the form

h �→ φ4h, Ω �→ φ2Ω, (11.49)

with φ(ik) = 1 gives rise to the same physical metric h̃ = Ω−4h and preserves

the boundary conditions in point (i) of the definition. This gauge freedom can

be used to select conformal metrics with special properties. For example, given

a particular point at infinity i, and choosing φ such that

Δhφ− 1

8
r[h]φ = 0 on Bε(i), (11.50)

with Bε(i) the ball of radius ε centred at i for some ε > 0, it follows from

Equation (11.23) that
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11.6 Asymptotically Euclidean manifolds 275

r[h′] = 0 on Bε(i).

A general property of elliptic equations with smooth coefficients is that they

can always be solved locally; see, for example, Besse (2008) and Garabedian

(1986). Thus, the requirement (11.50) can always be satisfied. In other words, the

conformal metric h can always be chosen so that it vanishes in a neighbourhood

of one of the points at infinity. In general, this statement is not true globally.

Normal coordinates around i

The consequences of Definition 11.2 are better analysed by means of normal

coordinates. Consider the set of h-geodesics γv ⊂ S starting at a particular

point at infinity i (i.e. γv(0) = i) with initial velocity v ∈ T |i(S). Moreover, let

T denote the subset of T |i(S) defined by

T ≡
{
v ∈ T |i(S)

∣∣ γv is defined on an interval containing [0, 1]
}
.

On the set T one can define the exponential map at i, expi : T → S, through
the condition expi(v) = γv(1); that is, the exponential map sends the vector v to

the point at a unit parameter distance along the unique geodesic through i with

initial velocity v. It can be shown that there exists a neighbourhood Q ⊂ T |i(S)
of the vector 0 such that the exponential map at i gives a diffeomorphism onto a

neighbourhood U ⊂ S of i; see, for example, O’Neill (1983) for a proof. If v ∈ Q
implies that λv ∈ Q for all λ ∈ [0, 1], then one says that Q is star shaped

and U = expi(Q) is called a normal neighbourhood of i. In particular, if

U = Bε(i), the open ball of radius ε > 0 with respect to h, one has a geodesic

ball .

In what follows, assume one has a normal neighbourhood U around i and that

one is given an orthonormal basis {ei} for T |i(S). Given p ∈ U and v such that

p = exp(v), then writing v = xiei one can use the components x = (xi) ∈ R3

as coordinates for the point p – these are the normal coordinates determined

by the basis {ei}. For consistency, the normal coordinates will be written as

(xα) rather than (xi). In terms of normal coordinates a geodesic through the

origin has the form x(s) = (sxα) where s is an affine parameter. As ẋ = (xα)

and ẍ = 0, it follows from the geodesic equation that γβ
α
γ(i)x

βxγ = 0 with

γβ
α
γ being the Christoffel symbols of the metric h. As this has to hold for any

geodesic on U , one concludes that γβ
α
γ(i) = 0. It also follows that ∂αhβγ = 0,

so that one can write

hαβ = −δαβ +O(|x|2) close to i, (11.51)

where |x|2 ≡ δαβx
αxβ . Moreover, from the above construction it follows that

xαhαβ = −δαβx
α. (11.52)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


276 The conformal constraint equations

For future use it is observed that, in terms of normal coordinates and sufficiently

close to i, one has

dμh = |x|2dσ +O(|x|3), (11.53)

where dμh is the volume element of the metric h and dσ denotes the area element

of the unit 2-sphere S2.

For later use, it is convenient to define the (square of the) geodesic

distance Γ2 ≡ |x|2. One has that Γ2 is a smooth function of the normal

coordinates. It can be verified that

hαβDαΓDβΓ = −4Γ (11.54)

and that

Γ(i) = 0, DαΓ(i) = 0, DαDβΓ(i) = −2hαβ , DαDβDγΓ(i) = 0.

Hence, Γ satisfies the boundary conditions (i) in Definition 11.2 so it is an

asymptotic distance function. Observe that, in general, Γ is not defined globally

on S.

Remark. The results obtained using normal coordinates can be strengthened

by exploiting the conformal freedom in (11.49). In particular, a conformal factor

can always be found such that the Riemann curvature tensor of the resulting

rescaled metric vanishes at i. In order to see this, given the metric h, let Ω′ ≡ ef

with f ∈ X(S) such that

f =
1

2
xαxβlαβ(i) on Bε(i),

where lαβ(i) denotes the components with respect to the normal coordinates of

the three-dimensional Schouten tensor at i. A calculation shows that

Ω′(i) = 1, DαΩ
′(i) = 0, DαDβΩ

′(i) = lαβ(i).

Hence, using the conformal transformation formula for the Schouten tensor

(5.16b) one finds that the metric h′ ≡ Ω′2h satisfies l′αβ(i) = 0. As in dimension

3 the Riemann tensor is completely determined by the Schouten tensor one

concludes that r′αβγδ(i) = 0 as claimed. The metric h′ satisfies the improved

expansion

h′
αβ = −δαβ +O(|x|3) close to i;

compare with (11.51).

The construction described in the previous paragraph is not the only possible

way of exploiting the conformal gauge freedom. Depending on the particular

analysis, other choices may be more convenient – for example, the conformal

normal gauge introduced in Friedrich and Schmidt (1987) and Friedrich (1998c)

or the central harmonic gauge used in Friedrich (2013).
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Asymptotically Euclidean data versus asymptotically Euclidean

and regular data

It is useful to compare the two definitions of asymptotic flatness presented in

this Section: Definitions 11.1 and 11.2. Condition (i) in Definition 11.2 restricts

the form of the conformal factor Ω in a neighbourhood Ba(ik) of a given point

at infinity ik. More precisely, one has that

Ω = |x|2f(x) near ik, (11.55)

where f is continuous with f(0) = 1. Given the normal coordinates (xα) on

Ba(ik), one can introduce inversion coordinates yα ≡ xα/|x|2 so that

h̃αβ = Ω−2hαβ = −δαβ +O(|y|−1) as |y| → ∞.

Thus, to recover the mass term in the expansion (11.47a) one requires further

information about the fields Ω and h.

With regards to the second fundamental form, it follows from the transforma-

tion rules discussed in Section 11.1.1 that

K̃αβ = Ω−1Kαβ = Ωψαβ .

Hence, if the physical field K̃αβ satisfies the decay given by condition (11.47b),

then

K̃αβ = O(|x|0), ψαβ = O(|x|−4), as |x| → 0.

Consequently, the decay conditions of Definition 11.1 imply a tensor ψαβ which

is singular at the points at infinity. To have a regular ψαβ one needs the stronger

decay condition K̃αβ = O(1/|y|6). This decay excludes the possibility of a non-

vanishing ADM linear momentum and ADM angular momentum.

The regularity at the points at infinity

The regularity requirements on Ω and h of Definition 11.2 are given with respect

to some suitable coordinate system. A natural choice is the normal coordinates

x = (xα) centred at the point at infinity – intuitively, one expects the regularity

with respect to normal coordinates to be optimal. In these coordinates the

function |x| is not smooth at i as its second derivative is not well defined there.

More generally, even powers of |x| will be smooth, while odd ones will be only

Ck, for some k.

Initial data sets for static vacuum spacetimes admit a conformal metric which

is, in fact, analytic at the point at infinity; see Beig and Simon (1980b) and Beig

and Schmidt (2000). Remarkably, this is not the case for stationary solutions

which can be seen to be only C2 at the point at infinity; see Dain (2001b).

More precisely, any asymptotically Euclidean data set for a stationary spacetime
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278 The conformal constraint equations

(and in particular for the Kerr solution!) has a conformal metric of the form h

which, in a suitable neighbourhood Ba(ik) of infinity, takes the form

h = h′ + |x|3h′′,

with h′ and h′′ analytic tensors with respect to normal coordinates.

11.6.3 Fundamental solutions and punctures

Consider now, for simplicity, an asymptotically Euclidean and regular manifold

(S,h) with a single point at infinity i. Suppose, for ease of the presentation, that

the conformal factor Ω = ϑ−2 satisfies the Yamabe equation

Δhϑ− 1

8
r[h]ϑ = 0 on S \ {i}. (11.56)

Condition (i) of Definition 11.2 implies a singular behaviour for the conformal

factor ϑ. Indeed, from Equation (11.55) it follows that

ϑ|x| → 1 as |x| → 0. (11.57)

In order to develop a better understanding of the singular behaviour at i consider

the integral

Iε ≡
∫
Bε(i)

(
Δhϑ− 1

8
r[h]ϑ

)
dμh

over an open ball Bε(i) of a suitably small radius ε > 0 centred at i. To simplify

the evaluation of the integral it is assumed that the metric h has been chosen

such that r[h] = 0 on Bε(i); as seen in Section 11.6.2 this is is always possible

locally. Using the divergence theorem (see the Appendix to this chapter), one has

that

Iε =

∫
Bε(i)

Δhϑdμh = −
∫
∂Bε(i)

〈dϑ,n〉dSh,

where n is the outward-pointing unit normal to ∂Bε(i) and dσh is the surface

element of ∂Bε(i) implied by h. From the expansion (11.53) it follows for

sufficiently small ε that dSh = ε2dσ + o(ε2) with dσ the surface element of

S2. Moreover, as a consequence of (11.57) one has

〈dϑ,n〉 = − 1

ε2
+ o(ε−2).

Putting everything together one concludes that

Iε = −
∫
∂Bε(i)

dσ + o(ε) −→ 4π as ε → 0,

so that ∫
S
Δhϑdμh = 4π.
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11.6 Asymptotically Euclidean manifolds 279

The latter implies that one can write

Δhϑ = 4πδ(i),

where δ(i) denotes the Dirac’s delta distribution with support at the

point i; see the Appendix to this chapter for more details and references. To

obtain the expression for a generic metric with a non-vanishing Ricci scalar in

a neighbourhood of i one makes use of the transformation law for the Yamabe

equation, Equation (11.23), to obtain(
Δh′ − 1

8
r[h′]

)
(φ−1ϑ) = 4πφ−5δ(i) with h′ = φ4h.

As δ(i) has support only on i and φ(i) = 1 one finally concludes that(
Δh′ − 1

8
r[h′]

)
ϑ′ = 4πδ(i) with ϑ′ = φ−1ϑ.

This expression provides an alternative description of the singular behaviour of

solutions to the Yamabe equation which satisfy the boundary condition (i) of

Definition 11.2. The previous discussion can be generalised to manifolds (S,h)
with several points at infinity. For example, if S = S3 and h = −h̄ the standard

metric of S3, then the Yamabe equation(
Δ−h̄ − 1

8
r[−h̄]

)
ϑ = 4π

(
δ(iN ) + δ(iS)

)
,

where δ(iN ) and δ(iS) are supported, respectively, at the north and south

poles of S3, describes the conformal factor ϑ for time-symmetric data for the

Schwarzschild spacetime. Letting φ ≡ 1 + m/2r, it follows from combining the

first equation in (11.44) with the conformal factor ω compactifying R3 into S3

given in (6.5) that

h̃ = −Ω2h̄, Ω = ωφ−2.

Setting α = 1 in Equation (6.5), one has that

Ω =
2 sin2

ψ

2(
1 +

m

2
tan

ψ

2

)2 .

One can verify that Ω and dΩ vanish at ψ = 0, π (the north and south poles of

S3). Moreover, one has

Ω = ψ2 +O(ψ3), Ω = (ψ − π)2 +O((ψ − π)3),

so that the fundamental solution ϑ = Ω−1/2 has the expected singular behaviour.
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280 The conformal constraint equations

Conformal decompactification of initial data sets on compact manifolds

From a geometric point of view, the purpose of introducing a conformal

factor ϑ which is singular at the point at infinity is to produce a conformal

decompactification of the manifold S. As an example, consider a vacuum

maximal initial data set (S̃, h̃, K̃) with S̃ compact. Under these assumptions

one has that the Einstein constraints (11.14) reduce to

r[h̃] = −K̃ijK̃
ij , D̃iK̃ij = 0, K̃ = h̃ijK̃ij = 0.

If given a point i ∈ S̃ one can find a solution ϑ̄ to the equation

Δh̃ϑ̄− 1

8
r[h̃]ϑ̄− 1

8
r[h̃]ϑ̄−7 = 4πδ(i),

it follows from a calculation involving the conformal transformation properties

of the various fields that

h̄ ≡ ϑ̄h̃, K̄ ≡ ϑ−2K̃,

gives rise to an asymptotically Euclidean and regular solution to the Einstein

constraints

r[h̄] = −K̄ijK̄
ij , D̄iK̄ij = 0, K̄ ≡ h̄ijK̄ij = 0.

As pointed out in O’Murchadha (1988), this construction can be used to argue

that, in a certain sense, there are more asymptotically flat initial data sets than

initial data sets on compact surfaces.

The Yamabe invariant

The possibility of conformally decompactifying a compact Riemannian manifold

(S,h) to obtain a physical manifold (S̃, h̃) which is asymptotically Euclidean

and regular depends on being able to solve the equation(
Δh − 1

8
r[h]

)
ϑ = 4πδ(i). (11.58)

The discussion in Section 11.5 suggests that this may not be possible for all

cases. To explore this further, consider a test function φ ∈ X(S). A calculation

shows that∫
S
|D(ϑφ)|2dμh =

∫
S

(
ϑ2|Dφ|2 + φ2|Dϑ|2

)
dμh +

∫
S
ϑDiϑD

iφ2dμh

=

∫
S

(
ϑ2|Dφ|2 + φ2|Dϑ|2

)
dμh −

∫
S
Di(ϑDiϑ)φ

2dμh

=

∫
S
ϑ2|Dφ|2dμh −

∫
S
ϑφ2Δhϑdμh,
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where the second equality follows by integration by parts on a compact manifold

of the last integral in the first line. As |Dφ|2 = DiφD
iφ < 0 and ϑ > 0 it follows

that

−
∫
S
|D(ϑφ)|2dμh >

∫
S
ϑφ2Δhϑdμh

> 4π

∫
S
ϑφ2δ(i)dμh +

1

8

∫
S
ϑ2φ2r[h]dμh

> 4πϑ(i)φ2(i) +
1

8

∫
S
r[h]ϑ2φ2dμh,

>
1

8

∫
S
r[h]ϑ2φ2dμh,

where the last inequality follows from the fact that φ is an arbitrary test function.

Thus setting ζ ≡ ϑφ one concludes that

− inf
ζ∈X(S)

∫
S

(
8|Dζ|2 + r[h]ζ2

)
dμh > 0,

where inf denotes the infimum, that is, the biggest lower bound. The latter is a

necessary condition for the existence of a solution to Equation (11.58). Under

some further technical assumptions, it can be shown to be a sufficient condition;

see, for example, Friedrich (2011). The above expression can be reformulated

in a conformal way by adding a suitable normalisation factor. Accordingly, one

defines the Yamabe invariant (number) of h as

Y [h] ≡ − inf
ζ∈X(S)

∫
S

(
8hijDiζDjζ + r[h]ζ2

)
dμh(∫

S
ζ6dμh

)1/3
.

The conformal invariance of the above expression follows from the transformation

properties of the three-dimensional Ricci scalar and of the volume element.

Accordingly, the Yamabe number is, in fact, a property of the conformal class

[h]. In particular, if (S,h) is such that Y [h] > 0, then there exists h̄ ∈ [h] such

that r[h̄] < 0 on S; see Lee and Parker (1987).

11.6.4 Constructing solutions to the constraint equations using

fundamental solutions

As already mentioned, fundamental functions of the Yamabe equation on

compact manifolds allows one to obtain solutions to the Hamiltonian and

momentum constraints by means of a procedure of conformal decompactification.

In this section an overview of some of the technical details of this construction

is provided.

In the first instance, attention is restricted to the time-symmetric case.

Furthermore, it is assumed that there is only one point at infinity. Given a
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compact Riemannian manifold (S,h) and a point at infinity i, the construction

of a time-symmetric initial data set (S̃, h̃) requires a global solution to

Equation (11.58). As already observed, the function Γ = |x|, defined only in

a neighbourhood Ba(i) with a > 0, satisfies the required boundary conditions

for a solution to Equation (11.58). Indeed, it can be shown that the solution ϑ

satisfies

ϑ = Γ−1 +
m

2
+O(Γ), near i,

where m is a constant; see Lee and Parker (1987). The above expansion is also

valid for any other choice of asymptotic distance function – the constant m is

independent of the particular choice. As Γ2 is a smooth function on its domain

of definition, it can be extended to a smooth function (to be denoted again by

Γ2) on the whole of the compact manifold S; see the Appendix to this chapter

for further discussion. To obtain the global solution to Equation (11.58), one

considers the ansatz

ϑ = Γ−1 +
m

2
+W, (11.59)

with W some smooth function on S. To make effective use of this ansatz it

is assumed, without loss of generality, that the conformal metric h satisfies

rαβγδ(i) = 0 so that one can write

hαβ = −δαβ + h̄αβ , h̄αβ = O(|x|3).

Hence, using the identity

Δhϑ =
1√

− deth
∂α

(√
− dethhαβ∂βϑ

)
,

it follows that

Lh = Δh − 1

8
r[h]

= Δ−δ + L̄+ r[h],

with

L̄ ≡ h̄αβ∂α∂β + bα∂α, h̄αβ = O(|x|3), bα = O(|x|2)

and r[h] = O(|x|). Using the above expressions one can compute that

Lh

(
1

Γ

)
= Δ−δ

(
1

Γ

)
+ f̄ with f̄ = O(|x|0).

Now, a calculation similar to the one discussed in Section 11.6.3 shows that

Δ−δ

(
1

Γ

)
= 4πδ(i),
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so that substitution of ansatz (11.59) into Lhϑ = 4πδ(i) leads to the regular

equation

ΔhW − 1

8
r[h]W = f with f = O(|x|0), (11.60)

for which a suitable existence theory is readily available. A unique smooth

solution to Equation (11.60) exists if the Yamabe number of the metric h

satisfies Y [h] > 0; see Beig and O’Murchadha (1991) and Friedrich (1998c).

A further argument using the maximum principle shows that ϑ – as given by

Equation (11.59) – with W solving Equation (11.60) is positive on S \ {i} and

gives the unique global solution to Equation (11.58). It follows that (S̃, ϑ4h) is

an asymptotically Euclidean and regular time-symmetric initial data set.

Data with a non-vanishing extrinsic curvature

The procedure to solve the Yamabe equation described in the previous section

can be extended to the case of an initial data set with a trace-free extrinsic

curvature. One first needs a solution to the momentum constraint. Several

procedures to construct solutions to the maximal momentum constraint (and in

particular of the elliptic Equation (11.21)) have been considered in the literature;

see, for example, Beig and O’Murchadha (1996), Chaljub-Simon (1982) and Dain

and Friedrich (2001). In particular, it is well understood how to specify the

free datum ψ′
ij in Equation (11.21) so as to ensure non-vanishing ADM linear

momentum and ADM angular momentum.

In what follows, assume that Equation (11.21) has been solved for a particular

choice of the free datum ψ′
ij . Substituting the transverse and trace-free tensor ψij

obtained from the York splitting (11.20) into the Licnerowicz Equation (11.17)

yields the equation

Δhϑ− 1

8
r[h]ϑ =

1

8
ψijψ

ijϑ−7.

As in the case of the Yamabe equation, one can incorporate the singular

behaviour of the conformal factor required to decompactify the compact manifold

S via a Dirac’s delta. This leads to the equation

Δhϑ− 1

8
r[h]ϑ = 4πδ(i) +

1

8
ψijψ

ijϑ−7. (11.61)

To construct a solution to this equation one first considers a solution ϑ• to

Equation (11.58) – such solution exists if Y [h] > 0. One uses ϑ• to write the

ansatz

ϑ = ϑ• + V

with V a smooth function to be determined. Equation (11.61) yields

ΔhV − 1

8
r[h]V =

1

8
ψijψ

ijϑ−7
• (1 + ϑ−1

• V )−7. (11.62)
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284 The conformal constraint equations

Observe that if ψij = O(|x|−4), then, in principle, 1
8ψijψ

ijϑ−7
• = O(|x|−1) so

that the right-hand side of Equation (11.62) is still singular. This singularity is,

nevertheless, mild, and suitable existence results are available; see theorem 12

in Dain and Friedrich (2001) and also the appendix in Beig and O’Murchadha

(1994). The solution ϑ is smooth, and, again, it can be verified that it satisfies

ϑ > 0 on S \ {i}.

11.7 Hyperboloidal manifolds

In certain applications of the conformal field equations it is convenient to consider

initial data sets prescribed on hypersurfaces similar to the hyperboloids of

the Minkowski spacetime discussed in Section 6.2.4. Hyperboloidal 3-manifolds

arise in the construction of asymptotically simple spacetimes with vanishing

cosmological constant and in the construction of anti-de Sitter like spacetimes.

11.7.1 Hyperboloidal initial data sets

For the sake of the presentation, the discussion in this section is restricted to

the vacuum case with vanishing cosmological constant. Based on the intuition

gained through the analysis of hyperboloids in the Minkowski spacetime one has

the following definition (see Friedrich (1983) and Kánnár (1996a)):

Definition 11.3 (hyperboloidal initial data sets) A triple (S̃, h̃, K̃) satisfy-

ing the vacuum Einstein constraint equations is called a hyperboloidal initial

data set if:

(i) There exists a conformal compactification whereby S̃ is diffeomorphically

identified with the interior of a manifold S with boundary ∂S such that S
is diffeomorphic to the closed unit ball in R3 (whence ∂S is diffeomorphic

to S2).

(ii) There exist functions Ω and Σ on S such that Ω > 0 on S̃ and Ω = 0 and

Σ > 0 on ∂S.
(iii) The conformal fields

h = Ω2h̃, K = Ω(K̃ +Σh̃),

extend smoothly to S. Moreover, one has that h�(dΩ,dΩ) = Σ2 on ∂S.

The simplest type of hyperboloidal initial data sets consists of the case where

the physical extrinsic curvature is pure trace; that is, one has

K̃ =
1

3
K̃h̃. (11.63)

As a consequence of the momentum constraint and assuming (11.63) it follows

that K̃ must be a constant. From the conformal Hamiltonian constraint (11.15a)
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one concludes that

4ΩDiD
iΩ− 6DiΩD

iΩ+ 2Ω2r = K̃2. (11.64)

In order to encode the right behaviour of the conformal factor Ω at ∂S one

introduces a so-called boundary defining function ρ, that is, a real function

over S satisfying

ρ|∂S = 0, dρ|∂S �= 0.

Given a Riemannian manifold (S,h), such a function can always be constructed.

Making use of the ansatz Ω = ρϑ−2 with ϑ > 0 on S, it follows from (11.64) that

ρ2Δhϑ− ρDiρD
iϑ+

(
3

2
DiρD

iρ− 1

8
r[h]ϑρ2θ − 1

2
ρϑ2Δhρ

)
ϑ = −1

8
K̃2ϑ−5.

(11.65)

The latter is an elliptic equation for ϑ which becomes singular at ∂S as its

principal part vanishes at this set.

The properties of solutions to Equation (11.65) have been analysed in

Andersson et al. (1992). One has the following:

Theorem 11.2 (existence of hyperboloidal initial data sets) Let (S,h) be
a smooth Riemannian manifold with boundary ∂S. Then, there exists a unique

positive solution ϑ to Equation (11.65). Moreover, the following are equivalent:

(i) The function ϑ and the tensors

Lij ≡ − 1

Ω
D{iDj}Ω+

1

12

(
r +

2

3
K2

)
hij , (11.66a)

dij ≡
1

Ω2
D{iDj}Ω+

1

Ω
r{ij}, (11.66b)

determined on S̃ by h and Ω = ρϑ−2 extend smoothly to all of S.
(ii) The Weyl tensor Ca

bcd computed from the data on S vanishes on ∂S.
(iii) The conformal class [h] is such that the extrinsic curvature of ∂S with

respect to its embedding in (S,h) is pure trace.

The expressions for the fields Lij and dij correspond to the spatial part

of the Schouten tensor and the electric part of the rescaled Weyl tensor as

determined by the conformal constraint equations of Section 11.4.3. Observe

that the expressions for the fields are formally singular at Ω = 0, so that the

conclusion of the theorem is non-trivial and ensures the existence of regular

hyperboloidal data for the conformal field equations. Extensions of Theorem

11.2 to more general forms of the extrinsic curvature have been analysed in

Andersson and Chruściel (1993, 1994).
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Initial data for anti-de Sitter-like spacetimes

By making the identification K̃2 �→λ with λ> 0 in Equation (11.64), hyper-

boloidal initial data sets can be interpreted as initial data sets for anti-de

Sitter-like spacetimes. Thus, all available knowledge about the existence of

hyperboloidal initial data sets can be transferred to this setting. This idea has

been investigated for a larger class of data than the one considered in this section

in Kánnár (1996a).

11.8 Other methods for solving the constraint equations

The analysis of the Einstein constraint equations carried out in the previous

sections relies on a systematic use of the conformal method of Licnerowicz,

Choquet-Bruhat and York. There are, however, other alternative procedures,

each providing a different insight into the properties of the solutions to the

constraint equations; see, for example, Bartnik and Isenberg (2004). In this

section, methods of particular relevance for the analysis of the conformal field

equations are briefly discussed: the first one based on the so-called extended

constraint equations, and the second one being the so-called exterior gluing

procedure.

11.8.1 The extended constraint equations

Given a solution to the conformal constraint equations, Lemma 11.1 shows

how to construct initial data for the conformal Einstein field equations. It

is, nevertheless, of interest to directly obtain a solution to the conformal

constraint equations without having to solve the Einstein constraint equations. A

construction of this type is of importance as the expressions for the rescaled Weyl

tensor and the Schouten tensor in terms of the conformal factor and the intrinsic

3-geometry of the hypersurface are formally singular at the points where Ω = 0;

see, for example, Equations (11.66a) and (11.66b) in Theorem 11.2. Currently

available results in this direction are restricted to the case where the Ω = 1;

see Butscher (2002, 2007). Despite this limitation, they provide insight into the

properties and structure of the conformal constraint equations and lead to a

procedure for the construction of initial data sets by perturbative methods.

Assuming that the matter fields vanish, and setting Ω = 1, Σ = 0 in the

conformal constraint equations (11.35a)–(11.35j) one finds that the essential

equations of the system can be rewritten in tensorial form as

DjKki −DkKji = εljkd
∗
il, (11.67a)

Dkdki = Kjkεlkid
∗
jl, (11.67b)

Dkd∗ki = −εi
jlKj

krkl, (11.67c)

rij = dij +KKij −Ki
kKkj . (11.67d)
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These equations are known as the extended Einstein constraints since a

solution thereof implies a solution to the Einstein vacuum constraints; see

Lemma 11.1 in this chapter and lemma 1 in Butscher (2007) for a more detailed

discussion. The first three equations constitute an underdetermined elliptic

system for the fields Kij , dij and d∗ij .

A direct computation shows that the formal adjoint of the operator in the

principal part of Equation (11.67a) is the divergence with respect to the index

j . Applying this divergence to the equation and writing

Kij = ψij −
1

3
Khij with ψijh

ij = 0

one obtains the equation

DjDjψki −DjDkψji = εljkD
jd∗il +

1

3

(
hkiD

jDjK −DiDkK
)
.

If the fields d∗ij and K are known, this equation can be verified to be an elliptic

equation for the trace-free part ψij .

Equations (11.67b) and (11.67c) can be transformed into fully elliptic equa-

tions by means of a York splitting of the fields dij and d∗ij ; see Section 11.3.3.

Hence, writing

dij = Diυj +Djυi −
2

3
Dkυ

khij + d′ij ,

d∗ij = Diuj +Djui −
2

3
Dku

khij + d∗′ij ,

where d′ij and d∗′ij are freely specifiable symmetric trace-free tensors, one obtains

elliptic equations for the fields υi and ui whose principal part is identical

to that of Equation (11.21). Finally, Equation (11.67d) can be transformed

into an elliptic equation for the components of the 3-metric h by introducing

harmonic coordinates x = (xα), Δhx
α = 0; compare the analogous use

of wave coordinates in the case of a Lorentzian metric to obtain the reduced

Einstein field equation discussed in the Appendix to Chapter 13.

The system of elliptic equations for the fields Kij , υi, ui, hij discussed in the

previous paragraphs is called the auxiliary system. Solutions to the auxiliary

system could be obtained, in principle, by means of perturbative methods relying

on the use of the implicit function theorem – see, for example, Ambrosetti and

Prodi (1995) – if some background solution is known. The solutions thus obtained

are not a priori solutions to the original Equations (11.67a)–(11.67d). Hence, in

a second step, one needs to investigate the conditions under which a solution to

the auxiliary system implies a solution to the extended Einstein constraints and,

consequently, a solution to the vacuum Einstein constraints. This strategy has

been investigated in Butscher (2002, 2007) to obtain asymptotically Euclidean

solutions to the extended constraints which are close to data for the Minkowski

spacetime. The particular details require the use of weighted Sobolev spaces
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to control the decay of the various fields. These methods can be adapted, in

principle, to obtain data on S3 corresponding to perturbations of de Sitter initial

data.

11.8.2 Exterior asymptotic gluing

The exterior asymptotic gluing is a method to construct solutions to the

Einstein constraint equations by gluing the interior region of an asymptotically

Euclidean solution to the Einstein vacuum constraints to an asymptotic end of

initial data for the Kerr spacetime or, in fact, of any stationary solution; see

Corvino (2000), Chruściel and Delay (2003), Corvino and Schoen (2006) and

Corvino (2007). More precisely, given a smooth asymptotically Euclidean initial

data set for the vacuum Einstein field equations (S̃, h̃, K̃) and a given compact

subset U ⊂ S̃ such that S̃ \ U is an asymptotic end, it is possible to show that

there exists another smooth asymptotically Euclidean solution to the vacuum

Einstein constraints (S̃, h̄, K̄) which is identical to the original solution on U
and coincides with initial data for the Kerr spacetime on S̃ \ Ū for some Ū ⊂ S̃.
In addition, the initial data set (S̃, h̄, K̄) contains an annular transition region

in which the initial data can be controlled. In the case of time-symmetric initial

data sets this method glues any interior region to an exterior region of a slice of

the Schwarzschild spacetime.

The underlying idea in the asymptotic exterior gluing method is to exploit the

underdetermined character of the Einstein constraints as a system of partial

differential equations for the fields (h̃, K̃). Prior to the development of the

asymptotic exterior gluing methods Cutler and Wald (1989) have shown that it is

possible to make use of the standard conformal method to construct solutions to

the time symmetric constraints containing a Minkowskian interior region and a

Schwarzschildean exterior region joined together by an annular region containing

a purely magnetic solution to the Einstein-Maxwell constraints.

As will be discussed in Chapter 20, initial data sets obtained by means of

asymptotic exterior gluing play a key role in the construction of Minkowski-like

asymptotically simple spacetimes. For simplicity, in the remainder of this section

attention is restricted to the time-symmetric case for which the Einstein vacuum

constraints reduce to r[h̃] = 0. In the present context, one regards the Ricci

scalar as a map between the space of Riemannian metrics over S̃ and X(S̃). Under

certain circumstances this mapping is an isomorphism; that is, given a metric h

and f ∈ X(S̃) such that r[h] = f and given a further g ∈ X(S̃) close enough to f ,

then there exists another metric h̄ close to h such that r[h̄] = g. This property

of the Ricci scalar operator is the essential ingredient in the gluing procedure.

As part of the gluing construction, one connects the inner region (U , h̃) and an

asymptotic region (E , h̃S ) with h̃S as given in Equation (11.45) for some choice

(so far undetermined) of the constants m and (xα
0 ) through an annular region.

A positive definite symmetric tensor h̆ is defined on S̃ by requiring it to be

identical to h̃ on U and to h̃S on E , while on the asymptotic region it is chosen
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11.8 Other methods for solving the constraint equations 289

so that it interpolates smoothly between h̃ and h̃S . By construction r[h̆] = 0 in

both U and E , while r[h̆] �= 0 in the transitional annular region. Nevertheless, by

moving U suitably into the asymptotic region, one can make r[h̆] small enough

so that the isomorphism properties of the Ricci scalar operator can be used to

ensure the existence of a tensor k with support on an annular region such that

h̄ ≡ h̆+ k is a Riemannian metric with r[h̄] = 0 on S̃.
The asymptotic exterior gluing construction requires a careful analysis of the

properties of the linearised Ricci operator

Rh[h̄] ≡ −Δh(trh(h̄)) + divh(divh(h̄))− h(h̄,Ric[h̄]).

For a fixed metric h, the latter is an underdetermined elliptic operator. It can

be transformed into an elliptic system by composition with its formal adjoint

R∗
h(f) ≡ −(Δhf)h+Hess(f)− fRic[h].

The composite elliptic operator R∗
h ◦ Rh is a fourth-order partial differential

operator. Once the linearised problem is controlled, the non-linear problem is

then solved by means of an iteration. To conclude, one needs to show that the

metric h̄ is indeed a solution to r[h̄] = 0. It is in this part of the construction

that the value of the constants m and (xα
0 ) are fixed. A refined version of the

original construction in Corvino (2000) has been given in Corvino (2007), from

which the following result has been adapted:

Theorem 11.3 (exterior asymptotic gluing construction) Let (S̃, h̃)
denote an asymptotically Euclidean initial data set for the Einstein vacuum

equations. Let E ⊂ S̃ be any asymptotically flat end of S̃. Given r0 > 0 let Er0 ⊂ E
be an exterior region in E expressed in asymptotically Cartesian coordinates by

Er0 = {(xα) ∈ R3 | |x| > r > r0}. Suppose, furthermore, that in these coordinates

the metric h̃ has the form

h̃αβ = −
(
1 +

2m

|x|

)
δαβ +O3(|x|−2).

Let k be a non-negative integer. Then for any ε > 0 there exists r∗ > 0 and a

smooth metric h̄ satisfying r[h̄] = 0 and ||hαβ − h̄αβ ||Ck(E) < ε so that h̄ is equal

to h̃ on U = S̃ \ Er∗ and identical to an asymptotically flat end of a standard

Schwarzschild slice on E2r∗ .

The precise definition of the supremum norm || ||Ck(E) is discussed in the

Appendix to this chapter. A schematic depiction of the construction of Theorem

11.3 is given in Figure 11.2. In the applications of this result to the existence of

asymptotically simple spacetimes, it is important to control the location of the

exterior region Er∗ and to ensure that r∗ �→ ∞ as one moves along a family of

initial data sets tending, say, to data for the Minkowski spacetime. This possible

degeneracy has been dealt with by imposing some reflexion symmetry properties
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Ũ

E

Figure 11.2 Schematic depiction of the exterior gluing construction given by
Theorem 11.3. It contains an inner region Ũ where the 3-metric has a fixed
arbitrary value h̃, an annular transition region between Er∗ and E2r∗ and an
exterior region E where it is equal to data for a member of the Schwarzschild
family of solutions.

on the metric h̃; see Chruściel and Delay (2003). An alternative solution has

been provided in Corvino (2007). This result makes use of symmetric (0, 2)-

tensors k satisfying the condition R−δ(k) = 0. Making use of a York splitting

the tensor k can be decomposed in a unique way into a traceless term with

vanishing divergence, a trace part and a part which is the conformal Killing

operator of a covector; see Chaljub-Simon (1982). The tensor k is said to be non-

degenerate if its transverse-traceless part is non-zero. Using this terminology

one has the following stability result (see Corvino (2007) for further details and its

proof):

Theorem 11.4 (stability of the exterior gluing construction) Let k be any

smooth, compactly supported symmetric (0, 2)-tensor on R3 with R−δ(k) = 0.

Moreover, for sufficiently small ε > 0 let

h̃ = −ϑ4(δ + εk)

be asymptotically flat and satisfy r[h̃] = 0. If k is non-degenerate, there exists

r∗ > 0 so that for all ε small enough there is a metric h̄ with r[h̄] = 0 which

agrees with h̃ in the closed ball Br∗(0) and is exactly Schwarzschild on E2r∗ .
Consequently, the Riemannian manifold (R3, h̄) admits a smooth conformal point

compactification in the sense of Definition 11.2.

This theorem guarantees the existence of time-symmetric solutions to the

vacuum Einstein constraint equations which are both close to data for the

Minkowski spacetime and exactly Schwarzschildean in a non-trivial exterior

region; see Section 20.5.

Versions of the asymptotic exterior gluing construction for initial data sets

with non-vanishing extrinsic curvature can be found in Chruściel and Delay

(2003) and Corvino and Schoen (2006). There are adaptations of the exterior

gluing method to the case of hyperboloidal initial data sets with constant scalar

curvature; see Chruściel and Delay (2009).
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11.9 Further reading

The best point of entry to the extensive literature on the Einstein constraint

equations is through reviews such as those of Bartnik and Isenberg (2004) or

Isenberg (2013). An older, classical review on the topic is given in Choquet-

Bruhat and York (1980). An alternative review aimed at applications in

numerical relativity is Cook (2000). A detailed account of the conformal method

to solve the constraint equations, as seen by one of the main contributors of

the topic, can be found in Choquet-Bruhat (2008) – this reference contains, in

addition, a discussion of the basic aspects of weighted Sobolev spaces. Closely

related to the latter is the reference Choquet-Bruhat et al. (2000). A discussion

of basic aspects of the theory of elliptic differential equations and its application

to the analysis of the Einstein constraints can be found in Rendall (2008). An

alternative account of the basic aspects of the analysis of elliptic equations with

a number of worked-out examples is Dain (2006). Finally, a detailed account of

the conformal equations under the assumption of spherical symmetry is given in

Guven and O’Murchadha (1995).

By contrast, the accounts on the conformal Einstein constraints are much more

restricted in number. The original references are Friedrich (1983, 1984, 1986a,

1995, 2004); see also the discussion in Frauendiener (2004). A systematic analysis

of hyperboloidal initial data sets can be found in Andersson et al. (1992) and

Andersson and Chruściel (1993, 1994).

The notion of asymptotically Euclidean and regular manifolds can be traced

back to the discussion in Geroch (1972b). These ideas have been further

elaborated in Friedrich (1988, 1998c). Accounts of the use of Dirac’s deltas to

represent the points at infinity can be found in Beig and O’Murchadha (1991,

1994). A neat application of this approach to the construction of initial data

sets with a conformal toroidal symmetry is given in Beig and Husa (1994).

Applications of the method to the construction of initial data for the collision

of Kerr-like black holes can be found in Dain (2001a,c). Finally, a detailed

construction of initial data sets admitting expansions in powers of the geodesic

distance is given in Dain and Friedrich (2001).

Appendix: some results of analysis

As in the main text of this chapter, let (S,h) denote a Riemannian manifold.

Moreover, let p ∈ S denote a point and consider normal coordinates x = (xα)

centred at p; that is, xα(0) = 0.

Order symbols. The behaviour of functions f :S →R near p can be conve-

niently described by means of the big O and small o notations. More precisely,

given f , g : S → R, if for some x = (xα) sufficiently close to 0 there exists a

positive constant M such that

|f(x)| ≤ M |g(x)|,
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292 The conformal constraint equations

one writes f(x) = O(g(x)), and one says that f is at most of the order of g. If,

in addition, one has that

∂αf(x) = O(∂αg(x)), · · · ∂α1
. . . ∂αk

f(x) = O(∂α1
· · · ∂αk

g(x)),

for some integer k one writes f(x) = Ok(g(x)).

If given f, g one has f(x)/g(x) → 0 as xα → 0, then one writes

f(x) = o(g(x)),

and one says that the order of f is bigger than that of g. Again, if

∂αf(x) = o(∂αg(x)), . . . ∂α1
· · · ∂αk

f(x) = o(∂α1
· · · ∂αk

g(x)),

one writes f(x) = ok(g(x)). For further discussion, see, for example, Courant

and John (1989).

Taylor expansions. If a function f : Rn → R is of class Ck on the open ball

Ba(0) ⊂ Rn one has that

f(x) = f(0) + ∂αf(0)x
α +

1

2!
∂α1

∂α2
f(0)xα1xα2

+ · · ·+ 1

(k − 1)!
∂α1

· · · ∂αk−1
f(0)xα1 · · ·xαk−1 +O(|x|k).

For further discussion, see, for example, Courant and John (1989).

Supremum norm. Given U ⊂ Rn and f ∈ Ck(U), one defines the supremum

norm as

||f ||Ck(U) =
∑

0≤l≤k

sup{|∂α1
· · · ∂αl

f(x)| , x ∈ U}

where U denotes the closure of U . For further discussion on this and other related

norms, see, for example, Ambrosetti and Prodi (1995).

Extension of smooth functions. Let U ⊂ S denote a closed subset and f :

U → Rk a smooth function. There exists a smooth function f̃ : S → Rk such

that f̃ |U = f and whose support is contained in S \ U ; in other words, f̃ is

non-vanishing in S \U . In a slight abuse of notation f̃ will be denoted, again, by

f . For more details on this result, see Lee (2002).

Dirac’s delta. Let now S denote a compact manifold and p ∈ S a fixed point

within. The Dirac’s delta δ(p) with support on p is the distribution (i.e. a linear

functional C0(S) → R) satisfying∫
S
f(x)δ(p)dμh = f(p), for all f ∈ C0(S).

In particular, one has that ∫
S
δ(p) dμh = 1.
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If f(p) = 0, one has the distributional equality

f(x)δ(p) = 0.

For further details, the reader is referred to Appel (2007).

Divergence theorem. Given (M, g) a manifold with metric (Riemannian or

Lorentzian) and, within, U ⊂ M a compact subset and a smooth covector ω,

one has ∫
U
divω dμh =

∫
∂U

〈ω,ν〉 dSh,

with ν the outward pointing unit normal to ∂U ; see, for example, Frankel (2003)

for further details.
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12

Methods of the theory of hyperbolic
differential equations

This chapter discusses the notions of the theory of hyperbolic differential

equations and the existence theorems employed to construct solutions to the

conformal Einstein field equations. Conformal methods allow, under suitable

circumstances, the use of very general theorems of the theory of partial

differential equations (PDEs) to obtain conclusions of a global nature about

solutions to the Einstein field equations. The results presented in this chapter

have been tailored to fit the general discussion of this book.

The basic result of the theory of hyperbolic PDEs that will be used in this

book is Kato’s existence, uniqueness and stability result for symmetric hyperbolic

systems; see Theorem 12.4. In view of applications to the construction of anti-

de Sitter-like spacetimes a basic existence and uniqueness result of the initial

boundary value problem of symmetric hyperbolic equations is also discussed;

see Theorem 12.6. The chapter concludes with an overview of the basic theory

behind characteristic initial value problems; see Theorem 12.7.

12.1 Basic notions

As will be seen in Chapter 13, the conformal Einstein equations give rise to

quasilinear evolution equations which, in local coordinates x ≡ (xμ) on an

open set U ⊂ M of the spacetime manifold, take the form

Aμ(x,u)∂μu = B(x,u) (12.1)

where u is a CN -valued unknown for some positive integerN andAμ, μ = 0, . . . 3,

are (N ×N) matrix-valued functions of the coordinates and of the vector-valued

unknown u; thus, one has as many equations as components in the vector u.

Finally, B(x,u) is a vector-valued function of x and u. In what follows, it will

be assumed that the components of u are scalars. The functions Aμ(x,u) and

B(x,u) are, in principle, non-linear functions of the entries of u. If the matrices
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12.1 Basic notions 295

Aμ do not depend on u, one has a semilinear system. Without loss of generality,

U can be regarded as some suitable subset of R4.

Following the terminology of Section 11.2 the term

Aμ(x,u)∂μu

is known as the principal part of Equation (12.1). The symbol with respect

to the unknown u at the point p ∈ U with coordinates x = x(p) for a covector

ξ ∈ T ∗|p(U) is given by the matrix

σ(x,u, ξ) ≡ Aμ(x,u)ξμ.

Under a coordinate transformation x′ = x′(x), it follows from Equation (12.1)

that

Aμ′(x′,u)∂μ′u = B(x′,u),

with

A′μ(x′,u) =
∂x′μ

∂xν
Aν(x(x′),u). (12.2)

It then follows from the transformation law of covectors under coordinate

transformations and Equation (12.2) that the symbol of the differential

Equation (12.1) is an invariant.

12.1.1 Symmetric hyperbolic systems

The basic properties of the PDE (12.1) and of its solutions depend on the

structure of its principal part. Given a matrix A, the operation of taking the

transpose of its complex conjugate will be denoted by A∗. One has the following

definition:

Definition 12.1 (symmetric hyperbolic systems) Given a solution u(x),

the system (12.1) is said to be symmetric hyperbolic at (x,u) if:

(i) the matrices Aμ(x,u) are Hermitian; that is (Aμ)∗ = Aμ

(ii) there exists a covector ξ such that σ(x,u, ξ) = Aμ(x,u)ξμ is a positive-

definite matrix.

Given two vectors u, v ∈ CN , their inner product is defined by

〈u,v〉 ≡ u∗v.

It follows then that 〈u,v〉 = 〈v,u〉 with the overbar denoting the usual complex

conjugation of scalars. Moreover, if A is a Hermitian N ×N matrix, then

〈u,Av〉 = 〈Au,v〉, 〈u,Au〉 = 〈u,Au〉.
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Spacelike and timelike hypersurfaces with respect to a

symmetric hyperbolic system

In what follows, let S denote a hypersurface on U ⊂ M defined in terms of a

smooth scalar φ ∈ X (M) as

S ≡ {p ∈ U |φ(p) = 0}, (12.3)

where it is assumed that dφ �= 0 so that S has everywhere a well-defined normal.

The positivity condition (i) in Definition 12.1 allows one to define the causal

nature of the hypersurface S with respect to solutions of Equation (12.1).

More precisely, the hypersurface S is said to be spacelike with respect to

a solution u to the symmetric hyperbolic system (12.1) if σ(x,u,dφ)

is positive definite for p ∈ S. If σ(x,u,dφ) has a non-vanishing determinant

and is not positive definite, one says that S is timelike for the solution u.

Finally, if σ(x,u,dφ) has a vanishing determinant, one says that S is null – this

case is tied to the notion of characteristics to be discussed in the next section.

These causal definitions are, in principle, independent of the homonymous notion

defined in terms of a metric g on M. However, as discussed in Chapter 14, for

evolution equations arising from the Einstein field equations, the geometric and

PDE notions agree; see Theorem 14.1.

12.1.2 Initial value problems and characteristics

Of particular relevance for a symmetric hyperbolic system of the form (12.1) is

the so-called initial value problem whereby some initial data on a hypersurface

S is prescribed and one purports to obtain the solution to the equation away

from the initial hypersurface.

An initial data set for Equation (12.1) on a hypersurface S which is spacelike

with respect to Equation (12.1) consists of a CN -valued function u� on S which

is interpreted as the value of the solution u to Equation (12.1) on S. A question

which arises naturally in this context is whether all the components of the vector

u� can be specified freely on S.
It is convenient to introduce on U coordinates x = (x0, x) = (x0, x1, x2, x3)

adapted to S so that the hypersurface is represented by the condition x0 = 0.

Using these adapted coordinates and the initial data u� one can compute the

spatial derivatives ∂αu� of u on S. In order to determine the time derivatives

∂0u on S one substitutes the above into Equation (12.1) to obtain

A0(0, x;u�)(∂0u)� +Aα(0, x;u�)∂αu� = B(0, x;u�), (12.4)

where it is observed that (∂αu)� = ∂αu�. This equation can be read as a linear

algebraic system for (∂0u)� ≡ ∂0u|S which can be solved if A0(0, x,u�) can be

inverted, that is, if

det
(
A0(0, x;u�)

)
�= 0.
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If detA0(0, x;u�) = 0, then M ≡ rankA0(0, x,u�) < N , and one can make

linear combinations of the equations in (12.4) to obtain a new system on S of

the form

Ā0(0, x;u�)(∂0u)� + Āα(0, x;u�)∂αu� = B(0, x;u�),

where

Ā0(0, x,u�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a011(0, x;u�) · · · a01N (0, x;u�)
...

. . .
...

a0M1(0, x;u�) · · · a0MN (0, x;u�)

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has N − M rows consisting of zeros. Hence, not all the derivatives (∂0u)� are

determined by the initial data, and one has N−M constraint equations which

have to be satisfied by the initial data u�.

The discussion of the previous paragraphs leads to the following general

definition which also applies to evolution systems of the form (12.1) which are

not necessarily symmetric hyperbolic:

Definition 12.2 (characteristic surfaces of a first order PDE ) A

hypersurface S defined by a condition of the form (12.3) is said to be a

characteristic of a solution u of Equation (12.1) if

det
(
σ(x,u,dφ)

)
= 0 for p ∈ S. (12.5)

If

det
(
σ(x,u,dφ)

)
�= 0 for p ∈ S,

then S is said to be nowhere characteristic for the solution u of

Equation (12.1).

On a characteristic, the system (12.1) implies M transversal equations and

N − M interior equations on S. If M = 0, so that the full system (12.1)

reduces to interior equations, one says that S is a total characteristic of the

system. More generally, given a point p ∈ U , one defines its characteristic set

(or Monge cone) with respect to a solution u of Equation (12.1) as the subset

C∗
p ⊂ T ∗|p(U) defined by

C∗
p ≡

{
ξ ∈ T ∗|p(U)

∣∣ det(σ(x,u, ξ)) = 0, ξ �= 0
}
.

That is, the elements of C∗
p are in the kernel of the symbol. The covectors ξ

are sometimes called the null directions at p. The quantity det(σ(x,u, ξ)) can

be read as a polynomial for the components of the covector ξ – the so-called

characteristic polynomial.
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Well-posedness

An initial value problem for a system of the form (12.1) (not necessarily

symmetric hyperbolic) with data prescribed on a hypersurface S which is nowhere

characteristic and timelike with respect to the evolution system at the prescribed

data u� will be called a Cauchy initial value problem. If the initial data

is prescribed on a hypersurface N which is characteristic, one speaks of a

characteristic initial value problem.

The definitions given in the previous paragraph are motivated by the notion

of well-posedness. In broad terms, an initial value problem is well posed if:

(i) There exist solutions to all initial data.

(ii) The solutions are uniquely determined by the initial data.

(iii) The solutions depend continuously on the initial data.

The first step in the analysis of the well-posedness of an initial value problem for

a given class of PDEs is the formulation of the above requirements in a precise

manner; see, for example, Rendall (2008) for further discussion on this. Initial

value problems which are not well posed are said to be ill-posed.

The Cauchy problem for a symmetric hyperbolic system of the form (12.1)

is well-posed. By contrast, an initial value problem with data prescribed on a

timelike hypersurface is ill-posed. A further example of an ill-posed problem is

the Cauchy problem for elliptic equations. In the case of characteristic initial

value problems the well-posedness of the problem depends on the causal relation

between the region where one wants to obtain the solution and the initial

characteristic surfaces; see Section 12.5.1. Although well-posed initial value

problems are of natural importance in general relativity, ill-posed problems also

arise in applications such as the uniqueness of stationary black holes; see, for

example, Ionescu and Klainerman (2009a,b).

12.1.3 Some examples

The discussion of the previous paragraphs is best illuminated by a couple of

explicit examples. Many of the features of these examples are generic and arise

in the analysis of the evolution equations implied by the (conformal) Einstein

field equations.

In what follows, let (M, g) denote a spacetime. On U ⊂ M consider some

local coordinates x = (xμ) and a null frame {eAA′} with associated cobasis

{ωAA′}. In terms of the local coordinates one writes eAA′ = eAA′μ∂μ and

ωAA′
= ωAA′

μdx
μ. Moreover, let {εAA} be a spinorial frame giving rise to the

vector frame {eAA′}; see the discussion in Section 3.1.9.

A spinorial curl equation

As a first example consider on U ⊂ M a spinorial equation of the form

∇Q
A′ϕQA···D = FA′A···D, (12.6)
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for the components ϕQA···D of a spinor ϕQA···D with respect to the spin frame

{εAA}. The spinor ϕQA···D is not assumed to have any particular symmetries

and the field FA′A···D may depend on the coordinates or any other field. Notice

that the unknowns of Equation (12.6) are scalars.

It is claimed that the combination

∇Q
1′ϕQA···D = F1′A···D, (12.7a)

−∇Q
0′ϕQA···D = −F0′A···D, (12.7b)

is a symmetric hyperbolic system. In order to see this, observe that

∇Q
A′ϕQA···D = ∇1A′ϕ0A···D −∇0A′ϕ1A···D.

Thus, the principal part of the system (12.7a) and (12.7b) can be written in

matricial form as

Aμ∂μϕ ≡
(

e11′μ −e01′μ

−e10′μ e00′μ

)
∂μ

(
ϕ0A···D
ϕ1A···D

)
.

The matrices Aμ are Hermitian as e00′ and e11′ are real vectors and e01′ = e10′ .

Letting ξμ ≡ ω00′
μ + ω11′

μ, a calculation shows that

Aμξμ =

(
e11′μω00′

μ + e11′μω11′
μ −e01′μω00′

μ − e01′μω11′
μ

−e10′μω00′
μ − e10′μω11′

μ e00′μω00′
μ + e00′ω11′

μ

)
.

Using eAA′μωBB′
μ = εA

BεA′B
′
it follows that

Aμξμ =

(
1 0

0 1

)
,

which is clearly positive definite. Thus, the system (12.7a) and (12.7b) is

symmetric hyperbolic as claimed. Given a generic covector ξ, the characteristic

polynomial is given by

det(Aμξμ) = det

(
e11′μξμ −e01′μξμ
−e10′μξμ e00′μξμ

)
=
(
eμ11′e00′ν − e01′μe10′ν

)
ξμξν

=
1

2
gμνξμξν ,

where, in the last equality, Equation (3.30) relating the null frame and the

metric has been used. Thus, the characteristics of Equation (12.6) are given

by null hypersurfaces with respect to the metric g. Furthermore, spacelike

hypersurfaces with respect to solutions to the equation coincide with the

g-spacelike hypersurfaces so that the causal notions given by Equation (12.6)

and the background metric g coincide.
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The wave equation as a symmetric hyperbolic system

As a second example consider the wave equation

∇a∇aφ = 0 (12.8)

on a region U ⊂ M. In contrast to the previous example, this equation is second

order, and thus, it does not fit into the scheme discussed so far. Nevertheless,

the wave equation can be recast as a symmetric hyperbolic system for the scalar

field φ and some further auxiliary fields.

The spinorial version of Equation (12.8) is given by

∇AA′∇AA′φ = 0. (12.9)

As a first step one introduces the auxiliary variable φAA′ ≡ ∇AA′φ. Reading

this definition as an equation for the scalar field φ and contracting with a spinor

τAA′
representing a timelike vector τa, one obtains the evolution equation

Pφ = ϕ, (12.10)

where ϕ ≡ τAA′
φAA′ and P ≡ τAA′∇AA′ is the directional derivative

along τa; see Section 4.3.1. Now, defining ϕAB ≡ τ(B
A′

φA)A′ one obtains the

decomposition

φAA′ =
1

2
ϕτAA′ − τQA′ϕAQ. (12.11)

Having introduced the auxiliary variable φAA′ one needs to consider a suitable

field equation for it. A convenient choice is given by the no torsion condition

∇AA′∇BB′φ−∇BB′∇AA′φ = 0,

which, in view of the definition of φAA′ , can be rewritten as

∇AA′φBB′ −∇BB′φAA′ = 0. (12.12)

Contracting the indices A′ and B′ and using the see-saw rule one obtains

∇(A
Q′

φB)Q′ = 0,

which, as a result of the hermicity of φAA′ is completely equivalent to

Equation (12.12). Finally, using the identity

∇A
Q′

φBQ′ = ∇(A
Q′

φB)Q′ − 1

2
εAB∇QQ′

φQQ′

and observing that from Equation (12.9) it follows that ∇QQ′
φQQ′ = 0, one

concludes that

∇A
Q′

φBQ′ = 0.
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12.2 Uniqueness and domains of dependence 301

Using Equation (12.11) one can perform a space spinor split of this equation.

After some calculations one obtains the pair of equations

Pϕ+ 2DABϕAB = 0, (12.13a)

PϕAB −DABϕ+ 2D(A
QϕB)Q = 0, (12.13b)

where DAB denotes the directional derivative associated to the Sen connection

relative to τAA′
; see Section 4.3.1. Equations (12.10), (12.13a) and (12.13b)

are the basic evolution equations. For simplicity of presentation in Equations

(12.13a) and (12.13b) the covariant derivatives of τAA′
have been assumed to

vanish. To obtain a system which is symmetric hyperbolic, some normalisation

factors have to be added. Some experimentation renders

Pφ = ϕ,

Pϕ+ 2DABϕAB = 0,

4

(A+B)!(2−A−B)!

(
PϕAB −DABϕ+ 2D(A

QϕB)Q

)
= 0,

which is claimed to be symmetric hyperbolic. From these equations, a calculation

similar to the one carried out for the Maxwell equations yields the following

matricial expression for the principal part:

Aμ∂μφ ≡

⎛
⎜⎜⎜⎜⎝

τμ 0 0 0 0

0 τμ 2e11
μ −4e01

μ 2e00
μ

0 −2e00
μ 2τμ − 4e01

μ 4e00
μ 0

0 −4e01
μ −4e11

μ 4τμ 4e00
μ

0 −2e11
μ 0 −4e11

μ 2τμ + 4e01
μ

⎞
⎟⎟⎟⎟⎠ ∂μ

⎛
⎜⎜⎜⎜⎝

φ

ϕ

ϕ0

ϕ1

ϕ2

⎞
⎟⎟⎟⎟⎠ ,

where ϕ0 ≡ ϕ00, ϕ1 ≡ ϕ01 and ϕ2 ≡ ϕ11. Taking into account the reality

conditions satisfied by the various frame coefficients one concludes that the

matrices are Hermitian. Moreover, a short computation shows that Aμτμ is

positive definite so that, indeed, one has obtained a symmetric hyperbolic

system for the wave equation. Finally, a further computation shows that the

characteristic polynomial of the system is given by

det(Aμξμ) = 8(τμξμ)(g
νλξνξλ)

2.

Accordingly, g-null hypersurfaces are characteristics of the system.

12.2 Uniqueness and domains of dependence

An important property of the Cauchy initial value problem for symmetric

hyperbolic systems is the uniqueness of solutions for a given prescription

of initial data. The discussion of the uniqueness of solutions is naturally carried

out in subsets of R4 known as lens-shaped domains. A lens-shaped domain
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G

S0

S1

Figure 12.1 Schematic depiction of a lens-shaped domain G. The hypersurfaces
S0 and S1 are spacelike with respect to a solution u of a symmetric hyperbolic
system of the form (12.1).

with respect to a solution u to a symmetric hyperbolic system of the form (12.1)

is an open subset G ⊂ R4 with compact closure and whose boundary is given

by the union of two subsets S0 and S1 of hypersurfaces which are spacelike with

respect to u; see Figure 12.1. In terms of these domains one has the following

result which exploits all the algebraic conditions in Definition 12.1:

Theorem 12.1 (uniqueness of solutions of symmetric hyperbolic sys-

tems) Let G be a lens-shaped domain. If u1 and u2 are two solutions to the

initial value problem for the symmetric hyperbolic system

Aμ(x,u)∂μu = B(x,u), u|S0
= u�

then u1 = u2 on G.

Proof This proof follows closely the discussion in Friedrich and Rendall (2000).

Assume one has a symmetric hyperbolic system of the form (12.1) such that the

matrices Aμ and B are C1 functions of their arguments. Moreover, let u1 and

u2 denote two C1 solutions. Let G denote a lens-shaped region with respect to

u1 and u2 whose boundary is given by the union of two hypersurfaces S0 and S1.

Using a refined version of the mean value theorem (see the Appendix to this

chapter for further discussion) it follows that there exist continuous functions

Mμ and N such that

Aμ(x,u1)−Aμ(x,u2) = Mμ(x,u1,u2)(u1 − u2),

B(x,u1)−B(x,u2) = N(x,u1,u2)(u1 − u2).

It follows then from Equation (12.1) that

Aμ(x,u1)∂μ(u1 − u2) +

(
Mμ(x,u1,u2)∂μu2 +N(x,u1,u2)

)
(u1 − u2) = 0.

This equation can be written in a more compact form as

Aμ(x,u1)∂μ(u1 − u2) = Q(x,u1,u2, ∂u2)(u1 − u2)

with Q(x,u1,u2, ∂u2) a continuous function of its arguments.
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12.2 Uniqueness and domains of dependence 303

Now, choosing coordinates such that x = (t, x) and using the evolution

Equation (12.1) one can verify the identity

∂μ

(
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉
)

= e−kt〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉, (12.14)

where

P(x,u1,u2, ∂u2) ≡ −kA0(x,u1) + ∂μA
μ(x,u1)

+Q(x,u1,u2, ∂u2) +Q∗(x,u1,u2, ∂u2).

Integrating the identity (12.14) over the lens-shaped region G and using the

Gauss theorem one has that∫
G
∂μ
(
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉
)
d4x

=

∫
S1

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

−
∫
S0

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS, (12.15)

where d4x is the standard volume element in R4 and νμ denotes the outward

pointing unit normal to ∂G.
As S1 is spatial with respect to the symmetric hyperbolic system, it follows that

Aμ(x,u1)|S1
is positive definite. Hence, the integral over S1 in Equation (12.15)

is non-negative. By assumption one has that (u1−u2)|S0
= 0 so that the integral

over S0 in (12.15) vanishes. Hence, one concludes that∫
G
e−kt〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉d4x ≥ 0. (12.16)

Finally, as the matrix A0(x,u1) is positive definite and G is compact, it follows

that the constant k > 0 can be chosen so that P(x,u1,u2, ∂u2) is negative

definite uniformly on G. In other words, there exists a positive constant C such

that

0 > −C〈u1 − u2,u1 − u2〉 ≥ 〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉.

Accordingly, the integral over G in inequality (12.16) can be made negative by a

suitable choice of k. This is a contradiction unless u1 = u2 in G.

A corollary of the above theorem is the following:

Corollary 12.1 If u|S0
= 0 and B(x,u) is homogeneous in u, then u = 0

in G.

Proof The result follows directly from the previous theorem, observing that

u = 0 is a solution.
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304 Methods of the theory of hyperbolic differential equations

The uniqueness Theorem 12.1 shows that, in a neighbourhood of an initial

hypersurface S, the solution of a symmetric hyperbolic system is determined

by initial data on a compact subset of S as any point sufficiently close to S
is contained in a lens-shaped region. This consideration leads to the notion of

domain of dependence.

Definition 12.3 (domain of dependence) Let R ⊂ S. The domain of

dependence D(R) of R is the set of all points p ∈ U ⊂ R4 such that the

value of a solution u to Equation (12.1) at p is determined (uniquely) by the

restriction of the initial data to R.

Remark. The term “domain of dependence” is sometimes used in the PDE

literature to denote the set of points determining the value of a solution u at a

given point. The notion of domain of dependence used in this book is then called

domain of influence; see Rendall (2008) for further discussion.

The main property singled out by Definition 12.3 is that the solution of

a symmetric hyperbolic system is determined at a given point by data on

a proper subset of the initial hypersurface. Thus, the process of solving the

Cauchy problem for the symmetric hyperbolic system (12.1) can be localised in

space. This is a particular property of hyperbolic differential equations which

distinguishes them from other types of PDEs. More precisely, if two initial data

sets u� and ū� coincide on an open subset R ⊂ S, then the corresponding

domains of influence and the solutions u and ū coincide as well. In other words,

in the domain of influence D(R) a solution u is independent of the behaviour

of the data u� outside R. In particular, there is no need to impose boundary

or fall-off conditions away from R. This observation is usually known as the

localisability property of symmetric hyperbolic systems; that is, the theory

does not depend on the global knowledge of the initial data in space. A related

observation is that if on S one has two different intersecting coordinate patches

R and R′ such that on R ∩ R′ one has x′ = x′(x), then, as a consequence the

transformation rule of Equation (12.1) and the uniqueness of the solution on

D(R∩R′), one has that u′(x′) = u(x(x′)).

Finite speed of propagation of solutions

A consequence of the existence of a domain of dependence for symmetric

hyperbolic systems is the so-called finite speed of propagation of their

solutions. A rough estimate of this phenomenon can be constructed using an

argument given in Rendall (2008).

As in previous sections, let u denote a solution to a symmetric hyperbolic

system of the form (12.1) with initial data u� prescribed on the hypersurface

S0 ≡ {p ∈ U | t(p) = 0}.

In what follows, assume that the support of u� is contained on a ball of radius

r� around the origin.
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12.2 Uniqueness and domains of dependence 305

Now, given a point p ∈ U with coordinates (t•, x•) ≡ (t, xα
• ) and a constant

β > 0 consider the paraboloidal hypersurface

Sβ;(t•,x•)
≡
{
p ∈ U

∣∣ t(p) = t• − β δαβ
(
xα(p)− xα

•
)(
xβ(p)− xβ

•
)}

.

The normal to these hypersurfaces is given by

ν = dt− 2βδαβx
αdxβ .

Hence, assuming that A0(x,u) is positive definite on S0 it follows that

Aμ(x,u)νμ = A0(x,u) + 2βδαβx
αAβ(x,u)

can be made positive definite by choosing β sufficiently small, say, β < β0, so

that Sβ;(t•,x•)
is spacelike with respect to Equation (12.1). For this choice of β

the region G bounded by S0 and Sβ;(t•,x•)
is a lens-shaped domain. Now, it can

be verified that the intersection of Sβ;(t•,x•)
with S0 lies outside a ball of radius

r ≡ |x•| −
√

t•
β
, |x•|2 ≡ δαβx

α
•x

β
• .

Thus, if

|x•| −
√

t•
β

> r�,

then the solution satisfies u(t•, x•) = 0 as (t•, x•) lies on the boundary of a lens-

shaped region with trivial data. Accordingly, the support of u on the hypersurface

St• =
{
p ∈ U | t(p) = t•

}
must lie within a ball of radius r� +

√
t•/β; see Figure 12.2 for further details.

Thus, the support of the solution gradually spreads in space at finite speed.

t

xsupp u

supp u•

r + t/β

(t•, x•)

Sβ;(t•,x•)

S0

Figure 12.2 Schematic depiction of the rough estimate of the spread of the
support of a solution to a symmetric hyperbolic system. The solution at (t•, x•)
is determined by trivial data at the initial hypersurface S0; see the main text
for further details.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


306 Methods of the theory of hyperbolic differential equations

12.3 Local existence results for symmetric hyperbolic systems

The purpose of this section is to analyse the basic existence and stability results

for symmetric hyperbolic systems of the form (12.1). The precise formulation

of existence results is more technical than the one for uniqueness and requires

a certain number of notions from the theory of functional analysis. These are

discussed in the following subsection.

12.3.1 Sobolev spaces

The precise discussion of existence results for symmetric hyperbolic systems is

carried out in terms of Sobolev spaces. The purpose of this section is to introduce

some of the basic ideas concerning these function spaces. In a first step, the

discussion will consider Sobolev spaces of functions over R3. These notions can

be suitably extended to three-dimensional manifolds with a different topology.

In what follows, let x ≡ (xα) denote some particular choice of Cartesian

coordinates and let d3x be the standard volume element of R3. The discussion

of solutions of symmetric hyperbolic systems of the form (12.1) leads to consider

CN -valued functions on R3; that is, w : R3 → CN . The space of smooth

functions of this type will be denoted by C∞(R3,CN ). On C∞(R3,CN ) one can

introduce, for m ∈ N, a Sobolev norm via

||w||R3,m ≡
(

m∑
k=0

3∑
α1,...αk=1

∫
R3

|∂αk
· · · ∂α1

w|2d3x
)1/2

, (12.17)

for w ≡ (w1, . . . , wN ) ∈ C∞(R3,CN ) where |w|2 = 〈w,w〉 is the standard norm

in CN . For example, if u = (u) is a C-valued function, one has that

||u||2
R3,1 =

∫
R3

(uu+ ∂1u ∂1u+ ∂2u ∂2u+ ∂3u ∂3u)d
3x.

Not all functions w ∈ C∞(R3,CN ) satisfy ||w||R3,m < ∞. For example, a

constant function from R3 to CN will have infinite Sobolev norm. In order for a

function to have finite Sobolev norm, it must decay suitably at infinity. In view

of the localisability property of hyperbolic equations discussed in Section 12.2

this restriction does not pose a problem in the subsequent considerations. Thus,

in what follows, attention is restricted, for given m ∈ N, to the space{
w ∈ C∞(R3,CN )

∣∣ ||w||R3,m < ∞
}

of CN -valued functions over R3 with finite Sobolev norm of order m. This set

is clearly a vector space, but not a Banach space ; that is, not all Cauchy

sequences of functions in the set have a limit in the space. To obtain a

Banach space one needs to complete the space by including the limit points

of its Cauchy sequences. The completion of the space under the norm || ||R3,m

defined by Equation (12.17) is called the Sobolev space Hm(R3,CN ). Given
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12.3 Local existence results for symmetric hyperbolic systems 307

w• ∈ Hm(R3,CN ), the (open) ball of radius ε centred at w• with respect to the

norm || ||R3,m is defined as the set

Bε(w•) ≡
{
w ∈ Hm(R3,CN )

∣∣ ||w −w•||R3,m < ε
}
.

When discussing symmetric hyperbolic systems of the form (12.1), it is

convenient to consider their solutions u as Hm(R3,CN )-valued functions of the

time coordinate t. This point of view is expressed by writing

u(t, ·) : [0, T ] −→ Hm(R3,CN ).

If a CN -valued function u is such that for every t ∈ [0, T ], u(t, ·) ∈ Hm(R3,CN )

with Ck-dependence on t, one writes

w ∈ Ck
(
[0, T ];Hm(R3,CN )

)
.

For further details on Sobolev spaces, the reader is referred to Evans (1998).

Embedding theorems

Functions in the Sobolev space Hm(R3,CN ) are not necessarily smooth. The

reason for this is that by completing the space one has included functions with

lower regularity. There is, nevertheless, a relation between functions in Hm and

Ck spaces. This relation is expressed in terms of so-called embedding theorems.

For the particular case under consideration one has the following:

Proposition 12.1 (Sobolev embedding theorem) If m ≥ 2 + k, then

Hm(R3,CN ) ⊂ Ck(R3,CN ).

In other words, if a function belongs to the Hm space, then it has at least

m − 2 continuous derivatives. A proof of this result can be found in Taylor

(1996a), chapter 4, section 1. It follows from Proposition 12.1 that a function

over R3 is smooth (i.e. C∞) if it belongs to Hm for every m.

Extensions of functions

To exploit the localisability property of hyperbolic equations it is often conve-

nient to extend functions which are defined only on bounded subsets R ⊂ R3 to

functions with domain on the whole of R3. Defining in a natural way the norm

|| ||R,m and the Sobolev space Hm(R,CN ) one has the following result:

Proposition 12.2 (extension of functions on a compact domain)

Assume that R ⊂ R3 is bounded with smooth boundary ∂R. Then there exists a

linear operator

E : Hm(R,CN ) −→ Hm(R3,CN )

such that for each u ∈ Hm(R,CN ):
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308 Methods of the theory of hyperbolic differential equations

(i) Eu = u almost everywhere in R.

(ii) Eu has support in an open bounded set R′ ⊃ R.

(iii) There exists a constant C depending only on U and R such that

||Eu||R3,m ≤ C||u||R,m.

The CN -valued function Eu is called an extension of u to R3.

A discussion on how to prove this result can be found in Evans (1998).

12.3.2 Kato’s existence and stability theorems

Using the terminology introduced in the previous subsections, it is now possible

to discuss the basic existence and stability result for quasilinear symmetric

hyperbolic systems of the form

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u). (12.18)

In what follows, it will always be assumed that the matrices Aμ are smooth

functions of their arguments.

The basic local existence theorem

As it can be seen from the proof of the Uniqueness Theorem 12.1, the positive-

definiteness of the matrix A0(t, x,u) plays a key role in determining the

properties of solutions to the equation. On an initial hypersurface S, this

positivity can be set by fiat by choosing suitable initial data. However, in view

of the quasilinearity of the equation, the positive-definiteness could be violated

at some time as the solution evolves. Intuitively, one would expect this to lead

to some sort of problems in the solution. For fixed (t, x), and given a CN -valued

function w, one says that A0(t, x,w) is positive definite and bounded away

from zero by δ > 0 if

〈z,A0(t, x,w)z〉 > δ〈z, z〉

for all z ∈ CN .

The basic local existence result for the Cauchy problem of symmetric

hyperbolic systems to be considered in this book is the following:

Theorem 12.2 (local existence of solutions to symmetric hyperbolic

systems) Consider the Cauchy problem

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u),

u(0, x) = u�(x) ∈ Hm(R3,CN ) m ≥ 4,

for a quasilinear symmetric hyperbolic system. If δ > 0 can be found such that

A0(0, x,u�) is positive definite with lower bound δ for all p ∈ R3, then there
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12.3 Local existence results for symmetric hyperbolic systems 309

exists T > 0 and a unique solution u to the Cauchy problem defined on [0, T ]×R3

such that

u ∈ Cm−2
(
[0, T ]× R3,CN

)
.

Moreover, A0(t, x,u) is positive definite with lower bound δ for (t, x) ∈
[0, T ]× R3.

This theorem is an adaptation of similar theorems given in Kato (1975a) and

Friedrich (1986b). A proof of this result falls beyond the scope of this book. The

interested reader is referred to references given above.

Remarks

(a) For convenience, the regularity of the solution has been stated in terms of

Ck spaces. However, the conclusions of the theorem can be expressed in a

more detailed manner. In particular, one has that the solution satisfies

u ∈ C1
(
[0, T ], Hm−1(R3,CN )

)
.

The latter can be shown to imply u ∈ Hm([0, T ] × R3,CN ) which, in turn,

using a Sobolev embedding theorem in four-dimensions gives the regularity

stated in the theorem.

(b) In most of the applications given in this book, the initial data u� will be

assumed to be smooth, so that u� ∈ Hm(R3,CN ) for all m. However, as

R3 is an unbounded set, one cannot simply assume that u� ∈ C∞(R3,CN );

compare the remark after Equation (12.17).

(c) As A0 is a smooth function of its arguments, it follows from the regularity

of the solution u that 〈z,A0(t, x,u)z〉 for z ∈ CN depends continuously on

(t, x).

(d) As A0(t, x,u) is positive definite for (t, x) ∈ [0, T ] × R3, it follows that

the hypersurfaces of constant t are spacelike with respect to the symmetric

hyperbolic system (and the solution).

(e) The value of the lower bound δ can often be determined by inspection.

The basic stability result

Of great relevance is the notion of Cauchy stability – namely, the idea that,

given a symmetric hyperbolic system, initial data which are close to each other

should lead to solutions which are close in some sense and have a common

existence time interval. In view of the inherent error in the physical process of

measurement, Cauchy stability is fundamental for the applicability of differential

equations to describe physical phenomena. In mathematical terms, the precise

formulation of the closeness of initial data and solutions is expressed in terms

of Sobolev norms.

In the remainder of this section letD be a bounded open subset ofHm(R3,CN )

such that for w ∈ D the matrix A0(0, x,w) is positive definite bounded away
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310 Methods of the theory of hyperbolic differential equations

from zero by δ > 0 for all p ∈ R4. The basic result describing the Cauchy

stability of the symmetric hyperbolic system (12.18) is the following theorem,

adapted from Kato (1975a):

Theorem 12.3 (basic Cauchy stability for symmetric hyperbolic sys-

tems) Let m ≥ 4. If u� ∈ D is given as an initial condition for the system

(12.18), then:

(i) There exists ε > 0 such that a common existence time T can be chosen for

all initial conditions in the open ball Bε(u�) ⊂ D.

(ii) If the solution u with initial data u� exists on [0, T ] for some T > 0, then

the solutions to all initial conditions in Bε(u�) exist on [0, T ] if ε > 0 is

sufficiently small.

(iii) If ε and T are chosen as in (i) and one has a sequence un
� ∈ Bε(u�) such

that

||un
� − u�||R3,m → 0 as n → ∞,

then for the solutions un(t, ·) with un(0, ·) = un
� it holds that

||un(t, ·)− u(t, ·)||R3,m → 0, as n → ∞,

uniformly for t ∈ [0, T ].

Remarks

(a) Point (i) in the previous theorem essentially states that, given a sufficiently

small ball in the space of data on which the Existence Theorem 12.2 can be

applied, then a common existence time for the solutions arising from this

data can be found. Observe, however, that one has no control over the size

of the common existence time; one only knows there is one.

(b) If the existence of a particular solution is known, then point (ii) states that,

by shrinking the ball on the space of data, one can choose the known existence

time as the common existence time.

(c) Point (iii) states that data close to certain reference data give rise to

developments which are also close to the reference solution; this is the

statement of Cauchy stability.

(d) The convergence stated in (iii) is uniform on [0, T ]× R3.

12.3.3 Localising solutions

The localisability property of hyperbolic equations allows one to apply the

existence and stability results discussed in the previous sections to the case of

an initial data problem where data are prescribed only on a compact region R.

Given smooth initial data u� for a symmetric hyperbolic equation of the form

(12.1) on a region R ⊂ R3, one can make use of Proposition 12.2 to extend the
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12.3 Local existence results for symmetric hyperbolic systems 311

D(R)

R3

R

Figure 12.3 Localised solution arising from data prescribed on an open set
R ⊂ R3. The associated domain of dependence is denoted by D(R).

initial data u� to the whole of R3 in a controlled manner. Denoting this extension

by Eu�, one has that by point (iii) of Proposition 12.2, Eu� ∈ Hm(R3,CN ).

In order to make use of Theorems 12.2 and 12.3 it is necessary to assume that

A0(0, x,Eu�) is positive definite with some non-zero lower bound uniform on R3.

Thus, one obtains a solution to Equation (12.1) with initial data on R3 given

by u(0, x) = Eu�(x). As a consequence of the uniqueness of solutions on the

domain of dependence, the solution u on D(R) is independent of the particular

extension of the initial data u� on R to R3; see Figure 12.3.

12.3.4 Existence and stability result on manifolds with

compact spatial sections

The existence and stability Theorems 12.2 and 12.3 can be modified so as to

apply to Cauchy problems where data is prescribed on compact, orientable three-

dimensional manifolds. In what follows, the main ideas behind this construction

are discussed.

Patching together solutions

In the remainder of this section let S denote an orientable, compact three-

dimensional manifold – in most of the applications to be considered in this book

one has S ≈ S3; however, any other compact, orientable topology will work as

well. As a result of compactness, there exists a finite cover consisting of open

sets R1, . . . ,RM ⊂ S; that is, one has ∪M
i=1Ri = S. On each of the open sets

Ri, i = 1, . . . ,M , one can introduce local coordinates xi ≡ (xα
i ) which allow

one to identify Ri with open subsets Bi ⊂ R3. As S is assumed to be a smooth

manifold, the coordinate patches can be chosen so that the change of coordinates

on intersecting sets is smooth.

Now, assume that a smooth function u� : S → CN has been prescribed on S.
In what follows, the restriction of u� to a particular open set Ri will be denoted

by ui�. Using the local coordinates xi, the function ui� can be regarded as a

function ui� : Bi → CN .
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D2

R3D1
D3

Figure 12.4 Construction of a solution by patching localised solutions to data
prescribed on open sets D1, D2, D3 ⊂ R3.

The strategy is now to use the same procedure as described in Section 12.3.3

to ensure the existence of a solution on the domain of dependence of Bi.

Accordingly, one makes use of Proposition 12.2 to extend ui� to a function Eui�

defined on the whole of R3. Using the extended functions Eui� one defines the

norm

||u�||S,m ≡
M∑
i=1

||ui�||R3,m. (12.19)

Assuming, as in Section 12.3.3, that A0(0, x,Eui�) is positive definite with

lower bound δi > 0, one obtains a unique solution ui of Equation (12.1) with

initial data u(0, x) = Eui�(x) with existence interval [0, Ti]. The solution on

D(Bi) is independent of the particular extension Eui� being used, so that one

can speak of a solution ui on a domain Di ⊂ [0, Ti]×Ri; see Figure 12.4.

Now, given two solutions ui and uj defined, respectively, on intersecting

domains Di and Dj one has – following the discussion on the change of

coordinates given in Section 12.1 and as a consequence of uniqueness – that

ui and uj must coincide on Di ∩ Dj . Proceeding in the same manner over the

whole finite cover of S, one obtains a unique solution u on [0, T ] × S with

T ≡ mini=1,...M{Ti} which is constructed by patching together the localised

solutions u1, . . . ,uM defined, respectively on the domains Di, . . . ,DM . Observe

that the compactness of S ensures the existence of a minimum non-zero existence

time for the whole of the domains Di.

A general existence and stability result

Using the ideas of the localisation of solutions discussed in the previous

subsection, one can formulate a quite general existence and stability result for

symmetric hyperbolic systems on manifolds whose spatial sections are given by

orientable, compact three-dimensional manifolds. The hypotheses of this theorem

are very similar to the ones in Theorems 12.2 and 12.3.
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12.4 Local existence for boundary value problems 313

Theorem 12.4 (existence and stability result for symmetric hyperbolic

systems on compact spatial sections) Given an orientable, compact, three-

dimensional manifold S, consider the Cauchy problem

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u),

u(0, x) = u�(x) ∈ Hm(S,CN ) for m ≥ 4,

for a quasilinear symmetric hyperbolic system. If δ > 0 can be found such that

A0(0, x,u�) is positive definite with lower bound δ for all x ∈ S, then:

(i) There exists T > 0 and a unique solution u to the Cauchy problem defined

on [0, T ]× S such that

u ∈ Cm−2
(
[0, T ]× S,CN

)
.

Moreover, A0(t, x,u) is positive definite with lower bound δ for (t, x) ∈
[0, T ]× S.

(ii) There exists ε > 0 such that one common existence time T can be chosen

for all initial conditions in the open ball Bε(u�) and such that Bε(u�) ⊂ D.

(iii) If the solution u with initial data u� exists on [0, T ] for some T > 0, then

the solutions to all initial conditions in Bε(u�) exist on [0, T ] if ε > 0 is

sufficiently small.

(iv) If ε and T are chosen as in (ii) and one has a sequence un
� ∈ Bε(u�) such

that

||un
� − u�||S,m → 0, as n → ∞,

then for the solutions un(t, ·) with un(0, ·) ≡ un
� it holds that

||un(t, ·)− u(t, ·)||S,m → 0, as n → ∞

uniformly in t ∈ [0, T ].

Remarks similar to the ones after Theorems 12.2 and 12.3 apply to this result.

Further discussion and details can be found in Friedrich (1991).

12.4 Local existence for boundary value problems

As will be seen in Chapter 17, the construction of anti-de Sitter-like spacetimes

leads one to consider initial boundary value problems for symmetric hyperbolic

systems of the form (12.1). In this type of problem one prescribes initial data

on a spacelike hypersurface S and boundary data on a timelike hypersurface T .

These two hypersurfaces intersect on a two-dimensional hypersurface E ≡ S ∩T ,

the edge , on which the initial and the boundary conditions need to satisfy some

compatibility conditions; see Figure 12.5. In view of the localisation property of
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T

S

E = S ∩ T

Figure 12.5 Geometric setting of the initial boundary value problem for
symmetric hyperbolic systems. The initial data are prescribed on the three-
dimensional spacelike hypersurface S; boundary data are prescribed on the
three-dimensional timelike hypersurface T . The initial and boundary data
must satisfy certain compatibility conditions (corner conditions) on the edge
E = S ∩ T .

symmetric hyperbolic systems, it is sufficient to analyse the problem close to the

edge. The solution away from the boundary is obtained by patching domains of

dependence.

12.4.1 Basic setting

In a neighbourhood of a point p ∈ E , one can introduce coordinates x = (xμ)

such that the domain U in which the solution to the boundary value problem

takes the form

U = {x ∈ R4 |x0 ≥ 0, x3 ≥ 0},

while the initial hypersurface and the boundary are given, respectively, by

S ≡ {x ∈ U |x0 = 0},
T ≡ {x ∈ U |x3 = 0}.

The normal matrix A3(x,u) in a symmetric hyperbolic system of the form

(12.1) plays a crucial role in the specification of admissible boundary conditions

leading to a well-posed initial boundary value problem. Due to the use of

coordinates adapted to the boundary, the properties of the matrix A3 determine

the relation between the timelike boundary T and the characteristics of the

hyperbolic evolution equation.

In what follows let T(x) denote a smooth map from T to the vector subspaces

of CN and require as boundary condition that

u(x) ∈ T(x), x ∈ T .
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The map T is restricted by the requirements:

(i) The set T is a characteristic of (12.1) of constant multiplicity; that is,

dimKer
(
A3
)
= constant > 0, x ∈ T .

(ii) The map T satisfies the non-positivity condition

〈u,A3(x,u)u〉 ≤ 0, u ∈ T(x), x ∈ T .

(iii) The dimension of the subspace T(x), x ∈ T , is equal to the number of

non-positive eigenvalues of A3(x,u) counting multiplicities.

An important property of Hermitian matrices is that they can be diagonalised

by unitary matrices and that all their eigenvalues are real. Accordingly, after a

redefinition of the dependent variables one can assume that, at a given point

x ∈ T , the normal matrix A3(x,u) has the form

A3(x,u) = κ

⎛
⎝ −Ij×j 0 0

0 0k×k 0

0 0 Il×l

⎞
⎠ , κ > 0,

where Ij×j and Il×l are, respectively, j × j and l × l unit matrices and 0k×k is

the k × k zero matrix. Moreover, one has that j + k + l = N . Writing

u(x) =

⎛
⎝ a(x)

b(x)

c(x)

⎞
⎠ ∈ Cj × Ck × Cl,

one finds that the linear subspaces admitted by condition (ii) are of the form

c−Ha = 0

with H = H(x) an l × j matrix satisfying

−〈a,a〉+ 〈Ha,Ha〉 ≤ 0, a ∈ Cj .

This condition can be reexpressed, alternatively, as H∗H ≤ Ij×j . The key

observation is that the above procedure gives no freedom to prescribe data for

the component b of u associated with the kernel of the normal matrix A3(x,u).

In particular, if A3(x,u) = 0, one has that the boundary is a total characteristic

(see Section 12.1.2) and no boundary conditions can be specified on T – the

solution u on T is directly determined by the initial conditions on the edge E .
More generally, by a further redefinition of the dependent variables one obtains

the inhomogeneous maximally dissipative boundary conditions

q(x) = c(x)−H(x)a(x), x ∈ T ,

with q(x) a Cl-valued function representing the free boundary data on T .
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Corner conditions

To obtain a smooth solution to an initial boundary value problem for a symmetric

hyperbolic system of the form (12.18), the initial data prescribed on S and the

boundary data at T must satisfy certain compatibility conditions at the edge

E = ∂S = S ∩ T – the so-called corner conditions. More precisely, if one has

initial data of the form

u(0, x) = u�(x) on S,

with u� smooth and maximally dissipative boundary conditions of the form

T(t, x)u(t, x) = q(t, x) on T , (12.20)

then one requires that

T(0, x)u�|E = q(0, x).

Higher order corner conditions can be obtained by considering the system (12.18).

Evaluating at E one obtains

A0(u�)|E(∂tu)|E +Aα(u�)|E(∂αu�)|E = B(u�)|E .

As A0(u�)|E is positive definite, the above equation can be used to solve for

(∂tu)|E . The result should be consistent, upon substitution, with what is obtained

from differentiating the boundary condition (12.20). Namely,

(∂tT)|Eu|E +T|E(∂tu)|E = (∂tq)|E .

Further higher order boundary conditions are obtained in an analogous manner

by differentiating (12.18) successively with respect to t.

12.4.2 Uniqueness of the solutions to the boundary value problem

Insight into the role of the maximally dissipative boundary conditions can be

obtained from the analysis of the uniqueness of solutions to the boundary

value problem. The argument follows a strategy similar to the one employed in

Theorem 12.1 with a domain G whose boundary consists of portions of the initial

hypersurface S0, the boundary T and a hypersurface S1 which is spacelike with

respect to the symmetric hyperbolic system; see Figure 12.6. Set M = [0,∞)×S
such that S and T can be identified, in a natural way, as the boundary of M.

Define the coordinate x0 ≡ t in such a way that S0 = {p ∈ M| t = 0}.

Theorem 12.5 (uniqueness of solutions of the initial boundary problem

with maximally dissipative boundary conditions) Let G be a domain as

given above. If u1 and u2 are two solutions to the initial value problem for the

symmetric hyperbolic system

Aμ(x,u)∂μu = B(x,u), u|S0
= u�,

with the same maximally dissipative boundary conditions, then u1 = u2 on G.
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G

S0

S1

T

Figure 12.6 Integration domain for the uniqueness argument for initial
boundary value problems. The boundary ∂G consists of portions of the initial
hypersurface S0, the timelike boundary T and a spacelike hypersurface S1.

Proof Starting from the identity (12.14) one integrates over a domain G as

depicted in Figure 12.6, where S1 is spacelike with respect to the symmetric

hyperbolic system. Applying the Gauss identity one obtains∫
S1

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

−
∫
S0

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

−
∫
T
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉νμdS

=

∫
G
e−kt〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉d4x,

with

P(x,u1,u2) ≡ −kA0(x,u1) + ∂μA
μ(x,u1)

+Q(x,u1,u2, ∂u2) +Q∗(x,u1,u2, ∂u2)

and Q obtained as in Theorem 12.1 using the mean value theorem. Exploiting

the positive definiteness of A0(x,u1), one can make the volume integral over G
negative. Moreover, as u1 and u2 coincide on S0 one obtains∫

S1

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

≤
∫
T
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉νμdS ≤ 0,

where the last inequality follows from the negative definiteness of the maximally

dissipative boundary conditions. Thus, one obtains a contradiction with the fact

that the surface integral over the spacelike hypersurface S1 is positive unless

u1 = u2.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


318 Methods of the theory of hyperbolic differential equations

12.4.3 The basic existence result for the initial boundary value

problem of symmetric hyperbolic systems

One has the following basic local existence theorem for the initial boundary value

problem with maximally dissipative boundary conditions:

Theorem 12.6 (local existence for initial boundary value problems)

Given the initial boundary value problem

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u), (12.21a)

T(t, x)u = q(t, x) on T , (12.21b)

u(0, x) = u�(x), on S, (12.21c)

with (12.21a) symmetric hyperbolic, A0(0, x,u�) positive definite and q, u�

smooth, assume that the boundary condition (12.21b) is maximally dissipative

with respect to the normal matrix A3(t, x,u) and that the boundary data satisfy

corner conditions at E = S ∩ T to all orders. Then, the initial boundary value

problem has a unique smooth solution u(t, x) defined on

MT = {p ∈ [0,∞)× S | 0 ≤ t(p) < T},

for some T > 0.

The reader is refereed to Guès (1990), Friedrich (1995) and Friedrich and

Nagy (1999) for details and remarks concerning the proof. As a consequence

of the localisability property of hyperbolic equations, the problem can be split

into two parts: an interior one away from the boundary in which the standard

D1

S

D2
T

D3

T

Figure 12.7 Construction of a solution to an initial boundary value problem
which is global in space by patching domains. The solution patch D1 near the
boundary T is obtained using Theorem 12.6. The existence on the domains D2

and D3 away from the boundary are obtained by means of Theorem 12.3. The
uniqueness of solutions ensures that the solution on the intersections “match
together”. Due to the compactness of the initial hypersurface it is possible to
obtain an existence time T common to all domains.
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local existence for the Cauchy problem (as described in Section 12.3) is used,

and a boundary part in which the boundary and edge conditions play a role; see

Figure 12.7. The local solutions are then patched together to obtain the solution

on the whole of MT .

Remark. The question of the stability of solutions to the initial boundary value

problem will not be analysed here. Stability questions for initial boundary value

problems are much more complicated than for the Cauchy case. At the time of

writing, there are no applications of stability results for boundary value problems

involving the conformal field equations.

12.5 Local existence for characteristic initial value problems

Characteristic initial value problems arise naturally in applications to general

relativity; see Chapter 18. The purpose of this section is to discuss a method to

analyse the local existence of solutions to the characteristic initial value problem

for symmetric hyperbolic equations due to Rendall (1990). The idea behind this

method is to reduce the characteristic problem to a standard Cauchy problem

where the standard theory of Section 12.3 can be applied.

12.5.1 General remarks on the characteristic problem

In what follows, consider a quasilinear symmetric hyperbolic system of the form

given by Equation (12.1) on R4. In contrast to the analysis of the Cauchy problem

where it is convenient to single out one of the coordinates as a time coordinate,

in the characteristic problem it is convenient to make use of coordinates adapted

to the characteristic hypersurfaces.

As discussed in Section 12.1.2, for quasilinear equations like (12.1), the notion

of characteristic hypersurfaces depends on the solution u. Thus, it is, in principle,

unclear on which hypersurfaces one can prescribe the characteristic initial data.

There are two approaches to get around this difficulty:

(i) Fix the data first, then look for the hypersurface. Choose a smooth

function v on U ⊂ R4 such that the matrices Aμ(x,v) are defined at each

point of R4, and choose a smooth function φ ∈ X (U), dφ �= 0 in U , such
that the hypersurface

N ≡ {x ∈ U | φ(x) = 0} (12.22)

is characteristic with respect to Aμ(x,v), that is, such that

det(Aμ(x,v)∂μφ) = 0.

The characteristic data on N is then given as the restriction of v to N ; that

is, u� = v|N .
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N ′ N

Z

Figure 12.8 Initial hypersurfaces N and N ′ on a characteristic initial value
problem. The set Z �= Ø is the intersection of N and N ′.

(ii) Choose the hypersurface first, then look for suitable data. Alterna-

tively, one can choose some hypersurface N in U ⊂ R4 defined as in (12.22),

and then consider only those smooth functions u� such that

det(Aμ(x,u�)∂μφ) = 0.

Approach (ii) is more natural in applications where geometric information of

the initial hypersurface is available. This point of view will be adopted in the rest

of this section.

A peculiarity of characteristic initial value problems for the system (12.1) is

that data need to be prescribed on two intersecting characteristic hypersurfaces

N and N ′; see Figure 12.8. Intuitively, this is a consequence of the existence of a

subsystem of equations in (12.1) which is intrinsic to the hypersurface N , so that

one does not have enough evolution equations transverse to the hypersurface for

all the components of u. Alternatively, one can formulate characteristic initial

value problems by prescribing initial data on a cone. This is a more technically

involved problem and will not be discussed here. The interested reader is referred

to Cagnac (1981) and Dossa (1997) for further details.

Well- and ill-posed characteristic problems

In what follows, let N and N ′ denote two hypersurfaces on U ⊂ R4 with non-

empty intersection Z ≡ N ∩ N ′. One can introduce coordinates u and v such

that, at least in a neighbourhood of N ∩N ′, one can write

N ≡ {p ∈ U |u(p) = 0}, N ′ ≡ {p ∈ U | v(p) = 0}. (12.23)

Given suitable initial data on N ∪N ′ one would like to make some statement

about the existence and the uniqueness of solutions to Equation (12.1) on some

open set

V ⊂ {p ∈ U |u(p) ≥ 0, v(p) ≥ 0}.

By symmetry, one could also look for a solution in the region

{p ∈ U |u(p) ≤ 0, v(p) ≤ 0};

see Figure 12.9 (a).
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ill-posedwell-posed

v=0 u=0
u ≥ 0, v ≥ 0

u ≤ 0, v ≤ 0

v=0 u=0

u ≥ 0, v ≤ 0 u ≤ 0, v ≥ 0

(a) (b)

Figure 12.9 Schematic representation of well-posed (a) and ill-posed (b)
characteristic initial value problems.

The problem of looking for solutions in domains of the form

V̄ ⊂ {p ∈ U |u(p) ≤ 0, v(p) ≥ 0}

or

¯̄V ⊂ {p ∈ U |u(p) ≥ 0, v(p) ≤ 0}

is ill-posed – the reason will become clear once the Rendall’s reduction procedure

to a Cauchy problem is discussed in Section 12.5.3. Under suitable circumstances,

it may be possible to establish uniqueness of a solution – but not existence – for

this ill-posed problem. These ideas have been used by Ionescu and Klainerman

(2009a,b) to obtain a new strategy to prove the uniqueness of stationary black

holes.

12.5.2 Interior equations on the characteristic hypersurfaces

As seen in Section 12.1.2, on a characteristic surface, a system of the form (12.1)

implies a subsystem of interior equations on the hypersurface. Assuming that the

freely specifiable part of u is smooth on the characteristic hypersurface, these

interior equations can be used to compute the remaining components of u and

their derivatives to any arbitrary order. For conciseness, the subsequent analysis

is restricted to the characteristic N as given by (12.23). The situation on N ′ is

completely analogous. Letting x ≡ (u, y) with y ≡ (yα) = (v, x2, x3) and using

the chain rule, Equation (12.1) can be rewritten as

σ(u, y;u,du)∂uu+Aα(u, y;u)∂αu = B(u, y;u) (12.24)

with

σ(u, y;u,du) ≡ Aμ(u, y;u)
∂u

∂xμ
.
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If N is a characteristic hypersurface for some function u�, then one has that

det
(
σ(0, y;u�,du)

)
= 0.

Let m = dimKerσ(0, y;u�,du). It follows that there exist m vectors k(i), i =

1, . . . ,m such that

σ(0, y;u�,du)k(i) = 0.

That is, the k(i) are eigenvectors of σ(0, y;u�,du) with zero eigenvalue. Thus,

one has that

〈k(i),σ(0, y;u�,du)∂uu〉 = 〈σ(0, y;u�,du)k(i), ∂uu〉 = 0,

since σ(u, y;u,du) is Hermitian as a consequence of the symmetric hyperbolicity

of (12.1). Thus, from Equation (12.24) one obtains

〈k(i),A
α(0, y;u�)∂αu�〉 = 〈k(i),B(0, y;u�)〉, i = 1, . . .m, (12.25)

a system of m (scalar) interior equations for the components of u. In what

follows, it will be assumed that the components of u have been chosen such that

the free data on N consist of N − m variables ŭ� – the so-called u-data. The

remaining m variables, ū�, constrained by the equations in (12.25), are called

the u-variables. Thus, one obtains the split

u� = (ŭ�, ū�) on N . (12.26)

In terms of this split, the scalar intrinsic equations (12.25) can be rewritten in

matricial form as

Āα(y, ŭ�, ū�)∂αū = B̄(y, ŭ�, ū�), (12.27)

for some (m ×m)-matrix valued smooth functions Āα and an m-vector valued

function B̄. For simplicity, it will assumed that the system (12.27) is a symmetric

hyperbolic system on N which can be solved, at least locally, in a neighbourhood

W ⊂ N of the two-dimensional surface Z where initial data for the u-variables

ū� is prescribed. In this way, one obtains the value of the whole components of

u� on W. Assuming that ŭ� is smooth on N , higher intrinsic derivatives can be

obtained in a similar manner by formally differentiating Equation (12.27) with

respect to ∂α an arbitrary number of times, say, M . In this manner, one obtains

a system of the form

Āα(y, ∂αŭ�, ∂αū�)∂αūα = B̄(y, ∂αŭ�, ∂αū�, ūα), (12.28)

where multi-index notation has been used so that

∂αŭ� ≡
(
ŭ�, ∂αŭ�, ∂α1

∂α2
ŭ�, . . . , ∂α1

· · · ∂αM−1
ŭ�

)
,

∂αū� ≡
(
ū�, ∂αū�, ∂α1

∂α2
ū�, . . . , ∂α1

· · · ∂αM−1
ū�

)
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and

ūα ≡ ∂α1
· · · ∂αM

ū�.

By assumption, Equation (12.28) is a symmetric hyperbolic system on N
so that by prescribing initial data for ūα on Z and assuming that the lower

order intrinsic derivatives ∂αū have been solved for, one obtains a solution in a

neighbourhood of Z on N . Thus, one can obtain, recursively, the interior partial

derivatives

u�, ∂αu�, ∂α1
∂α2

u�, . . . , ∂α1
· · · ∂αM

u� on W ⊂ N ,

with W ⊃ Z.

Now, not only the interior derivatives on N can be computed. Using the split

(12.26), the subset of N −m equations in (12.1) which are transversal to N can

be written as

Cu(0, y, ŭ�, ū�)∂uŭ� +Cα(0, y, ŭ�, ū�)∂αŭ� = D(0, y, ū�, ū), (12.29)

with Cμ smooth (N −m)× (N −m)-matrix valued functions and D an (N −m)-

vector valued function of their arguments. For clarity of the presentation it is

convenient to write ∂uŭ� ≡ (∂uŭ)�. By construction, the matrix Cμ is invertible,

so that Equation (12.29) can be regarded as an algebraic linear system of

equations determining the transversal derivatives ∂uŭ on N in terms of u�

and ∂αu�. To compute the transversal derivatives of the u-variables ū�, one

differentiates the interior system (12.27) to obtain a system of the form

Āα(y, ŭ�, ū�)∂α(∂uū�) = B̄(y, ŭ�, ∂uŭ�, ū�, ∂uū�).

As in the case of the system (12.27), the above system can be solved in some

neighbourhood of Z on N if initial data for ∂uū� are given on Z. This procedure

can be repeated to obtain higher order transversal derivatives.

The procedure described in the previous paragraphs can also be implemented

on the characteristic hypersurface N ′. By analogy to the case of N , one can split

the unknown u as

u = (ŭ′
�, ū

′
�), on N ′,

where ŭ′
� are v-data which can be specified freely on N ′ and ū′

� are v-variables

constrained by interior equations analogous to (12.28). In what follows, these

interior equations are assumed to be symmetric hyperbolic on N ′. Applying a

procedure similar to that used on N , all the derivatives of u on N ′ to any desired

order can be computed if ŭ� is suitably smooth, and the required initial data are

supplied on Z.

The discussion described in the previous paragraphs is summarised in the

following proposition:
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Proposition 12.3 (evaluation of derivatives on the initial characteristic

surface) Let N and N ′ denote two characteristic hypersurfaces for the symmet-

ric hyperbolic system (12.1) having a non-empty two-dimensional intersection

Z = N ∩N ′. If smooth u-data and v-data are prescribed, respectively, on N and

N ′ and the values of the u-variables and v-variables are prescribed on Z in such

a way that the freely specifiable data are smooth on N ∪N ′, then all derivatives

of u on N ∪N ′ to any desired order can be computed in a neighbourhood W ⊂ N
of Z.

12.5.3 Reduction to a standard Cauchy problem

The observations summarised in Proposition 12.3 are the cornerstone of a

reduction procedure of the characteristic problem on N ∪ N ′ to a standard

Cauchy problem for which the theory discussed in Section 12.3 is applicable.

This approach to analysing the characteristic initial value problem for hyperbolic

equations was originally introduced by Rendall (1990).

In what follows, suppose that characteristic initial data have been prescribed

on N ∪ N ′ in a manner consistent with Proposition 12.3 so that the values of

u and its derivatives to any order are known in a neighbourhood W of Z on

N ∪N ′. Rendall’s reduction proceeds first by constructing an extension of u to

a neighbourhood U of Z in R4. This type of extension of functions is different

from the one discussed in Section 12.3.1 where functions defined on open subsets

of a certain space are extended to functions on the whole space. In the present

case one needs to extend a function defined on a closed set of R4. There exists a

general result, Whitney’s extension theorem, which allows one to obtain the

required extension; see the Appendix to this chapter for more details.

To apply Whitney’s extension theorem to the collection of fields

{u�, (∂μu)�, (∂μ1
∂μ2

u)�, . . . , (∂μ1
· · · ∂μM

u)�} (12.30)

on W ⊂ N ∪ N ′ for some non-negative integer M , one has to verify that the

various fields in this collection are related to each other in the same way as the

derivatives of a function are related to each other in a Taylor expansion. The key

condition on these Taylor-like expansions ensuring the existence of an extension

is a requirement on the vanishing rate of the remainder of the expansions. Given

two points on N away from Z this vanishing of the remainder follows from

smoothness of the free data on the characteristic hypersurface, and the fact that

the derivative candidates in (12.30) have been obtained solving hyperbolic

differential equations on N and algebraic equations. The functions thus obtained

are smooth on N and admit a standard Taylor expansion on the characteristic

hypersurface. This also holds for two points on N ′ away from Z. Thus, the

difficulty is to verify Whitney’s condition for two points, respectively, on N and

N ′, so that one writes

x = (0, v, x2, x3), x′ = (u, 0, x′2, x′3).
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The complication arises from the fact that the characteristic initial hypersurface

N ∪N ′ is continuous only at Z. It is convenient to define a point x∗ ∈ Z as

x∗ ≡
(
0, 0, 1

2 (x
2 + x′2), 1

2 (x
3 + x′3)

)
.

Using the cosines law, it follows that there exists a constant C > 0 such that

|x− x∗|2 + |x′ − x∗|2 ≤ C|x− x′|2.

To apply Whitney’s extension theorem it is necessary to establish that the

remainder of the Taylor-like expansion about x vanishes at x′ as fast as it would

do if the function had an extension as x and x′ tend to a common point, say, x∗.

The inequality above shows that the points x and x′ cannot get closer to each

other without getting close to a point on Z. This idea, together with the Cauchy

stability of solutions to the interior equations which determine the constrained

components of the data on N ∪N ′ yields the required vanishing rate.

Applying Whitney’s extension theorem to the collection of derivative candi-

dates (12.30) one obtains a smooth function û in a neighbourhood U of Z on R4.

The function û satisfies

û = u�, ∂μû = (∂μu)�, ∂μ2
∂μ1

û = (∂μ2
∂μ1

u)�, . . . ,

on W ⊂ N ∪ N ′. In general, û is not a solution to Equation (12.1) away from

N ∪N ′. Nevertheless,

Δ ≡ Aμ(x, û)∂μû−B(x, û)

vanishes to all orders on W ⊂ N ∪N ′ and

δ ≡
{

0 u > 0, v > 0,

Δ elsewhere,

is smooth in a neighbourhood of N ∩N ′ where û exists.

The desired reduction to a Cauchy problem is now obtained by considering

the equation

Aμ(x, û+ v)∂μ(û+ v)−B(x, û+ v) = δ, (12.31)

for the unknown v together with the initial data

v� = 0, on S ≡ {p ∈ R4 |u(p) + v(p) = 0}. (12.32)

By assumption, the hypersurface S has a neighbourhood around N ∩N ′ which

is spacelike with respect to Equation (12.31) so that the Cauchy problem given

by (12.31) together with the initial data (12.32) is well posed and the theory of

Section 12.3 is readily applicable. In particular, one obtains a unique solution v

in a neighbourhood V of Z on R4; see Figure 12.10.

Outside the intersection of V with the quadrant

{p ∈ R4 |u(p) ≥ 0, v(p) ≥ 0},
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Nt

U

N

S

Figure 12.10 Schematic reduction of a characteristic initial value problem to
a Cauchy problem. The data on N ∪ N ′ (thick line) are extended by means
of Whitney’s extension theorem to a neighbourhood U (light gray region) of
Z ≡ N ∩N ′. This extension implies data for an auxiliary initial value problem
on the spacelike hypersurface S. The solution to the characteristic problem is
found in the upper and lower quadrants (dark gray areas).

Equation (12.31) takes the form

Aμ(x, û+ v)∂μ(û+ v)−B(x, û+ v) = Aμ(x, û)∂μû−B(x, û)

so that v = 0 is clearly a solution – by uniqueness, it is the only solution. In

contrast, on V ∩ {p ∈ R4 |u(p) ≥ 0, v(p) ≥ 0} one has the equation

Aμ(x, û+ v)∂μ(û+ v) = B(x, û+ v).

As û+v coincides with u� on N ∪N ′ one concludes, again by uniqueness of the

solution of the reduced Cauchy problem, that

u ≡ û+ v

is the required solution to the posed characteristic initial value problem.

The discussion in this section is summarised in the following theorem:

Theorem 12.7 (local existence for the standard characteristic problem)

Let N and N ′ denote two characteristic hypersurfaces for the symmetric

hyperbolic system (12.1) with smooth, freely specifiable data on N and N ′ as given

in Proposition 12.3. Then there exists a unique solution u to the characteristic

initial value problem in a neighbourhood V of Z with u ≥ 0, v ≥ 0.

Remark. If one were to attempt a similar reduction procedure to construct

a solution on the regions for which either u ≥ 0, v ≤ 0 or u ≤ 0, v ≥ 0,
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N

N

Z

Figure 12.11 Characteristic cones N and N ′ intersecting on a two-dimensional
hypersurface Z which is diffeomorphic to S2.

one would end up with an initial value problem with data prescribed on a

timelike hypersurface. This is an ill-posed problem. Accordingly, the original

characteristic problems are, themselves, also ill-posed.

The case Z ≈ S2

A case that occurs naturally in applications of conformal methods in general

relativity is an initial characteristic problem where the intersection Z = N∩N ′ is

diffeomorphic to the 2-sphere S2. This is the case, for example, of the intersection

of two light cones; see Figure 12.11. The method discussed in the previous section

can be adapted to this case; see Kánnár (1996b).

Assuming in what follows that Z ≈ S2, consider an atlas {(U1, φ1), (U2, φ2)} of

Z and closed sets V1 ⊂ U1 and V2 ⊂ U2 which also cover Z; that is, Z = V1∪V2.

Furthermore, define two smooth functions η1 and η2 with compact support on

R2 by

η1(x) ≡
{

1 x ∈ φ1(V1)

0 x ∈ R2 \ φ1(U1),
η2(x) ≡

{
1 x ∈ φ2(V2)

0 x ∈ R2 \ φ2(U2).

In what follows, denote by ŭ1� and ŭ2�, respectively, the restriction to U1 and

U2 of the freely specifiable data on N ∪ N ′. It follows that the functions η1ŭ1�

and η2ŭ2� define a smooth initial value data set on the initial hypersurfaces

N1 ≡ R+ ×{0}×R2 and N2 ≡ {0}×R+ ×R2 which coincides with u1� and u2�

on R+ × {0} × φ1(V1) and {0} × R+ × φ2(V2).

The intrinsic equations on N1 and N2 can now be solved in a manner similar

to what was done in Section 12.5.2. In this way, one obtains two complete

characteristic initial data sets u1� and u2� on N1 ∪ N2. The (interior and

transversal) derivatives of these data can be computed to any desired order.

Using Theorem 12.7 one obtains two solutions u1 and u2 in a neighbourhood V
of N1 ∩N2. Their restrictions to the Cauchy development of R+ × R+ × φ1(V1)

and R+ ×R+ × φ2(V2) are local solutions to the original problem. The solutions

u1 and u2 can be glued together to obtain a global solution on Z ≈ R2. As a
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328 Methods of the theory of hyperbolic differential equations

consequence of the uniqueness of the local solutions u1 and u2, it follows that

their restriction to a part of the Cauchy development of R+ ×R+ × φ1(V1 ∩ V2)

and R+ ×R+ × φ2(V1 ∩ V2) – where both solutions exist – must be related by a

coordinate transformation. In this manner, one obtains a smooth function in a

neighbourhood of Z.

12.6 Concluding remarks

This chapter has provided a succinct discussion of the theory of the local exis-

tence and uniqueness of quasilinear symmetric hyperbolic evolution equations.

Of course, this is not the only way the subject can be approached. Nor are the

issues raised the only relevant ones in the analysis of the evolution problem in

general relativity. Thus, it is important to make some remarks concerning some

ideas and approaches which have been omitted.

12.6.1 Wave equations

The analysis of Section 12.1.3 gives a hint on how the theory of second-

order hyperbolic equations (wave equations) can be reduced to the analysis of

symmetric hyperbolic equations. There is, however, a well-developed theory for

the local existence and stability of systems of quasilinear equations of the form

gμν(x,u)∂μ∂νu = B(x,u, ∂u), (12.33)

which does not rely on the reduction to a first order system; see Hughes et al.

(1977). Equation (12.33) is quasilinear in the sense that gμν is the contravariant

version of a Lorentzian metric which is allowed to depend not only on the

coordinates but also on the unknowns. This “stand alone” theory relaxes the

differentiability assumptions made on the equation and data; see, for example,

Rendall (2008) for more details.

The results of Hughes et al. (1977) are similar, in spirit, to the results given in

Theorems 12.2 and 12.3: given suitably smooth initial data for Equation (12.33)

one obtains a unique solution for some existence time T ; moreover one also

has a Cauchy stability result. It should be pointed out that this theory applies,

in fact, to a class of second-order equations more general than that given in

Equation (12.33).

Systems of quasilinear wave equations of the form (12.33) arise naturally in

the reduction procedure for the Einstein field equations based on the use of wave

coordinates; see the Appendix to Chapter 14. Historically, this was the first

approach to the Cauchy problem in general relativity; see Fourès-Bruhat (1952).

12.6.2 Global existence of solutions

Conformal methods allow the reformulation of several questions on the global

existence of solutions to the Einstein field equations as a local existence question
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for symmetric hyperbolic systems. Accordingly, the issue of global existence

of solutions to symmetric hyperbolic equations has not been addressed in this

chapter. Nevertheless, this question is at the heart of current research work in

the area; see, for example, Klainerman (2008) for a discussion.

As already pointed out, the local theory of solutions to hyperbolic equations

depends solely on the properties of the principal part of the equations. To

construct a theory of global existence one has to include the lower order terms of

the equations into the analysis. Under certain circumstances, the analysis of the

eigenvalues of the matrix arising from the linearisation of the lower order terms

of a quasilinear system gives a strong indication of whether one can expect global

existence and stability of solutions; see, for example, Kreiss and Lorenz (1998).

More generally, one can identify structures in the evolution equations which

allow one to prove global existence. One of these structures is the so-called null

condition ; see, for example, Klainerman (1984).

12.7 Further reading

The theory of hyperbolic differential equations, in general, and their application

to the analysis of solutions of the Einstein field equations, in particular, is an

extensive area of research so that any list of references can provide only a partial

impression of the field. For an overview of the whole field of the theory of PDEs

and the interconnection between the various types of equations the reader is

referred to Klainerman (2008).

Readers interested in further details of the basic aspects of the theory of PDEs

are referred to the classical references by Garabedian (1986) and Courant and

Hilbert (1962). A modern introduction to the subject is given in Evans (1998).

A comprehensive exposition of the subject is given in the three-volume treatise

of Taylor (1996a,b,c). Detailed accounts of the theory of the Cauchy problem

for symmetric hyperbolic systems are discussed in the original references by

Kato (1975a); Fischer and Marsden (1972) for first-order symmetric hyperbolic

systems and Hughes et al. (1977) for second-order equations. A review of the

ideas contained in these works can be found in Kato (1975b).

A comprehensive discussion of the role of PDEs in general relativity is given

in Rendall (2008). A more compact review is Friedrich and Rendall (2000).

Complementary discussions on the topics covered in these references can be

found in Rendall (2006) and Reula (1998).

Appendix

A generalised mean value theorem

In the proofs of the uniqueness of solutions for symmetric hyperbolic systems,

Theorems 12.2 and 12.5, the following generalisation of the mean value theorem
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330 Methods of the theory of hyperbolic differential equations

has been used; see Hamilton (1982). In the following result, M(N×N,C) denotes

the set of N ×N matrices with complex entries.

Lemma 12.1 Let U ⊂ RN , and let F : U → CN be a C1 map. Then there exists

a continuous map M : U × U → M(N ×N,C) such that

F(u)− F(v) = M(u,v)(u− v).

The proof is an application of the fundamental theorem of calculus.

Whitney’s extension theorem

In what follows, let α = (α1, . . . , αn), β = (β1, . . . , βn) denote multi-indices. The

factorial α! is defined as α! ≡ α1! · · ·αn!. Moreover, let

|β| ≡ β1 + · · ·+ βn.

In terms of this notation one has the following:

Theorem 12.8 (Whitney’s extension theorem) Given a non-negative

integer k, suppose {fα}, |α| < k is a collection of real valued functions defined

on a closed set A ⊂ Rn satisfying

fα(x) =
∑

|β|≤k−|α|

1

β!
fα+β(x

′)(x− x′)β +Rα(x, x
′),

for every x, x′ ∈ A and each multi-index α with |α| ≤ k such that for every

x0 ∈ A

Rα = o
(
|x− x′|k−|α|), as x, x′ → x0.

Then there exists a Ck function g : Rn → R such that

g = f0, ∂αg = fα on A.

In other words, for a closed set A, if one is given a function f and candidates

fα for its partial derivaties on A, then f can be extended to all of Rn in such a

way that the candidates are indeed the derivatives of f as long as the remainder

has a suitable behaviour. A priori, it is not possible to identify the functions fα
with the derivatives of f as A is a closed set and transversal derivatives f to ∂A
may not be defined. For further details on Theorem 12.8 and its proof, see, for

example, Abraham and Robbin (1967).
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13

Hyperbolic reductions

This chapter discusses several methods for the construction of symmetric

hyperbolic evolution systems out of the conformal Einstein field equations. Once

suitable evolution systems have been obtained, the methods of Chapter 12

allow, in turn, one to make statements about the existence of solutions to

the equations. Direct inspection of the conformal field equations reveals that

these are overdetermined – there are more equations than unknowns, even if the

symmetries of the various tensorial and spinorial fields are taken into account.

Thus, the process of hyperbolic reduction for the conformal field equations

necessarily requires discarding some of the equations. The discarded equations

are then treated as constraints. It is a remarkable structural property of the

conformal field equations that these constraints satisfy a system of evolution

equations – a so-called subsidiary evolution system – from where it can be

concluded that the constraint equations will be satisfied if they hold at some

initial hypersurface and the evolution equations are imposed. This construction

is called the propagation of the constraints . The solution of the evolution

system together with the propagation of the constraints yields the required

solution of the conformal Einstein field equations.

In this chapter, two different procedures for the hyperbolic reduction of the

conformal Einstein field equations are considered. The first method, based on the

notion of gauge source functions, exploits the fact that certain derivatives of

the conformal fields are not directly determined by the equations and, thus, can

be freely specified. In the spinorial formulation of the equations, once the required

gauge source functions have been specified, the irreducible decomposition of the

various zero quantities leads to the required evolution equations. The equations

obtained by this procedure include the conformal factor as an unknown.

The second hyperbolic reduction procedure presented in this chapter exploits

the properties of congruences of conformal geodesics to construct conformal

Gaussian gauge systems. As discussed in Chapter 5, the connection coeffi-

cients and components of the Schouten tensor with respect to a frame which is
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332 Hyperbolic reductions

Weyl propagated along the congruence satisfy certain relations which lead to a

particularly simple system of equations in which the evolution of all the geometric

unknowns, save for the components of the rescaled Weyl spinor, are either fixed

by the gauge or given by transport equations along the congruence. Moreover,

as a consequence of the properties of the conformal geodesics one gains an a

priori knowledge of the location of the conformal boundary; see Proposition 5.1.

Despite these attractive features, this method is less flexible than the one based

on the use of gauge functions and may not be readily extended to non-vacuum

situations.

13.1 A model problem: the Maxwell equations on a fixed background

To illustrate the various aspects of the construction of evolution equations for

the conformal Einstein field equations, it is convenient to analyse the analogous

problem for the Maxwell equations on a fixed background.

In the remainder of this section, let U denote an open region of a spacetime

(M, g). It will be assumed that U is covered by a non-singular congruence of

curves with tangent vector τ satisfying the normalisation condition g(τ , τ ) = 2.

The vector τ does not need to be hypersurface orthogonal. Let τAA′
denote the

spinorial counterpart of τa. As discussed in Section 4.2.5, the spinor τAA′
gives

rise to a Hermitian structure, and, accordingly, one can introduce a space spinor

formalism. Let {εAA} denote a spin basis such that

τAA′
= ε0

Aε0′A
′
+ ε1

Aε1′A
′
, (13.1)

and with {eAA′} its associated null frame. At every point p ∈ U a basis of the

subspace 〈τ 〉⊥|p ⊂ T |p(U) orthogonal to τ is given by eAB = τ(B
A′

eA)A′ . In

terms of local coordinates x = (xμ) in U one writes

eAB = eAB
μ∂μ. (13.2)

In principle, it is possible for the frame vectors eAB to have components with

respect to the time coordinate. The frame components eAB
μ satisfy the reality

conditions

e01
μ = e01μ, e00

μ = −e11μ. (13.3)

All spinorial objects will be expressed with respect to the spin basis {εAA}.
In particular, the spinorial Maxwell Equation (9.15) is written as

∇Q
A′ϕBQ = 0. (13.4)

In what follows, it will be convenient to introduce the zero quantity

ωA′B ≡ ∇Q
A′ϕBQ,

so that (13.4) can be expressed as ωA′B = 0. Here and in the remainder of this

chapter, zero quantities such as ωA′B serve as convenient bookkeeping devices

to denote the various field equations.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


13.1 A model problem: the Maxwell equations on a fixed background 333

13.1.1 Space spinor description of the Maxwell equations

and hyperbolic reductions

The space spinor version of Equation (13.4) leads to a decomposition into

evolution and constraint equations. Following the discussion of Chapter 4 one

considers the unprimed zero quantity ωBA ≡ τB
A′

ωA′A. One then has that

ωBA = ∇Q
BϕAQ =

1

2
εQAPϕBQ +DQ

AϕBQ

= −1

2
PϕAB +DQ

AϕBQ,

where P is the covariant directional derivative along τ , DAB is the Sen covariant

derivative implied by ∇AA′ and ∇AB ≡ τB
A′∇AA′ . In the above expressions,

the decomposition

∇AB =
1

2
εABP +DAB (13.5)

has been used; see Section 4.3.1. The spinor ωBA can, in turn, be decomposed

in irreducible parts as

ωBA =
1

2
εBAω + ω(AB),

with

ω ≡ ωQ
Q = DPQϕPQ, ω(AB) = −1

2
PϕAB +DQ

(AϕB)Q.

Thus, the Maxwell Equations (13.4) imply the equations

ω = DPQϕPQ = 0, (13.6a)

−2ω(AB) = PϕAB −DQ
(AϕB)Q = 0. (13.6b)

The decomposition of the spinorial Maxwell equation given by (13.6a) and

(13.6b) shows that Equation (13.4) is overdetermined. Equation (13.6a) will

be interpreted as a constraint equation on the orthogonal subspaces of the

distribution generated by the vector field τ , while (13.6b) will be regarded as

suitable evolution equations for the symmetric spinorial field ϕAB.

13.1.2 The symmetric hyperbolicity of the Maxwell

evolution equations

To apply the theory of Chapter 12 one needs to verify that the evolution

Equations (13.6b) give rise to a symmetric hyperbolic system for the independent

components of ϕAB. One considers the slightly modified version(
2

A+B

)(
PϕAB −DQ

(AϕB)Q

)
= 0, (13.7)
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334 Hyperbolic reductions

where the binomial coefficient in front of the equation has been included to

make the expression manifestly symmetric hyperbolic. The principal part of

Equation (13.7) can be written as(
2

A+B

)(
τμ∂μϕAB − eQ(A

μ∂|μ|ϕB)Q

)
.

As a result of the symmetry of ϕAB, the above principal part contains three

independent expressions. These can be arranged in the matricial expression

Aμ∂μϕ ≡

⎛
⎝ τμ + e10

μ −e00
μ 0

e11
μ 2τμ e00

μ

0 e11
μ τμ − e01

μ

⎞
⎠ ∂μ

⎛
⎝ ϕ0

ϕ1

ϕ2

⎞
⎠ ,

with

ϕ0 ≡ ϕ00, ϕ1 ≡ ϕ01, ϕ2 ≡ ϕ11.

Thus, making use of the reality conditions (13.3), it follows that the matrices

Aμ are Hermitian. Moreover, the matrix

Aμτμ =

⎛
⎝ 2 0 0

0 4 0

0 0 2

⎞
⎠

clearly is positive definite. Thus, Equation (13.7) implies a symmetric hyperbolic

system for the independent components of ϕAB. Finally, a direct computation

shows that given an arbitrary covector ξμ,

det(Aμξμ) = 2(τμξμ)
(
τντλ + e00

νe11
λ − e01

νe10
λ
)
ξνξλ

= 4(τμξμ)(g
νλξνξλ),

where in the last line Equation (4.14) for the 1+3 decomposition of the

spacetime metric has been used. Thus, g-null hypersurfaces are characteristics

of Equation (13.7) – these types of characteristics are often called physi-

cal characteristics. By contrast, the factor (τμξμ) is associated to gauge

characteristics.

For completeness, it is observed that the principal part of the constraint

equation is given, explicitly, by

e00
μ∂μϕ0 + e01

μ∂μϕ1 + e11
μ∂μϕ2,

so that, in general, it will contain derivatives in the time direction. More

generally, if the vector τ is not hypersurface orthogonal, then the constraint

equation ω = 0 will not be intrinsic to the leaves of a foliation.
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13.1 A model problem: the Maxwell equations on a fixed background 335

13.1.3 The subsidiary system for the spinorial Maxwell equations

The hyperbolic reduction for the Maxwell equations discussed in Section 13.1.1

splits Equation (13.4) into three evolution equations and one constraint equation.

Thus, if one wants to obtain a solution to Equation (13.4) through a Cauchy

initial value problem, one uses, in first instance, the theory of Chapter 12 to

show the existence of a unique solution to the evolution equations. In a second

stage, one has to show that if the constraint equation is satisfied initially, then,

by virtue of the evolution equations, it must be satisfied also at later times.

This last argument requires the construction of a suitable hyperbolic evolution

equation for ω.

To obtain an equation for the zero quantity ω one considers the expression

∇AA′
ωA′A. Using that ωA′A = −τQA′ωQA one has that

∇AA′
ωA′A = −∇AA′(

τQA′ωQA

)
= ∇AQωQA − (∇AA′

τQA′)ωQA.

Now, using Equation (4.17), a calculation yields

∇AA′
τQA′ = −

√
2χA

P
PQ, (13.8)

so that

∇AA′
ωA′A = ∇AQωQA +

√
2χA

P
PQωQA.

Thus, the split (13.5) leads to the expression

Pω + 2DABω(AB) + 2
√
2χA

P
PQωQA = 2∇AA′

ωA′A.

If the evolution equations hold – that is, ω(AB) = 0 – then ωAB = 1
2εABω and

one obtains

Pω +
√
2χAB

ABω = 2∇AA′
ωA′A.

The next step is to evaluate ∇AA′
ωA′A in an alternative manner. Using the

definition of the zero quantity one has that

∇AA′
ωA′A = ∇AA′∇Q

A′ϕAQ.

From the commutator

∇AA′∇BB′ϕCD −∇BB′∇AA′ϕCD = −RP
CAA′BB′ϕPD −RP

DAA′BB′ϕCP ,

suitably contracting indices one obtains

∇AA′∇Q
A′ϕAQ = −2RP

A
AA′Q

A′ϕPQ − 2RP
Q

AA′Q
A′ϕAP .

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


336 Hyperbolic reductions

Thus, combining the above equation with the decomposition

RABCC′DD′ = ΨABCDεC′D′ + LBC′DD′εCA − LBD′CC′εDA, (13.9)

where ΨABCD and LBC′DD′ denote, respectively, the spinorial counterparts of

the Weyl and Schouten tensors, one concludes that ∇AA′∇Q
A′ϕAQ = 0. Hence,

the evolution equation for ω takes the form

Pω +
√
2χAB

ABω = 0 if ω(AB) = 0.

The form of this equation implies, in together with Corollary 12.1, that if ω = 0

on some spacelike hypersurface S� in U , then ω = 0 on lens-shaped domains

having S� as base.

13.2 Hyperbolic reductions using gauge source functions

In this section hyperbolic reduction procedures for the conformal Einstein field

equations based on the notion of gauge source functions are considered.

Gauge source functions naturally arise in the analysis of frame formulations

of the conformal Einstein field equations written in terms of the Levi-Civita

connection ∇ of an unphysical metric g. The present analysis will be restricted

to the spinorial version of the conformal field equations: Equations (8.36a) and

(8.36b) or, alternatively, Equations (8.38a) and (8.38b).

Basic set up and assumptions

As in the analysis of the Maxwell equations in Section 13.1, all the calculations

will be performed in an open subset U ⊂ M of an unphysical spacetime (M, g)

which is conformally related to a spacetime (M̃, g̃) satisfying the Einstein field

equations. On U one considers some local coordinates x = (xμ) and an arbitrary

frame {ca} which may or may not be a coordinate frame. Let {αa} denote

the dual coframe so that 〈αa, cb〉 = δb
a. In what follows, let ∇ denote the

Levi-Civita covariant derivative of the metric g.

It will be assumed that U is covered by a non-singular congruence of curves

with tangent vector τ satisfying the normalisation condition g(τ , τ ) = 2. The

vector τ does not need to be hypersurface orthogonal. Let τAA′
denote the

spinorial counterpart of τa. In what follows, only spin bases {εAA} satisfying

condition (13.1) will be considered. All spinors will be expressed in components

with respect to this spin basis.

Let {eAA′} and {ωAA′} denote, respectively, the null frame and coframe

associated to the spin basis {εAA}. By definition, one has that 〈ωAA′
, eBB′〉 =

εB
AεB′A

′
. At every point p ∈ U a basis of 〈τ 〉⊥|p, the subspace of T |p(U)

orthogonal to τ is given by eAB = τ(B
A′

eA)A′ . The spatial frame can be

expanded in terms of the vectors ca as eAB = eAB
aca. If the basis {ca} is a

coordinate basis, the last expression reduces to the one given in Equation (13.2).
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13.2 Hyperbolic reductions using gauge source functions 337

A model equation

The general strategy behind the procedure of hyperbolic reduction using gauge

functions is best understood through a model equation.

In Section 12.1.3 it has been shown that spinorial equations of the form

∇Q
A′ϕQB′C···D = FA′B′C···D (13.10)

imply a symmetric hyperbolic system for the components of the field ϕQB′C···D
which is not assumed to have any special symmetries. This equation is now

contrasted with the equation

∇AA′ϕBB′C···D −∇BB′ϕAA′C···D = FAA′BB′C···D. (13.11)

Exploiting the antisymmetry in the pairs AA′ and BB′ it follows that

∇Q
(A′ϕ|Q|B′)C···D =

1

2
FQ

A′QB′C···D. (13.12)

Thus, while Equation (13.10) determines the full derivative ∇Q
A′ϕQB′C···D,

Equation (13.12) determines only its symmetric part. More precisely, writing

∇Q
A′ϕQB′C···D = ∇Q

(A′ϕ|Q|B′)C···D − 1

2
εA′B′∇QQ′

ϕQQ′C···D, (13.13)

one has that the first term in the right-hand side is determined by Equa-

tion (13.12), while the divergence ∇QQ′
ϕQQ′C···D remains unspecified. Thus,

in the absence of other equations providing information about this term, the

latter observation suggests completing Equation (13.13) by setting

∇QQ′
ϕQQ′C···D = fC···D(x),

where fC···D ∈ X (M) are smooth freely specifiable functions of the coordinates.

In what follows, functions of this type will be known as gauge source

functions. Thus, from (13.13) one obtains the equation

∇Q
A′ϕQAC···D =

1

2
FQ

A′QB′AC···D − 1

2
εA′B′fAC···D(x),

for which one can extract a symmetric hyperbolic evolution system for the

components of ϕAA′C···D; see the discussion of Section 12.1.3. In particular, the

characteristics of this evolution system are null hypersurfaces of the spacetime

metric g.

As will be seen in the following subsections, several of the conformal Einstein

field equations admit an analysis similar to that of Equation (13.11). A detailed

discussion of the resulting evolution equations exploits the particular symmetries

of the field appearing in the principal part.
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338 Hyperbolic reductions

13.2.1 Coordinate gauge source functions

The purpose of this subsection is to analyse the evolution equations arising from

the no-torsion condition in the frame and spinor formulations of the conformal

field equations; see Equations (8.31a), (8.35a), (8.44a) and (8.53a). This leads to

the first class of gauge source functions that will be considered in this chapter:

the coordinate gauge source functions. Following the general discussion of

Chapter 8, the no-torsion condition will be regarded as a differential condition on

the coefficients of the frame {eAA′}. Thus, the ultimate purpose of this section

is to derive a symmetric hyperbolic subsystem for these quantities.

In Section 8.3.2 an expression for the spinorial counterpart of the torsion tensor

ΣAA′CC′
BB′ in terms of the spinorial connection coefficients ΓAA′CC′

BB′ has

been given; see Equation (8.35a). In what follows, it is more convenient to make

use of an expression involving the reduced spin connection coefficients. Using the

relation

ΓAA′CC′
BB′ = ΓAA′CBεB′C

′
+ Γ̄A′A

C′
B′εB

C ,

– compare Equation (3.33) – it can be seen that

ΣAA′QQ′
BB′eQQ′ = [eBB′ , eAA′ ]− ΓBB′QAeQA′ − Γ̄BB′Q

′
A′eAQ′

+ ΓAA′QBeQB′ + Γ̄AA′Q
′
B′eBQ′ . (13.14)

Using the frame {ca} one can write

eAA′ = eAA′aca,

so that for fixed frame spinorial indices AA′ , the coefficients eAA′a have the

natural interpretation of the components of eAA′ with respect to ca. However,

there is an alternative interpretation: for fixed frame index a, the coefficients

eAA′a correspond to the components of the covectors αa with respect to the

coframe ωAA′
. That is, one has

αa = eAA′aωAA′
,

from where it follows that eAA′aωAA′
b = δb

a. In view of this interpretation, it

is convenient to define

∇CC′eBB′a ≡ eCC′bcb(eBB′a)− ΓCC′QBeQB′a − Γ̄CC′Q
′
B′eBQ′a,

(13.15)

so that ∇CC′αa =
(
∇CC′eBB′a

)
ωBB′

. Expression (13.15) corresponds to the

formula one would use to compute the covariant derivative of eBB′a if it were

the components of a tensor – which, of course, it is not.

Intuition into this general discussion is gained by considering the particular

case of a coordinate frame for which eAA′ = eAA′μ∂μ so that

eAA′(xν) = eAA′μ∂μ(x
ν) = eAA′μδμ

ν = eAA′ν .
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13.2 Hyperbolic reductions using gauge source functions 339

Moreover, writing ωAA′
= ωAA′

μdx
μ one has that

dxμ = eAA′μωAA′
.

That is, for fixed coordinate index μ, the coefficients eAA′μ are the components

of the coordinate differential dxμ with respect to the coframe ωAA′
.

Returning to the general discussion, using the identity

[fv,u] = f [v,u]− u(f)v

for v, u ∈ T (M) and f ∈ X (M), together with expression (13.15) one can

rewrite Equation (13.14) as

ΣAA′QQ′
BB′eQQ′c = ∇BB′eAA′c −∇AA′eBB′c − eAA′aeBB′bCa

c
b, (13.16)

where Ca
c
b are the commutation coefficients defined by

[ca, cb] = Ca
c
bcc.

In the case of a coordinate frame one obtains the simpler expression

ΣAA′QQ′
BB′eQQ′μ = ∇BB′eAA′μ −∇AA′eBB′μ,

as [∂μ,∂ν ] = 0.

A final simplification is obtained by exploiting the antisymmetry of Equa-

tion (13.16). Contracting the indices A′ and B′ and symmetrising in AB one

concludes that

∇(A
Q′

eB)Q′a +
1

2
eA

Q′beBQ′cCb
a
c = ΣAB

a, (13.17)

with

ΣAB
a ≡ 1

2
ΣA

Q′CC′
BQ′eCC′a.

As the frame eAA′ is Hermitian, that is, eAA′ = eAA′ , one has that (13.17)

is completely equivalent to Equation (13.16). Moreover, if ΣAB
a = 0, then

ΣAA′CC′
BB′ = 0 and the connection is torsion free.

The structure of Equation (13.17) is similar to that of the model Equation

(13.12), suggesting that by introducing a gauge source function one will

obtain a symmetric hyperbolic system for the frame coefficients eAA′a. Now,

Equation (13.17) does not impose restrictions on the divergences ∇QQ′
eQQ′a so

that one can set

∇QQ′
eQQ′a = Fa(x), (13.18)

where the coordinate gauge source functions Fa(x) are smooth functions of

the coordinates x = (xμ). In the case of a coordinate frame the above expression

reduces to

∇QQ′∇QQ′xμ = Fμ(x), (13.19)

the so-called generalised wave coordinates condition .
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340 Hyperbolic reductions

Combining the identity

∇(A
Q′

eB)Q′a = ∇A
Q′

eBQ′a +
1

2
εAB∇PP ′

ePP ′a

with Equations (13.17) and (13.18) one finally obtains, for ΣAB
a = 0, the

equation

∇A
Q′

eBQ′a +
1

2
εABFa(x) +

1

2
eA

Q′beBQ′cCb
a
c = 0,

from which a symmetric hyperbolic system for the frame components of eBQ′a

can be deduced.

Geometric interpretation

The generalised wave coordinate condition (13.19) shows that a particular choice

of coordinate gauge is, implicitly, a choice of coordinates. Equation (13.19) can

always be solved locally by choosing some coordinates x = (x0, xα) on some

fiduciary surface S�. If this surface is described by the condition x0 = 0, then it

is also natural to require that

∂xα

∂x0
= 0, on S�.

Moreover, one needs the coordinate differentials dxμ to be linearly independent

on S�. These conditions ensure the existence of a solution to Equation (13.19)

close to S�.

Conversely, given a particular coordinate choice on a spacetime (M, g), one

can use Equation (13.19) to compute the coordinate gauge source function Fμ(x)

associated with the coordinates. Thus, local coordinates and coordinate gauge

source functions are in a one-to-one correspondence.

Construction of coordinates in perturbations of spacetimes

The discussion of the previous subsection can be applied to the construction

of coordinates in spacetimes (M, g) which are perturbations of a certain exact

background spacetime (M̊, g̊). In this situation, one would expect the spacetime

manifolds M and M̊ to be diffeomorphic to each other so that coordinates in the

background spacetime could be used as coordinates in the perturbed spacetime.

This does not mean that the spacetimes (M, g) and (M̊, g̊) are isometric! The

intuition expressed in this paragraph will now be formalised.

In what follows, assume that one has two spacetimes (M, g) and (M̊, g̊) such

that the manifolds M and M̊ are diffeomorphic. Let ϕ : M → M̊ denote a

diffeomorphism between them. This choice is clearly not unique. The subsequent

discussion will single out a particular type of diffeomorphism betweenM and M̊.

Let x = (xμ) and x̊ = (̊xμ) denote, respectively, local coordinates on M
and M̊. In terms of these local coordinates the diffeomorphism ϕ is given by

x̊μ = x̊μ(x) and its inverse by xμ = xμ(̊x). On M̊ consider a frame {̊ca} and its
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13.2 Hyperbolic reductions using gauge source functions 341

dual coframe {α̊a}. The frame is not necessarily assumed to be g̊-orthonormal.

From this frame and coframe one can introduce a frame {ca} and a coframe

{αa} on M using, respectively, the push-forward and the pull-back implied by

ϕ : M → M̊. More precisely,

c̊a = (ϕ)∗ca, α̊a = (ϕ−1)∗αa.

Thus, writing

αa = αa
μdx

μ, α̊a = α̊a
μdx̊

μ,

one concludes that

αa
μ = α̊a

ν
∂x̊ν

∂xμ
.

Now, observing that 〈αa, eb〉 = δb
a, it follows that ∇cα

a = (∇ceb
a)αb and,

consequently,

∇beb
a = ηcd〈∇cα

a, ed〉 = eb
μ∇bαa

μ = ∇μαa
μ.

The above expression can be used to write the divergence ∇QQ′
eQQ′a appearing

in Equation (13.18) in terms of quantities associated to the diffeomorphism ϕ :

M → M̊.

Treating the coordinates x̊ = (̊xμ) as scalars and recalling that α̊a
ν =

〈α̊a,∂/∂x̊ν〉 so that the coefficients α̊a
ν are also scalars, one finds that

∇να
a
μ = α̊a

λ∇ν

(
∂x̊λ

∂xμ

)
+

∂α̊a
λ

∂xν

∂x̊λ

∂xμ

= α̊a
λ∇ν∇μx̊

λ + ∇̊ρα̊
a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
,

where in the last equality the chain rule has been used. Consequently, one has

∇μαa
μ = α̊a

λ∇μ∇μx̊
λ + gμν∇̊ρα̊

a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
= Fa(x),

or, more suggestively,

∇μ∇μx̊
σ + c̊a

σ

(
gμν∇̊ρα̊

a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
− Fa(x)

)
= 0.

So far, the diffeomorphism ϕ : M → M̊ has been kept completely general.

However, if one sets

gμν∇̊ρα̊
a
λ
∂x̊ρ

∂xν

∂x̊λ

∂xμ
= Fa(x), (13.20)

one finds that

∇μ∇μx̊
σ = 0.
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342 Hyperbolic reductions

That is, under condition (13.20), the diffeomorphism ϕ : M → M̊ given by

x̊μ = x̊μ(x) is a wave map. Wave maps can be regarded as a generalisation of the

geodesic equation. Further discussion on this notion, which plays an important

role in modern research in PDE theory and geometric analysis, can be found in

the review by Tataru (2004).

Now, it is convenient to regard the manifolds M and M̊ as being the same

and let x̊μ = x̊μ(x) be the identity map so that ∂x̊ρ/∂xν = δν
ρ. This amounts

to saying that the coordinates x̊ = (̊xμ) are used as coordinates of the perturbed

spacetime (M, g). In this case condition (13.20) reduces to

∇̊bα̊a
b = Fa(x).

If in the reference spacetime one has ω̊a = α̊a so that α̊a
b ≡ 〈α̊a, c̊b〉 = δb

a,

then

∇̊bα̊a
b = −ηbcΓ̊b

a
c.

Accordingly, the coordinate gauge source function Fa(x) can be expressed in

terms of the connection of the background spacetime via

Fa(x) = −ηbcΓ̊b
a
c,

or, in spinorial terms

Fa(x) = −εABεA
′B′

eAA′beBB′cΓ̊b
a
c.

Space spinor decomposition of the equation for the frame coefficients

The space spinor decomposition of Equation (13.17) provides a systematic

approach to the extraction of the required symmetric hyperbolic system.

Accordingly, one considers the space spinor split of the frame fields given by

eAA′a =
1

2
τAA′ea − τQA′eAQ

a

with

ea ≡ τAA′
eAA′a, eAB

a ≡ τ(A
A′

eB)A′a.

Alternatively, one can write

τB
Q′

eAQ′a =
1

2
εABea + eAB

a.

Using

∇ABτCD′ = −
√
2τDD′χABCD,

– compare Equation (4.17) – together with the decomposition of ∇AB given in

Equation (13.5), it follows from Equation (13.18) that

Pea + 2DPQePQ
a +

√
2eaχPQ

PQ + 2
√
2ePQ

aχP
C

CQ − 2Fa(x) = 0.

(13.21)
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13.2 Hyperbolic reductions using gauge source functions 343

A similar computation for Equation (13.17) yields

ΣAB
a =

1

2
PeAB

a − 1

2
DABea +D(A

QeB)Q
a − 1√

2
eaχ(A|Q|

Q
B)

+
√
2eP (A

aχB)Q
QP − 1

2
(ebeAB

c + eAQ
beB

Qc)Cb
a
c.

A further independent equation can be obtained from the Hermitian conjugate

Σ+
AB

a ≡ τA
A′

τB
B′

Σ̄A′B′a.

Exploiting the identity

τA
A′

τB
B′∇Q

A′eQB′a = ∇Q
A

(
τB

B′
eQB′a

)
− eQB′a∇Q

AτB
B′

,

one arrives at

Σ+
AB

a = −1

2
PeAB

a +
1

2
DABea +D(A

QeB)Q
a +

1√
2
eaχQ

(AB)Q

−
√
2ePQ

aχP
(AB)

Q − 1

2
(ebeAB

c + eAQ
beB

Qc)Cb
a
c.

The required evolution equation complementing (13.21) is then obtained from

ΣAB
a − Σ+

AB
a = 0,

where

ΣAB
a − Σ+

AB
a = PeAB

a −DABea − 1√
2
ea
(
χ(A|Q|

Q
B) + χQ(AB)

Q
)

+
√
2eP (A

aχB)Q
QP +

√
2ePQ

aχP
(AB)

Q

− eceAB
bCb

a
c. (13.22)

A direct inspection shows that Equations (13.21) and (13.22) imply, for fixed

frame index a, a symmetric hyperbolic system of four equations for ea and

the independent components of eAB
a. A further computation shows that the

characteristic polynomial of the system is given by

−4(τμξμ)
2(gλρξλξρ).

As a by-product of the analysis one obtains the constraint equations implied

by (13.17) from

ΣAB
a +Σ+

AB
a = 0,

where

ΣAB
a +Σ+

AB
a = 2DQ

(AeB)Q
a +

1√
2
ea
(
χ(A|Q|

Q
B) + χQ

(AB)Q

)
+
√
2eP (A

aχB)Q
QP −

√
2ePQ

aχP
(AB)

Q

−
(
ebeAB

c + eAQ
beB

Qc
)
Cb

a
c.

Expanding the principal part of this constraint equation, one finds it contains

derivatives in the time direction.
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344 Hyperbolic reductions

13.2.2 Frame gauge source functions

After having analysed the gauge source conditions arising from the no-torsion

condition, one can now consider the gauge source functions associated to the Ricci

identity – that is, the condition requiring that the geometric and the algebraic

curvatures coincide. As with the no-torsion condition, the equality between the

two expressions for the curvature is part of the frame and spinorial formulations

of the conformal field equations; compare Equations (8.31b), (8.35b), (8.44b)

and (8.53b).

Rather than working with the full expressions for the curvature spinors, in

the subsequent discussion it will be convenient to make use of the reduced

spinorial counterpart of the Riemann tensor in terms of the reduced connection

coefficients:

RABCC′DD′ +ΣCC′QQ′
DD′ΓQQ′AB

= ∇DD′ΓCC′AB −∇CC′ΓDD′AB

− ΓDD′QAΓCC′QB − ΓCC′QAΓDD′QB, (13.23)

where the definition

∇DD′
(
ΓCC′AB

)
≡ eDD′(ΓCC′AB)− ΓDD′QCΓQC′AB

− Γ̄DD′QCΓQC′AB − ΓDD′QBΓCC′AQ

has been used in order to obtain a more concise expression; see Section 8.3.2

for further details. This last expression is formally the same as the one for the

covariant derivative of a spinor field with the same index structure as ΓCC′AB.

Equation (13.23) is encoded in the zero quantity

ΞABCC′DD′ ≡ RABCC′DD′ − ρABCC′DD′ ,

where RABCC′DD′ and ρABCC′DD′ denote, respectively, the geometric and

algebraic curvatures. One has the symmetries

ΞABCC′DD′ = Ξ(AB)CC′DD′ = −ΞABDD′CC′ .

Exploiting the antisymmetry of Equation (13.23) one obtains the pair of

equations

∇(C
Q′

ΓD)Q′AB + Γ(C
Q′Q

|A|ΓD)Q′QB = RABCD +ΣC
QQ′

DΓQQ′AB,

(13.24a)

∇P
(C′Γ|P |D′)AB + ΓP

(C′Q|AΓP |D′)QB = RABC′D′ +ΣC′QQ′
D′ΓQQ′AB,

(13.24b)

where

RABCD ≡ 1

2
RABCQ′D

Q′
, RABC′D′ ≡ 1

2
RABQC′QD′ ,

ΣC
QQ′

D ≡ 1

2
ΣCP ′QQ′

D
P ′

, ΣC′QQ′
D′ ≡ 1

2
ΣPC′QQ′P

D′ .
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13.2 Hyperbolic reductions using gauge source functions 345

As the field ΓAA′BC is not Hermitian, two reduced equations are necessary to

encode the content of (13.23) – contrast this with the analysis of the no-torsion

Equation (13.14).

From the structure of Equations (13.24a) and (13.24b) one concludes that the

derivative ∇QQ′
ΓQQ′AB is not determined by the equations. Accordingly, one

can set

∇QQ′
ΓQQ′AB = FAB(x), (13.25)

where FAB = F(AB) are smooth arbitrary functions of the coordinates – the

frame gauge source functions.

Geometric interpretation

To gain intuition on the role played by the frame gauge source functions recall

that ΓAA′BC = εBB∇AA′εC
B ; see Equation (3.32). Equation (13.25) can be

rewritten as

εAB∇PP ′∇PP ′εB
B +∇PP ′

εAB∇PP ′εB
B = FA

B(x). (13.26)

This is to be read as a quasilinear wave equation for the spin frame {εBB}. Using
the symmetry of FAB and the wave Equation (13.26) one obtains

∇PP ′∇PP ′
(
εB

BεAB

)
= 0,

so that by choosing

εB
BεAB = δB

A, ∇PP ′
(
εB

BεAB

)
= 0,

on some fiduciary hypersurface S� one obtains a spin frame which is normalised

at later times.

Space spinor decomposition of the equation for the spin connection coefficients

To obtain a suitable space spinor decomposition of Equations (13.24a), (13.24b)

and (13.25), one defines

ΓABCD ≡ τB
A′

ΓAA′CD

and considers the split

ΓABCD =
1

2
εABΓCD + Γ(AB)CD, ΓCD ≡ ΓQ

Q
CD.

Now, from

∇QQ′
ΓQQ′AB = −∇QQ′(

τPQ′ΓQPAB

)
= τSQ′∇Q

Q′ΓQSAB − (∇QQ′
τSQ′)ΓQSAB

= ∇PQΓPQAB +
√
2χP

R
QRΓPQAB,
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346 Hyperbolic reductions

it follows, using the split of ∇AB, that

PΓAB + 2DPQΓ(PQ)AB + 2
√
2χP

R
QRΓPQAB = 2FAB(x). (13.27)

In view of its symmetries, the zero quantity ΞABCC′EE′ is decomposed as

ΞABCC′EE′ = ΞABCEεC′E′ + ΞABC′E′εCE ,

with

ΞABCE ≡ 1

2
ΞABCQ′E

Q′
, ΞABC′E′ ≡ 1

2
ΞABQC′QE′ .

In terms of space spinors the latter decomposition can be rewritten as

ΞABCDEF = ΞABCEεDF + Ξ∗
ABDF εCE ,

where

ΞABCDEF ≡ τD
C′

τF
E′
ΞABCC′EE′ ,

ΞABDF ≡ τD
C′

τF
E′
ΞABC′E′ , Ξ∗

ABDF ≡ τD
C′

τF
E′
ΞABC′E′ .

To expand ΞABCE and Ξ∗
ABDF it is observed that

∇(C
Q′

ΓD)Q′AB = −∇(C
Q′(

ΓD)SABτSQ′
)

= −τSQ′∇(C
Q′

ΓD)SAB −∇(C
Q′

τS |Q′|ΓD)SAB

= ∇(C
SΓD)SAB +

√
2χ(C|Q|

SQΓD)SAB

=
1

2
PΓ(CD)AB +D(C

SΓD)SAB +
√
2χ(C|Q|

SQΓD)SAB

and that

τC
C′

τD
D′∇P

(C′Γ|P |D′)AB = ∇P
(CΓ|P |D)AB

= −1

2
PΓ(CD)AB +DP

(CΓ|P |D)AB.

From the above expressions it follows that

ΞABCD =
1

2
PΓ(CD)AB − 1

2
DCDΓAB +

1

2

(
DC

SΓ(DS)AB +DD
SΓ(CS)AB

)
+ Γ(C

PQ
|A|ΓD)PQB − ΣC

PQ
DΓPQAB −RABCD,

Ξ∗
ABCD = −1

2
PΓ(CD)AB +

1

2
DCDΓAB +

1

2

(
DP

CΓ(PD)AB +DP
DΓ(PC)AB

)
+ ΓP

(C
Q

|AΓP |D)QB +Σ+
C

PQ
DΓPQAB −R∗

ABCD.

Constraint equations are obtained from the combination

ΞABCD + Ξ∗
ABCD = 0,
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13.2 Hyperbolic reductions using gauge source functions 347

where

ΞABCD + Ξ∗
ABCD = DP

CΓ(PD)AB +DP
DΓ(PC)AB

+ Γ(C
PQ

|A|ΓD)PQB + ΓP
(C

Q
|AΓP |D)QB

+Σ+
C

PQ
DΓPQAB − ΣC

PQ
DΓPQAB

−RABCD −R∗
ABCD,

while the required evolution equations arise from

ΞABCD − Ξ∗
ABCD = 0,

with

ΞABCD − Ξ∗
ABCD = PΓ(CD)AB −DCDΓAB

+ Γ(C
PQ

|A|ΓD)PQB − ΓP
(C

Q
|AΓP |D)QB

− Σ+
C

PQ
DΓPQAB − ΣC

PQ
DΓPQAB

−RABCD +R∗
ABCD. (13.28)

It can be verified that the system composed by (13.27) and (13.28) leads

to a symmetric hyperbolic system for the independent components of ΓAB

and Γ(CD)AB – up to a suitable normalisation factor. A simple counting

argument shows that the system consists of 12 equations, three coming from

Equation (13.27) and nine from Equation (13.28). The characteristic polynomial

of the system is given by

−64(τμξμ)
6(gνλξνξλ)

3.

13.2.3 The conformal gauge source function

The third type of gauge source function to be considered arises from the analysis

of the Cotton equation; see Equations (8.31e) and (8.35f). The starting point of

the analysis is the spinorial counterpart, Equation (8.37a), associated with the

zero quantity

ΔCDBB′ ≡ ∇(C
Q′

LD)Q′BB′ +∇Q
B′ΞφCDBQ + ΞTCDBB′ .

To deduce a symmetric hyperbolic system from this equation one needs to

complete the symmetrised derivative ∇(C
Q′

LD)Q′BB′ with the divergence

∇QQ′
LQQ′BB′ . Information about this derivative is provided by the contracted

Bianchi identity for the Schouten tensor; compare Equation (8.17). In spinorial

notation one has

∇QQ′
LQQ′BB′ =

1

6
∇BB′R. (13.29)

Thus, using

∇(C
Q′

LD)Q′BB′ = ∇C
Q′

LDQ′BB′ +
1

2
εCD∇QQ′

LQQ′BB′ ,
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348 Hyperbolic reductions

one can rewrite the zero quantity ΔCDBB′ as

ΔCDBB′ = ∇C
Q′

LDQ′BB′ +
1

12
εCD∇BB′R

+ΣQ
B′φCDBQ + ΞTCDBB′ , (13.30)

where ΣAA′ ≡ ∇AA′Ξ.

As discussed in Chapter 8, the conformal field equations impose no differential

condition on the unphysical Ricci scalar R. Accordingly, R can be specified freely

as a function of the coordinates. Thus, if the reduced rescaled Cotton spinor

TCDBB′ can be rewritten so that it does not explicitly contain derivatives of the

matter fields, one can deduce a symmetric hyperbolic system for the components

of LAA′BB′ from Equation (13.30).

Geometric interpretation

The particular choice of the Ricci scalar fixes the conformal gauge freedom.

Thus, it is natural to call R(x) the conformal gauge source function. Given

a particular choice of R(x), the transformation law for the Ricci scalar implies a

wave equation for the conformal factor realising the prescribed Ricci scalar; see

Equation (8.30). This equation can always be solved locally if initial data on a

fiduciary hypersurface S� is provided – namely, the values of the conformal factor

and its normal derivative on the hypersurface. Conversely, given an unphysical

spacetime (M, g) and a conformal factor Ξ linking it to a physical spacetime

(M̃, g̃) via the standard relation g = Ξ2g̃, one can compute the corresponding

conformal gauge source function R(x).

Space spinor decomposition of the equation for the components

of the Schouten tensor

The space spinor decomposition of the equations for the Schouten tensor is based

on the expression

LAA′CC′ = ΦAA′CC′ +
1

24
εACεA′C′R(x), (13.31)

where ΦAA′CC′ denotes the spinorial counterpart of the trace-free part of the

Ricci tensor; see Section 3.2.4. The space spinor counterpart of LAA′CC′ is

defined as

LABCD ≡ τB
A′

τD
C′

LAA′CC′ ,

= ΦABCD +
1

24
εACεBDR(x),

where ΦABCD ≡ τB
A′

τD
C′

ΦAA′CC′ so that

ΦABCD = ΦCBAD = ΦADCB,
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13.2 Hyperbolic reductions using gauge source functions 349

as a consequence of the symmetries of ΦAA′CC′ ; see Equation (3.44). A spinor

with these symmetries can be decomposed as

ΦABCD = Φ(ABCD) +
1

2

(
εA(BΦD)C + εC(BΦD)A

)
+

1

3
ΦhACBD, (13.32)

where

ΦAB ≡ Φ(AB)Q
Q, Φ ≡ ΦABCDhACBD.

Now, using that

∇A
Q′

LBQ′CC′ = ∇(A
Q′

LB)Q′CC′ − 1

2
εAB∇QQ′

LQQ′CC′ ,

together with the contracted Bianchi identity (13.29) one can rewrite the zero

quantity ΔABCC′ as

ΔABCC′ = ∇A
Q′

LBQ′CC′ +
1

12
εAB∇CC′R(x) + ΣQ

C′φABCQ + ΞTABCC′ .

(13.33)

Defining

ΔABCD ≡ τD
C′

ΔABCC′ ,

a calculation using (13.33) together with the definitions of the spinors LABCD

and χABCD, yields

ΔABCD = ∇A
QLBQCD +

√
2χAP

QPLBQCD −
√
2χA

QP
DLBQCP

+
1

2
εAB∇CDR(x) + ΣQ

DφABCQ + ΞTABCD,

where ΣAB ≡ τB
Q′

ΣAQ′ . Thus, using the decomposition of the operator ∇AB

one obtains

ΔABCD =
1

2
PLBACD +DA

QLBQCD +
√
2χAP

QPLBQCD

−
√
2χA

PQ
DLBPCQ +

1

2
εAB∇CDR(x) + ΣQ

DφABCQ + ΞTABCD.

To extract the full information of ΔABCC′ one also needs to consider

Δ+
ABCD ≡ τA

P ′
τB

Q′
τC

R′
τD

S′
Δ̄P ′Q′R′S′ .

Proceeding as with ΔABCD one finds that

Δ+
ABCD =

1

2
PLABCD −DQ

ALQBDC +
√
2χQ

A
R

BLQRDC

+
√
2χQ

A
P

CLQBDP − 1

2
εAB∇CDR(x) + Σ+R

Dφ+
ABCR + ΞT+

ABCD.
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350 Hyperbolic reductions

Given the above expressions for ΔABCD and Δ+
ABCD, suitable symmetric

hyperbolic evolution equations for the independent components of the fields

Φ(ABCD), ΦAB and Φ can be found from the combinations

Δ(ABCD) +Δ+
(ABCD) = 0, (13.34a)

Δ+
Q

Q
(CD) −ΔQ

Q
(CD) = 0, (13.34b)

ΔQ
Q

P
P +Δ+

Q
Q

P
P = 0, (13.34c)

while constraint equations arise from

ΔABCD −Δ+
ABCD = 0,

Δ+
Q

Q
(CD) +ΔQ

Q
(CD) = 0,

ΔQ
Q

P
P −Δ+

Q
Q

P
P = 0.

The principal parts of Equations (13.34a)–(13.34c) are given, respectively, by

PΦ(ABCD) −D(ABΦCD),

PΦAB + 2DPQΦPQAB − 1

3
DABΦ,

PΦ+DPQΦPQ.

The above expressions imply a symmetric hyperbolic system for the independent

components of the fields Φ(ABCD), ΦAB and Φ. The explicit form of this system

will not be required in the subsequent discussion but can be readily computed.

13.2.4 The hyperbolic reduction of the Bianchi equation

This section discusses the hyperbolic reduction of the spinorial Bianchi identity.

This procedure leads to evolution equations for the components of the rescaled

Weyl spinor and is completely analogous to that for the Maxwell equations;

see Section 13.1.1. In particular, no gauge source functions are required for this

subsystem.

The spinorial Bianchi equation is encoded in the zero quantity

ΛA′BCD ≡ ∇Q
A′φBCDQ + TCDBA′ .

In the following it will be convenient to work with a space spinor version of this

zero quantity, namely,

ΛABCD ≡ ∇Q
AφBCDQ + TCDBA, TCDBA ≡ τA

A′
TCDBA′ .

Using the decomposition (13.5) one can compute that

ΛABCD = −1

2
PφABCD +DQ

AφBCDQ + TCDBA. (13.35)
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13.2 Hyperbolic reductions using gauge source functions 351

Suitable evolution equations are obtained from the above expression by

considering

−2Λ(ABCD) = PφABCD − 2DQ
(AφBCD)Q + T(ABCD) = 0. (13.36)

In what follows, this system of evolution equations will be known as the

standard system. It gives rise to five independent equations for the five

independent components of φABCD. Contracting the indices A and B in

Equation (13.35) one obtains

ΛCD ≡ ΛQ
QCD = DPQφPQCD + TCDQ

Q = 0,

the so-called Bianchi constraints. As in the case of the other constraint

equations discussed in the previous sections, the Bianchi constraints may contain

derivatives in the time direction.

The hyperbolicity of the standard system

The overall structure of Equation (13.36) suggests that it should imply a

symmetric hyperbolic system. In analogy to the Maxwell equations, one considers

a slightly modified version of Equation (13.36) given by

−2

(
4

A+B +C +D

)
Λ(ABCD) = 0.

The principal part of this equation can be written in matricial form as

Aμ∂μφ ≡

⎛
⎜⎜⎜⎜⎝

τμ + 2e01
μ −2e00

μ 0 0 0

2e11
μ 4τμ + 4e01

μ −6e00
μ 0 0

0 6e11
μ 6τμ −6e00

μ 0

0 0 6e11
μ 4τμ − 4e01

μ −2e00
μ

0 0 0 2e11
μ τμ − 2e01

μ

⎞
⎟⎟⎟⎟⎠

× ∂μ

⎛
⎜⎜⎜⎜⎝

φ0

φ1

φ2

φ3

φ4

⎞
⎟⎟⎟⎟⎠ ,

with

φ0 ≡ φ0000, φ1 ≡ φ0001, φ2 ≡ φ0011, φ3 ≡ φ0111, φ4 ≡ φ1111.

Using the reality conditions satisfied by the vectors eAB, it follows that the

matrices of the system are Hermitian. Moreover, one has that Aμτμ is positive

definite. Thus, the standard evolution system implies a symmetric hyperbolic

system for the independent components of φABCD. The characteristic matrix of

the system is given by
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352 Hyperbolic reductions

det(Aμξμ) = 36
(
τμξμ

)(
gνλξνξλ

)(
τρτσ +

2

3
gρσ
)
ξρξσ.

Thus, g-null hypersurfaces are characteristics of the standard system.

13.2.5 The hyperbolic reduction of the equations for the conformal

factor and its concomitants

Finally, one requires evolution equations for the conformal factor Ξ and its

concomitants ΣAA′ and s. The relevant zero quantities are given by

QAA′ ≡ ΣAA′ −∇AA′Ξ, (13.37a)

ZAA′BB′ ≡ ∇AA′ΣBB′ + ΞLAA′BB′ − sεABεA′B′ − 1

2
Ξ3TAA′BB′ , (13.37b)

ZAA′ ≡ ∇AA′s+ LAA′CC′∇CC′
Ξ− 1

2
Ξ2∇CC′

ΞTAA′CC′ . (13.37c)

Their space spinor counterparts are defined by

QAB ≡ τB
A′

QAA′ , ZABCD ≡ τB
A′

τD
C′

ZAA′CC′ , ZAB ≡ τB
A′

ZAA′ .

It is also convenient to make use of the split

ΣAB ≡ τB
A′

ΣAA′ =
1

2
εABΣ+ Σ(AB), Σ ≡ ΣQ

Q.

From the condition QAB = 0 one obtains the equations

PΞ = Σ, DABΣ = Σ(AB),

which are, respectively, an evolution equation for Ξ and a constraint equation.

Next, using the identity

τB
A′

τD
C′∇AA′ΣCC′ = ∇AB

(
τD

C′
ΣCC′

)
−
√
2ΣCPχAB

P
D

and the split of ∇AB it follows that

ZABCD =
1

4
εABεCDPΣ+

1

2
εABPΣ(CD) +

1

2
εCDDABΣ+DABΣ(CD)

+
1√
2
χABCD −

√
2ΣCPχAB

P
D

+ ΞLABCD − sεABεCD − 1

2
TABCD.

Evolution equations for Σ and Σ(AB) are obtained from

2ZAB
AB = 0, ZA

A
(CD) = 0,
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13.2 Hyperbolic reductions using gauge source functions 353

where

2ZAB
AB = PΣ+

√
2χAB

ABΣ− 2
√
2χABP

BΣ(AP ) + ΞLAB
AB − 4s,

ZA
A

(CD) = PΣ(CD) +
1√
2
χA

A
(CD) −

√
2Σ(C|PχA

AP
|D)

+ ΞLA
A

(CD) −
1

2
Ξ3TA

A
(CD).

The corresponding constraints arise from

Z(ABCD) = 0, Z(AB)C
C = 0,

with

Z(ABCD) = D(ABΣCD) +
1√
2
χ(ABCD)Σ−

√
2Σ(C|P |χ|AB

P
D)

+ ΞL(ABCD) −
1

2
Ξ3T(ABCD),

Z(AB)C
C = DABΣ+

1√
2
χ(AB)C

CΣ−
√
2ΣPQχ(AB)

PQ

+ ΞL(AB)C
C − 1

2
Ξ3T(AB)C

C .

Finally, similar calculations lead to the expression

ZAB =
1

2
εABPs+DABs− 1

2
LABC

CΣ+ LABCDΣCD

+
1

4
Ξ2TABC

C − 1

2
Ξ2ΣCDTABCD.

The evolution and constraint equations for s are then given, respectively, by

ZA
A = 0, Z(AB) = 0,

with

ZA
A = Ps− 1

2
LA

A
C

C + LA
A

CDΣCD +
1

4
Ξ2ΣTA

A
C

C

− 1

2
Ξ2ΣCDTA

A
CD,

Z(AB) = DABs− 1

2
L(AB)C

CΣ+ L(AB)CDΣCD +
1

4
Ξ2ΣT(AB)C

C

− 1

2
Ξ2ΣCDT(AB)CD.

Remark. It should be observed that all the evolution equations obtained in

this section are transport equations – that is, they involve only the directional

derivative P. Accordingly the characteristic polynomial of each of them is just

τμξμ.
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354 Hyperbolic reductions

13.3 The subsidiary equations for the standard

conformal field equations

After having discussed a set of evolution equations implied by the conformal

field Equations (8.38a) and (8.38b), one is now in the position of analysing

the construction of the associated subsidiary system. The subsidiary equations

constitute a system of evolution equations for the zero quantities encoding the

conformal field equations. To prove the propagation of the constraints it

is necessary that these subsidiary evolution equations are homogeneous in the

various zero quantities. If this is the case, then Corollary 12.1 implies a unique

vanishing solution to the subsidiary equations if the zero quantities are zero ini-

tially. The construction of the subsidiary system involves lengthy computations,

parts of which are best carried out with spinorial expressions, while others are

more conveniently described in tensorial terms. The basic strategy behind the

analysis can be understood by first discussing some model equations.

General setup

The general setup for the construction of the subsidiary equations for the

conformal field equations is similar to the one for the construction of the evolution

equations: one works in an open subset U ⊂ M of the unphysical spacetime

manifold; vector and spinor bases are introduced in a similar manner. The

key difference lies in the fact that the covariant derivative ∇ is, a priori, not

assumed to be the Levi-Civita connection of the metric g. Thus, when considering

the commutator of covariant derivatives, one has to make use of the general

expression involving a non-vanishing torsion tensor. This is because the torsion

tensor is, in itself, a zero quantity of the conformal field equations. On similar

grounds, one cannot regard the algebraic and geometric curvatures as being equal

to each other.

13.3.1 Hyperbolic reduction of model equations

The construction of a system of subsidiary equations for the conformal Einstein

equations leads to spinorial equations whose tensorial counterparts are of one of

the following forms

∇[aMb]K = NabK, (13.38a)

∇[aPbc]L = QabcL, (13.38b)

where MaK and PabL are some zero quantities with

NabK = N[ab]K, PabL = P[ab]L, QabcL = Q[abc]L,

and K and L denote an arbitrary string of indices.

Equations (13.38a) and (13.38b) arise from the following observations con-

cerning differential forms; see the Appendix to this chapter for a brief discussion
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13.3 The subsidiary equations for the standard conformal field equations 355

on this and related notions. The fields MaK and PabK can be regarded as the

components, respectively, of the 1-form and 2-form

MK ≡ MaK ωa, PL ≡ PabL ωa ∧ ωb.

Accordingly, Equations (13.38a) and (13.38b) can be written as

dMK = NabK ωa ∧ ωb, dPL = QabcL ωa ∧ ωb ∧ ωc.

If τ denotes a timelike vector field, then the Lie derivatives of MK and PL along

the direction of τ are given by the so-called Cartan’s formula

£τMK = iτdMK + d(iτMK), £τPL = iτdPL + d(iτPL),

where iτ denotes the operation of contraction between the vector τ and a

differential form; see Frankel (2003). In terms of this notation the evolution

equations are given, respectively, by

iτMK = 0, iτPL = 0,

so that

£τMK = iτdMK, £τPL = iτdPL.

The latter can be read as suitable evolution equations for the zero quantities

MaK and PabL. Their frame component version is given by

∇[0Mb]K = N0bK, ∇[0Pbc]L = Q0bcL.

Detailed analysis of the first model equation

The spinorial analogue of Equation (13.38a) is given by

∇AA′MBB′K −∇BB′MAA′K = 2NAA′BB′K.

Exploiting the antisymmetry one obtains the equivalent expression

∇(A
Q′

MB)Q′K = NA
Q′

BQ′K, NA
Q′

BQ′K = NB
Q′

AQ′K.

Defining the space spinor counterpart MABK ≡ τB
A′

MAA′K and using the

definition of the spinor χABCD together with the decomposition (13.5) of ∇AB

one obtains the expression

PM(AB)K + 2D(A
PMB)PK + 2

√
2χ(A|Q|

PQMB)PK = NA
Q′

BQ′K.

Finally, assuming that the evolution equations implied by the zero quantity

MAA′K are given by MQ
Q

K = 0, it follows that MBPK = M(BP )K and,

moreover, that

PM(AB)K +DA
PM(BP )K +DB

PM(AP )K + 2
√
2χ(A|Q|

PQMB)PK =NA
Q′

BQ′K.
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356 Hyperbolic reductions

This last expression is a suitable evolution equation for M(AB)K if NA
Q′

BQ′K
can be expressed as a linear combination of zero quantities. This compu-

tation depends on the particular structure of the conformal equation under

consideration.

Detailed analysis of the second model equation

In what follows, let PAA′BB′L and QAA′BB′CC′L denote, respectively, the

spinorial counterparts of the fields PabL and QabcL. The spinorial counterpart

of Equation (13.38b) can be conveniently written using the spinorial counterpart

of the volume form as

εAA′BB′CC′
DD′∇AA′PBB′CC′L = εAA′BB′CC′

DD′QAA′BB′CC′L. (13.39)

A convenient way of obtaining the space spinor version of this last equation is

to consider, alternatively, the expression

εEFCDGH
AB∇EFPCDGHL,

where, following standard conventions, one defines

PCDGHL ≡ τD
C′

τH
G′

PCC′GG′L,

εEFCDGHAB ≡ τF
F ′
τD

D′
τH

H′
τB

B′
εEF ′CD′GH′AB′ .

A short computation using the expression of the volume form in terms of ε-spinors

yields

εEFCDGHAB = i(εEGεCAεFBεDH − εEAεCGεFHεDB).

Now, exploiting the symmetries of PCDGHL one can write

PCDGHL = PCGLεDH + P ∗
DHLεCG,

where

PCGL ≡ 1

2
PCQG

Q
L, P ∗

DHL ≡ 1

2
PQD

Q
HL.

A calculation shows that the above expressions lead to

εEFCDGH
AB∇EFPCDGHL

= 2i
(
∇A

QP ∗
BQL −∇Q

BPAQL
)

= iP (P ∗
ABL + PABL) + 2iDQ

AP ∗
BQL − 2iDQ

BPAQL.

If the evolution equations associated with the zero quantity PABCDL are given

by the condition

PABL − P ∗
ABL = 0,
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it follows that

PPABL = − i

2
εEFCDGH

(AB)∇EFPCDGHL.

It can be verified that the expression one obtains by working directly with the

left-hand side of Equation (13.39) differs from the above expression by homo-

geneous terms involving PCDGHL and χABCD. To complete the construction

of a suitable subsidiary equation for PABCDL it is necessary to show that the

right-hand side of Equation (13.39) can be expressed as a linear combination of

zero quantities – this computation is specific to each zero quantity.

13.3.2 The subsidiary equations for the equations governing the

conformal factor and its concomitants

The zero quantities QAA′ , ZAA′BB′ and ZAA′ – see Equations (13.37a)–(13.37c)

– lead to subsidiary equations which fall into the class described by the model

Equation (13.38a). Accordingly, one will have suitable subsidiary evolution

equations for the zero quantities QAA′ , ZAA′BB′ and ZAA′ if the derivatives

∇(A
Q′

QB)Q′ , ∇(A
Q′

ZB)Q′CC′ , ∇(A
Q′

ZB)Q′ ,

can be expressed as linear combinations of other zero quantities.

The subsidiary equation for QAA′

A direct computation using the definition of QAA′ shows that

∇(A
Q′

QB)Q′ = ∇(A
Q′

ΣB)Q′ − ΣA
QQ′

BΣQQ′ ,

where the definition of the torsion spinor – see Equation (8.35a) – has been used

to write

∇(A
Q′∇B)Q′Ξ = ΣA

QQ′
BΣQQ′ , ΣA

QQ′
B ≡ 1

2
ΣA

P ′QQ′
BP ′ .

Finally, using the definition of the zero quantity ZAA′BB′ one can eliminate the

term ∇(A
Q′

ΣB)Q′ . Observing that L(A
Q′

B)Q′ = T(A
Q′

B)Q′ = 0 – as these are

the spinorial counterparts of symmetric rank-2 tensors – one finds

∇(A
Q′

ΣB)Q′ = Z(A
Q′

B)Q′ ,

so that one concludes that

∇(A
Q′

QB)Q′ = Z(A
Q′

B)Q′ − ΣA
QQ′

BΣQQ′ ,

which is a linear combination of zero quantities as required.
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358 Hyperbolic reductions

The subsidiary equation for ZAA′BB′

A direct computation starting from the definition of ZAA′BB′ yields the

expression

∇(A
Q′

ZB)Q′CC′ = ∇(A
Q′∇B)Q′ΣCC′ +Σ(A

Q′
LB)Q′CC′ + Ξ∇(A

Q′
LB)Q′CC′

+ εC(A∇B)C′s− 3

2
Ξ2Σ(A

Q′
TB)Q′CC′ − Ξ3∇(A

Q′
TB)Q′CC′ .

Using the commutator

∇AA′∇BB′ΣCC′ −∇BB′∇AA′ΣCC′

= −RP
CAA′BB′ΣPC′ − R̄P ′

C′A′ABB′ΣCP ′

− ΣAA′QQ′
BB′∇QQ′ΣCC′ ,

one finds that

∇(A
Q′∇B)Q′ΣCC′ = −RP

C(AB)ΣPC′ − R̄P ′
C′(AB)ΣCP ′

− ΣA
QQ′

B∇QQ′ΣCC′ ,

where

RABCD ≡ 1

2
RABCQ′D

Q′
, R̄A′B′CD ≡ 1

2
R̄A′B′Q′CD

Q′
.

Using the definitions of the zero quantities ΔCDBB′ and ZAA′ to eliminate,

respectively, ∇(A
Q′

LB)Q′CC′ and ∇BC′s, one obtains

∇(A
Q′

ZB)Q′CC′ = −RP
C(AB)ΣPC′ − R̄P ′

C′(AB)ΣCP ′ − ΣA
QQ′

B∇QQ′ΣCC′

+Σ(A
Q′

LB)Q′CC′ + ΞΔABCC′ − ΞΣQ
C′φABCQ

− Ξ2TABCC′ + εC(AZB)C′ − εC(ALB)C′QQ′ΣQQ′

− 1

2
Ξ2ΣQQ′

εC(ATB)C′QQ′ − 3

2
Ξ2Σ(A

Q′
TB)Q′CC′

− 1

2
Ξ3∇(A

Q′
TB)Q′CC′ .

Next, one uses the zero quantity ΞABCC′DD′ to eliminate the geometric

curvature terms RP
C(AB) and R̄P ′

C′(AB). Taking into account the expression

of the algebraic curvature in terms of the Schouten tensor and the rescaled Weyl

tensor one obtains

∇(A
Q′

ZB)Q′CC′ = −ΞP
C(AB)ΣPC′ − Ξ̄P ′

C′(AB)ΣCP ′ − ΣA
QQ′

B∇QQ′ΣCC′

+ ΞΔABCC′ − Ξ2TABCC′ + εC(AZB)C′

− 1

2
Ξ2ΣQQ′

εC(ATB)C′QQ′ − 3

2
Ξ2Σ(A

Q′
TB)Q′CC′

− 1

2
Ξ3∇(A

Q′
TB)Q′CC′ ,
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13.3 The subsidiary equations for the standard conformal field equations 359

where

ΞABCD ≡ 1

2
ΞABCQ′D

Q′
, Ξ̄A′B′CD ≡ 1

2
Ξ̄A′B′Q′CD

Q′
.

Finally, observing that the definition of the rescaled Cotton tensor implies that

TABCC′ = − 1
2Ξ∇(A

Q′
TB)Q′CC′ and exploiting the trace-freeness of the energy-

momentum tensor one ends up with the expression

∇(A
Q′

ZB)Q′CC′ = −ΞP
C(AB)ΣPC′ − Ξ̄P ′

C′(AB)ΣCP ′ − ΣA
QQ′

B∇QQ′ΣCC′

+ ΞΔABCC′ + εC(AZB)C′ ,

which, as required, is a linear combination of zero quantities.

The subsidiary equation for ZAA′

In this case one needs to evaluate ∇(A
Q′

ZB)Q′ . Making use of the definition of

ZAA′ one finds that

∇(A
Q′

ZB)Q′ = ∇(A
Q′∇B)Q′s+∇(A

Q′
LB)Q′PP ′ΣPP ′

+∇(A
Q′

ΣPP ′
LB)Q′PP ′

− ΞΣ(A
Q′

ΣPP ′
TB)Q′PP ′ − 1

2
Ξ2∇(A

Q′
ΣPP ′

TB)Q′PP ′

− 1

2
Ξ2ΣPP ′∇(A

Q′
TB)Q′PP ′ .

Using the definition of the torsion tensor in the form

∇(A
Q′∇B)Q′s = ΣA

QQ′
B∇QQ′s,

and the definitions of ΔABCC′ and ZAA′BB′ to eliminate, respectively,

∇(A
Q′

LB)Q′PP ′ and ∇A
Q′

ΣPP ′
one obtains – after some simplifications

involving the symmetries of LAA′BB′ and TAA′BB′ –

∇(A
Q′

ZB)Q′ = Σ(A
QQ′

B)∇QQ′s+ΔABPP ′ΣPP ′
+ Z(A

Q′PP ′
LB)Q′PP ′

− 1

2
Ξ2Z(A

Q′PP ′
TB)Q′PP ′ .

This expresion is a linear combination of zero quantities.

13.3.3 Subsidiary equation for the no-torsion condition

Following the general discussion of Section 13.3.1, one defines

ΣABCD
a ≡ τB

A′
τD

C′
ΣAA′QQ′

CC′eQQ′a.

One can write

ΣABCD
a = −ΣAC

aεBD − Σ+
BD

aεAC ,

so that, if the evolution equation ΣAB
a − Σ+

AB
a = 0 holds, then

PΣAB
a = − i

2
∇EFΣCDGH

aεEFCDGH
(AB). (13.40)
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360 Hyperbolic reductions

To conclude the argument one needs to express the right-hand side of the above

equation as a linear combination of zero quantities. To this end, one makes use

of the first Bianchi identity (2.10) to write

∇[aΣb
d
c] = −Ξd

[cab] − ρd[cab] − Σ[a
e
bΣc]

d
e,

where the zero quantity Ξd
cab ≡ Rd

cab − ρdcab. By construction, the algebraic

curvature has the same algebraic symmetries as the Riemann tensor of a Levi-

Civita connection so that, in particular, ρd[cab] = 0 and one has that

∇[aΣb
d
c] = −Ξd

[cab] − Σ[a
e
bΣc]

d
e.

This expression shows that the right-hand side of Equation (13.40) can be written

as a linear combination of zero quantities.

13.3.4 Subsidiary equation for the Ricci identity

It follows from the general discussion of Section 13.3.1 that, if the evolution

equations ΞABCD − Ξ∗
ABCD = 0 are satisfied, then

PΞABCD = − i

2
∇EFΞCDGHεEFCDGH

(AB). (13.41)

To express the right-hand side of this last equation as a linear combination of

zero quantities one makes use of the second Bianchi identity (2.11) to obtain

εf
abc∇[aΞ

d
|e|bc] = εf

abc∇[aR
d
|e|bc] − εf

abc∇[aρ
d
|e|bc]

= −εf
abcΣ[a

g
bR

d
|e|c]g − εf

abc∇[aρ
d
|e|bc]. (13.42)

The first term in the right-hand side of the last equation already has the desired

form. The second term needs to be examined in more detail. One considers

εf
abc∇[aρ

d
|e|bc] = εf

abc∇aρ
d
ebc

= Ξεf
abc∇ad

d
ebc + εf

abc∇aΞd
d
ebc + 2εf

abcSeb
dh∇aLch,

where in the last line the expression of the algebraic curvature in terms of the

Weyl tensor and the Schouten tensor has been used. Now, a computation using

the properties of the Hodge dual and the definition of the zero quantity Λabc

shows that

εf
abc∇ad

d
ebc = −εf

abc∇a
∗d∗debc = −2∇a

∗d∗∗def
a

= 2∇a
∗ddef

a = 2∇ad
∗
f
ad

e

= εe
dgh∇ad

a
fgh = εe

dgh(Λfgh + Tfgh). (13.43)

Using the above expression together with the definition of the zero quantities

Δabc and Qa to eliminate ∇[aLc]f and ∇aΞ, respectively, one finds that

εf
abc∇[aρ

d
|e|bc] = εf

abcQad
d
ebc + Ξεe

dghΛfgh + εf
abcSeb

dhΔach.
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13.3 The subsidiary equations for the standard conformal field equations 361

Substituting this last expression into Equation (13.42) one obtains the required

expression for∇[aΞ
d
|e|bc] as a linear combination of zero quantities. The spinorial

counterpart of this expression differs from the right-hand side of Equation (13.41)

by terms homogeneous in zero quantities involving the spinor χABCD.

13.3.5 The subsidiary equations for the Cotton equation

Applying the general discussion of Section 13.3.1 to the zero quantity

ΔAA′BB′CC′ associated with the unphysical Bianchi identity leads to the

expression

1

2
P
(
Δ+

ABKL +ΔABKL

)
+DQ

AΔ+
BQKL −DQ

BΔAQKL

= − i

2
εEFCDGH

AB∇EFΔCDGHKL. (13.44)

To make use of the evolution equations in the above expression it is observed

that

ΔABCD = Δ(ABCD) +
1

3
hABCDΔPQ

PQ +
1

2
εCDΔABQ

Q.

Thus, using the evolution equations for the various components of the Schouten

tensor one obtains

PΔ(ABKL) = − i

2
∇EFΔCDGH(ABεEFCDGH

KL),

PΔPQ
PQ = − i

2
εEFCDGHKL∇EFΔCDGHKL,

PΔABQ
Q = − i

2
εEFCDGH

AB∇EFΔCDGHQ
Q.

To analyse the right-hand sides of the above equations it is more convenient

to analyse εAA′BB′CC′DD′∇BB′ΔCC′DD′EE′ . This expression differs from the

right-hand side of Equation (13.44) by terms involving the spinor χABCD. For

conciseness, the analysis is carried out using tensorial notation. One has that

εf
ecd∇eΔcdb = εf

ecd
(
2∇e∇[cLd]b −∇eΣad

a
bcd − Σa∇ed

a
bcd

−∇eΞTcdb − Ξ∇eTcdb

)
. (13.45)

The first term on the right-hand side of the above equation is manipulated using

the commutator of covariant derivatives by observing that

2εf
ecd∇e∇[cLd]b = 2εf

ecd∇[e∇c]Ldb

= −2εf
ecd
(
2Rs

(d|ec|Lb)s − Σe
s
c∇sLdb

)
= −2εf

ecd
(
2Ξs

(d|ec|Lb)s + εf
ecdρsbecLds +Σe

s
c∇sLdb

)
,

where in the third line the identity ρa[bcd] = 0 has been used. The second

term in the last equation does not contain zero quantities. The third term in
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362 Hyperbolic reductions

Equation (13.45) is now cast in a suitable form using the properties of Hodge

dual; compare the analogous argument leading to (13.43). One finds that

εf
ecd∇edabcd = −εab

gh(Λfgh + Tfgh).

Substituting the above two identities into Equation (13.45) and using the zero

quantity Zab to eliminate ∇aΣb one obtains

2εf
ecd∇e∇[cLd]b

= −4εf
ecdΞs

(d|ec|Lb)s − 2Σe
s
c∇sLfb

− Σaεab
ghΛfgh − εf

ecdZead
a
bcd

−
{
εf

ecd

(
1

2
Ξ3Tead

a
bcd +∇eΞTcdb − Ξ∇eTcdb

)
− εab

ghΣaTfgh

}
,

(13.46)

where the explicit expression of the algebraic curvature has been used to show

that

εf
ecd
(
ΞdabcdLea − 2ρsbecLds

)
= 0.

Expression (13.46) is, up to the matter terms in curly brackets, a linear

combination of zero quantities. Whether the terms in curly brackets can be

expressed as a linear combination of (matter) zero quantities depends on the

particular features of the matter model under consideration.

13.3.6 The subsidiary equations for the Bianchi identity

The construction of the subsidiary equation for the Bianchi identity is similar

to that of the subsidiary equation for the Maxwell equations. In this case the

relevant zero quantity is given by

ΛA′BCD ≡ ∇Q
A′φBCDQ + TCDBA′ ,

for which one computes ∇BB′
ΛB′BCD in two different manners.

First, making use of the space spinor zero quantity ΛABCD ≡ τA
A′

ΛA′BCD

one has that

∇BB′
ΛB′BCD = −∇BB′(

τPB′ΛPBCD

)
= ∇ABΛABCD −

(
∇BA′

τAA′
)
ΛABCD.

Using Equation (13.8) for the derivative of the spinor τAA′ and the split of ∇AB

one obtains

PΛCD − 2DABΛABCD − 2
√
2χB

P
PAΛABCD = −2∇BB′

ΛB′BCD,
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13.3 The subsidiary equations for the standard conformal field equations 363

where it is recalled that ΛCD ≡ ΛQ
QCD. Now, a calculation shows that the

symmetry ΛABCD = ΛA(BCD) implies the decomposition

ΛABCD = Λ(ABCD) −
3

4
εA(BΛCD),

so that

PΛCD − 2DP
(CΛD)P − 2DABΛ(ABCD) − 2

√
2χB

P
PAΛ(ABCD)

+
3√
2
χB

P
PAεA(BΛCD) = −2∇BB′

ΛB′BCD. (13.47)

As a second way of evaluating ∇BB′
ΛB′BCD one makes use of the definition

of the zero quantity so that

∇BB′
ΛB′BCD = ∇BB′∇Q

B′φBCDQ +∇BB′
TCDBB′ .

The first term of the right-hand side is manipulated using the commutator

∇AA′∇BB′φCDEF −∇BB′∇AA′φCDEF

= −RS
CAA′BB′φSDEF −RS

DAA′BB′φSCEF −RS
EAA′BB′φSCDF

−RS
FAA′BB′φSCDE +ΣAA′PP ′

BB′∇PP ′φCDEF .

Observe that the torsion ΣAA′PP ′
BB′ , being one of the unknowns in the

subsidiary system, needs to be included in the commutator. Also, the curvature

terms in the above expression are understood to be those of the geometric

curvature. Contracting the expression of the commutator leads to

2∇BB′∇Q
B′φBCDQ = −RS

C
BA′Q

A′φSDBQ −RS
D

BA′Q
A′φSCBQ

−RS
B

BA′Q
A′φSCDQ −RS

Q
BA′Q

A′φSCDB

+ΣAA′SS′Q
A′∇SS′φCDAQ.

Using the zero quantity

ΞC
DAA′BB′ = RC

DAA′BB′ − ρCDAA′BB′ ,

to eliminate the geometric curvature and the decomposition (13.9) one obtains

an expression which is homogenous in zero quantities:

2∇BB′∇Q
B′φBCDQ = −ΞS

C
BA′Q

A′φSDBQ − ΞS
D

BA′Q
A′φSCBQ

− ΞS
B

BA′Q
A′φSCDQ − ΞS

Q
BA′Q

A′φSCDB

+ΣAA′SS′Q
A′∇SS′φCDAQ. (13.48)

In particular, all the terms coming from the algebraic curvature cancel out.
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364 Hyperbolic reductions

Combining Equations (13.47) and (13.48) one obtains the required subsidiary

equation. Namely, one has that if Λ(ABCD) = 0, then

PΛQ
QCD − 2DP

(CΛQ
D)PQ +

3√
2
χB

P
PAεA(BΛQ

CD)Q

= ΞS
C

BA′Q
A′φSDBQ + ΞS

D
BA′Q

A′φSCBQ

+ ΞS
B

BA′Q
A′φSCDQ + ΞS

Q
BA′Q

A′φSCDB

− 2ΣAA′SS′Q
A′∇SS′φCDAQ − 2∇BB′

TCDBB′ ,

which is homogeneous in zero quantities if the matter term ∇BB′
TCDBB′ can

be expressed, in turn, as a homogeneous expression of matter zero quantities.

Alternatively, one can perform the computation with tensorial objects. In this

case one looks at

∇bΛbcd = ∇b∇ad
a
bcd −∇bTcdb.

Again, using the properties of the Hodge dual one can write

∇b∇ad
a
bcd = −∇a∇bdabcd

= ∇a∇b∗d∗abcd =
1

4
εabef εghcd∇b∇adefgh

=
1

4
εabef εghcd

(
Rs

eabdfsgh +Rs
gabdhsef − 1

2
Σa

s
b∇sdefgh

)
=

1

4
εabef εghcd

(
Ξs

eabdfsgh + Ξs
gabdhsef − 1

2
Σa

s
b∇sdefgh

)
.

Hence, one concludes that ∇bΛbcd, except for the matter term ∇bTcdb can be

written as a linear combination of zero quantities.

13.3.7 Summary

In most applications, the detailed form of the evolution and subsidiary equations

is not required; general structural properties suffice. These properties are

summarised in the following propositions.

It is convenient to group the independent components of the unknowns

appearing in the spinorial formulation of the conformal field equations in the

following manner:

σ independent components of Ξ, ΣAA′ , s;

υ independent components of eμAA′ , ΓAA′BC , ΦAA′BB′ ;

φ independent components of φABCD;

ϕ independent components of matter fields.

Moreover, let e and Γ denote, respectively, the independent components of the

frame components and the connection coefficients. In terms of these objects one

has the following:
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13.3 The subsidiary equations for the standard conformal field equations 365

Proposition 13.1 (properties of the conformal evolution equations)

Given arbitrary smooth gauge source functions

Fa(x), FAB(x), R(x),

such that

∇QQ′
eQQ′a = Fa(x), ∇QQ′

ΓQQ′AB = FAB(x),

∇QQ′
LQQ′BB′ =

1

6
∇BB′R(x),

and assuming that the components of the matter tensors Tab and Tabc can be

written in such a way that they do not contain derivatives of the matter fields,

then the conformal Einstein field equations

Qa = 0, Zab = 0, Za = 0, Σa
c
b = 0, Ξc

dab = 0,

Δabc = 0, Λabc = 0,

imply a symmetric hyperbolic system of equations for the independent components

of the geometric fields (σ,υ,φ) of the form(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ)φ+C(σ,υ,ϕ),(

I+D0(e)
)
∂τυ +Dμ(e)∂μυ = E(Γ)υ + F(σ,υ,φ,ϕ),

∂τσ = G(Γ)σ +H(σ,υ,ϕ),

where I denotes the identity matrix of the required dimensions,

Aμ(e), Dμ(e)

are smooth matrix-valued functions of the components of the frame components,

B(Γ), E(Γ), G(Γ)

are smooth matrix-valued functions of the connection coefficients and

C(σ,υ,ϕ), F(σ,υ,φ,ϕ), H(σ,υ,ϕ)

are smooth vector-valued functions with polynomial dependence on their argu-

ments. The characteristics of this system satisfy a characteristic polynomial

involving factors of the form

τμξμ, gνλξνξλ,

(
τρτσ +

2

3
gρσ
)
ξρξσ.

Remarks

(i) In the presence of matter, the symmetric hyperbolic system given in the

above proposition needs to the supplemented by a symmetric hyperbolic

system for the matter fields. As the rescaled Cotton tensor Tabc (and hence

also the spinor TABCC′) is made up of derivatives of the energy-momentum

tensor, the matter evolution equations will need to include equations for the

matter field derivatives appearing in the geometric evolution equations.
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366 Hyperbolic reductions

(ii) The choice of the gauge source functions is dictated by the particular analysis

under consideration.

With regards to the subsidiary system one has the following:

Proposition 13.2 (properties of the subsidiary evolution system)

Assume that the evolution equations implied by the conformal Einstein field

equations are satisfied and that the energy-momentum tensor Tab is such that

the quantities

Mcd ≡ ∇bTcdb,

Nbf ≡ εf
ecd

(
1

2
Ξ3Tead

a
bcd +∇eΞTcdb − Ξ∇eTcdb

)
− εab

ghΣaTfgh,

can be written as homogeneous expressions of the geometric and matter zero

quantities. Then the zero quantities encoding the constraint equations implied by

the conformal Einstein equations under the hyperbolic reduction procedure leading

to Proposition 13.1 satisfy a symmetric hyperbolic system which is a homogeneous

expression of zero quantities.

13.4 Hyperbolic reductions using conformal Gaussian systems

This section discusses a hyperbolic reduction procedure based on the properties

of congruences of conformal geodesics. The approach discussed in this section

makes use of the formulation of the conformal field equations in terms of Weyl

connections – the so-called extended conformal field equations. As will be seen,

this procedure leads to simpler evolution equations than the ones obtained by

the reduction procedure discussed in Section 13.2.

For conciseness of the presentation, the discussion in the rest of this section is

restricted to the vacuum case.

13.4.1 Basic set up

In what follows, it is assumed one has a region U of a spacetime (M̃, g̃) which

is covered by a congruence of conformal geodesics (ẋ(τ),β(τ)). For convenience,

the vector field tangent to the congruence will be denoted by τ . As discussed in

Section 5.5, a canonical representative g of the conformal class [g̃] is singled out

by the requirement

g(τ , τ ) = 1,

so that g = Θ2g̃ where the conformal factor Θ satisfies a third-order ordinary

differential equation along the congruence of conformal geodesics; see Equa-

tion (5.53b). In the case of a vacuum spacetime this equation can be explicitly

solved yielding a formula for Θ as a quadratic polynomial in the parameter τ .

The conformal factor is completely determined by the three coefficients Θ�, Θ̇�,

Θ̈� specified, say, on an initial hypersurface S̃�.
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13.4 Hyperbolic reductions using conformal Gaussian systems 367

In the following, {ea} will denote a g-orthonormal frame which is Weyl-

propagated along the conformal geodesics and such that e0 = τ . As discussed

in Section 5.5, to every congruence of conformal geodesics one can associate a

Weyl connection ∇̂. This Weyl connection satisfies the relations

∇̂τea = 0, L̂(τ , ·) = 0,

where L̂ denotes the Schouten tensor of ∇̂; see Equation (5.41). In terms of

frame components, the above conditions can be rewritten as

Γ̂0
a
b = 0, L̂0a = 0. (13.49)

In particular, it follows that the covector f which defines the Weyl connection

∇̂ satisfies

f0 = 0.

The gauge choice can be refined further by choosing the parameter of the

conformal geodesics τ as the time coordinate. Thus, one has the additional gauge

condition

e0 = ∂τ , so that e0
μ = δ0

μ. (13.50)

In most applications, initial data for the congruence of conformal geodesics will

be prescribed on the initial hypersurface S�. On S� choose some local coordinates

(xα). Assuming that each curve of the congruence of conformal geodesics

intersects S� only once, one can extend coordinates on S� off the hypersurface by

requiring them to be constant along the conformal geodesic which intersects S�

at the point with coordinates (xα); see Figure 13.1. The spacetime coordinates

(τ, xα) one obtains by this procedure are known as conformal Gaussian

coordinates. More generally, the collection of the conformal factor Θ, Weyl-

propagated frame vectors {ea} and coordinates (τ, xα) extended off some initial

hypersurface S� using a congruence of conformal geodesics will be known as a

conformal Gaussian gauge system.

S

conformal geodesic

(0,xα)

(τ,xα)

Figure 13.1 Schematic depiction of the construction of conformal Gaussian
coordinates. The coordinates (xα) of a point p ∈ S� are propagated off the
hypersurface along the unique conformal geodesic passing through p; see the
main text for further details.
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Remarks

(i) The specific choice of the data for the conformal Gaussian gauge system

on an initial hypersurface S is dictated by the particular geometric setting

under consideration.

(ii) The discussion in this section can be adapted, with minor changes, to the

case of a congruence of so-called conformal curves in non-vacuum spacetimes;

see, for example, Lübbe and Valiente Kroon (2012) for further details.

13.4.2 Hyperbolic reduction of a model equation

The general ideas behind the procedure of hyperbolic reduction using conformal

Gaussian systems are best illustrated with a model equation. All the extended

conformal equations, except for the unphysical Bianchi identity, are of the

form

∇̂aMbK − ∇̂bMaK = NabK, (13.51)

where MaK and NabK = N[ab]K denote the components of some tensorial

quantities with respect to the frame {ea} and K denotes an arbitrary set of

tensor indices. To derive an evolution equation along the direction given by the

congruence of curves, one sets a = 0 so that

∇̂0MbK − ∇̂bM0K = N0bK,

or, more explicitly,

e0(MbK)− eb(M0K) = N0bK + Γ̂0
c
bMcK + Γ̂0

L
KMbL − Γ̂b

c
0McK − Γ̂b

L
KM0L.

If the gauge conditions (13.49) are taken into account and coordinates are chosen

such that e0 = ∂τ , then the above equation reduces to

∂τMbK − eb(M0K) = N0bK − Γ̂b
c
0McK − Γ̂b

L
KM0L. (13.52)

This last equation is not a completely satisfactory evolution equation for the

components MaK as it does not yield information about ∂τM0K – notice that by

setting a = b = 0 in (13.51) both sides of the equation vanish as a result of the

skew symmetry of the equation. To read Equation (13.52) as a suitable evolution

equation one needs to know the value of the time component M0K either as

a result of symmetries of the tensor MaK or through some gauge condition.

In any of these cases, Equation (13.52) is just a transport equation along

the congruence of conformal curves, and, accordingly, it trivially gives rise to a

symmetric hyperbolic subsystem of equations.
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Analysis in terms of spinors

In view of subsequent applications, the properties of the spinorial counterpart of

Equation (13.51) are now analysed. In this case one has

∇̂AA′MBB′K − ∇̂BB′MAA′K = NAA′BB′K, (13.53)

where K denotes an arbitrary string of spinorial indices. In view of its anti-

symmetry, Equation (13.53) is completely equivalent to the pair of contracted

equations

∇̂(A|P ′|MB)
P ′

K =
1

2
N(A|P ′|B)

P ′
K, (13.54a)

∇̂P (A′MB′)
P

K =
1

2
NP (A′PB′)K. (13.54b)

Thus, not unsurprisingly, one has arrived at a situation similar to the one

analysed in Section 13.2. Namely, one has equations containing a symmetrised

spinorial curl. A symmetric hyperbolic system can then be obtained if suitable

information about the divergence ∇̂PPMPP ′K is available.

The next step in the procedure consists of introducing the space spinor version

of MAA′K, namely, MBB′K = −τPB′MBPK so that

τP
A′

τQ
B′∇̂AA′MBB′K = −τP

A′
τQ

B′(
τRB′∇̂AA′MBRK +MBRK∇̂AA′τRB′

)
= ∇̂APMBQK −

√
2MBRK χ̂AP

R
Q,

where it has been used that
√
2χ̂ABCD ≡ τB

A′
τD

C′∇̂AA′τCC′ consistent with

formula (4.17). From the above identity together with Equations (13.54a) and

(13.54b) one obtains

∇̂(A|P |MB)
P

K =
1

2
N(A|P |B)

P
K −

√
2M(A

R
|K| χ̂B)PR

P ,

∇̂A(PMA
Q)K =

1

2
NA(P

A
Q)K +

√
2MA

RK χ̂A(P
R

Q).

Using the decomposition

∇̂AB =
1

2
εABP̂ + D̂AB,

with P̂ ≡ τAA′∇̂AA′ and D̂AB ≡ τ(A
A′∇̂B)A′ – compare Equation (4.16) – and

writing MABK as

MABK =
1

2
εABmK +mABK

where mK ≡ MQ
Q

K and mABK ≡ M(AB)K, one obtains

1

2
P̂mABK − 1

2
D̂ABmK − D̂P (AmB)

P
K

= −1

2
N(A|P |B)

P
K +

√
2M(A

R
|K| χ̂B)PR

P
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1

2
P̂mPQK − 1

2
D̂PQmK + D̂A(PmA

Q)K

=
1

2
NA(P

A
Q)K +

√
2MA

RK χ̂A(P
R

Q).

Taking linear combinations of the latter equations one finally arrives at

P̂mABK − D̂ABmK = EABK, (13.55a)

D̂P (AmP
B)K = CABK, (13.55b)

where EABK and CABK are some expressions not involving derivatives of

MABK whose precise form is not relevant for the subsequent discussion.

Equation (13.55a) can be read as an evolution equation for the spatial components

mABK if the time component mK is known. Observe that the reduction procedure

does not produce an equivalent equation for mK consistent with the discussion

of Equation (13.51).

13.4.3 The evolution equations in the frame formalism

To obtain some intuition into the structural properties of the evolution equations,

it is convenient to look first at the form of the equations in a tensor frame

formalism. Accordingly, one considers the vacuum extended conformal field

equations as given in Section 8.4.1; see Equations (8.46).

The required evolution equations for the frame components, connection

coefficients and components of the Schouten tensor are obtained from the

conditions

Σ̂0b = 0, Ξ̂c
d0b = 0, Δ̂0bc = 0.

In particular, the evolution equation for the covector f defining the Weyl

connection is given by

Ξ̂c
c0b = 0.

Using the definitions of the zero quantities given in Equations (8.44a)–(8.44c),

recalling that in the vacuum case Tcdb = 0, and making use of the gauge

conditions (13.49) and (13.50), one obtains the evolution equations

∂τeb
μ = −Γ̂b

f
0ef

μ,

∂τ Γ̂b
c
d = −Γ̂f

c
dΓ̂b

f
0 + δ0

cL̂bd + δd
cL̂b0 − η0dη

fcL̂bf +Θdcd0b,

∂τ L̂bc = −Γ̂b
f
0L̂fc + dfd

f
c0b.

These equations contain derivatives only in the τ direction – that is, they are

transport equations along the conformal geodesics.

The evolution equations for the components of the rescaled Weyl tensor are

obtained by resorting to an electric-magnetic decomposition; see Section 11.1.2.

Using Equations (11.9) and (11.10) for the decomposition of a Weyl candidate

in the equations
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13.4 Hyperbolic reductions using conformal Gaussian systems 371

∇adabcd = 0, ∇ad∗abcd = 0,

one obtains the expressions

Λ∗
(b|0|d) = e0(Ebd) +DaBc(bεd)

ac + 2aaε
ac

(bBd)c − 3χ(b
cEd)c

− εb
acεd

efEacχcf + χEbd = 0,

Λ(b|0|d) = e0(Bbd)−DaEc(bεd)
ac − 2aaε

ac
(bEd)c − 3χa

(bBd)a

− εb
acεd

efBacχcf + χBbd = 0,

where

hab ≡ gab − τaτb, χab = ha
c∇cτb, χ = habχab, aa ≡ τb∇bτa.

The above form of the equations is completely general. In the particular case

of a conformal Gaussian gauge system one has e0 = ∂τ .

13.4.4 The evolution equations in the spinorial formalism

To discuss the spinorial version of the evolution equations one makes use of the

extended conformal field equations

Σ̂AA′BB′ = 0, Ξ̂C
DAA′BB′ = 0, Δ̂CC′DD′BB′ = 0, Λ̂BB′CD = 0,

with the zero quantities as given in (8.53a)–(8.53e). These equations are regarded

as differential conditions on the fields

eAA′μ, Γ̂AA′BC , L̂AA′BB′ , φABCD.

Moreover, one considers the spinor τAA′
– the counterpart of the vector τ , with

normalisation τAA′τAA′
= 2. In terms of a spinor dyad {εAA} adapted to τAA′

one has

τAA′
= ε0

Aε0′A
′
+ ε1

Aε1′A
′
.

In what follows, all spinorial objects will be expressed with respect to this basis.

In particular, the components of τAA′
with respect to {εAA} will be denoted

by τAA′
.

The gauge conditions (13.49) and (13.50) in the spinorial formalism take the

form

τAA′
eAA′ =

√
2∂τ , τAA′

Γ̂AA′BC = 0, τAA′
L̂AA′BB′ = 0. (13.56)

For future use, it is recalled that the reduced spin Weyl connection coefficients

Γ̂CC′AB can be written in terms of the unphysical Levi-Civita connection

coefficients ΓCC′AB and the covector fAA′ as

Γ̂CC′AB = ΓCC′AB − εACfBC′ .
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372 Hyperbolic reductions

Combining the above with the gauge conditions one obtains

τCC′
ΓCC′AB = −τA

C′
fBC′ (13.57)

and, furthermore, that

Γ̂CC′AB = ΓCC′AB − εACτQQ′
ΓQQ′PBτPC′ .

In the gauge given by conditions (13.56) the connection coefficients Γ̂CC′AB

can be fully expressed in terms of the coefficients ΓCC′AB, and vice versa.

Comparing Equation (13.57) with the definition in Equation (4.17), one sees

that the spinor fAA′ encodes the acceleration of the congruence of conformal

geodesics. In particular, if fAA′ = 0, then the congruence consists of standard

geodesics and one obtains a Gaussian gauge system.

The reduced symmetric hyperbolic system of evolution equations can be

deduced from the following contractions of the conformal field equations

τAA′
Σ̂AA′PP ′

BB′ePP ′μ = 0, τCC′
Ξ̂ABCC′DD′ = 0,

τAA′
Δ̂AA′BB′CC′ = 0, τ(A

A′
Λ̂|A′|BCD) = 0.

Explicitly, for the first three equations one has
√
2∂τeAA′μ =−

(
Γ̂AA′QBτBQ′

+
¯̂
ΓA′A

Q′
B′τQB′)

eQQ′μ,
√
2∂τ Γ̂AA′BC =−

(
Γ̂AA′PQΓ̂PQ′BC +

¯̂
ΓAA′P

′
Q′ Γ̂QP ′BC

)
τQQ′

+ L̂AA′CQ′τBQ′
+ΘφB

CQAτQA′ ,
√
2∂τ L̂AA′BB′ =−

(
Γ̂AA′PQL̂PQ′BB′ +

¯̂
ΓA′A

P ′
Q′L̂QP ′BB′

)
τQQ′

− dPP ′
(φPAQBεP ′B′τQA′ + φ̄P ′A′Q′B′εPBτA

Q′
).

Following the same procedure discussed in Section 13.2.4 one finds, for the

Bianchi identity, that

PφABCD − 2D(A
QφBCD)Q = 0. (13.58)

Observe that this last expression is, for convenience, expressed in terms of the

Levi-Civita connection ∇.

The space spinor split of the evolution equations

A more detailed version of the evolution equations is obtained by resorting to

the space spinor formalism, and, in particular, to the split of the connection

coefficients as given in Section 4.3.1.

Following the general strategy behind the space spinor formalism, it is

convenient to define

Γ̂ABCD ≡ τB
A′

Γ̂AA′CD, ΓABCD ≡ τB
A′

ΓAA′CD, fAB ≡ τB
A′

fAA′ ,

ΘABCD ≡ τB
A′

τD
C′

L̂AA′CC′
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In particular, one has

Γ̂ABCD = ΓABCD − εCAfDB.

As a consequence of the gauge conditions (13.56) it follows that

fAB = f(AB), ΓQ
Q

AB = −fAB, L̂Q
Q

AB = 0.

Defining, as in Section 4.3.1, the spinors χABCD and ξABCD via

χABCD ≡ − 1√
2

(
ΓABCD + Γ+

ABCD

)
, ξABCD ≡ 1√

2
(ΓABCD − Γ+

ABCD),

one obtains from the metricity of the connection ∇ that

ΓABCD =
1√
2
(ξABCD − χABCD)

=
1√
2
(ξABCD − χ(AB)CD)− 1

2
εABfCD.

Exploiting the gauge conditions, the spinor ΘABCD can be decomposed into

ΘABCD = ΘAB(CD) +
1

2
εCDΘABQ

Q.

In addition, it is convenient to introduce the electric and magnetic parts

of the rescaled Weyl spinor φABCD via

ηABCD ≡ 1

2
(φABCD + φ+

ABCD), μABCD ≡ − i

2
(φABCD − φ+

ABCD).

A calculation using the above definitions yields the detailed system:

∂τeAB
0 = −χ(AB)

PQePQ
0 − fAB, (13.59a)

∂τeAB
α = −χ(AB)

PQePQ
α, (13.59b)

∂τ ξABCD = −χ(AB)
PQξPQCD +

1√
2
(εACχ(BD)PQ + εBDχ(AC)PQ)fPQ

−
√
2χ(AB)(C

EfD)E − 1

2
(εACΘBDQ

Q + εBDΘACQ
Q)

− iΘμABCD, (13.59c)

∂τfAB = −χ(AB)
PQfPQ +

1√
2
ΘABQ

Q, (13.59d)

∂τχ(AB)CD = −χ(AB)
PQχPQCD −ΘAB(CD) +ΘηABCD, (13.59e)

∂τΘCD(AB) = −χ(CD)
PQΘPQ(AB) − ∂τΘηABCD

+ i
√
2dP (AμB)CDP , (13.59f)

∂τΘABQ
Q = −χ(AB)

EFΘEFQ
Q +

√
2dPQηABPQ. (13.59g)

Remark. The term ∂τΘ in the second term of the left-hand side of Equa-

tion (13.59f) arises from the fact that, in a conformal Gaussian system, the

time component of the covector d is given by Θ̇; see Proposition 5.1.
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Setting

φ0 ≡ φ0000, φ1 ≡ φ0001, φ2 ≡ φ0011, φ3 ≡ φ0111, φ4 ≡ φ1111,

the standard Bianchi system, Equation (13.58), explicitly reads

(
√
2 + 2e01

0)∂τφ0 − 2e11
0∂τφ1 + 2e01

α∂αφ0 − 2e11
α∂αφ1

= −6Γ1111φ2 + (4Γ1110 + 8Γ0111)φ1 + (2Γ1100 − 8Γ0101)φ0,

(
√
2 + 2e01

0)∂τφ1 − 2e11
0∂τφ2 − 2e11

α∂αφ2 + 2e01
α∂αφ1

= −4Γ1111φ3 + (6Γ(01)11 − 3f11)φ2

+ (4Γ1100 − 4Γ(01)01 + 2f01)φ1 − (2Γ(01)00 + f00)φ0,√
2∂τφ2 − e11

0∂τφ3 + e00
0∂τφ1 − e11

α∂αφ3 + e00
α∂αφ1

= −Γ1111φ4 − 2(Γ1101 + f11)φ3 + 3(Γ0011 + Γ1100)φ2

− 2(Γ0001 − f00)φ1 − Γ0000φ0,

(
√
2− 2e01

0)∂τφ3 + 2e00
0∂τφ2 − 2e01

α∂αφ3 + 2e00
α∂αφ2

= −(2Γ(01)11 + f11)φ4 + (2Γ0011 − 4Γ(01)01 − 2f01)φ3

+ (6Γ(01)00 + 3f00)φ2 − 4Γ0000φ1,

(
√
2− 2e01

0)∂τφ4 + 2e00
0∂τφ3 − 2e01

α∂αφ4 + 2e00
α∂αφ3

= (2Γ0011 − 8Γ1010)φ4 + (4Γ0001 + 8Γ1000)φ3 − 6Γ0000φ2.

For completeness, the constraints

ΛAB ≡ DPQφPQAB = 0

are also given in explicit form:

e11
0∂τφ4 − 2e01

0∂τφ3 + e00
0∂τφ2 + e11

α∂αφ4 − 2e01
α∂αφ3 + e00

α∂αφ2

= −(2Γ(01)11 − 4Γ1110)φ4 + (2Γ0011 − 4Γ(01)01 − 4Γ1100)φ3

+ 6Γ(01)00φ2 − 2Γ0000φ1,

e11
0∂τφ3 − 2e01

0∂τφ2 + e00
0∂τφ1 + e11

α∂αφ3 − 2e01
α∂αφ2 + e00

α∂αφ1

= Γ1111φ4 − (4Γ(01)11 − 2Γ1101)φ3 + 3(Γ0011 − Γ1100)φ2

− (2Γ0001 − 4Γ(01)00)φ1 − Γ0000φ0,

e11
0∂τφ2 − 2e01

0∂τφ1 + e00
0∂τφ0 + e11

α∂αφ2 − 2e01
α∂αφ1 + e00

α∂αφ0

= 2Γ1111φ3 − 6Γ(01)11φ2 + (4Γ0011 + 4Γ(01)01 − 2Γ1100)φ1

− (4Γ0001 − 2Γ(01)00)φ0.

These constraint equations contain time derivatives of the components of the

Weyl spinor. Furthermore, as the congruence of conformal curves is, in general,

not hypersurface orthogonal, the constraint equations are not intrinsic to the

leaves of a foliation.
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The boundary adapted system

The standard system (13.36) is not the only symmetric hyperbolic evolution

system that can be extracted from the Bianchi equation. In certain applications,

such as the ones involving evolution domains with a timelike boundary, another

form of the evolution equations is more convenient. In what follows, the system

extracted from

−2Λ(0000) = 0, −2Λ(0001) −
1

2
C00 = 0, −2Λ(0011) = 0, (13.60a)

−2Λ(0111) +
1

2
C11 = 0, −2Λ1111 = 0, (13.60b)

will be known as the boundary adapted system. In the following, it will

be shown that it is, indeed, symmetric hyperbolic. The principal part of the

boundary adapted system can be written as

Aμ∂μφ =

⎛
⎜⎜⎜⎜⎝

τμ + 2e01
μ −2e00

μ 0 0 0

2e11
μ 2τμ −2e00

μ 0 0

0 2e11
μ 2τμ −2e00

μ 0

0 0 2e11
μ 2τμ −2e00

μ

0 0 0 2e11
μ τμ − 2e01

μ

⎞
⎟⎟⎟⎟⎠ ∂μ

⎛
⎜⎜⎜⎜⎝

φ0

φ1

φ2

φ3

φ4

⎞
⎟⎟⎟⎟⎠ ,

(13.61)

so that the matrices Aμ are Hermitian, and, in particular, Aμτμ is positive

definite. The characteristic polynomial is given by

det(Aμξμ) = 4
(
τμξμ

)(
gνλξνξλ

)(
lρσξρξσ

)
,

where lρσ ≡ τρτσ + e00
(ρe11

σ). In Chapter 14, it will be seen that when

τμ is tangent to a timelike hypersurface, then the pull-back of lμν gives the

components of the intrinsic three-dimensional Lorentzian metric implied by g on

the hypersurface.

Explicitly, the boundary adapted system takes the form

(
√
2 + 2e01

0)∂τφ0 − 2e11
0∂τφ1 + 2e01

α∂αφ0 − 2e11
α∂αφ1

= −6Γ1111φ2 + (4Γ1110 + 8Γ0111)φ1 + (2Γ1100 − 8Γ0101)φ0,√
2∂τφ1 − e11

0∂τφ2 + e00
0∂τφ0 − e11

α∂αφ2 + e00
α∂αφ4

= −2Γ1111φ3 − 3f11φ2 + (2Γ1100 + 4Γ0011 + 2f01)φ1 − (4Γ0001 − f00)φ0,√
2∂τφ2 − e11

0∂τφ3 + e00
0∂τφ1 − e11

α∂αφ3 + e00
α∂αφ1

= −Γ1111φ4 − 2(Γ1101 + f11)φ3 + 3(Γ0011 + Γ1100)φ2

− 2(Γ0001 − f00)φ1 − Γ0000φ0,√
2∂τφ3 − e11

0∂τφ4 + e00
0∂τφ2 − e11

α∂αφ4 + e00
α∂αφ2

= −(4Γ1110 + f11)φ2 + (2Γ0011 + 4Γ1100 − 2f01)φ3 + 3f00φ2 − 2Γ0000φ1,

(
√
2− 2e01

0)∂τφ4 + 2e00
0∂τφ3 − 2e01

α∂αφ4 + 2e00
α∂αφ3

= (2Γ0011 − 8Γ1010)φ4 + (4Γ0001 + 8Γ1000)φ3 − 6Γ0000φ2.
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376 Hyperbolic reductions

13.4.5 The construction of a subsidiary system

This section addresses the construction of a system of subsidiary equations for

the evolution equations discussed in the previous section. The particular problem

at hand consists of constructing evolution equations for the zero quantities

Σ̂a
c
b, Ξ̂c

dab, Δ̂abc, Λabc,

encoding the extended conformal field equations. In addition, in the present

hyperbolic reduction procedure, one also needs to construct evolution equations

for the additional zero quantities

δa, γab, ςab,

which play the role of constraints of the conformal equations; see Equations

(8.47a)–(8.47c) for their definitions. The necessity of these extra zero quantities

can be traced back to Proposition 8.3.

As in the case of the analysis of the subsidiary equations for the hyperbolic

reduction procedure using gauge source functions, the subsidiary equations need

to be homogeneous in zero quantities so that the vanishing of the latter on

an initial hypersurface readily implies a unique vanishing solution. The basic

assumption in the construction of the subsidiary system is that the evolution

equations associated to the extended conformal field equations are satisfied. That

is, one assumes that

Σ̂0
c
b = 0, Ξ̂c

d0b = 0, Δ̂0bc = 0,

hold, together with either the standard or the boundary adapted system for the

components of the Weyl spinor. The aforementioned evolution equations have

been constructed using the gauge conditions

f0 = 0, Γ̂0
b
c = 0, L̂0b = 0,

which, therefore, can also be used in the construction of the subsidiary system.

Note also, that in the present gauge d0 = Θβ0 = ∇0Θ so that one has

δ0 = 0.

Similarly,

γ0b = L̂0b − ∇̂0βb −
1

2
S0b

efβeβf + λΘ−2η0b = 0

by virtue of the gauge conditions and the evolution equation

∇̃0βa + β0βa − 1

2
η0a(βeβ

e − 2λΘ−2) = 0, (13.62)

for the covector βa. Finally, one has

ς0b = −L̂b0 − ∇̂0fb + Γ̂b
e
0fe = 0,

as a result of the evolution equation for the covector f .
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13.4 Hyperbolic reductions using conformal Gaussian systems 377

The construction of subsidiary equations is similar in spirit to the one discussed

in Section 13.3. There are, however, certain differences. The most conspicuous

one is the fact that one is now working with a connection which is non-metric.

The subsidiary equation for the no-torsion condition

To construct the subsidiary equation for the no-torsion condition one considers

the totally antisymmetric covariant derivative ∇̂[aΣ̂b
d
c] and observes that

3∇̂[0Σ̂b
d
c] = ∇̂0Σ̂b

d
c + ∇̂bΣ̂c

d
0 + ∇̂cΣ̂0

d
b

= ∇̂0Σ̂b
d
c − Γ̂b

e
0Σ̂c

d
e − Γ̂c

e
0Σ̂e

d
b. (13.63)

On the other hand, from the first Bianchi identity, Equation (2.10), and the

definition of Ξ̂d
cab one obtains

∇̂[aΣ̂b
d
c] = −Ξ̂d

[cab] − Σ̂[a
e
bΣ̂c]

d
e, (13.64)

where it has been used that ρ̂d[cab] = 0 by construction. The desired evolution

equation is obtained from combining Equations (13.63) and (13.64). More

precisely, one has

∇̂0Σ̂b
d
c = −1

3
Γ̂c

e
0Σ̂e

d
b −

1

3
Γ̂c

e
0Σ̂e

d
b − Ξ̂d

0bc.

This evolution equation has the required homogeneous form.

The subsidiary equation for the Ricci identity

In this case, one considers the totally symmetrised covariant derivative

∇̂[aΞ̂
d
|e|bc]. A direct computation shows that

3∇̂[0Ξ̂
d
|e|bc] = ∇̂0Ξ̂

d
ebc + ∇̂bΞ̂

d
ec0 + ∇̂cΞ̂

d
e0b

= ∇̂0Ξ̂
d
ebc − Γ̂b

f
0Ξ̂

d
ecf − Γ̂c

f
0Ξ̂

d
efb.

Using the second Bianchi identity, Equation (2.11), and the definition of Ξ̂d
ebc

one arrives at the expression

∇̂[aΞ̂
d
|e|bc] = −Σ̂[a

f
bR̂

d
|e|c]f − ∇̂[aρ̂

d
|e|bc].

The first term on the right-hand side is already of the required form. The second

one needs to be analysed in more detail. It is recalled that

ρ̂debc ≡ Cd
ebc + 2Se[b

df L̂c]f .

Thus,

∇̂[aρ̂
d
|e|bc] = ∇̂[aC

d
|e|bc] + 2Se[b

df ∇̂aL̂c]f .

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


378 Hyperbolic reductions

In order to further expand this expression one considers εf
abc∇̂aρ̂

d
ebc. A direct

calculation shows that

∇̂[aC
d
|e|bc] = ∇[aC

d
|e|bc] + δ[a

df|fC
f
e|bc] + ηe[af

fCd
|f |bc]. (13.65)

Moreover, one has

εf
abc∇aC

d
ebc = −εf

abc∇a
∗C∗d

ebc

= −2∇a
∗Cd

ef
a = 2∇aC

∗a
f
d
e

= −εe
dgh∇aC

a
fgh.

Thus, using that Cc
dab = Θdcdab and the definition of the zero quantity Λabc

one concludes that

εf
abc∇̂aC

d
ebc = Θεe

dghΛfgh + 2∇gΘd∗defg + 2Θfgd∗gef
d + 2Θfgd∗dgfe.

A similar computation using the definition of Δ̂abc yields

2εf
abcSeb

dgΔ̂acg = 2Θβgd
∗g

ef
d − 2Θβgd

∗gd
fe.

Thus, using the symmetries of d∗cdab and the definition of δa one concludes that

εf
abc∇̂aρ̂

d
ebc = Θεe

dghΛfgh − 2Θδgd∗defg + εf
abcSeb

dgΔ̂acg.

Alternatively, using the properties of the generalised Hodge duals † and ‡ defined

in Equation (2.24), one can write

∇̂[aρ̂
d
|e|bc] =

1

6
Θεfabcεe

dghΛfgh − 1

3
Θεfabcδ

gd∗defg − Se[b
dgΔ̂ac]g.

Combining the expressions, one obtains the required evolution equation.

Namely, one has

∇̂0Ξ̂
d
ebc = Γ̂b

f
0Ξ̂

d
ecf + Γ̂c

f
0Ξ̂

d
efb − Σ̂b

f
cR̂

d
e0f − 1

2
Θεf0bcεe

dghΛfgh

+ εf0bcδ
gd∗defg + 3Se0

dgΔ̂cbg,

which is homogeneous in the zero quantities.

The subsidiary equation for the Cotton equation

In this case one considers the skew derivative ∇̂[aΔ̂bc]d. A direct computation

yields

3∇̂[0Δ̂bc]d = ∇̂0Δ̂bcd + ∇̂bΔ̂c0d + ∇̂cΔ̂0bd

= ∇̂0Δ̂bcd − Γ̂b
e
0Δ̂ced − Γ̂c

e
0Δ̂ebd.
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13.4 Hyperbolic reductions using conformal Gaussian systems 379

On the other hand, using the definition of Ξ̂e
cab and the symmetries of ρ̂ecab

one obtains

∇̂[aΔ̂bc]d = 2∇̂[a∇̂bL̂c]d − ∇̂[ad|ed
e
d|bc] − de∇̂[ad

e
|d|bc]

= −Ξ̂e
[cab]L̂ed − Ξ̂e

d[abL̂c]e − ρ̂ed[abL̂c]e + Σ̂[a
e
b∇̂|e|L̂c]d

− ∇̂[ad|ed
e
d|bc] − de∇̂[ad

e
|d|bc].

Using the definition of δa and γab one finds that

∇̂[ad|ed
e
d|bc] = −Θδ[aβ|ed

e
d|bc] −Θγ[a|ed

e
d|bc] −Θf[aβ|ed

e
d|bc] +ΘL̂[a|ed

e
d|bc].

Finally, a calculation similar to the one carried out in the previous subsection

shows that

εf
abc∇ad

e
dbc = εd

egh∇ad
a
fgh,

so that using Equation (13.65) and the properties of the generalised duals † and
‡ – see Equation (2.24) – one finds that

∇̂[ad
e
|d|bc] =

1

6
εabc

f εd
eghΛfgh + δ[a

ef|fd
f
d|bc] + ηd[af

fde|f |bc].

Combining the above expressions and using the properties of the decomposi-

tion of ρ̂ddab one obtains the expression

∇̂[aΔ̂bc]d = −Ξ̂e
[cab]L̂ed − Ξ̂e

d[abL̂c]e + Σ̂[a
e
b∇̂|e|L̂c]d

+Θδ[aβ|ed
e
d|bc] +Θγ[a|ed

e
d|bc] −

1

6
εabc

f εd
eghΛfghβe,

and, finally, the evolution equation

∇̂0Δ̂bcd = Γ̂b
e
0Δ̂ced + Γ̂c

e
0Δ̂ebd − Ξ̂e

0bcL̂ed + δbded
e
dc0 + δcded

e
d0b

+Θγbed
e
dc0 +Θγced

e
d0b −

1

2
ε0bc

f εd
eghΛfghβe,

which is homogeneous in zero quantities as required.

The subsidiary equations for the physical Bianchi identity

The argument to show the propagation of the Bianchi identity in the present

context is similar to the one discussed in Section 13.3.6. In particular, the zero

quantity ΛABCD satisfies Equation (13.47). It remains to compute ∇bΛbcd and

express it in terms of zero quantities associated with the extended conformal

field equations. A calculation using the commutator of the covariant derivative

∇ yields

2∇bΛbcd = 2∇b∇adabcd = 2∇[b∇a]dabcd

= 2Re
[c
badd]eab − 2Re

a
badebcd +Σb

e
a∇ed

ab
cd.
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380 Hyperbolic reductions

Now, it is recalled that if ∇̂ − ∇ = S(f), then Σ̂a
c
b = Σa

c
b. Moreover,

using the formula relating the curvature tensors of the connections ∇̂ and ∇,

Equation (5.25b), the definitions of the zero quantities Ξ̂c
dab and ςab and the

symmetries of dabcd, one concludes that

∇bΛbcd = Ξ̂e
[c
badd]eab − Ξ̂e

a
badebcd +

1

2
Σ̂b

e
a∇ed

ab
cd + ςabdabcd.

This expression is homogeneous in zero quantities and, thus, also its spinorial

counterpart ∇AA′
ΛA′ACD. Consequently, if the standard evolution equations

hold, it follows from Equation (13.47) and the calculations in the previous

paragraph that

PΛAB −D(A
PΛB)P − 3√

2
χP

Q
SQεS(AΛBP ) = 2∇QQ′

ΛQQ′AB

is homogeneous in zero quantities.

Finally, in the case of the boundary adapted system, one obtains a symmetric

hyperbolic system of evolution equations of the form

PΛ00 +D00Λ01 = U00, (13.66a)

PΛ01 +D00Λ11 −D11Λ00 = U01, (13.66b)

PΛ11 −D11Λ01 = U11, (13.66c)

where U00, U01 and U11 are expressions homogeneous in zero quantities.

The subsidiary equations for the auxiliary zero quantities

Direct computations show that

2∇̂[0δb] = ∇̂0δb + Γ̂b
e
0δe,

2∇̂[0γb]c = ∇̂0γbc + Γ̂b
e
0γec,

3∇̂[0ςbc] = ∇̂0ςbc − Γ̂b
e
0ςce − Γ̂c

e
0ςeb.

For δa one finds, using the definitions of the various zero quantities, that

∇̂[aδb] = ∇̂aβb − ∇̂afb −Θ−1∇̂[a∇̂b]Θ

= −γ[ab] + ςab −
1

2
Θ−1Σa

e
b∇̂eΘ.

A lengthier computation yields

2∇̂[aγb]c = 2∇̂[aL̂b]c − 2∇̂[a∇̂b]βc + 2Sc[a
efβ|e|∇̂b]βf

− 2λΘ−3∇̂[aΘηb]c − 2λΘ−2f[aηb]c

= Δ̂abc + βeΞ̂
e
cab − Σ̂a

e
b∇̂eβc + 2βcγ[ab] − 2β[aγb]c + ηc[aβ

eγb]e

+ 2λΘ−2δ[aηb]c + β[aηb]cβeβ
e − 2λΘ−2ηc[aβb].
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Similarly, using de[cab] = 0, one obtains

∇̂[aςbc] = ∇̂[[aL̂b]c] − ∇̂[[a∇̂b]fc]

=
1

2
Δ̂[abc] −

1

2
ded

e
[cab] +

1

2
R̂e

[cab]fe −
1

2
Σ̂[a

e
b∇̂|e|fc]

=
1

2
Δ̂[abc] +

1

2
Ξ̂e

[cab]fe −
1

2
Σ̂[a

e
b∇̂|e|fc].

Hence, one obtains the evolution equations

∇̂0δi = γi0 − Γ̂i
e
0δe,

∇̂0γic = −γjcΓ̂i
j
0 − β0γic − βcγi0 + η0c(β

eγie − 2λΘ−2δi),

∇̂0ςjk = Γ̂j
e
0ςke + Γ̂k

e
0ςej +

1

2
Δ̂jk0 +

1

2
Ξ̂e

0jkfe +
1

2
Σ̂j

e
kΓ̂e

f
0ff ,

where, in the last equation relation, (13.62) has been used to get further

cancellation of terms.

13.4.6 Summary of the analysis

It is convenient to group the independent components of the spinorial fields in

the extended conformal field equations as:

υ̂ independent components ofeAA′μ, Γ̂AA′BC , L̂AA′BB′ ,

φ independent components ofφABCD.

Also, let e and Γ̂ denote, respectively, the independent components of the frame

and connection coefficients. In terms of the above definitions one has:

Proposition 13.3 (properties of the conformal evolution equations) The

extended conformal vacuum Einstein field equations

Σ̂a
c
b = 0, Ξ̂c

dab = 0, Δ̂abc = 0, Λabc = 0,

expressed in terms of a conformal Gaussian gauge imply a symmetric hyperbolic

system for the components of (υ̂,φ) of the form

∂τ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ,(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ̂)φ,

where I is the 5×5 unit matrix, K is a constant matrix, Q(Γ̂) is a smooth matrix-

valued function, L(x) is a smooth matrix-valued function of the coordinates,

Aμ(e) are Hermitian matrices depending smoothly on the frame coefficients e

and B(Γ̂) is a smooth matrix-valued function of the connection coefficients. In

the case of the standard Bianchi system, the characteristic polynomial consists

of the factors

τμξμ, gμνξμξν ,

(
τμτν +

2

3
gμν
)
ξμξν ,

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


382 Hyperbolic reductions

while for the boundary-adapted Bianchi system one has the factors

τμξμ, gμνξμξν ,
(
τμτν + e00

(μe11
ν)
)
ξμξν .

Remark. It is important to emphasise the relative simplicity of the evolution

system provided by Proposition 13.3 compared with the one given in Proposition

13.1. This structure reinforces the intuition that the Weyl tensor encodes the

degrees of freedom of the gravitational field.

With regards to the subsidiary system one obtains a result analogous to

Proposition 13.2:

Proposition 13.4 (properties of the subsidiary evolution) Assume that

the conditions

Σ̂0
c
b = 0, Ξ̂c

d0b = 0, Δ̂0bc = 0,

hold and that the associated evolution equations are expressed in terms of a

conformal Gaussian gauge system. Moreover, let the independent components

of the rescaled Weyl spinor satisfy either the standard or the boundary-adapted

evolution system. Then, the independent components of the zero quantities

Σ̂a
c
b, Ξ̂c

dab, Δ̂abc, Λabc, δa, γab, ςab,

which are not determined by either the evolution equations or gauge conditions

satisfy a symmetric hyperbolic system which is homogeneous in zero quantities.

Controlling the conformal Gaussian gauge

The conformal Gaussian hyperbolic reduction procedure is based on the

assumption of the existence of a non-singular (i.e. non-intersecting) congruence

of conformal geodesics. While this assumption may be valid close to an initial

hypersurface, it may fail at later times. To analyse the potential breakdown of

the gauge, one appends to the evolution system given in Proposition 13.4 an

evolution equation for the components of the deviation vector of the congruence;

see Section 5.5.7.

In what follows, let z denote a separation vector for the congruence of

conformal geodesics. Accordingly, one has

[ẋ, z] = 0.

Thus, writing z = zaea where {ea} is a Weyl propagated frame such that

e0 = ẋ, it follows that

e0(z
a)ea = za[ea, e0].

Using the conformal field equation Σ̂a
c
b = 0 and using that, in the present

gauge, e0 = ∂τ and Γ̂0
c
b = 0, the above expression can be rewritten as

∂τz
a = Γ̂b

a
0z

b.
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Now, let zAA′ denote the spinorial counterpart of za. Defining the space spinor

counterpart zAB ≡ τB
A′

zAA′ and using the split

zAB =
1

2
zεAB + z(AB),

a computation similar to the one used to derive the evolution equations yields

the following evolution equations for the irreducible components of zAB:

∂τz = fABz(AB), (13.67a)

∂τz(AB) = χCD(AB)z
(CD). (13.67b)

The congruence of conformal geodesics will be non-intersecting as long as

z(AB) �= 0.

13.5 Other hyperbolic reduction strategies

The hyperbolic reduction procedures discussed in Sections 13.2 and 13.4 do not

exhaust the possible strategies to extract evolution equations from the conformal

Einstein field equations. Indeed, other approaches have been put forward in the

literature.

13.5.1 Hyperbolic reductions for the metric conformal field equations

Numerical evaluations of solutions to the vacuum conformal Einstein field

equations have been carried out in Hübner (1999a,b, 2001a) using the metric

formulation of the equations; see Equations (8.28a)–(8.28e). As the metric

conformal field equations contain no equation which can be read as a differential

equation for the components of the unphysical metric g, one needs to supplement

the equations in some manner. Assuming that suitable evolution equations can be

found for the components of the conformal fields Ξ, Σa, s, Lab and dabcd in some

local coordinates x = (xμ), the conformal metric g can be computed from the

components of the Schouten tensor, Lμν , using generalised wave coordinates;

see the Appendix to this chapter for the vacuum Einstein field equations and the

remark at the end of Section 8.2.5. More precisely, the components gμν of g are

given as the solutions to the equations

�gμν − 2∇(μFν) − 2gλρg
στΓσ

λ
μΓτ

ρ
ν − 4Γλ

σ
ρg

λτgσ(μΓν)
ρ
τ

= −4Lμν − 1

3
R(x)gμν ,

�xμ = −Fμ(x), that is, Γμ = Fμ(x),

where Fμ(x) are some suitable coordinate gauge source functions and it

has been used that Rab = 2Lab +
1
6R(x)gab. Observe that in the right-hand side

of the first of the above equations one has the Ricci scalar R, which, following

the discussion from previous sections, is to be treated as a further gauge source

function.
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384 Hyperbolic reductions

From an analytic point of view, the approach described in the previous

paragraphs leads to an evolution system with equations of mixed order. This

type of system requires a more general notion of hyperbolicity than the one

discussed in Chapter 12: the so-called Leray hyperbolicity ; see, for example,

Choquet-Bruhat (2008) and Rendall (2008).

13.5.2 Wave equations for the conformal fields

One way of avoiding mixed-order evolution systems is to construct wave

equations for the components of the conformal fields Ξ, Σa, s, Lab and dabcd. This

strategy has been pursued in Paetz (2015) for the metric (vacuum) conformal

Einstein field equations. More precisely, it has been shown that by introducing

suitable gauge source functions, the conformal field equations can be rewritten

as a system of quasilinear wave equations for the conformal fields. An alternative

reformulation can be obtained using spinors; see Gaspeŕın and Valiente Kroon

(2015). This approach is briefly discussed in the remainder of this section.

Wave equations for the concomitants of the conformal factor

Wave equations for the fields Ξ, ΣAA′ and s can be obtained from the following

derivatives of the relevant zero quantities:

∇AA′
QAA′ = 0, ∇AA′

ZAA′BB′ = 0, ∇AA′
ZAA′ = 0.

A direct computation renders the equations

�Ξ−∇AA′
ΣAA′ = 0,

�ΣBB′ +ΣAA′
LAA′BB′ + Ξ∇AA′

LAA′BB′ −∇BB′s = 0,

�s+ΣCC′∇AA′
LAA′CC′ +∇AA′

ΣCC′
LAA′CC′ = 0.

The wave equation satisfied by the rescaled Weyl spinor

Recalling the definition of the zero quantity ΛB′BCD, one has

∇A
B′

ΛB′BCD = ∇A
B′∇Q

B′φBCDQ

= −∇(A
B′∇Q)B′φBCD

Q +
1

2
εAQ∇PP ′∇PP ′φBCD

Q

= �AQφBCD
Q − 1

2
�φABCD,

where �AB denotes the box operator discussed in Section 3.2.5. A further

calculation shows that

�AQφBCD
Q = 6ΞφPQ

(ABφCD)PQ − 1

4
R(x)φABCD.
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Thus, the condition −2∇A
Q′

ΛBQ′CD = 0 implies the wave equation

�φABCD − 12ΞφPQ
(ABφCD)PQ +

1

2
R(x)φABCD = 0

for the components of the rescaled Weyl spinor as long as the conformal gauge

source function R(x) is explicitly provided.

The wave equation satisfied by the components of the Schouten spinor

To construct an equation for the Schouten spinor, one considers the expression

−2∇C
C′ΔCDBB′ = 0,

as given by Equation (13.30) together with the decomposition (13.31) for

the Schouten tensor in terms of the spinor ΦAA′BB′ and the Ricci scalar.

Accordingly, one has

2∇C
C′ΔCDBB′ = ∇C

C′∇C
Q′

ΦDQ′BB′ +
1

2
εDB∇C

C′∇CB′R(x)

+∇C
C′ΣQ

B′φCDBQ +ΣQ
B′∇C

C′φCDBQ,

where

∇C
C′∇C

Q′
ΦDQ′BB′ = −∇C

(C′∇|C|Q′)ΦD
Q′

BB′

− 1

2
εC′Q′∇C

P ′∇C
P ′

ΦD
Q′

BB′

= −�̄C′Q′ΦD
Q′

BB′ − 1

2
�ΦDC′BB′ ,

∇C
C′∇CB′R(x) =

1

2
εC′B′�R(x).

Thus, using that

�̄C′Q′ΦD
Q′

BB′ = ΦPQ′
BB′ΦDC′PQ′ +ΦD

Q′P
B′ΦBC′PQ′

+ Ξφ̄C′Q′B′S′ΦD
Q′

B
S′

− 1

8
R(x)ΦDC′BB′ − 1

24
R(x)ΦDB′BC′ ,

one obtains the desired wave equation for the components of ΦAA′BB′ . Finally, a

suitable subsidiary equation to ensure that the conformal gauge source function

R(x) is, indeed, the Ricci scalar of the connection ∇ can be obtained from the

contracted Bianchi identity (13.29).

13.6 Further reading

The original references for the hyperbolic reduction procedure based on the use of

spinors and gauge source functions are Friedrich (1983, 1991) – in particular, the

latter reference contains a discussion of the hyperbolic reduction of the Einstein-

Yang-Mills equations. The hyperbolic reduction procedure using a conformal

Gaussian system was first discussed in Friedrich (1995, 1998c); extensions of
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386 Hyperbolic reductions

these ideas to the non-vacuum case using conformal curves have been given

in Lübbe and Valiente Kroon (2012). An alternative discussion of hyperbolic

reductions of the conformal field equations using space spinors can be found in

Frauendiener (1998a,b). A gauge source function-based hyperbolic reduction of

the conformal Einstein-Euler system for a perfect fluid with a radiation equation

of state has been described in Lübbe and Valiente Kroon (2013b). A discussion

of the hyperbolic reduction of the conformal Einstein-scalar field system using

gauge source functions is given in Hübner (1995).

A general discussion of the procedure of hyperbolic reduction of the standard

Einstein field equations in the vacuum and matter case can be found in

Friedrich and Rendall (2000), where, for example, the case of the Einstein-

Dirac system is discussed. A related reference is Reula (1998). More specific

discussions of hyperbolic reductions for the vacuum Einstein field equations and

their associated subsidiary evolution systems can be found in Friedrich (1996,

2005). A Lagrangian hyperbolic reduction for the Einstein-Euler system has been

discussed in Friedrich (1998b). Extensions of this Lagrangian approach have

been obtained for the equations of relativistic magnetohydrodynamics coupled to

gravity – the so-called Einstein-Euler-Maxwell system – in Pugliese and Valiente

Kroon (2012) and for the Einstein-charged scalar field system in Pugliese and

Valiente Kroon (2013).

Readers interested in the hyperbolic reductions of the Einstein field equations

used in numerical relativity are referred to the monographs by Alcubierre (2008)

and Baumgarte and Shapiro (2010) as an entry point to the extensive literature.

Appendix A.1: the reduced Einstein field equations

This chapter has been primarily focused on hyperbolic reductions for the

conformal Einstein field equations in their spinorial formulation. In order to

put the discussion into a more general context, it is useful to briefly consider

the hyperbolic reduction procedure of the (standard) Einstein field equations

using generalised wave coordinates. This procedure is essentially the one

used in the seminal work by Fourès-Bruhat (1952) where the well-posedness of

the Cauchy problem in general relativity was first established.

For simplicity, in the following, the discussion is restricted to the vacuum case

so that the Einstein field equations are equivalent to

R̃ab = 0. (13.68)

Given general coordinates x = (xμ), the Ricci tensor can be explicitly written in

terms of the components of the metric tensor g̃ and its first and second partial

derivatives as

R̃μν = −1

2
g̃λρ∂λ∂ρg̃μν + ∇̃(μΓ̃ν)

+ g̃λρg̃
στ Γ̃σ

λ
μΓ̃τ

ρ
ν + 2Γ̃λ

σ
ρg̃

λτ g̃σ(μΓ̃ν)
ρ
τ , (13.69)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


13.6 Further reading 387

where it is recalled that the Christoffel symbols Γ̃μ
ν
λ can be written in terms of

partial derivatives of the metric tensor as

Γ̃μ
ν
λ =

1

2
g̃νρ(∂μg̃ρλ + ∂λg̃μρ − ∂ρg̃μλ),

and one has defined

Γ̃ν ≡ g̃μλΓ̃μ
ν
λ,

the so-called contracted Christoffel symbols. The principal part of the

vacuum Einstein field equation (13.68) is given by the terms

−1

2
g̃λρ∂λ∂ρg̃μν + ∇̃(μΓ̃ν).

The first term in the above expression is hyperbolic as it coincides with

the principal part of the D’Alambertian operator �̃ ≡ ∇̃μ∇̃μ acting on the

components g̃μν . If the second term in the principal part can be removed one

would obtain a system of non-linear wave equations for g̃μν .

Generalised wave coordinates

A systematic approach to the construction of coordinates x = (xμ) is to require

the coordinates to satisfy the equation

�̃xμ = −Fμ(x), (13.70)

where the coordinate gauge source functions Fμ(x) are arbitrary smooth

functions of the coordinates x. In the particular case where Fμ(x) = 0 one talks of

wave coordinates, called harmonic coordinates in older accounts. In order

to unravel the consequences of Equation (13.70), one treats the coordinates xμ

as scalar fields over M̃. Accordingly, a direct computation gives

∇̃νx
μ = ∂νx

μ = δν
μ,

∇̃λ∇̃νx
μ = ∂λδν

μ − Γ̃λ
ρ
νδρ

μ = −Γ̃ν
μ
λ,

so that

�̃xμ = g̃νλΓ̃ν
μ
λ = −Γ̃μ. (13.71)

A natural way of prescribing initial conditions for Equation (13.70) on a

hypersurface S̃� with normal νa is to set x0 = 0 with νμ∂μx
0 = 1 while setting

the spatial coordinates (xα) to be equal to some given coordinates on S̃� and

requiring that νμ∂μx
α = 0. Given this data, the general theory of hyperbolic

differential equations ensures the existence of a solution to Equation (13.70),

and as a result of Equation (13.71), one concludes that

Γ̃μ = Fμ(x). (13.72)

Moreover, if the coordinate differentials dxμ are chosen initially to be pointwise

independent on the initial hypersurface S̃�, then they will also remain pointwise
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388 Hyperbolic reductions

independent close to S̃�. Thus, by a suitable choice of coordinates, the contracted

Christoffel symbols can be made to agree, locally, with any prescribed set of

functions Fμ(x). These coordinate gauge source functions and the data for

Equation (13.71) uniquely determine the coordinates. Conversely, given any

metric g̃, any coordinate system is characterised by some suitable gauge source

function and initial data. The domain on which the coordinates x = (xμ) form a

good coordinate system depends on the initial data, the coordinate gauge source

functions and the metric g̃ itself. Consequently, there is little that can be said,

a priori, about the domain of existence of the coordinates.

The reduced Einstein equation and the subsidiary evolution equation

Substituting Equation (13.72) into the Einstein field equations in the form given

by (13.69) one finds that

− 1

2
g̃λρ∂λ∂ρg̃μν + ∇̃(μFν)(x) + g̃λρg̃

στ Γ̃σ
λ
μΓ̃τ

ρ
ν

+ 2Γ̃λ
σ
ρg̃

λτ g̃σ(μΓ̃ν)
ρ
τ = 0, (13.73)

where Fμ(x) ≡ gμνF
ν(x). This equation is a system of quasilinear wave equations

for the components of the metric tensor g̃. For this system, the local Cauchy

problem with data on a spacelike hypersurface S̃� is well posed – one can show

the existence and uniqueness of solutions and their continuous dependence on

the data; see, for example, Friedrich and Rendall (2000). Equation (13.73) is

known as the reduced Einstein field equation.

The introduction of a specific system of coordinates via the gauge source

functions Fμ(x) breaks the tensoriality of the Einstein field equation (13.68).

Given a solution to the reduced Einstein field equation (13.73) the latter will

imply a solution to the actual Einstein field equations as long as the coordinates

x = (xμ) satisfy Equation (13.71) for the chosen coordinate source function

Fμ(x) appearing in the reduced equation. To prove that this is the case one

needs to construct a suitable subsidiary evolution equation.

A suitable subsidiary equation for the hyperbolic reduction procedure under

consideration can be obtained by observing that the reduced Einstein field

equation, Equation (13.73), can be written as

R̃μν = ∇̃(μQν), Qμ ≡ Γ̃μ − Fμ(x), (13.74)

where Γ̃μ = g̃μν Γ̃
ν . Now, from the contracted Bianchi identity in the form

∇̃μ

(
R̃μν − 1

2
R̃g̃μν

)
= 0,

it follows, by substituting Equation (13.74), that

�̃Qν + R̃μ
νQμ = 0.
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From the homogeneity on Qμ of this wave equation, it follows that if Qν = 0 and

∇̃μQν = 0 on some initial hypersurface and if g̃μν satisfies the reduced Einstein

field equations, then Γ̃μ = Fμ(x) at later times.

Appendix A.2: differential forms

Let M be a four-dimensional manifold. A p-form α on M is a totally

antisymmetric covariant tensor of rank p. Thus, if αi1···ip is the abstract index

version of α, one has that

αi1···ip = α[i1···ip].

Given q ∈ M, the space of p-forms at q is denoted by Λp|q(M), while the bundle

of p-forms overM is denoted by Λp(M). In particular, 0-forms are scalar fields so

that Λ0(M) = X (M) and 1-forms are covectors – accordingly, Λ1(M) = T ∗(M).

A counting argument readily shows that dim Λp|q(M) = 4!/p!(4− p)! – thus, in

four dimensions any 4-form is proportional to the volume form. Given a p-form

α and a q-form β, their wedge product α ∧ β is defined, using abstract index

notation, as

(α ∧ β)a1···apb1···bq ≡ (p+ q)!

p!q!
α[a1···ap

βb1···bq ].

Given local coordinates x = (xμ) inM, a 1-form α can be written as α = αμdx
μ.

More generally, for a p-form one has the expansion

α = αμ1···μp
dxμ1 ∧ · · · ∧ dxμp .

It can be verified that

dxμ ∧ dxν = dxμ ⊗ dxν − dxν ⊗ dxμ.

Given a p-form α and a vector v = vμ∂μ, one defines the contraction ivα

as the (p− 1)-form

ivα ≡ vνανμ1···μp−1
dxμ1 ∧ · · · ∧ dxμp−1 .

The exterior derivative dα is the (p+ 1)-form defined via the relation

dα ≡ ∂[μ1
αμ2···μp+1]dx

μ1 ∧ · · · ∧ dxμp+1 .

It follows from the commutativity of partial derivatives that d2α = 0.

Finally, it observed that the Lie derivative of a p-form can be computed using

Cartan’s formula :

£vα = ivdα+ divα.

Further details on the above expressions can be found in, for example, Frankel

(2003).
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14

Causality and the Cauchy problem
in general relativity

The study of the Cauchy problem in general relativity was initiated by the

seminal work by Fourès-Bruhat (1952). The extensions and refinements of

this work and, in particular, the analysis of the existence of maximal Cauchy

developments by Choquet-Bruhat and Geroch (1969) bring to the forefront

the delicate interplay between geometry and the theory of partial differential

equations arising in Einstein’s theory of general relativity.

This chapter provides a discussion of two aspects of the Cauchy problem in

general relativity: (i) the connection between the notions of causality originating

from the theory of symmetric hyperbolic equations and those derived from the

existence of a Lorentzian metric on the underlying spacetime manifold – the

so-called Lorentzian causality, and (ii) the existence and uniqueness of a so-

called maximal Cauchy development of an initial value problem for the Einstein

field equations. This chapter sets the context for the discussion in Part IV of

this book where asymptotically simple spacetimes are constructed by means of

suitably posed initial value problems.

14.1 Basic elements of Lorentzian causality

In Section 2.5 some basic notions of Lorentzian geometry have already been

introduced. These ideas are now further elaborated to present the notions of

Lorentzian causal theory . The summary presented here is adapted from the

discussion in Ringström (2009).

In what follows, the discussion is restricted to four-dimensional Lorentzian

manifolds (M̃, g̃) which are orientable and time orientable. In particular, time

orientability is equivalent to the existence of a smooth timelike vector t; see

Section 2.1. The Lorentzian manifold (M̃, g̃) is not assumed to satisfy the

Einstein field equations.
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14.1 Basic elements of Lorentzian causality 391

Chronological future, causal future, and so on

A vector v ∈ T (M̃) is said to be causal if v �= 0 and v is either timelike or null.

Consistent with the discussion of Section 2.5, v is said to be future pointing if

g̃(v, t) > 0 and past pointing if g̃(v, t) < 0. A future-pointing causal curve

on (M̃, g̃) is one for which its tangent vector is everywhere future pointing causal.

The notion of past-pointing causal curve is defined in an analogous manner.

Causal curves can be used to define order relations between points of the

manifold M̃. Given p, q ∈ M̃, one writes p ≺≺ q if there is a future-pointing

timelike curve in M̃ from p to q; p ≺ q if there is a future causal curve from

p to q; and p � q if either p = q or p ≺ q. Given a subset U ⊂ M̃ one defines the

chronological future and chronological past of U , respectively, as

I+(U) ≡
{
p ∈ M̃ | q ≺≺ p for some q ∈ U

}
,

I−(U) ≡
{
p ∈ M̃ | p ≺≺ q for some q ∈ U

}
.

Moreover, the causal future and causal past of U are defined, respectively, as

J+(U) ≡
{
p ∈ M̃ | q � p for some q ∈ U

}
,

J−(U) ≡
{
p ∈ M̃ | p � q for some q ∈ U

}
.

A schematic depiction of the sets I±(U) and J±(U) is given in Figure 14.1. The

sets I+(U) and I−(U) can be shown to be open. No general statements of this

type can be made about J+(U) and J−(U). However, one has that I+(U) ⊆
J+(U) and I−(U) ⊆ J−(U).

Global hyperbolicity

The natural class of spacetimes for which an initial value problem can be

formulated is that of globally hyperbolic ones.

A spacetime (M̃, g̃) without closed timelike curves is called causal . A causal

spacetime (M̃, g̃) is said to be globally hyperbolic if for any pair of points p, q ∈
M̃ with p ≺ q the causal diamond J+(p)∩ J−(q) is compact; see Figure 14.2.

The classical definition of global hyperbolicity as given, for example, in Wald

U

I+(U)

I−(U)

U

J+(U)

J−(U)

Figure 14.1 Schematic representation of the sets I±(U) and J±(U) for a subset

U ⊂ M̃.
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392 Causality and the Cauchy problem in general relativity

q

p

J+(p)∩J−(q)

Figure 14.2 The causal diamond J+(p) ∩ J−(q): the points p, q ∈ M̃ satisfy
p ≺ q. In a globally hyperbolic spacetime any such diamond is compact.

p γ

q–

q+

A

O

Figure 14.3 The edge of a closed achronal set A: for the point p ∈ A there
exists an open neighbourhood O containing p and q+ ∈ I+(p), q− ∈ I−(p)
such that q− and q+ can be joined by a timelike curve γ not intersecting A.

(1984), makes use of the stronger notion of strongly causal spacetimes, that

is, the non-existence of “almost closed” causal curves. The classical definition

and the one given here have been shown to be equivalent in Bernal and Sánchez

(2007).

In physical terms, global hyperbolicity is closely connected to the idea of

classical determinism, that is, the prediction or retrodiction of future or past

states, respectively, from a set of initial conditions. Pathologies like the existence

of closed timelike curves are not present in globally hyperbolic spacetimes.

Cauchy surfaces

A subset A of a Lorentzian manifold (M̃, g̃) is said to be achronal if there is

no pair of points p, q ∈ A that can be connected by a timelike curve. Spacelike

hypersurfaces are examples of achronal sets. For A closed and achronal, one

defines its edge as the set of points p ∈ A such that every open neighbourhood

O of p contains points q+ ∈ I+(p), q− ∈ I−(p) and a timelike curve γ from q−
to q+ which does not interset A; see Figure 14.3.

Given A ⊂ M̃ achronal, the future domain of dependence of A is the

set D+(A) of all points p ∈ M̃ such that every past inextendible causal curve

through p intersects A. The past domain of dependence of A is defined in an

analogous manner by considering future inextendible causal curves. The (full)
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A

J+(A)

J−(A)

D+(A)

D−(A)

Figure 14.4 Domain of dependence of an achronal set A and its relation to
the causal past and future J±(A).

domain of dependence of A is then defined as

D(A) ≡ D+(A) ∪D−(A).

In some accounts, the sets D+(A) and D−(A) are called, respectively, the future

and past Cauchy development of A. The reason for these alternative names is

clarified by the discussion in Section 14.2. It can be verified that A ⊂ D+(A) ⊂
J+(A); see Figure 14.4. From the achronality of A it follows that D+(A) ∩
I−(A) = Ø.

Since information travels along causal curves, a point p ∈ D+(S) receives

information only from S. Accordingly, if physical laws are causal – as in the case

of general relativity – initial data should determine the physics in D+(S) – and,

in fact, in all of D(S).
A Cauchy hypersurface in M̃ is a hypersurface S̃ such that

D(S̃) = M̃.

Cauchy hypersurfaces are characterised by the fact that they are intersected

exactly once by every inextendible timelike curve in M̃; see, for example,

Ringström (2009). Cauchy hypersurfaces are continuous three-dimensional sub-

manifolds of the spacetime manifold M̃; see, for example, Wald (1984). Cauchy

hypersurfaces provide an alternative description of globally hyperbolic space-

times: any globally hyperbolic spacetime possesses a Cauchy hypersurface. Global

hyperbolicity restricts the topology of a spacetime. More precisely, one has that:

Proposition 14.1 (topology of globally hyperbolic spacetimes) Let (M̃, g̃)

denote a connected, time-oriented globally hyperbolic Lorentzian manifold and let

S̃ be a Cauchy hypersurface thereof. Then

M̃ ≈ R× S̃.

In other words, M̃ can be foliated by Cauchy hypersurfaces. Moreover, if S̃ ′ is

another Cauchy hypersurface, then S̃ ≈ S̃ ′.
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The above result is complemented by the following:

Proposition 14.2 (existence of a global time function) Let (M̃, g̃) be an

oriented, time-oriented, connected and globally hyperbolic spacetime and let S̃ be

a Cauchy hypersurface thereof. Then there is a smooth function t on M̃ such

that dt is timelike and future directed everywhere and satisfies the property that

t−1(T•) is a Cauchy hypersurface for every T• ∈ R. Furthermore, t−1(0) = S̃
and for every inextendible causal curve γ : (s−, s+) → M̃ one has t(γ(s)) → ±∞
as s → s±.

For a proof of these results, see, for example, Ringström (2009), proposition

11.3 and theorem 11.27. Finally, one has the following:

Proposition 14.3 (asymptotic simplicity and global hyperbolicity) An

asymptotically simple and empty spacetime (M̃, g̃) is globally hyperbolic.

The reader interested in a proof is referred to Hawking and Ellis (1973),

proposition 6.9.2.

Cauchy horizons

In what follows let D+(A) denote the closure of the future domain of dependence

of an achronal set A ⊂ M̃. This set is characterised by the fact that for

p ∈ D+(A) every past inextendible timelike curve from p intersects A; see

proposition 8.3.2 in Wald (1984). The achronal set A is not necessarily a

Cauchy hypersurface. To characterise how much A deviates from being a Cauchy

hypersurface, it is convenient to introduce the set

H+(A) ≡ D+(A) \ I−
(
D+(A)

)
,

the so-called future Cauchy horizon of A. The past Cauchy horizon is

defined in an analogous manner as H−(A) ≡ D−(A) \ I+
(
D−(A)

)
. It can

be shown that H+(A) is achronal. Moreover, one has that A ⊂ D+(A) and

∂D+(A) = H+(A) ∪ A; see Figure 14.5. Similar properties hold for D−(A).

The (full) Cauchy horizon is then defined as H(A) ≡ H+(A)∪H−(A). It

can be proved that H(A) = ∂
(
D(A)

)
and that the achronal set A is a Cauchy

surface for (M̃, g) if and only if H(A) = Ø; see proposition 8.3.6 and its corollary

in Wald (1984).

The following property of Cauchy horizons will be used at various points in

this book (cf. theorem 8.3.5 in Wald (1984)):

Proposition 14.4 (structure of Cauchy horizons) Every point p ∈ H+(A)

lies on a null geodesic contained entirely in H+(A) which is either inextendible

or has a past endpoint on the edge of A.
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A

D+(A)

H+(A)H+(A)

Figure 14.5 The Cauchy horizon of an achronal setA. Observe that ∂D+(A) =
H+(A) ∪ A.

S̃

R

D+(S)˜

D+(R)

Figure 14.6 Schematic representation of the causal domains of Theorem 14.1.
The hypersurface S̃ is a Cauchy hypersurface and R ⊆ S̃ is a region within
such that u = 0.

14.2 PDE causality versus Lorentzian causality

Two different notions of causality have been discussed so far in this book:

partial differential equation (PDE) causality based on the uniqueness of solutions

to symmetric hyperbolic systems – Theorem 12.1 – and Lorentzian causality,

discussed in the first sections of this chapter. These notions of causality are

conceptually different from each other. However, they are linked by the following

result (see also Figure 14.6):

Theorem 14.1 (the relation between PDE and Lorentzian causalities)

Let (M̃, g̃) be a connected, oriented, time-oriented, globally hyperbolic spacetime

and let S̃ be a smooth spacelike Cauchy hypersurface. Let R ⊆ S̃and let U be

an open set containing D+(R). Assume that u : U → CN solves the symmetric

hyperbolic system

Aμ(x,u)∂μu+B(x,u) = 0.

Moreover, assume that the above equation has a characteristic polynomial which

contains the factor (g̃μνξμξν) where g̃μν denotes the contravariant components of

the metric g̃. If u vanishes on R, then u vanishes on D+(R). There is a similar

statement for D−(R).
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D+(R)
p

J−(p)∩J+(R)

R

Figure 14.7 Schematic representation of the causal domains in the proof
of Theorem 14.1. On D+(R) one considers for arbitrary p ∈ D+(R) the
associated domain D(p) ≡ J−(p) ∩ J+(R).

The interested reader is referred to chapter 12 of Ringström (2009) for

a detailed account of the proof of an analogous result for quasilinear wave

equations. It is, nevertheless, useful to discuss some of the ideas behind the proof.

Theorem 12.1 and its Corollary 12.1 – ensuring the uniqueness of solutions to

symmetric hyperbolic systems – can be applied only on lens-shaped domains. The

main idea behind Theorem 14.1 is then to construct a cover of D+(R) consisting

of lens-shaped domains. The metric g̃ provides a natural way of constructing the

required cover. Accordingly, the Lorentzian metric allows the introduction of the

notions of Lorentzian causality discussed in the first sections of this chapter.

One begins by considering points p ∈ D+(R) which are suitably close to R
and aims to conclude that u = 0 on D(p) ≡ J−(p) ∩ J+(R);—see Figure 14.7.

By means of the exponential map expp : T |p(M̃) ⊃ V̄ → V ⊂ M̃ – see Section

11.6.2 – the metric g̃ allows the introduction of normal coordinates in some

neighbourhood of p – these coordinates can be seen as providing a diffeomorphism

between a neighbourhood V̄ of the origin in T |p(M̃) to a neighbourhood V of p.

By considering p sufficiently close to R one can ensure that D(p) is compact and

completely contained in V. On T |p(M̃) one can define a function f̄ : T |p(M̃) → R

via f̄(v) = g̃(v,v). Hence, for the present purposes, the neighbourhood V can

be regarded as a subset of the Minkowski spacetime coordinatised by standard

Cartesian coordinates. One also defines f : V → R such that f ≡ f̄ ◦exp−1
p . Now,

given a constant c > 0, the condition g̃(v,v) = c defines (spacelike) hyperboloids

on V. More precisely, for given c, the locus of points in V corresponding to the

hyperboloid is given by f−1(c) ≡ {q ∈ V | g̃(exp−1
p (q), exp−1

p (q)) = c} – observe

that both f̄ and f are not injective so that f−1 is a set consisting of more

than a single point. Now, f−1(c) has two components: one associated to future-

directed vectors and the other associated to past-directed vectors. For c > 0, let

Qc(p) denote the component of f−1(c) associated to past-directed vectors and

let Q0(p) denote the past null cone through p. One can use the hyperboloids
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p

Dc(p)

R

D(p)

Qc(p)

Q(p)

Figure 14.8 Schematic representation of the causal domains in the proof
of Theorem 14.1. Given p ∈ D+(R), the sets Q(p) and D(p) describe,
respectively, the past light cone through p and the region between the light
cone and R. For c > 0, the set Qc(p) describes a hyperboloid inside the past
light cone of p, while Dc(p) is the region between the hyperboloid and R. The
set Dc(p) is a lens-shaped domain. See the main text for further details.

Qc(p) to foliate the interior of the past light cone passing through p. One defines

Dc(p) ≡ J−(Qc(p))∩J+(R). The domain Dc(p) describes the region between the

hyperboloid Qc(p) and R, while D(p) describes the region between the past light

cone and R; see Figure 14.8. Now, D(p) can be shown to be compact. Moreover,

it can be seen that Qc(p) ⊂ I−(p) for c > 0 so that J−(Qc(p)) ⊂ J−(p) and, in

addition, that Dc(p) ⊂ D(p). A further argument allows one to verify that Qc(p)

for c > 0 is a lens-shaped domain on which, modulo some technical details, Corol-

lary 12.1 can be applied. Thus, if u = 0 onR, one concludes that u = 0 on Dc(p).

To show that u = 0 on D(p) one now considers a sequence {cl}, l ∈ N, of

positive numbers converging to zero. It can then be shown that

intD(p) ⊂ ∪lDcl(p) ⊂ D(p)

– intuitively, by choosing smaller and smaller cl’s one obtains hyperboloids which

are, successively, “closer” to the light cone Qp thus “filling” D(p). From this

observation and given that u = 0 on each of the Dcl(p) one can conclude that,

indeed, u = 0 on D(p).

Now, an adaptation of Proposition 14.2 ensures the existence of a time function

t on D+(R). Given c > 0, t−1([0, c]) denotes a slab in D+(S̃) ⊃ D+(R).

Considering points suitably close to S̃, it is possible to construct a slab Kε ≡
t−1
(
[0, ε]

)
∩ D+(R) in D+(R) for some ε > 0 – this slab can be thought of as

the union of domains of the type D(p) on each of which one already knows that

u = 0. The top of the slab, t−1(ε)∩D+(R) – on which u = 0 – can now be used

as a new initial surface from which one constructs a further slab. The rest of the

proof consists of showing that D+(R) can be fully covered by slabs of the type

described above so that u = 0 everywhere on D+(R).
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Remark. An important observation is that

D+(R) ∩ I+(S̃ \ R) = Ø.

Accordingly, the value of u on D+(R) is determined only by the data on R
– that is, whatever data is prescribed on S̃ \ R, it has no influence on the

behaviour of u on D+(R). The proof of this statement follows by contradiction:

let q ∈ D+(R)∩ I+(S̃ \R); on the one hand we have that q ∈ I+(S̃ \R) so that

there exists a future timelike curve γ from p ∈ S̃ \ R to q. On the other hand

q ∈ D+(R) so that every past inextendible causal curve through q intersects R.

As a consequence one has that p ∈ R. This is a contradiction since p ∈ S̃ \ R.

14.3 Cauchy developments and maximal Cauchy developments

For ease of presentation, the subsequent discussion is restricted to the case of

standard Cauchy initial value problems where initial data is prescribed on a

Cauchy hypersurface S̃. For a detailed account of the Cauchy problem in general

relativity the reader is referred to the monograph by Ringström (2009).

As discussed in Section 11.3, the (say, vacuum) Einstein field equations imply

on S̃ a set of constraint equations: the so-called Hamiltonian and momentum

constraints for a Riemannian metric h̃ and a symmetric trace-free tensor K̃.

Assume one is given a solution (h̃, K̃) to the Hamiltonian and momentum

constraint Equations (11.13a) and (11.13b) on S̃. To discuss the relation between

a solution to the Einstein constraint equations and a solution to the Einstein field

equations one needs to introduce the notion of a Cauchy development :

Definition 14.1 (Cauchy development) A Cauchy development of the

initial data set (S̃, h̃, K̃) consists of a solution (M̃, g̃) of the vacuum Einstein

field equations, an embedding ϕ of S̃ into M̃ and a choice of a unit normal vector

such that ϕ(S̃) is a Cauchy hypersurface and the pull-backs by ϕ of the induced

metric and the second fundamental form for the prescribed unit normal coincide

with h̃ and K̃.

The seminal work in Fourès-Bruhat (1952) has shown that, given a solution

to the constraint equations on S̃, it is always possible to obtain a Cauchy

development. More precisely, one has the following (see also Figure 14.9):

S̃

Figure 14.9 Schematic representation of a Cauchy development (in gray) of

some initial data set (S̃, h̃, K̃) for the Einstein field equations.
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Theorem 14.2 (existence of a development of an initial data set) Given

an initial data set (S̃, h̃, K̃) for the Einstein field equations it is always possible

to find a corresponding development.

The above result is a cornerstone of the mathematical study of the Einstein

field equations as it shows that it is meaningful to formulate a Cauchy problem

for the Einstein field equations. The original proof of the theorem used the

hyperbolic reduction of the Einstein field equations based on wave coordinates ;

see the Appendix to Chapter 13. The hyperbolic reductions for the conformal

Einstein field equations discussed in Chapter 13 readily lead to an alternative

proof which is briefly sketched for completeness.

Proof The proof of the theorem amounts to a local existence result for the

Cauchy problem for the Einstein field equations. For convenience, consider the

spinorial version of the standard conformal Einstein field equations; see Section

8.3.2. Setting Ξ = 1 and ΦAA′BB′ = 0 one obtains a spinorial representation

of the vacuum Einstein field equations. For these equations, the hyperbolic

reduction procedure summarised in Proposition 13.1 shows that given a choice

of coordinate and frame gauge source functions Fa(x) and FAB(x), the Einstein

field equations imply a symmetric hyperbolic system for the frame coefficients,

connection coefficients and the Weyl spinor. Smooth initial data u� for these

evolution equations can be obtained from the pair (h̃, K̃) using the procedure

leading to Lemma 11.1. The basic existence and uniqueness result for symmetric

hyperbolic systems given in Theorem 12.2 ensures the existence of a solution

u to the evolution equations in a slab of the form M̃T ≡ (−T, T ) × S̃ for

some T > 0. In what follows, for conceptual clarity, the Riemannian 3-manifold

S̃ regarded as a submanifold of M̃T will be denoted as S̃�; that is, one has

S̃� = ϕ(S̃). On S̃� the solution u coincides with the initial data u�. In view of

the homogeneous structure of the subsidiary evolution equations as described

in Proposition 13.2, the solution u implies a solution to the conformal Einstein

field equations with Ξ = 1 and ΦAA′BB′ = 0. From the components of u one

can construct a Lorentzian metric g̃ which will be a solution to the Einstein

field equations on M̃T ; compare Proposition 8.1. To conclude, it is observed

that the hyperbolic procedure leading to the evolution equations is based on an

adapted frame tetrad {ea} such that e0 on S̃� gives the unit normal of the initial

hypersurface; see Section 11.4. From this observation it follows that the pull-back

of g̃ to S̃� coincides with the Riemannian metric h̃. Moreover, by construction,

the extrinsic curvature of S̃� coincides with the tensor K̃. Accordingly (M̃T , g̃)

provides the required Cauchy development.

An important aspect of the notion of a Cauchy development is its non-

uniqueness. A different choice of gauge source functions will, in general, lead

to a different Cauchy development for the same initial data. Observe, however,

that as one is constructing solutions to tensorial equations in the regions where

two different Cauchy developments (M̃, g̃) and (M̃′, g̃′) overlap M̃ ∩ M̃′, these
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must be related to each other by a diffeomorphism, that is, a coordinate

transformation. This non-uniqueness of Cauchy developments of a given initial

data creates a tension with the notion of geometric uniqueness, that is, the

expectation that a given initial data set should give rise to a unique solution to

the Einstein field equations. To deal with this issue one introduces the notion of

a maximal Cauchy development :

Definition 14.2 (maximal Cauchy development) Let (S̃, h̃, K̃) be an initial

data set for the vacuum Einstein equations. A Cauchy development (M̃, g̃) with

embedding ϕ : S̃ → M̃ of this data is said to be maximal if for any other

Cauchy development (M̃′, g̃′) with embedding ϕ′ : S̃ → M̃′, there is a smooth

map ψ : M̃′ → M̃ which is a diffeomorphism onto its image such that ϕ = ψ ◦ϕ′

and ψ∗g̃ = g̃′.

The maximal Cauchy development describes the biggest spacetime that can be

recovered from a given initial data set for the Einstein field equations. Any other

Cauchy development must be contained in it. For this notion to be of utility

it should satisfy some existence and uniqueness properties. Indeed, one has the

following result, first proven in Choquet-Bruhat and Geroch (1969):

Theorem 14.3 (existence of a maximal Cauchy development) Given

some initial data (S̃, h̃, K̃) for the Einstein field equations, there exists a maximal

Cauchy development which is unique up to isometries.

The original proof of this theorem famously relies on Zorn’s lemma. Alternative

proofs not depending on this axiom of set theory have been given more recently

in Sbierski (2013) and Wong (2013).

Remark. The maximal Cauchy development of an initial data set is, in general,

different from the so-called maximal analytic extension of the solution to

the initial value problem, that is, the biggest spacetime that can be associated

to a given metric allowing for analytic changes of coordinates. As an example,

compare the Penrose diagram of the maximal analytical extension of the

Reissner-Nordström spacetime given in Figure 6.14 and the Penrose diagram

of its maximal Cauchy development in Figure 14.10.

The characterisation and construction of the maximal Cauchy development

of an arbitrary initial data set (S̃, h̃, K̃) is a challenging endeavour. It requires

controlling the evolution dictated by the Einstein field equations under very

general conditions. Generically, one expects the following to be true:

Conjecture 14.1 (strong cosmic censorship) The maximal Cauchy devel-

opment of generic initial data for the vacuum Einstein field equations is

inextendible.
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H +

H +

H −

H −

I+

I−

Figure 14.10 Maximal Cauchy development of the Reissner-Nordström space-
time. In this case, the spacetime extends only up to the Cauchy horizon H −.
Notice that the timelike singularities of the spacetime do not appear in the
diagram.

A concise discussion of the above conjecture and its various caveats can be

found in Chruściel (1991), Rendall (2008) and Ringström (2009).

14.4 Stability of solutions

A problem simpler than cosmic censorship is the construction of the development

of initial data sets which are, in some sense, close to initial data for some exact

solution (the background solution) whose global structure is well known.

Such initial data are called a perturbation of the initial data for the

exact solution. Under suitable circumstances one expects the maximal Cauchy

development of the perturbed initial data to have a global structure similar to

that of the maximal Cauchy development of the exact solution. The resulting

spacetime is called a perturbation of the exact solution. This notion of

perturbations is a non-linear one: the perturbed solutions are required to satisfy

the Einstein field equations without any approximation – as opposed, say, to

linearised perturbations where one considers solutions to evolution equations

which are linearised with respect to some background exact solution. The

underlying strategy behind the analysis of non-linear perturbations is to use

the knowledge of the global properties of a solution to the equations of general

relativity to infer the existence of other solutions with analogous properties. This

point of view leads to the notion of stability.

When discussing the stability of solutions to the Einstein field equations one

typically distinguishes between the notions of orbital and asymptotical stability.

A solution is said to be orbitally stable if the global geometry of the perturbed

evolution exhibits the same features as the original (background) solution –

for example, the existence of a complete null infinity. The stronger notion
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of asymptotic stability requires, in addition, that the perturbed solution

converges to the background solution for late times. The stability results to

be discussed in the remainder of this book will be of the orbital type.

Remark. Although the notion of stability has a strong physical motivation –

see, for example, the discussion in Section 12.3.2 – the precise formulation of

closeness to a certain exact solution is dictated by the details of the PDE theory

used to analyse the evolution equations – for example, Sobolev norms – and it

may be difficult to provide it with a direct physical interpretation. In particular,

statements about closeness may not be gauge independent.

14.5 Causality and conformal geometry

Let (M, g) denote a conformal extension of a physical spacetime (M̃, g̃) with

g = Ξ2g̃. As a Lorentzian manifold in its own right, the unphysical spacetime

(M, g) gives rise to its own causal notions. The causal notions in (M̃, g̃) and

(M, g) are, however, related to each other – it is not hard to see that the causal

notions introduced in Section 14.1 are conformally invariant. More precisely, if

p, q ∈ M̃ are connected to each other via some particular causal relation with

respect to the metric g̃ (e.g. p ≺ q, p � q or p ≺≺ q), then they are also

causally related in the same way with respect to the metric g. Special care is

needed, however, when discussing points which lie on the conformal boundary

of the conformal extension (M, g) as these points do not exist in the physical

spacetime manifold M̃. Moreover, any compact set in the unphysical manifold

(M, g) which intersects the conformal boundary will be, from the perspective

of the physical manifold M̃, non-compact. This observation is of importance for

the notion of global hyperbolicity as it is formulated in terms of compactness of

domains in the physical spacetime (M̃, g̃).

A further cautionary note concerns Cauchy horizons in the unphysical

spacetime (M, g) which may not correspond to domains in M̃. The prototypical

case of this situation arises in the discussion of Minkowski-like spacetimes.

From the point of view of (M, g), the conformal boundary of these spacetimes

corresponds to the Cauchy horizon of hyperboloidal hypersurfaces – which from

the conformal point of view are compact domains. From the physical perspective

of (M̃, g̃) the hyperboloids are non-compact and there are no Cauchy horizons.

The correspondence between the conformal boundary and Cauchy horizons for

Minkowski-like spacetimes is analysed in some detail in Section 16.3.

Penrose diagrams provide a convenient way of visualising the causal properties

of spacetimes. For example, an inspection of the Penrose diagram of the anti-

de Sitter spacetime, Figure 14.11, readily shows that the spacetime cannot be

globally hyperbolic: causal diamonds intersecting the conformal boundary of

the conformal representation correspond to non-compact causal diamonds in

the physical spacetime. Alternatively, by looking at the Penrose diagram it

is easy to draw a timelike curve which does not intersect a putative Cauchy
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I I

γ

S

p

q

J−(q)∩J+(p)

Figure 14.11 Non-global hyperbolicity of the anti-de Sitter spacetime. To the
left: causal diamonds intersecting the conformal boundary are non-compact in
the physical picture. To the right: given a putative Cauchy hypersurface S, it
is always possible to find a timelike curve γ not intersecting S.

R2

D+(R2)

R1

D+(R1)

I−

I+

Figure 14.12 Examples of some domains of dependence in the de Sitter
spacetime.

hypersurface S – it is only necessary that in the conformal picture the curve

starts at some point of the conformal boundary which lies in the future of S.
A second example of the insights provided by the inspection of the Penrose

diagrams involves the de Sitter spacetime; see Figure 14.12. A peculiarity of

this spacetime is that there exist regions in the spacetime whose domain of

dependence is non-compact – to see this, it is only necessary to consider domains

which are, from the conformal point of view, sufficiently close to the conformal

boundary I .
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14.6 Further reading

Detailed accounts of the theory of Lorentzian causality can be found in

Hawking and Ellis (1973), chapter 6; O’Neill (1983), chapter 5; or Wald (1984),

chapter 8.

An extensive discussion of the Cauchy problem in general relativity can be

found in Ringström (2009). A concise presentation is given in Rendall (2008).

A related discussion is contained in Friedrich and Rendall (2000). A discussion of

various aspects of strong cosmic censorship as well as a number of ancillary results

concerning the Cauchy problem can be found in the monograph by Chruściel

(1991).
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15

De Sitter-like spacetimes

This chapter discusses the global existence and stability of de Sitter-like

spacetimes, that is, vacuum spacetimes with a de Sitter-like value of the

cosmological constant. This class of spacetimes admits a conformal extension

with a spacelike conformal boundary; see Theorem 10.1. The construction of

de Sitter-like spacetimes provides, arguably, the simplest application of the

conformal field equations to the analysis of global properties of spacetimes. The

original discussion of the analysis presented in this chapter was given in Friedrich

(1986b). The results of this seminal analysis were subsequently generalised to the

case of Einstein equations coupled to the Yang-Mills field in Friedrich (1991).

The methods used in the proof of the stability of the de Sitter spacetime can be

adapted to analyse the future non-linear stability of Friedman-Robertson-Walker

cosmologies with a perfect fluid satisfying the equation of state of radiation; see

Lübbe and Valiente Kroon (2013b).

The global existence and stability theorem proven in this chapter can be

formulated as follows:

Theorem (global existence and stability of de Sitter-like spacetimes).

Small enough perturbations of initial data for the de Sitter spacetime give rise

to solutions of the vacuum Einstein field equations which exist globally towards

the past and the future. The solutions have the same global structure as the de

Sitter spacetime. Thus, perturbations of the de Sitter spacetime are asymptotically

simple.

Intuitively, the last statement in the theorem can be read as saying that the

resulting spacetimes have a Penrose diagram similar to the one of the de Sitter

spacetime; see Figure 15.1. Accordingly, these spacetimes provide non-trivial (i.e.

dynamic) examples of asymptotically simple spacetimes. A detailed formulation

of the above result is given in the main text of the chapter; see Theorem 15.1.

To illustrate the comparative advantages of the hyperbolic reduction proce-

dures discussed in Chapter 13, two versions of the proof are provided. The

first one makes use of gauge source functions and follows the original proofs
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408 De Sitter-like spacetimes

Figure 15.1 Penrose diagram of a de Sitter-like spacetime.

in Friedrich (1986b, 1991). The second proof makes use of conformal Gaussian

systems and is based on the analysis given in Lübbe and Valiente Kroon (2009).

In both approaches, and as a consequence of the use of the conformal field

equations, it is possible to formulate initial value problems for the perturbed de

Sitter-like spacetime not only on a standard initial hypersurface at a fiduciary

finite time, but also on a hypersurface corresponding to the conformal boundary

of the spacetime.

The basic strategy used in this chapter to analyse the global existence of

solutions to the Einstein field equations had been previously used in Choquet-

Bruhat and Christodoulou (1981) to establish the global existence of solutions

to the Yang-Mills equations.

15.1 The de Sitter spacetime as a solution to the conformal

field equations

The basic conformal properties of the de Sitter spacetime have already been

discussed in Section 6.3. In this section the de Sitter spacetime is recast as a

solution to the conformal field equations. This is a first step in the construction

of an existence and global stability result.

15.1.1 Basic representation in the Einstein cosmos

For simplicity of the exposition, the cosmological constant will be assumed to

take the value λ = −3 so that the conformal factor realising the embedding of

the de Sitter spacetime (given in standard coordinates) into the Einstein static

universe is given by

Ξ̊ ≡ ΞdS = cos τ, (15.1)

where τ , the affine parameter of the geodesics introduced in Equation (6.9), is

used as a time coordinate. Here, and in the rest of the chapter, the symbol ˚

is used to indicate that the associated object is treated as a background field.
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15.1 The de Sitter spacetime as a solution to the conformal field equations 409

As a consequence of the conformal embedding, the geometry of the conformal

de Sitter spacetime is given by the corresponding expressions for the Einstein

static universe as discussed in Section 6.1.3. The various conformal fields on the

Einstein cylinder (R× S3, gE ), with

gE = dτ ⊗ dτ − h̄,

will be expressed in terms of an orthonormal frame {̊ea} such that

e̊0 = ∂τ , e̊i = ci, (15.2)

where {ci} denotes the globally defined frame on S3 discussed in Section 6.1.2;

see Equations (6.2a)–(6.2c).

In what follows, the manifold ME ≡ R× S3 will be described locally in terms

of Gaussian coordinates (τ, xα) where (xα) are some local coordinates on S3

which are extended to coordinates on a subset U ⊂ ME by requiring them to

remain constant along the geodesics parametrised by τ . As a consequence of the

gE -orthonormality of the vector fields {∂τ , ci}, it follows that

e̊a = δa
bcb ≡ e̊a

bcb. (15.3)

Using the structure equations – see Section 2.7.3 – on S3, it can be verified that

the connection coefficients γ̊i
j
k of the Levi-Civita connection D of the standard

metric of S3, h̄, with respect to the spatial frame {ci} are given by

γ̊i
j
k = −εi

j
k, (15.4)

where εijk denotes the components of the volume form on S3; see Section 6.1.2.

Now, observing that e̊0 = ∂τ is a Killing vector of the Einstein cylinder, it follows

that the connection coefficients associated to the frame {̊ea} are given by

Γ̊a
b
c = ε0a

b
c. (15.5)

The sign difference between Equations (15.4) and (15.5) arises from the fact that

the Riemannian metric implied by gE on S3 is negative definite.

Using the expressions (6.8a) and (6.8b) for the Schouten tensor of the Einstein

cylinder, it follows that, in terms of the frame {̊ea} described above, one has

L̊ab = δa
0δb

0 − 1

2
ηab, (15.6a)

d̊abcd = 0. (15.6b)

For later use, it is also observed that the components of the trace-free Ricci

tensor are given by

Φ̊ab = δa
0δb

0 − 1

4
ηab.
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410 De Sitter-like spacetimes

Finally, a further computation yields that

Σ̊ = − sin τ, Σ̊i = 0, (15.7a)

s̊ = −1

4
cos τ. (15.7b)

Spinorial expressions

To compute the spinorial counterpart of the fields discussed in the previous

section let τAA′
denote the spinorial counterpart of the vector

√
2∂τ so that one

has the normalisation τAA′τAA′
= 2.

The spinorial counterpart of the frame coefficients e̊a
b = δa

b – compare

Equation (15.3) – is given by

e̊AA′b = σAA′b,

where σAA′b denotes the Infeld-van der Waerden symbols; see Section 3.1.9. In

general, the coefficients e̊AA′a can be decomposed as

e̊AA′a =
1

2
τAA′ e̊a − τQA′ e̊(AQ)

a,

with

e̊a ≡ τAA′
e̊AA′a, e̊AB

a ≡ τB
A′

e̊AA′a.

By construction it follows that

e̊0 = 1, e̊(AB)
0 = 0,

e̊i = 0, e̊(AB)
i = σAB

i,

with σAB
i the spatial Infeld-van der Waerden symbols; see Section 4.2.2.

The spinorial counterpart of the trace-free Ricci tensor is given by

Φ̊AA′BB′ =
1

2
τAA′τBB′ − 1

4
εABεA′B′ ,

so that its space spinor version Φ̊ABCD = τB
A′

τD
C′

Φ̊AA′CC′ is given by

Φ̊ABCD =
1

2
εABεCD − 1

4
εACεBD.

From this last expression is can be verified that the irreducible components of

Φ̊ABCD are given by

Φ̊(ABCD) = 0, Φ̊AB = 0, Φ̊ = −3

4
;

compare the expressions in Equation (13.32). The rescaled Weyl spinor is trivially

given by

φ̊ABCD = 0.
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15.1 The de Sitter spacetime as a solution to the conformal field equations 411

Let Γ̊AA′BB′
CC′ denote the spinorial counterpart of the connection coef-

ficients Γ̊a
b
c. Using the spinorial expression of the spacetime volume form,

Equation (3.25), one finds that

Γ̊AA′BB′
CC′ =

1√
2
τDD′

εDD′AA′BB′
CC′ ,

=
i√
2

(
τC

B′
εC′A′δA

B − τBC′εCAδA′B
′)
.

The reduced spin connection coefficients can be obtained from the expression

Γ̊AA′BC = 1
2 Γ̊AA′BQ′

CQ′ . One obtains

Γ̊AA′BC =
i√
2
εA(BτC)A′ .

The space spinor version of the above expression is given by

Γ̊ABCD = τB
A′

Γ̊AA′CD = − i√
2
hABCD,

where it is recalled that hABCD ≡ −εA(CεD)B. It can be verified that Γ̊†
ABCD =

−Γ̊ABCD; that is, the spin connection coefficients are the components of an

imaginary spinor. From here it follows that

ξ̊ABCD = −ihABCD, χ̊ABCD = 0.

Gauge source functions

The gauge source functions associated to the considered conformal representation

of the de Sitter spacetime can be computed from the expressions given in the

previous section.

Treating the frame component e̊a
b as the component of a covariant tensor one

finds that

∇̊be̊b
a = ηcbe̊c(δb

a)− ηcbΓ̊c
e
bδe

a

= −ηcbΓ̊c
a
b = −ηcbε0c

a
b = 0.

It follows that the coordinate gauge source function is given by

F̊a(x) = ∇̊AA′
e̊AA′a = 0.

Similarly, treating the connection coefficients as the components of a (1, 2)-

tensor one has

ηda∇̊dΓ̊a
b
c = ηdaed(̊Γa

b
c) + ηdaΓ̊d

b
eΓ̊a

e
c − ηdaΓ̊d

e
aΓ̊e

b
c − ηdaΓ̊d

e
cΓ̊a

b
e

= ηdaε0d
b
eε0a

e
c − ηdaε0d

e
cε0a

b
e − ηdaε0d

e
aε0e

b
c = 0.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


412 De Sitter-like spacetimes

It follows that the frame gauge source functions for the present representation

of the de Sitter spacetime are given by

F̊BC(x) = ∇̊AA′
Γ̊AA′BC = 0.

Finally, the conformal gauge source function is given by the value of the Ricci

scalar. That is, one has

R̊(x) = −6.

Summary

The results from the previous analysis are summarised in the following:

Lemma 15.1 (de Sitter spacetime as a solution to the conformal

Einstein field equations) The fields

(Ξ̊, Σ̊, Σ̊i, e̊a
b, Γ̊a

b
c, L̊ab, d̊

a
bcd)

as given by Equations (15.1)–(15.5), (15.6a), (15.6b), (15.7a) and (15.7b) or,

respectively, their spinorial counterparts

(Ξ̊, Σ̊, Σ̊AA′ , e̊AA′b, Γ̊AA′BC , Φ̊AA′BB′ , φ̊ABCD)

defined over the Einstein cylinder R × S3 constitute a solution to the standard

frame vacuum conformal Einstein field Equations (8.32a) and (8.32b) and,

respectively, the spinorial vacuum conformal Einstein field Equations (8.38a)

and (8.38b). The gauge source functions associated to this solution are given by

F̊a(x) = 0, F̊AB(x) = 0, R̊(x) = −6.

15.1.2 Representation using conformal Gaussian systems

In Section 6.1.3 it has been shown that an alternative conformal representation

of the de Sitter spacetime is given by the conformal metric

ḡE = dτ̄ ⊗ dτ̄ −
(
1 +

τ̄2

4

)2

h̄,

where τ̄ is an affine parameter of the g̃dS-conformal geodesics as in Equation

(6.32); that is, ẋ = ∂ τ̄ . The associated covector is given by

βdS(τ̄) = − 2τ̄

4− τ̄2
dτ̄ .

This covector is exact, thus indicating that the Weyl connection ∇̂ = ∇̃+S(βdS)

is, in fact, a Levi-Civita connection. Now, the metric ḡE is related to the physical

de Sitter metric g̃dS via

ḡE = Θ2
dS g̃dS , ΘdS = 1− τ̄2

4
,
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15.1 The de Sitter spacetime as a solution to the conformal field equations 413

so that a calculation shows that

βdS = Θ−1
dSdΘdS .

That is, the Weyl connection associated to the congruence of conformal geodesics

(6.32) coincides with the Levi-Civita connection ∇̄ of the metric ḡE . Recalling

that gE and ḡE are related to each other by ḡE = Θ̄2gE with

Θ̄ ≡ 1 +
τ̄2

4
,

one finds that an adapted ḡE -orthonormal frame {ēa} is given by

ē0 = ∂ τ̄ = Θ̄−1∂τ , ēi = Θ̄−1ci.

This frame can be verified to be Weyl propagated. It follows that the frame

coefficients ēi
b, with ēi = ēi

bcb, are given by

ēi
b =

4

4 + τ̄2
δi

b. (15.8)

In terms of the above, the components of the covector d̄ = ΘdSβdS with respect

to the frame {ēa} are given by

d̄0 = Θ̇dS = − τ̄

2
, d̄i = 0.

The computation of the connection coefficients Γ̄a
b
c requires a certain amount

of care. Recalling that the connections ∇̂ = ∇̄ and ∇ are related to each other

via ∇̂−∇ = S(Ῡ) with Ῡ ≡ Θ̄−1dΘ̄, it follows by definition that

Γ̄a
b
c = ω̄b

cēa
a∇̄aēc

c

= ω̄b
cēa

a∇aēc
c + ω̄b

cēa
aēc

dSad
ecΥe,

where Ῡa ≡ 〈Ῡ, ēa〉. Using that ēa
a = Θ̄−1ea

a one computes

ω̄b
cēa

a∇aēc
c = −Θ̄−1ωb

cea
aec

c∇aΘ̄ + Θ̄−1ωb
cea

a∇aec
c

= −Ῡaδc
b + Θ̄−1Γa

b
c

and

Θ̄−1ω̄b
cēa

aēc
dSad

ec∇eΘ̄ = Ῡaδc
b + Ῡcδa

b − ηacῩ
b.

Accordingly, one concludes that

Γ̄a
b
c = Θ̄−1Γa

b
c +
(
Υcδa

b − ηacΥ
b
)
.

Using

Υa =
2τ̄

4 + τ̄2
δa

0,
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414 De Sitter-like spacetimes

it can be verified that Γ̄0
b
c = 0, as one would expect from the Weyl connection

associated to a congruence of conformal geodesics. Moreover,

f̄a =
1

4
Γ̂a

b
b = 0. (15.9)

A direct computation shows that

R[ḡE ] = − 36

4 + τ̄2
,

Schouten[ḡE ] =
1

2

(
1 +

1

4
τ̄2
)
h̄,

Weyl[ḡE ] = 0,

where the last expression follows simply by the conformal invariance of the Weyl

tensor. The components of the Schouten tensor with respect to the frame {ēa}
are given by

L̄0a = 0, L̄ij =
2

4 + τ̄2
δij . (15.10)

Furthermore, one has that

d̄abcd = 0. (15.11)

Spinorial expressions

In what follows, let τ̄AA′
denote the spinorial counterpart of the vector

√
2∂ τ̄ .

One has the normalisation τ̄AA′ τ̄AA′
= 2. Denoting the spinorial counterpart of

the frame coefficients by ēAA′a and making use of the standard space spinor

decomposition

ēAA′a =
1

2
τ̄AA′ ēa − τ̄QA′ ē(AQ)

a,

one obtains

ē0 = 1, ē(AB)
0 = 0, (15.12a)

ēi = 0, ē(AB)
i =

4

4 + τ̄2
σAB

i. (15.12b)

Now, let L̄AA′BB′ denote the spinorial counterpart of the components of the

Schouten tensor L̄ab. Setting L̄ABCD ≡ τ̄B
A′

τ̄D
C′

L̄AA′CC′ one finds

Θ̄CD = 0, Θ̄ABCD = − 2

4 + τ̄2
hABCD,

with Θ̄CD ≡ L̄Q
Q

CD and Θ̄ABCD ≡ L̄(AB)(CD). For the rescaled Weyl spinor

one has that

φ̄ABCD = 0.
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15.1 The de Sitter spacetime as a solution to the conformal field equations 415

To obtain a spinorial expression for the connection coefficients one observes

that the spinorial counterpart of ζa
b
c ≡ δc

0δa
b − ηacδ0

b is given by

ζAA′BB′
CC′ =

1√
2

(
δA

BδA′B
′
τ̄CC′ − εACεA′C′ τ̄BB′)

,

so that the associated reduced coefficients are

ζAA′BC ≡ 1

2
ζAA′BQ′

CQ′

=
1

2
√
2

(
δA

B τ̄CA′ + εAC τ̄BA′
)
.

The space spinor version ζABCD ≡ τ̄B
A′

ζAA′CD takes the form

ζABCD = − 1√
2
hABCD.

From the expressions computed in the previous paragraph it follows that

Γ̄ABCD = − 2(τ̄ + 2i)√
2(1 + 4τ̄2)

hABCD

and, consequently,

ξ̄ABCD = − 4i

4 + τ̄2
hABCD, (15.13a)

χ̄ABCD =
2τ̄

4 + τ̄2
hABCD, (15.13b)

fAB = 0. (15.13c)

To keep track of the behaviour of the conformal Gaussian gauge system,

one considers separation fields measuring the deviation of the congruence of

conformal geodesics. The separation fields are governed by Equations (13.67a)

and (13.67b). Assume, without loss of generality, a separation vector field z that

is spatial on the fiduciary hypersurface S� described by the condition τ̄ = 0, so

that

zAA′� = −τQA′z(AQ)� .

Using Equations (15.13b) and (15.13c) one can integrate Equations (13.67a) and

(13.67b) to find

z = 0, z(AB) =

(
1 +

1

4
τ̄2
)
z(AB)�. (15.14)

Observe that z(AB) �= 0 for all τ̄ . Thus, the congruence of conformal geodesics

remains non-singular. This observation is key to ensure the non-singular

behaviour of the gauge in the perturbed spacetime.
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416 De Sitter-like spacetimes

Summary

The results of the analysis of the last two sections are summarised in the

following:

Lemma 15.2 (de Sitter spacetime as a solution to the extended

conformal Einstein field equations) The fields

(Θ̄ , d̄a, ēa
b, Γ̄a

b
c, L̄ab, d̄

a
bcd)

as given by Equations (15.8)–(15.11) or, equivalently, their spinorial counterparts

(Θ̄, d̄AA′ , ēAA′b, Γ̄AA′BC , L̄AA′BB′ , φ̄ABCD)

defined over R×S3 constitute a solution to the extended conformal Einstein field

Equations (8.46) and the associated gauge constraints (8.48) and, respectively,

the spinorial vacuum conformal Einstein field Equations (8.54a) and (8.54b) and

(8.55).

15.2 Perturbations of initial data for the de Sitter spacetime

This section clarifies the notion of perturbations of initial data for the de Sitter

spacetime. In what follows, let S denote a three-dimensional manifold with

the topology of S3. On S one considers a solution to the vacuum conformal

Hamiltonian and momentum constraint equations (S,h,K,Ω,Σ) with a de

Sitter-like value of the cosmological constant, that is, Equations (11.15a) and

(11.15b) with � = 0 and jk = 0.

Remark. For conceptual clarity it is often convenient to distinguish between the

3-manifold S and its embedding, S�, in the spacetime arising as the development

of the initial data set (S,h,K,Ω,Σ).

15.2.1 Initial data on a standard initial hypersurface

Using the procedure described in Section 11.4.3, the tensor fields h and K can

be used to construct a solution to the vacuum conformal constraint Equations

(11.35a)–(11.35j). As the 3-manifold S is assumed to be compact, one can,

without loss of generality, assume that Ω = 1 and Σ = 0.

As S ≈ S3, there exists a diffeomorphism ψ : S → S3 which can be used to

pull back coordinates x = (xα) in S3 to S. In this way one obtains a system of

coordinates x′ ≡ x ◦ψ on S and can write x′ = (x′α). The diffeomorphism ψ can

be used to push forward the vector fields {ci} on T (S3) to vector fields {ψ−1
∗ ci}

on T (S) and to pull back their dual covectors {αi} on T ∗(S3) to covectors {ψ∗α
i}

on T ∗(S). For simplicity of the presentation, in a slight abuse of notation, the

vectors and covectors {ψ−1
∗ ci} and {ψ∗α

i} will be written (except for the next

subsection) as {ci} and {αi}, respectively.
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15.2 Perturbations of initial data for the de Sitter spacetime 417

Gauge fixing

The construction described in the previous paragraph depends strongly on the

particular choice of the diffeomorphism ψ. This gauge freedom can be fixed

by considerations similar to those used in the discussion of the coordinate gauge

source functions of Section 13.2.1.

Given an h-orthonormal frame {ei} on S, one can write ei = ei
j(ψ−1

∗ cj) and

use the frame coefficients ei
j to introduce a spatial coordinate gauge source

function F i(x′) via the relation

Djej
i = F i(x′),

where D denotes the Levi-Civita covariant derivative of h. Writing

ψ∗α
i = (ψ∗α

i)αdx
′α

and noticing that ei
j = 〈ψ∗α

j , ei〉 one finds that Djej
i = Dβ(ψ∗α

i)β .

Expressing the coordinates x in S3 in terms of the coordinates x′ on S in the

form xα = xα(x′) one finds, by a calculation similar to the one discussed in

Section 13.2.1, that the diffeomorphism ψ : S → S3 is a harmonic map. That

is, one has that

DβDβx
α = 0,

if

hαβ �Dγα
i
δ
∂xγ

∂x′α
∂xδ

∂x′β = F i(x′),

where �D denotes the Levi-Civita connection of the metric h̄ on S3 and αi =

αi
αdx

α. Finally, if one lets x′α = x′α(x) be the identity map so that x′ = x, one

concludes that

F i(x) = δjkγ̊j
i
k = 0,

where the last equality follows from (15.4). This construction and the resulting

spatial gauge source function fixes the gauge freedom in the diffeomorphism ψ;

see Figure 15.2.

Figure 15.2 Construction of coordinates on a compact three-dimensional
manifold describing perturbations of standard de Sitter initial data. The
identification of the 3-manifolds S and S3 is realised through a harmonic map;
see main text for further details.
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418 De Sitter-like spacetimes

Parametrising the perturbation data

While the frame {ci} is orthonormal with respect to the standard metric h̄ of

S3, in general, this will not be the case with respect to the 3-metric h on S.
Now, let {ei} denote an h-orthonormal frame over T (S) and let {ωi} denote its

corresponding cobasis. In what follows, it will be assumed that one can write

ei = ci + ĕi, (15.15)

for some vectors {ĕi}. This is essentially equivalent to saying that one has

introduced coordinates x = (xα) on S such that

h = h̄+ h̆.

It is important to emphasise that the above statement depends on the gauge.

From the split in Equation (15.15), it follows that the solution to the conformal

constraint equations implied by (Ω = 1,Σ = 0,h,K) on S can be written as

ea
b = δa

b + ĕa
b,

γi
j
k = εi

j
k + γ̆i

j
k, χij = K̆ij ,

Lij = δij + L̆ij , Li = δi
0 + L̆i,

dij = d̆ij , d∗ij = d̆∗ij ,

where the components of the various fields are expressed as components with

respect to the frame {ei} as given in (15.15) and one has

ĕa
b = 0, γ̆i

j
k = 0, L̆ij = 0, L̆i = 0, d̆ij = 0, d̆∗ij = 0,

if and only if

ĕi = 0, K = 0.

Accordingly, the fields topped with a ˘ together withKij describe the deviation

of a solution to the conformal constraint equations from data for the exact de

Sitter spacetime. It is important to observe that as

ĕa
b, γ̆i

j
k, K̆ij , L̆ij , L̆i, d̆ij , d̆∗ij

are scalars, by virtue of the diffeomorphism ψ : S → S3, they can be considered

as fields over S3. As such, for m ≥ 0, one defines the Sobolev norms

‖ ĕa
b ‖S,m≡

∑
a,b

‖ ĕa
b ‖S3,m, ‖ γ̆i

j
k ‖S,m≡

∑
i, j,k

‖ γ̆i
j
k ‖S3,m,

and, similarly, for the other fields – the sums in the previous expressions are

carried out over the independent components of the particular field under

consideration. In terms of these norms, it will be said that the initial data for
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15.2 Perturbations of initial data for the de Sitter spacetime 419

the conformal field equations are ε-close in the norm ‖ ‖S,m to initial data

for the de Sitter spacetime if

‖ ĕa
b ‖S,m + ‖ γ̆i

j
k ‖S,m + ‖ K̆ij ‖S,m + ‖ L̆ij ‖S,m

+ ‖ L̆i ‖S,m + ‖ d̆ij ‖S,m + ‖ d̆∗ij ‖S,m< ε. (15.16)

This notion of closeness to initial data is gauge dependent. Nevertheless, it is the

appropriate one to exploit the existence and stability theorems of Chapter 12.

15.2.2 Initial data on the conformal boundary

An important property of de Sitter-like spacetimes is that the individual

components of the conformal boundary can serve as Cauchy hypersurfaces

of the unphysical spacetimes. Accordingly, it is possible to formulate for these

spacetimes an asymptotic initial value problem where initial data are

prescribed on a 3-manifold corresponding to, say, I −.

The solutions to the conformal constraint equations at the conformal boundary

have been discussed in Section 11.4.4. In particular, it has been shown that one

needs to prescribe on I − a 3-metric h, a symmetric trace-free and divergence-

free tensor corresponding to the initial value of the electric part of the rescaled

Weyl tensor and a function κ. From these free data it is possible to compute the

values of the remaining conformal fields. In the particular case of the exact de

Sitter spacetime it can be verified that the asymptotic free data are given by

h � h̄, dij � 0, κ � 0,

where components are expressed with respect to the h̄-orthonormal frame {ci}.
From the above one finds

ei
j � δi

j , γi
j
k � εi

j
k, Kij � 0, Li � 0, Lij � 1

2
δij , d∗ij � 0.

Perturbations of the above asymptotic initial data for the de Sitter spacetime

are discussed in a manner similar to that of perturbations of standard Cauchy

data. Accordingly, assuming that I − ≈ S3, one can make use of diffeomorphisms

ψ : I − → S3 to introduce coordinates on the conformal boundary and to

pull back the components of the various conformal fields to S3. Initial data

corresponding to perturbations of asymptotic de Sitter initial data will then be

described in terms of fields

h = h̄+ h̆, dij = d̆ij , κ̆,

where d̆ij are the components of a symmetric, h-trace-free and h-divergence-

free tensor expressed in terms of the components of the h-orthonormal frame

{ei} = {ci + ĕi}. Mimicking the standard Cauchy case, the perturbation of

asymptotic data for the de Sitter spacetime will be said to be ε-close to exact

asymptotic de Sitter data in the ‖ ‖m-norm if the various conformal fields

on I − satisfy an inequality of the form of (15.16). In principle, it is possible to
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420 De Sitter-like spacetimes

express this smallness requirement in terms of a smallness condition on the basic

perturbation data ĕi
j , d̆ij and κ̆; this idea will not be further pursued here.

15.3 Global existence and stability using gauge source functions

In this section a first proof of the global existence and stability of de Sitter-

like spacetimes is provided. This proof makes use of the hyperbolic reduction of

the spinorial conformal field equations using gauge source functions as discussed

in Section 13.2 and of the conformal representation of the de Sitter spacetime

discussed in Section 15.1.1. This approach can be readily generalised to include

trace-free matter. The discussion presented here follows the seminal work by

Friedrich (1986b, 1991).

15.3.1 Gauge considerations

The first step in the construction of de Sitter-like spacetimes consists of the fixing

of the gauge in the evolution equations. This gauge fixing allows one to relate,

in an unambiguous manner, fields in the background de Sitter spacetime with

fields in the perturbed spacetime; see Figure 15.3.

As the (unphysical) spacetime (M, g) to be constructed will be of the form

M ≈ [a, b]×S3 ⊂ R×S3 with a, b ∈ R, it is natural to make use of the coordinates

and frames in the background spacetime (R × S3, gE ) to coordinatise and

construct a suitable gauge in the perturbed spacetime. Following the discussion

of Section 13.2.1, coordinates x = (τ, xα) on the Einstein cylinder ME = R× S3

can be regarded as coordinates on a perturbed spacetime (M, g) if one identifies

the manifolds M and ME . This coordinatisation is equivalent to the coordinate

gauge source choice

Fa(x) = −ηbcΓ̊b
a
c = 0,

Figure 15.3 Schematic representation of the construction of coordinates on a
perturbation of the de Sitter spacetime (M, g) using coordinates on the exact

de Sitter spacetime (ME , gE ) and a diffeomorphism ϕ : M → M̊ as described
in the main text. The particular realisation of the diffeomorphism identifies
the manifolds M and ME in such a way that ϕ is a wave map.
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15.3 Global existence and stability using gauge source functions 421

where the last equality follows from the discussion leading to Lemma 15.1. This

particular choice of coordinate gauge source function makes the identification

between M and ME a wave map; see Section 13.2.1.

By similar considerations, the vectors {̊ca} = {∂τ , c̊i} originally defined on

ME can be regarded as vectors on the perturbed spacetime (M, g) in terms of

which the g-orthonormal frame {ea} can be expanded by writing ea = ea
b̊cb.

In an analogous manner, the fields

ů = (Ξ̊, Σ̊, Σ̊AA′ , e̊AA′a, Γ̊AA′BC , Φ̊AA′BB′ , φ̊ABCD),

as given by Lemma 15.1, can be regarded as fields over M. It is important to

emphasise that all of the above fields (except for e̊AA′a) are, in fact, components

of tensors with respect to the background frame {̊ea} = {δab̊cb}.
The gauge fixing is completed by setting the frame gauge source function

FAB(x) and the conformal gauge source function R(x) equal to their values in

the background spacetime (R× S3, gE ). That is, one sets

FAB(x) = 0, R(x) = −6;

compare Lemma 15.1.

15.3.2 The evolution system

The hyperbolic reduction procedure discussed in Section 13.2 and summarised in

Proposition 13.1, leads to an evolution system which, in terms of local coordinates

x = (τ, xα) of an open domain U ⊂ R× S3, takes the form

∂τσ = G(Γ)σ +H(σ,υ), (15.17a)(
I+D0(e)

)
∂τυ +Dα(e)∂αυ = E(Γ)υ + F(σ,υ,φ), (15.17b)(

I+A0(e)
)
∂τφ+Aα(e)∂αφ = B(Γ)φ, (15.17c)

where σ encodes the conformal factor Θ and the independent components of its

concomitants; υ collects the independent components of the frame components,

the connection coefficients and the trace-free Ricci spinor and φ groups the

independent components of the rescaled Weyl spinor.

To apply the methods of the theory of hyperbolic partial differential equations

(PDEs) discussed in Chapter 12 it is convenient to split the various field

unknowns into a background part and a perturbation part. More precisely,

one sets

Ξ = Ξ̊ + Ξ̆, Σ = Σ̊ + Σ̆, ΣAB = Σ̆AB, s = s̊+ s̆, (15.18a)

e0 = e̊0 + ĕ0, eAB
0 = ĕAB

0, (15.18b)

ei = ĕi, eAB
i = e̊AB

i + ĕAB
i, (15.18c)

ΓAB = Γ̆AB, Γ(AB)CD = Γ̊(AB)CD + Γ̆(AB)CD, (15.18d)

Φ(ABCD) = Φ̆(ABCD), ΦAB = Φ̆(AB), Φ = Φ̊ + Φ̆, (15.18e)

φABCD = φ̆ABCD, (15.18f)
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422 De Sitter-like spacetimes

where

Ξ̊, Σ̊, s̊, e̊0, e̊AB
i, Γ̊(AB)CD, Φ̊

are the non-vanishing components of the fields describing the background de

Sitter solution as discussed in Section 15.1.1, while

Ξ̆, Σ̆, Σ̆AB, s̆, ĕa, ĕAB
a, Γ̆AB, Γ̆(AB)CD, (15.19a)

Φ̆(ABCD), Φ̆(AB), Φ̆, φ̆ABCD (15.19b)

describe the perturbations away from the de Sitter solution. The split between

background and perturbations given by Equations (15.17a)–(15.17c) depends

strongly on the choice of gauge.

By construction, the background fields are a solution to the conformal

evolution Equations (15.17a)–(15.17c). Consequently, one has

∂τ σ̊ = G(Γ̊)σ̊ +H(σ̊, υ̊),(
I+D0(̊e)

)
∂τ υ̊ +Dα(̊e)∂αυ̊ = E(Γ̊)υ̊.

Accordingly, substituting now the ansatz (15.18a)–(15.18f) in the evolution

system (15.17a)–(15.17c), one obtains equations for the independent components

of the perturbation fields (15.19a) and (15.19b):

∂τ σ̆ = G(Γ̊)σ̆ +G(Γ̆)σ̊ +G(Γ̆)σ̆

+H(σ̊, ῠ) +H(σ̆, υ̊) +H(σ̆, ῠ), (15.20a)(
I+D0(̊e+ ĕ)

)
∂τ ῠ +Dα(̊e+ ĕ)∂αῠ = E(Γ̆)υ̊ +E(Γ̊)ῠ +E(Γ̆)ῠ + F(σ̊, υ̊, φ̆)

+ F(σ̊, ῠ, φ̆) + F(σ̆, υ̊, φ̆) + F(σ̆, ῠ, φ̆)

−
(
I+D0(ĕ)

)
∂τ υ̊, (15.20b)(

I+A0(̊e+ ĕ)
)
∂τ φ̆+Aα(̊e+ ĕ)∂αφ̆ = B(Γ̊+ Γ̆)φ̆. (15.20c)

In view of the properties of the original conformal evolution Equation (15.17a)–

(15.17c) the above equations constitute a symmetric hyperbolic evolution system

for the components of ŭ = (σ̆, ῠ, φ̆). Accordingly, the theory of hyperbolic PDEs,

as discussed in Chapter 12, can be applied in domains of the form [0, τ•]×S3 with

τ• > 0, to guarantee the existence of solutions and to assert Cauchy stability.

In particular, as the background solution (σ̊, υ̊, φ̊) is well defined on the whole

of R × S3 one obtains the following existence, uniqueness and Cauchy stability

result:

Proposition 15.1 (existence of solutions to the standard conformal

evolution equations) Let u� = ů� + ŭ� denote de Sitter-like initial data for

the conformal field equations prescribed on a 3-manifold S ≈ S3. Given m ≥ 4

and τ• > 3
4π, then:
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15.3 Global existence and stability using gauge source functions 423

(i) There exists ε > 0 such that if

‖ ŭ� ‖m< ε,

then there exists a Cm−2 unique solution to the conformal evolution

Equations (15.20a)–(15.20c) defined on [0, τ•]× S3.

(ii) Given a sequence of initial data u
(n)
� = ů

(n)
� + ŭ

(n)
� such that

‖ ŭ
(n)
� ‖m< ε and ‖ ŭ

(n)
� ‖m→ 0 as n → ∞,

then for the corresponding solutions ŭ(n) ∈ Cm−2([0, τ•]× S3) one has that

‖ ŭ(n) ‖m→ 0 uniformly in τ ∈ [0, τ•] as n → ∞.

Proof The above proposition is a direct consequence of Theorem 12.4. To apply

this theorem it is necessary to ensure that both

I+A0(̊e� + ĕ�) and I+D0(̊e� + ĕ�) (15.21)

are both positive definite away from zero in a uniform manner over S3. An explicit

calculation shows that

I+A0(̊e�) and I+D0(̊e�)

are positive definite away from zero. Thus, by setting ε sufficiently small,

condition (15.21) can be guaranteed. By further reducing ε, if necessary, one

can ensure that all solutions with ‖ ŭ� ‖m< ε have a minimum existence time

τ• > 3
4π. Taking into account the above, point (i) follows from points (i)–(iii) of

Theorem 12.4 while point (ii) follows from point (iv) in the same theorem.

Remark 1. The purpose of point (i) in Proposition 15.1 is to guarantee a

minimum existence time of solutions to the evolution system (15.20a)–(15.20c)

containing the conformal boundary of the perturbed solution.

Remark 2. Point (ii) in Proposition 15.1 is a statement of Cauchy stability.

It ensures that data sufficiently close to data for the de Sitter spacetime give

rise to solutions with an existence time similar to that of the background

solution. Moreover, within the established existence time, the solutions are

suitably close to the background solution. Observe, however, that this result

makes no statement about whether a particular solution converges in time to the

background solution. Thus, one has obtained only an orbital stability result

for the conformal evolution Equations (15.20a)–(15.20c).

The solutions ŭ provided by Proposition 15.1 give rise, in turn, to a solution

to the conformal field equations. More precisely, one has:

Proposition 15.2 (propagation of the constraints for the standard

conformal evolution system) Given a solution u� = ů�+ ŭ to the conformal
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424 De Sitter-like spacetimes

evolution Equations (15.20a)–(15.20c) on [0, τ•] × S3 such that the conformal

constraint equations are satisfied on S�, then

Za = 0, Zab = 0, Σa
c
b = 0, Ξc

dab = 0,

Δcdb = 0, Λbcd = 0,

on [0, τ•]× S3.

Proof From the discussion in Chapters 11 and 13 it follows that if the conformal

constraint equations and the conformal evolution equations are satisfied on the

initial hypersurface S�, then one obtains

Za|S�
= 0, Zab|S�

= 0, Σa
c
b|S�

= 0, Ξc
dab|S�

= 0,

Δcdb|S�
= 0, Λbcd|S�

= 0.

Now, from Proposition 13.2 it follows that the above zero quantities satisfy a

symmetric hyperbolic subsidiary evolution system. As the initial data for this

evolution system vanish and the evolution system is homogeneous in the zero

quantities, it follows from Corollary 12.1 that the zero quantities must vanish on

[0, τ•)× S3 so that the result follows.

Locating the conformal boundary

The existence of solutions to the evolution Equations (15.20a)–(15.20c) for a

minimum existence interval [0, τ•) ⊃ [0, 3
4π) provides room enough for the

development of the conformal boundary. That this does indeed happen is crucial

for the interpretation of the solution to the conformal evolution equations as a

global solution to the Einstein field equations. This property is ensured by the

following:

Lemma 15.3 (structure of the conformal boundary) Given a solution ŭ,

as given by Proposition 15.1, with ‖ ŭ� ‖m< ε sufficiently small, there exists a

function τ+ = τ+(x), x ∈ S3 such that 0 < τ+(x) < τ• and

Ξ > 0 on M̃ ≡
{
(τ, x) ∈ R3 | 0 ≤ τ < τ+(x)

}
,

Ξ = 0 and ΣaΣ
a = −1

3
λ < 0 on I + ≡

{
(τ+(x), x) ∈ R× S3

}
.

Remark. The above lemma ensures the existence, at least for sufficiently small

perturbations, of a complete spacelike component of the conformal boundary.

Observe also that the function τ+(x) provided by Lemma 15.3 defines a

diffeomorphism between S3 and I +. Consequently I + ≈ S3.

Proof The key observation to prove this result is that Ξ̊|τ=3π/4 < 0. Using

Proposition 15.1 (ii), for sufficiently small ε > 0 one has (Ξ̊ + Ξ̆)|τ=3π/4 < 0. As

(Ξ̊+Ξ̆)|τ=0 > 0 there must exist a τ+ for which Ξ = 0. By reducing ε further – if
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15.3 Global existence and stability using gauge source functions 425

necessary – one has that τ is unique, and, hence, the function τ+(x) is well

defined. Now, from the conformal Equation (8.28e) it follows that

∇aΞ∇aΞ = −1

3
λ > 0, if Ξ = 0.

Accordingly, τ = τ+(x) defines a regular spacelike hypersurface I +.

The last step in the present analysis is to show that the obtained solutions to

the conformal evolution Equations (15.20a)–(15.20c) give rise to a global solution

to the vacuum Einstein field equations. One has the following:

Theorem 15.1 (global existence and stability of de Sitter-like space-

times: gauge source functions version) Given m ≥ 4, a solution u� =

ů� + ŭ� to the conformal constraint equations with de Sitter-like cosmological

constant such that ‖ ŭ� ‖m< ε for ε > 0 suitably small gives rise to a unique

Cm−2 solution to the conformal Einstein field equations on

M ≡ M̃ ∪ I +

with M̃ and I + as defined in Lemma 15.3. This solution implies, in turn, a

solution (M̃, g̃), to the Einstein field equations with de Sitter-like cosmological

constant for which I + represents conformal infinity.

Remark. The above theorem together with Propositions 15.1 and 15.2 and

Lemma 15.3 constitute a technical version of the main theorem of this chapter.

As the component of the conformal boundary obtained by this procedure is a

spacelike hypersurface with the topology of S3, one concludes that the solution

(M̃, g̃) to the Einstein field equations has the same global structure as the exact

de Sitter spacetime; see Figure 15.4.

Proof From Proposition 8.2; it follows that a solution to the conformal Einstein

field equations implies the existence of a metric g̃ satisfying the Einstein field

Figure 15.4 Penrose diagram of a perturbation of the de Sitter spacetime
given by Theorem 15.1. The spacetime is obtained as a result of an initial
value problem on the Cauchy hypersurface S�.
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426 De Sitter-like spacetimes

equations wherever Ξ �= 0. The statement about the interpretation of the

conformal boundary follows from Lemma 15.3.

15.4 Global existence and stability using conformal Gaussian systems

This section provides an alternative proof of the main theorem of this chapter

using the extended conformal Einstein field equations expressed in terms of a

conformal Gaussian system. This alternative proof allows one to contrast the

strengths and weaknesses of the two different hyperbolic reduction methods

discussed in Chapter 13. As will be seen in the following, the use of properties

of conformal geodesics greatly simplifies the analysis of the conformal boundary

of the spacetime. Generalising this approach to include matter fields is, however,

more complicated than if one were to use gauge source functions.

The details of the construction of a conformal Gaussian system for the

extended conformal field equations have already been discussed in Section 13.4.1.

To apply this general discussion to the analysis of perturbations of the de Sitter

spacetime, one needs to specify the particular form of the conformal factor Θ

and the covector d associated to the congruence of conformal geodesics. This is

done in the following subsection.

15.4.1 A priori analysis of the structure of the conformal boundary

of perturbations of the de Sitter spacetime

One of the advantages of the formulation of the conformal evolution equations in

terms of conformal Gaussian systems is that it provides an a priori knowledge of

the location and structure of the conformal boundary; that is, one has an explicit

description of the locus of its points, even before knowing that a solution actually

exists. This a priori knowledge provides valuable insight into the nature of the

underlying initial value problem.

In what follows, let (M̃, g̃) denote a vacuum spacetime with de Sitter-like

cosmological constant. It will be assumed that (M̃, g̃) can be covered with a non-

intersecting congruence of conformal geodesics (x(τ̄), β̃(τ̄)) with affine parameter

τ̄ and that the data for the congruence is prescribed on a fiduciary spacelike

hypersurface S� described by the condition τ̄ = 0. From Proposition 5.1 it follows

that, associated to this congruence of conformal geodesics, one has a canonical

conformal factor Θ of the form

Θ = Θ� + Θ̇�τ̄ +
1

2
Θ̈�τ̄

2, (15.22)

with the constraints

Θ̇� = 〈d�, ẋ�〉, Θ�Θ̈� =
1

2
g�(d�,d�) +

1

6
λ, (15.23)

where the coefficients Θ�, Θ̇� and Θ̈� are constant along a given conformal

geodesic. The conformal factor Θ allows one to obtain a conformal extension
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15.4 Global existence and stability using conformal Gaussian systems 427

(M̄, ḡ) of the physical spacetime (M̃, g̃) with ḡ ≡ Θ2g̃. The specific details

of the conformal factor Θ depend on the location of the hypersurface S� with

respect to the conformal boundary and give rise to two different initial value

problems.

Standard Cauchy problem

First, consider a situation where the initial hypersurface S� does not coincide

with the conformal boundary. As one is interested in the construction of

spacetimes whose spatial sections have the topology of S3 it is natural to set,

without loss of generality, that

Θ� = 1, Θ̇� = 0,

so that no further distortion is introduced in the 3-manifold and the congruence

of conformal geodesics is symmetric with respect to the initial hypersurface.

Moreover, one can set

β̃� = 0,

so that d� = Θ�β̃� = 0 and the general expression for the conformal factor

reduces to

Θ = 1 +
1

12
λτ̄2.

Now, using Proposition 5.1 one finds that the components da of the covector

d respect to a Weyl propagated frame {ea} along the congruence of conformal

geodesics and such that e0 = ẋ are given by

d0 = Θ̇, di = 0.

A direct computation shows that the conformal factor Θ vanishes for

τ̄± = ±
√

12

|λ| .

The above expression gives the location of the conformal boundary. Accordingly,

it is natural to define

I ± ≡ {τ̄±} × S,

and one has I ± ≈ S3. Finally, recalling the constraint d = Θf + dΘ and

assuming that f is regular at I ± one finds

g(dΘ,dΘ) = ηabdadb = Θ̇2 > 0 at I ±.

Thus, if the conformal boundary exists and is regular, it must be a spacelike

hypersurface.
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428 De Sitter-like spacetimes

Asymptotic Cauchy problem at I −

The conformal field equations allow the formulation of an alternative initial value

problem in which initial data are prescribed on a spacelike hypersurface S ≈ S3

representing one of the components of the conformal boundary, say, I − – an

asymptotic initial value problem. In this spirit, it is natural to prescribe the

initial data for the congruence of conformal geodesics directly at the conformal

boundary. This is made possible by the conformal invariance of the conformal

geodesic equations.

By assumption, on an asymptotic initial value problem one has that Θ = 0 on

I −. Thus, one necessarily has that Θ� = 0 and the conformal factor takes the

form

Θ = Θ̇�τ̄ +
1

2
Θ̈�τ̄

2.

The second expression in Equation (15.23) implies that g�(d�,d�) = −λ/3 > 0

so that d� must be timelike. Now, taking into account the further constraint

d = Θf + dΘ and requiring ẋ� to be normal to I −, it follows that

d0� = Θ̇� =

√
|λ|
3
, di� = 0,

where the positive root has been chosen so that Θ is positive in the future of

I −. Accordingly, off I − one has

d0 = Θ̇ =

(√
|λ|
3

+ Θ̈�τ̄

)
, di = 0.

So far, the coefficient Θ̈� has remained unspecified. Accordingly, it will be

considered as free data. These data are, in fact, related to value of the Friedrich

scalar

s ≡ 1

4
∇a∇aΘ+

1

24
RΘ

on I −. On the one hand, a calculation gives

s � 1

4

(
eaΣ

a + Γa
a
bΣ

b
)

� 1

4

(
Θ̈� + Θ̇�Γa

a
0

)
,

where the last equality follows from the fact that Σi vanishes at I −. On the

other hand, the solution to the conformal constraints at the conformal boundary,

as discussed in Section 11.4.4, shows that s� � Θ̇�κ where κ is a scalar field over

I −; compare Equation (11.40). A further calculation using a frame adapted to

I − readily yields

Γa
a
0 � Γi

i
0 � χi

i � κδi
i � 3κ.
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15.4 Global existence and stability using conformal Gaussian systems 429

One thus concludes that

Θ̈� = κΘ̇�.

In practice, it is convenient to set κ to be constant on I −. The choice κ = 0

gives a representation in which I − is a hypersurface with vanishing extrinsic

curvature; see Equation (11.41). This representation does not involve a second

component of the conformal boundary.

To have a second component of the conformal boundary one hence needs κ �= 0.

Adopting the simple choice Θ̈� = −1/2, the conformal factor vanishes at

τ̄− = 0, τ̄+ = 4

√
|λ|
3
.

In this conformal representation, the two components of the conformal boundary

of the de Sitter-like spacetime (M̃, g̃) are given by the sets

I − = {0} × S, I + =

{
4

√
|λ|
3

}
× S.

More generally, keeping Θ̈� unspecified, one finds that the location of I + is

determined by the free data Θ̈�. Finally, on I + one has

g(dΘ,dΘ) = ηabdadb = −λ

3
> 0,

so that both I ±, if they exist, are spacelike hypersurfaces.

Remark. In what follows, the analysis of both the standard and the asymptotic

initial value problems will be simplified by making use of the choice λ = −3 for

the cosmological constant.

15.4.2 The extended conformal evolution system

Once the conformal factor Θ and the covector d associated to the conformal

Gaussian system have been specified, one can proceed to the formulation of an

initial value problem. In Proposition 13.3 it has been shown that the extended

conformal Einstein field equations expressed in terms of a conformal Gaussian

system imply a symmetric hyperbolic evolution system of the form

∂τ̄ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ, (15.24a)(
I+A0(e)

)
∂τ̄φ+Aα(e)∂αφ = B(Γ̂)φ, (15.24b)

for û = (υ̂,φ) where υ̂ encodes the independent components of the frame, the

connection coefficients and the Schouten tensor, while φ contains the components

of the rescaled Weyl spinor.
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430 De Sitter-like spacetimes

Mimicking the analysis of Section 15.3, one considers solutions of the form

eAB
0 = ĕAB

0, eAB
α = ēAB

α + ĕAB
α,

ξABCD = ξ̄ABCD + ξ̆ABCD, χABCD = χ̄ABCD + χ̆ABCD, fAB = f̆AB,

ΘABCD = Θ̄ABCD + Θ̆ABCD, φABCD = φ̆ABCD,

where

ēAB
μ, ξ̄ABCD, χ̄ABCD, Θ̄ABCD

are the values of the exact de Sitter solution expressed in a conformal Gaussian

system as discussed in Section 15.1.2; see, in particular, Proposition 15.2.

Accordingly, one can write

υ̂ = ῡ + ῠ, φ = φ̆, (15.25a)

e = ē+ ĕ, Γ̂ = Γ̄+ Γ̆. (15.25b)

On the initial hypersurface S� one has

υ̂� = ῡ� + ῠ�, φ = φ̆�,

where ů� = (ῡ�,0) is the exact de Sitter data discussed in Section 15.2 and

ŭ� = (ῠ�, φ̆�).

As the conformal factor Θ and the covector d are universal – that is, they

possess the same form for either the exact de Sitter data or the perturbations

thereof – one has

∂τ̄ ῡ = Kῡ +Q(Γ̄)ῡ.

Substituting the ansatz (15.25a) and (15.25b) into Equations (15.24a) and

(15.24b) yields the following evolution equations for ŭ = (ῠ, φ̆):

∂τ̄ ῠ = Kῠ +Q(Γ̄+ Γ̆)ῠ +Q(Γ̆)ῡ + L(x)φ̆, (15.26a)(
I+A0(ē+ ĕ)

)
∂τ̄ φ̆+Aα(ē+ ĕ)∂αφ̆ = B(Γ̄+ Γ̆)φ̆. (15.26b)

The above equations are already in a form where the theory of hyperbolic

PDEs, as discussed in Chapter 12, can be applied. In particular, existence and

Cauchy stability of Equations (15.26a) and (15.26b) are given by Theorem 12.4.

The natural domains for solutions to these equations are of the form

Mτ̄• ≡ [0, τ̄•]× S, S ≈ S3,

for some τ̄• > 0. The analogue of Propositions 15.1 and 15.2 for the conformal

evolution system (15.26a) and (15.26b) is given by:

Proposition 15.3 (existence of de Sitter-like solutions to the extended

conformal evolution equations and propagation of the constraints) Let

û� = ū� + ŭ� denote de Sitter-like (standard or asymptotic) initial data for the

conformal field equations prescribed on a 3-manifold S ≈ S3. Given m ≥ 4:
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15.4 Global existence and stability using conformal Gaussian systems 431

(i) There exists ε > 0 such that if

‖ ŭ� ‖m< ε,

then there exists a Cm−2 unique solution ŭ to the conformal evolution

equations (15.26a) and (15.26b) defined on (− 5
2 ,

5
2 ) × S3 for the standard

Cauchy problem and on [0, 9
2 )× S3 for the asymptotic Cauchy problem.

(ii) If

Σ̂a
c
b

∣∣
S�

= 0, Ξ̂c
dab

∣∣
S�

= 0, Δ̂abc

∣∣
S�

= 0, Λabc

∣∣
S�

= 0,

and

δa
∣∣
S�

= 0, γab
∣∣
S�

= 0, ςab
∣∣
S�

= 0,

then the solution ŭ to the conformal evolution equations given by (i) implies,

by reducing ε if necessary, a Cm−2 solution û = ū + ŭ to the extended

conformal field equations on (− 5
2 ,

5
2 )× S3 and, respectively, on [0, 9

2 )× S3.

(iii) Given a sequence of initial data û
(n)
� = ū

(n)
� + ŭ

(n)
� such that

‖ ŭ
(n)
� ‖m< ε, and ‖ ŭ

(n)
� ‖m→ 0 as n → ∞,

then for the corresponding solutions ŭ(n) ∈ Cm−2
(
(− 5

2 ,
5
2 ) × S3

)
and,

respectively, Cm−2([0, 9
2 ) × S3), one has ‖ ŭ(n) ‖m→ 0 uniformly in

τ̄ ∈ (− 5
2 ,

5
2 ) and, respectively τ̄ ∈ [0, 9

2 ), as n → ∞.

Proof The proof of points (i) and (iii) of the above proposition is, again, a direct

application of Theorem 12.4 along the lines of Proposition 15.1. The proof of

point (ii) concerning the existence of an actual solution of the extended conformal

field equations follows from the homogeneity of the subsidiary evolution system as

given in Proposition 13.4 together with Corollary 12.1 by an argument identical

to that used in Proposition 15.2.

Remark. By an argument similar to the one leading to Proposition 15.3, using

the expression (15.14) for a separation vector in the background de Sitter

spacetime, it can be shown that if ε is sufficiently small, then the separation

fields for the perturbed spacetime remain non-zero in (− 5
2 ,

5
2 ) and, respectively,

[0, 9
2 ). Thus, the conformal Gaussian system used in the hyperbolic reduction

remains well behaved throughout.

Constructing solutions to the Einstein field equations

The discussion of this section can be summarised in the following two technical

versions of the main theorem of this chapter:
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432 De Sitter-like spacetimes

Theorem 15.2 (global existence and stability of de Sitter-like space-

times: conformal Gaussian systems version) Given m ≥ 4, a solution

u� = ū� + ŭ� to the conformal constraint equations with λ = −3 on a standard

Cauchy hypersurface S� ≈ S3 such that ‖ ŭ� ‖m< ε, for ε > 0 suitably small,

gives rise to a solution u to the conformal field equations on

M ≡ [−2, 2]× S3.

This solution implies, in turn, a solution (M̃, g̃) to the Einstein field equations

with cosmological constant λ = −3 where

M̃ ≡ (−2, 2)× S3,

for which

I ± ≡ {±2} × S3,

represent future and past conformal infinity, respectively.

In the case of asymptotic Cauchy data one obtains a similar statement:

Theorem 15.3 (global existence and stability for the asymptotic initial

value problem) Given m ≥ 4, a solution u� = ū� + ŭ� to the conformal

constraint equations with λ = −3 on a 3-manifold S ≈ S3 representing the past

component of the conformal boundary such that ‖ ŭ� ‖m< ε, for ε > 0 suitably

small, gives rise to a solution u to the conformal field equations on

M ≡ [0, 4]× S3.

This solution implies, in turn, a solution (M̃, g̃) to the Einstein field equations

with cosmological constant λ = −3 where

M̃ ≡ (0, 4)× S3,

for which

I − ≡ {0} × S3, I + ≡ {4} × S3,

represent future and past conformal infinity, respectively.

The proofs of Theorems 15.2 and 15.3 are identical to that of Theorem 15.1.

Penrose diagrams of the spacetimes thus obtained can be seen in Figure 15.5.

Observe that in the gauge being considered, the Penrose diagrams for the exact

de Sitter spacetime and the perturbations are identical!
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15.4 Global existence and stability using conformal Gaussian systems 433

Figure 15.5 Penrose diagrams of de Sitter-like spacetimes obtained from
Theorems 15.2 and 15.3: on the left is the spacetime obtained from a standard
Cauchy initial value problem; on the right is the spacetime obtained from the
asymptotic initial value problem.

15.4.3 Geodesic completeness and asymptotic analysis

The analysis of the existence and stability of de Sitter-like spacetimes developed

in Sections 15.3 and 15.4 can be refined to include geodesic completeness. As

the exact de Sitter spacetime is geodesically complete, it is to be expected that

suitably small perturbations thereof will also share this property. More precisely:

Proposition 15.4 (geodesic completeness of de Sitter-like spacetimes)

Suitably small perturbations (M̃, g̃) of the de Sitter spacetime are null and

timelike g̃-geodesically complete.

In particular, the above proposition together with the existence and stability

results obtained in the previous sections show that suitably small perturbations

of the de Sitter spacetime are asymptotically simple spacetimes.

It is convenient to divide the analysis of Proposition 15.4 into two cases.

Null geodesics

The key observation required to prove null geodesic completeness is the following:

given the conformal representation (R × S3, ḡE ) any null ḡE -geodesic starting

within the unphysical spacetime reaches the conformal boundary for a finite value

of its affine parameter.

In what follows, let (M̄, ḡ) be one of the de Sitter-like spacetimes obtained

from, say, a standard Cauchy initial value problem with data prescribed on a

hypersurface S�. Making use of a perturbative argument similar to the ones

employed in Propositions 15.1 and 15.3 and by reducing ε, if necessary, it can

be shown that given a point p ∈ S� and a fixed δ > 0, for all points q ∈ S� lying
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in an h-metric ball of radius δ centred at p, the future directed null ḡ-geodesics

starting at q will reach I + in a finite value of their affine parameter. As S� is a

compact hypersurface, it can be covered with a finite number of such h-metric

balls of radius δ, and, accordingly, there exist non-trivial perturbations of the

de Sitter spacetime for which all null ḡ-geodesics starting on S� reach I + in

a finite value of their affine parameter. Now, every ḡ-null geodesic is (up to a

reparametrisation) also a g̃-null geodesic. Moreover, making use of the discussion

in Chapters 7 and 10, one can find an affine parameter s of the g̃-null geodesic

such that s → ∞ as Θ → 0. Hence, one concludes null g̃-completeness.

Timelike geodesics

In the case of timelike geodesics, following Lemma 5.2 every timelike g̃-geodesic

is, up to a reparametrisation, a timelike ḡE -conformal geodesic. It can be

explicitly checked – starting, for example, from the general solution to the

conformal geodesic equations in the Minkowski spacetime as discussed in Section

6.2.3 – that every ḡE -conformal geodesic starting inside the region of the Einstein

cylinder associated to the conformal de Sitter spacetime reaches the conformal

boundary of the spacetime in a finite amount of its unphysical proper time

τ̄ . Using, as in the case of the null geodesics, a perturbative argument, this

property is seen to be preserved for suitably small perturbations of the de Sitter

spacetime. Of course, not every ḡ-conformal geodesic can be reparametrised to

a g̃-geodesic. This is the case only for those curves reaching the conformally

boundary orthogonally – as can be checked using Lemma 5.3. Finally, using the

properties of conformal geodesics in Einstein spaces as discussed in Section 5.5.6,

the physical proper time of g̃ satisfies τ̃ → ∞ as Θ → 0. This implies geodesic

completeness.

15.5 Extensions

The results of this chapter can be extended to the case of the Einstein equations

coupled with suitable trace-free matter; see Chapter 9.

For simplicity, the subsequent discussion will be restricted to the standard

conformal field equations. One of the main difficulties when attempting a direct

extension to include matter is the presence of the rescaled Cotton tensor Tcdb in

the Cotton and Bianchi equations. As discussed in Chapter 9 this tensor involves

derivatives of the matter fields. As the Cotton and the Bianchi equations are

interpreted as differential conditions on the components of the Schouten tensor

and the rescaled Weyl tensor, the inclusion of matter in the analysis brings

further terms into the principal part of the conformal evolution equations which,

in principle, destroy the symmetric hyperbolicity. In general, these derivatives

cannot be eliminated using the field equations for the matter model. Thus, one

introduces the derivatives of the matter variables as new unknowns into the

problem. Equations for these auxiliary variables can be obtained by applying
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a covariant derivative to the matter equation and commuting derivatives. This

procedure has been described, for the Maxwell field, in Section 9.2. For suitable

matter models – such as the Maxwell field, the conformally invariant scalar field

and radiation fluids – the resulting field equations for the auxiliary field admit

a symmetric hyperbolic reduction without the need of introducing further gauge

source functions.

The construction of suitable symmetric hyperbolic evolution equations for

the auxiliary fields needs to be supplemented with their associated subsidiary

evolution equations and a further subsidiary equation for the definition of the

auxiliary variable. This procedure is similar in spirit to the construction of

subsidiary equations for the geometric fields described in Sections 13.3 and 13.4.5.

The procedure briefly described in the previous paragraph has been imple-

mented by Friedrich (1991) for the Einstein-Yang-Mills system, using the

standard conformal field equations and a hyperbolic reduction involving gauge

source functions to obtain a generalisation of the existence and stability result

given in the main theorem of this chapter. The same basic ideas can be used to

obtain a future global existence and stability result for perturbations of radiation

perfect fluid Friedman-Robertson-Walker cosmological models; see Lübbe and

Valiente Kroon (2013b).

Matter and the extended conformal field equations

The implementation of the ideas discussed in the previous paragraphs to the

extended conformal field equations requires further consideration. The matter

field equations are usually expressed in terms of the Levi-Civita connection ∇ of

the unphysical metric g. However, the conformal field equations provide direct

access only to the Riemann tensor of the Weyl connection ∇̂. Equation (5.30a),

relating the Riemann tensors of the connections ∇ and ∇̂, involves the covariant

derivatives of the covector fa. Thus, further derivatives of the conformal fields

enter the principal part of the evolution system in a way which destroys the

symmetric hyperbolicity. The antisymmetric part of the derivative ∇̂[afb] can be

replaced by terms not containing derivatives using the equation

∇̂afb − ∇̂bfa = L̂ab − L̂ba;

compare Equation (8.45). However, a similar substitution is not possible for

the symmetric part ∇̂(afb). In order to obtain a suitable symmetric hyperbolic

system one needs to introduce ∇̂(afb) as an unknown of the system – or,

alternatively, the components Lab of the Schouten tensor of the unphysical Levi-

Civita connection ∇. In the case of the Einstein-Maxwell equations it is possible

to find suitable evolution equations for the auxiliary field ψAA′BC ≡ ∇AA′φBC

which do not contain the symmetrised derivative ∇̂(afb); see Lübbe and Valiente

Kroon (2012). This, however, is an exceptional situation.
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15.6 Further reading

The results discussed in this chapter were first obtained in Friedrich (1986b).

Similar results starting from asymptotic Cauchy data were first discussed in

Friedrich (1986a). These results have been extended to the case of the Einstein

equations coupled to a Yang-Mills field in Friedrich (1991). Alternative proofs,

which make use of the extended conformal field equations and conformal gauge

systems, in the vacuum and Einstein-Maxwell case, have been given in Lübbe

and Valiente Kroon (2009, 2012).

A different way of generalising the global existence and stability results

discussed in this chapter is to consider higher dimensions. In this case one

cannot make use of the conformal Einstein field equations of Chapter 8,

which are valid only for four-dimensional spacetimes. Alternative field equations

are required. Global existence and stability results for de Sitter-like vacuum

spacetimes of arbitrary dimension have been given in Anderson (2005a) and

Anderson and Chruściel (2005) using the conformal equations implied by the

Fefferman-Graham obstruction tensor.

The methods of this chapter can be adapted to analyse perturbations of

cosmological models with radiation perfect fluids and an asymptotic structure

similar to that of de Sitter spacetime. An example of this type of analysis can

be found in Lübbe and Valiente Kroon (2013b).
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16

Minkowski-like spacetimes

This chapter studies the existence and stability of Minkowski-like spacetimes,

that is, solutions to the vacuum Einstein field equations with vanishing cos-

mological constant. The main result of this chapter is very similar in spirit to

the main result concerning the global existence and stability of de Sitter-like

spacetimes of Chapter 15. There is, however, a key difference: while the results

in Chapter 15 are global in nature, the ones in the present chapter are semi-

global . More precisely, the spacetimes to be discussed arise as the development

of suitable initial data on hyperboloidal hypersurfaces – an examination of the

Penrose diagram of the Minkowski spacetime in Figure 16.1 reveals that these

hypersurfaces are not Cauchy hypersurfaces of the spacetime. Accordingly, only

a portion of the whole spacetime can be recovered from this type of initial value

problem. The main result of this chapter can be formulated as follows:

Theorem (semiglobal existence and stability of Minkowski-like space-

times). Small enough perturbations of hyperboloidal initial data for the

Minkowski spacetime give rise to solutions to the vacuum Einstein field equations

which exist globally towards the future and have an asymptotic structure similar

to that of the Minkowski spacetime.

This result was first proved in Friedrich (1986b) and subsequently extended

to the Einstein-Yang-Mills equations in Friedrich (1991). The original proof of

the result made use of the standard conformal Einstein field equations and is

similar to the argument given for the de Sitter spacetime in Section 15.3. In

this chapter a proof of the theorem is given which makes use of the extended

conformal field equations and conformal Gaussian systems following the ideas in

Lübbe and Valiente Kroon (2009). This approach allows for a more detailed and

explicit discussion of the structure of the conformal boundary.

The restriction of the analysis of the present chapter to the hyperboloidal

initial value problem may seem mysterious at first sight. As will be discussed

in some detail in Chapter 20, the initial data for the conformal Einstein field
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438 Minkowski-like spacetimes

Figure 16.1 Penrose diagram of the Minkowski spacetime and the regions
that can be recovered from data on the standard hyperboloid H�. The future
and past domains of dependence D+(H�) and D−(H�) are depicted in grey
shading. Observe that H� is not a Cauchy hypersurface as there are portions
of the conformal diagram that cannot be recovered from the data on H�.

equations on an asymptotically Euclidean (Cauchy) hypersurface is generically

singular at spatial infinity – the various issues associated to this singular

behaviour are usually known as the problem of spatial infinity.

Despite the above limitation, hyperboloidal initial value problems arise

naturally in evolution problems in which the behaviour of gravitational radiation

is the main concern; see, for example, Rinne and Moncrief (2013) or Zenginoglu

(2008). While the ADM mass – which is computed on asymptotically flat

hypersurfaces (see Section 11.6.1) – is a conserved quantity, the notion of mass

associated to hyperboloidal hypersurfaces, the so-called Bondi mass, shows

a monotonic behaviour, and so it describes the process of mass loss due to

gravitational radiation; see Section 10.4.

16.1 The Minkowski spacetime and the conformal field equations

The first step of the stability analysis is a study of the Minkowski spacetime in

the gauge used to deduce the conformal evolution equations of Proposition 13.3.

16.1.1 The basic representation

As discussed in Section 6.2, the Minkowski spacetime (R4, η̃) can be conformally

embedded into the expanding Einstein cylinder (R× S3, ḡE ) where

ḡE ≡ dτ̄ ⊗ dτ̄ −
(
1 +

τ̄2

4

)2

h̄,

by means of the conformal rescaling

ḡE = Θ2
M η̃, ΘM ≡ 2 cos2

ψ

2

(
1− 1

4
tan2

ψ

2
τ̄2
)
. (16.1)
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16.1 The Minkowski spacetime and the conformal field equations 439

The coordinate τ̄ is an affine parameter of the conformal geodesics (xE (τ̄), β̄E (τ̄))

with

xE (τ̄) = (τ̄ , xα
� ), x′

E (τ̄) = ∂ τ̄ , β̄E (τ̄) =
2τ̄

4 + τ̄2
dτ̄ .

The underlying geometry of the conformal representation of the Minkowski

spacetime described in the previous paragraph is that of the expanding cylin-

der. Accordingly, the geometric fields for this conformal representation of the

Minkowski spacetime coincide with those of the conformal representation of the

de Sitter spacetime discussed in Section 15.1.2. That is, one has

ē0 = 1, ē(AB)
0 = 0, (16.2a)

ēi = 0, ē(AB)
i =

4

4 + τ̄2
σAB

i, (16.2b)

fAB = 0, (16.2c)

ξ̄ABCD = − 4i

4 + τ̄2
hABCD, (16.2d)

χ̄(AB)CD =
2i

4 + τ̄2
hABCD, (16.2e)

ΘAB = 0, ΘABCD = − 2

4 + τ̄2
hABCD, (16.2f)

φABCD = 0. (16.2g)

It is important to emphasise, however, that the conformal gauge fields ΘM and

dM , relating the conformal representation to the physical Minkowski spacetime,

are different from those of the de Sitter spacetime.

A schematic representation of the conformal boundary associated to the above

conformal representation of the Minkowski spacetime is given in Figure 16.2.

It is observed that, as a consequence of the explicit time symmetry of the

Figure 16.2 Plot of the conformal boundary of the Minkowski spacetime
in the conformal Gaussian gauge given by Equation (16.1). This conformal
representation is explicitly time symmetric and does not contain the points i±

representing future and past null infinity. The image has been cropped. This
figure is a coordinate plot, not a conformal diagram; thus, null geodesics do
not have a slope of 45 degrees.
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440 Minkowski-like spacetimes

representation, the points i± representing future and past timelike infinity are not

included. This representation is not the most convenient one to use in analysing

a hyperboloidal initial value problem. A related, more convenient representation

is given in the next subsection.

16.1.2 A conformal representation adapted to the

standard hyperboloid

As discussed in Section 6.2, the Minkowski spacetime can be embedded into the

Einstein cylinder using the conformal factor

ΞM ≡ cos τ + cosψ.

In the following it will be convenient to shift the above standard embedding

by π/2 to the past with the replacement τ �→ τ̌ + π/2, so that the standard

Minkowski hyperboloid H� which is given by the condition τ = π/2 is now

located at τ̌ = 0; see Equation (6.26). Accordingly, one obtains the shifted

conformal factor

Ξ̌M ≡ cos

(
τ̌ +

π

2

)
+ cosψ = cosψ − sin τ̌ . (16.3)

In particular, the conformal factor embedding the hyperboloidal 3-manifold into

S3 is given by

Ω̄ ≡ cosψ.

One has that Ω̄ = 0 at ψ = π/2. Hence, it is natural to define

∂H� ≡
{
p ∈ S3 | ψ(p) = π

2

}
.

Observe that dΩ̄ �= 0 at ∂H�.

To relate the conformal representation of the Minkowski spacetime given by the

conformal factor in Equation (16.3) to the so-called expanding Einstein cylinder

discussed in Section 16.1.1, it is recalled that gE = Ξ̌2
M η̃ and ḡE = Θ̄2

E gE so that

ḡE = Θ̌2
M η̃, Θ̌ ≡ Θ̄E Ξ̌M .

The relation between the shifted coordinate τ̌ and the affine parameter τ̄ of the

conformal geodesics
(
xE (τ̄),βE (τ̄)

)
in the Einstein cylinder is, formally, the

same as the one between the original coordinate τ and τ̄ ; in particular, one

has that τ̄ = 0 if τ̌ = 0. Thus, using the conformal transformation properties

of conformal geodesics as described in Section 5.5.2, one finds that the pair(
x̌M (τ̌), β̌M (τ̌)

)
with

x̌M ≡ (τ̄ , xα
� ) =

(
cos2

τ̌

2
, xα

�

)
,

β̌M ≡ βE + Ξ̌−1
M dΞ̌M = tan

τ̌

2
dτ̌ +

1

sin τ̌ − cosψ

(
cos τ̌dτ̌ + sinψdψ

)
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and

τ̌ = 2arctan
τ̄

2
(16.4)

gives rise to a congruence of conformal geodesics in the Minkowski spacetime

adapted to the conformal factor Ξ̌M in Equation (16.3). This congruence can

be used to construct a conformal Gaussian gauge system for the Minkowski

spacetime.

A calculation using standard trigonometric identities and the relation (16.4)

between the parameters τ̌ and τ̄ yields the expression

Θ̌ = cosψ

(
1− secψτ̄ +

τ̄2

4

)
(16.5)

for the conformal factor associated to the new conformal Gaussian gauge system.

This conformal factor vanishes whenever

τ̄ =
2± sinψ

cosψ
.

A plot of this conformal factor can be seen in Figure 16.3. Moreover, the

components of the covector ďM ≡ Θ̌β̌M with respect to a Weyl propagated

frame {ēa} such that ē0 = ˙̌xM are given by

β̌0 = ∂τ̄ Θ̌M , β̌i = ēi(Ω̄).

Finally, it follows from the discussion from the previous paragraphs that the

geometry of the conformal representation of the Minkowski spacetime given by

the conformal factor (16.5) is described by the fields (16.2a)–(16.2g); that is,

the geometry of this representation coincides with that of the expanding Einstein

Figure 16.3 Plot of the conformal boundary for the Minkowski spacetime in
a conformal Gaussian gauge adapted to the standard hyperboloid. In this
particular representation timelike infinity i+ is at a finite location. The set
∂H� denotes the intersection of the conformal boundary I + with the initial
hyperboloid H�. As in the case of Figure 16.2, this plot is not a conformal
diagram.
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cylinder. In particular, a suitable Jacobi field zAB measuring the deviation of

the curves of the congruence of conformal geodesics is given by

z = 0, z(AB) =

(
1 +

τ̄2

4

)
z�(AB),

where z�(AB) is some fiduciary initial value at the standard hyperboloid H�;

compare Equation (15.14).

16.1.3 Initial data for the Minkowski spacetime

on the standard hyperboloid

The congruence of conformal geodesics giving rise to the conformal Gaussian

system is specified on the standard hyperboloid H� by the data

Θ̌� = cosψ, ď0� = −1, ďi� = ci(Ω̄).

On H�, the conformal fields satisfy the conditions

ē0 = 1, ē(AB)
0 = 0, (16.6a)

ēi = 0, ē(AB)
i = σAB

i, (16.6b)

fAB = 0, ξ̄ABCD = −ihABCD, χ̄(AB)CD = 0, (16.6c)

Θ̄AB = 0, Θ̄ABCD = −1

2
hABCD, (16.6d)

φABCD = 0. (16.6e)

16.2 Perturbations of hyperboloidal data for the

Minkowski spacetime

In what follows, it is assumed that one has a solution (H,h,K,Ω,Σ) to the

conformal Hamiltonian and momentum constraints, Equations (11.15a) and

(11.15b), with hyperboloidal boundary conditions as discussed in Section 11.7. It

is convenient to regard the hyperboloidal manifold H as a region of a 3-manifold

S ≈ S3. Following the conventions of the previous chapters, when regarding the

3-manifolds H and S as hypersurfaces of a four-dimensional spacetime one writes

H� and S�, respectively. One can use coordinates (xα) on S3 as coordinates on

H and introduce reference frame and coframe fields {ci} and {αi} by requiring

the identification between S and S3 to be a harmonic map; see the discussion in

Section 15.2.1.

Initial data for the conformal evolution equations can be obtained from the

basic initial data (H,h,K,Ω,Σ) using the procedure described in Section 11.4.3.

It will be assumed that the data can be written on the initial hyperboloid H� in

the form
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16.2 Perturbations of hyperboloidal data for the Minkowski spacetime 443

e0 = 1, e(AB)
0 = 0, (16.7a)

ei = 0, e(AB)
i = σAB

i + ĕ(AB)
i, (16.7b)

fAB = 0, (16.7c)

ξABCD = ξ̄ABCD + ξ̆ABCD, (16.7d)

χ(AB)CD = χ̄(AB)CD, (16.7e)

ΘAB = Θ̆AB, ΘABCD = Θ̄ABCD + Θ̆ABCD, (16.7f)

φABCD = φ̆ABCD, (16.7g)

with

ξ̄ABCD, χ̄(AB)CD, Θ̄ABCD

as given by Equations (16.6a)–(16.6e), while the fields

ĕ(AB)
i, ξ̆ABCD, χ̆(AB)CD, Θ̆AB, Θ̆ABCD, φ̆ABCD

describe the perturbation from standard hyperboloidal Minkowski data and

σAB
i are the spatial Infeld-van der Waerden symbols.

While the background fields σAB
i, ξ̄ABCD, χ̄(AB)CD, Θ̄ABCD are

defined on the whole of S ≈ S3, the perturbation fields ĕ(AB)
i, ξ̆ABCD,

χ̆(AB)CD, Θ̆AB, Θ̆ABCD, φ̆ABCD are defined only on H. To apply the

basic existence and stability result, Theorem 12.4, to the present situation

one extends the hyperboloidal initial data set on H to data on S. Using the

extension theorem, Proposition 12.2, and given m ≥ 4 there exists a linear

operator E : Hm(H,CN ) → Hm(S,CN ) such that for ŭ� ∈ Hm(H,CN ) then

(E ŭ�)(x) = ŭ�(x) almost everywhere in H and

‖ E ŭ� ‖m,S≤ K ‖ ŭ� ‖m,H,

with K a universal constant for fixed m. As in the case of the de Sitter spacetime,

the background initial data ů� is defined on the whole of S so that the extended

data

u� = ů� + E ŭ� (16.8)

is a well-defined function in Hm(S,CN ). The extension of the hyperboloidal

data given by (16.8) is non-unique and, in general, will not satisfy the conformal

constraint equations on S \ H. As the norm ‖ E ŭ� ‖m,S is dominated by the

norm ‖ ŭ� ‖m,H, then ‖ E ŭ� ‖m,S can be made as small as necessary by

making ‖ u� ‖m,H suitably small. In complete analogy to the case of the de

Sitter spacetime, one says that a hyperboloidal initial data set of the form

(16.7a)–(16.7g) is ε-small (in the norm ‖ ‖S,m) if

‖ ĕ(AB)
i ‖S,m + ‖ ξ̆ABCD ‖S,m + ‖ χ̆ABCD ‖S,m

+ ‖ Θ̆AB ‖S,m + ‖ Θ̆ABCD ‖S,m + ‖ φ̆ABCD ‖S,m< ε,
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444 Minkowski-like spacetimes

Figure 16.4 Domain of dependence D+(H�) of data for the conformal evolu-
tion equations on a hyperboloid H�: on the left, a schematic representation of
the setup; on the right, a three-dimensional depiction. To make use of Kato’s
existence theorem, the data have to be extended to S�\H� where S� ≈ S3. The
domain of dependence of the extended data D+(S�) corresponds, in principle,
to the cylinder [0,∞)×S3. The chronological future of the extension on S�\H�,
denoted by I+(S� \ H�), does not intersect the domain of dependence of the
hyperboloidal data D+(H�), and, thus, it is independent of the particular
extension being used.

where it is understood that each of the terms in the above expression comprises

a sum over all the independent components of the spinorial field under

consideration.

The extended data (16.8) is non-unique. This non-uniqueness does not pose

any problem for the considerations of this chapter. While it is true that the

development D+(S�) is clearly dependent on the particular extension of the

initial data, one has

D+(H�) ∩ I+(S� \ H�) = Ø;

compare the Remark at the end of Section 14.2. Thus, the particular choice of

extension of the data on H� has no effect on D+(H�); see Figure 16.4 for further

details.

16.3 A priori structure of the conformal boundary

This section discusses the available a priori knowledge of the structure of the

conformal boundary of the development of hyperboloidal initial data.

In what follows, assume that H� can be regarded as an open subset of a

compact manifold S� ≈ S3. Moreover, assume that ∂H� ≈ S2. On S� one

considers a conformal factor Ω such that Ω > 0 in the interior of H� and Ω = 0

on ∂H�; that is, the conformal factor Ω can be thought of as a boundary-defining

function. Consistent with the hyperbolic reduction procedure for the extended

conformal field equations as described in Section 13.4, it is assumed that the

domain of dependence D+(S�) can be covered by a non-singular congruence of
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16.3 A priori structure of the conformal boundary 445

conformal geodesics with data prescribed on S�. In particular, it is required that

the conformal geodesics are initially orthogonal to S�.

Determining the conformal factor

From Proposition 5.1, it follows that the general form of the conformal factor

associated to the congruence of conformal geodesics is given by

Θ = Θ� + Θ̇�τ̄ +
1

2
Θ̈�τ̄

2, (16.9)

where the coefficients Θ�, Θ̇� and Θ̈� are functions of the spatial coordinates and

are subject to the constraints

Θ̇� = 〈d�, ẋ�〉, Θ�Θ̈� =
1

2
g�(d�,d�). (16.10)

It is convenient to set

Θ� = Ω

and to make the spatial part of d� equal to dΩ. Accordingly, one finds that

d0� = Θ̇�, di� = DiΩ.

Now, letting

α ≡ Ω−1Θ̇�,

one finds from the constraints in (16.10) that

2ΩΘ̈� = h�(dΩ,dΩ) + α2,

where it is recalled that h�(dΩ,dΩ) < 0 as a consequence of the signature

convention. Whenever Ω = 0, it follows from the constraints (16.10) that d�

must be a null covector as dΘ �= 0.

Making use of the above observations, one finds that Equation (16.9) takes

the particular form

Θ = Ω

(
1 + ατ̄ +

(
1

4
α2 − 1

ω2

)
τ̄2
)
,

where

ω ≡ 2Ω√
|h�(dΩ,dΩ)|

.

A calculation shows that Θ = 0 for

τ̄± ≡ 2αω2 ± 4ω

4− α2ω2
. (16.11)
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446 Minkowski-like spacetimes

Accordingly, it is natural to define the future (and, respectively, past) null

infinity of the development associated to the hyperboloid H� as

I ± ≡
{
(τ̄ , x) ∈ R× S3 | τ̄ = τ̄±(x)

}
.

This expression shows how the location of the conformal boundary is prede-

termined by the initial data Ω and d� as long as the underlying congruence

of conformal geodesics remains non-singular. As Ω → 0, one has that either

τ̄± → 0 or τ̄± → −2Θ̇�/Θ̈�. It follows that I + and I − are smooth hypersurfaces

whenever dΘ �= 0. Moreover, ∂H� is the intersection of I ± with H� = {0} ×H
as is to be expected for hyperboloidal data. In analogy to the model case

of the hyperboloids in the Minkowski spacetime, the development of generic

hyperboloidal data has a conformal boundary which corresponds to either I +

or I −, but not both; see Figure 16.5. This information is contained in the sign

of the free datum Θ̇�. By convention, the conformal factor is positive in the

region corresponding to the physical spacetime (M̃, g̃). Accordingly, if Θ̇� > 0

on ∂H�, then M̃ lies to the future of the conformal boundary and one speaks of a

hyperboloid which intersects past null infinity, and, thus, the conformal boundary

is identified with I −. If, by contrast, Θ̇� < 0 on ∂H�, then M̃ lies to the past

of the conformal boundary. In this case, the hyperboloid intersects future null

infinity and I + gives the conformal boundary. Without loss of generality, in

the following, attention will be restricted to hyperboloids intersecting future null

infinity so that Θ̇ < 0 on ∂H�.

Figure 16.5 The two possible configurations of the conformal boundary for
hyperboloidal data as discussed in the main text: on the left, one has the
case Θ̇� < 0 at ∂H� where the conformal boundary given by the conformal
Gaussian gauge system corresponds to I +; on the right, one has the situation
corresponding to Θ̇� > 0 at ∂H� so the realised component of the conformal
boundary is given by I −.
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16.3 A priori structure of the conformal boundary 447

Timelike infinity

To identify the points which can be regarded as representing timelike infinity,

one needs to investigate the critical points of Θ on the conformal boundary, that

is, the points where dΘ = 0 and τ̄ = τ̄±(x). A calculation shows that

dΘ =

(
1 + ατ̄ +

(
1

4
α2 − 1

ω2

)
τ̄2
)
dΩ+ Ω

(
α+ 2τ̄

(
1

4
α2 − 1

ω2

))
dτ̄

+Ωτ̄ dα+Ωτ̄2
(
1

2
αdα+

2

ω3
dω

)
.

Thus, a necessary condition for having a critical point of Θ on I ± is

α+ 2τ̄±

(
1

4
α2 − 1

ω2

)
= 0.

A short computation shows that the above is equivalent to h(dΩ,dΩ) = 0.

That is, the critical points of Θ can occur only along conformal geodesics for

which dΩ = 0 on the initial hypersurface S�. The standard hyperboloid in the

Minkowski spacetime contains precisely one such point. By continuity, suitably

small perturbations of this data will have only one point for which dΩ = 0.

Now, for points lying along a conformal geodesic for which dΩ = 0, Equation

(16.11) yields τ̄± = −2/α. Note that τ̄± > 0 if α < 0, that is, if Θ̇� < 0.

To obtain a conformal representation which includes timelike infinity one needs

to set α �= 0. This condition will be assumed in the remainder of this chapter.

Moreover, one defines

τ̄i+ ≡ −2/α.

In particular, for the conformal representation of the Minkowski spacetime given

by the conformal factor of Equation (16.5) one finds that τ̄i+ = 2.

To conclude the discussion of timelike infinity, it is necessary to analyse the

Hessian of the conformal factor Θ. In what follows it is assumed that one has

obtained a solution to the conformal field equations and that the associated

unphysical metric g has been determined.

From the general discussion of the conformal field equations in Chapter 8 it

follows that Θ satisfies the equations

∇aΘ = Σa, (16.12a)

∇aΣb = sηab −ΘLab, (16.12b)

∇as = −LacΣ
c, (16.12c)

where s denotes the Friedrich scalar, ∇ is the Levi-Civita connection of the

unphysical metric g ≡ Θ2g̃ and Lab are the components of the Schouten tensor

of ∇ with respect to the Weyl propagated frame {ea}. If s and Lab are regular

at the points for which τ̄ = τ̄i+ , one finds that

HessΘ|i+ = s|i+g|i+ .
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448 Minkowski-like spacetimes

If, in addition, s|i+ �= 0 – which, as will be seen, is the case for perturbations

of the Minkowski spacetime – one concludes that the Hessian of the conformal

factor Θ is non-degenerate at i+, and, consequently, the point i+ can be rightfully

regarded as the timelike infinity of the development of the hyperboloidal initial

data prescribed on H�.

The Cauchy horizon of the hyperboloidal data and the conformal boundary

The discussion in the previous two subsections can be further refined to show

that the conformal boundary I + coincides with the Cauchy horizon H+(H�)

of the initial data prescribed on H�. General results of Lorentzian causal

theory as described in Chapter 14 imply that the Cauchy horizon H+(H�) is

generated by null geodesic segments with endpoints on ∂H�; see Proposition

14.4. Since ∂H� is assumed to be a smooth two-dimensional manifold, it follows

that H+(H�) is, in a neighbourhood of ∂H�, a g-null hypersurface.

Setting Σa ≡ ∇aΘ it follows from the initial data on H� that

Ω = 0, and ΣaΣ
a = ηabdadb = 0, on ∂H�,

where the various fields are expressed in terms of their components with respect

to the Weyl propagated frame {ea}. Accordingly, the null directions tangent to

H+(H�) – the so-called null generators of null infinity – are given on ∂H�

by Σa. On ∂H� one can define g-null vectors l and n by requiring

la = Σa, n ⊥ ∂H�, g(l,n) = 1, on ∂H�.

Moreover, on suitable open sets O ⊂ ∂H� one can supplement l and n

with complex vectors m and m̄ tangent to ∂H� with g(m, m̄) = −1. The

resulting Newman-Penrose frame {l, n, m, m̄} can be propagated along the

null generators of H+(H�) which terminate on O ⊂ ∂H� by parallel transport

in the direction of l; that is, one has

la∇al
b = 0, la∇an

b = 0, la∇am
b = 0.

Assuming now that the conformal field equations are satisfied on H+(H�), it

follows from transvecting Equations (16.12a) and (16.12b) with la and ma that

la∇aΘ = laΣa,

la∇a

(
lbΣb

)
= −Θ

(
Lab

)
,

la∇a

(
mbΣb

)
= −Θ

(
Labl

amb
)
.

These equations can be regarded as ordinary differential equations for the scalars

Θ, lbΣb and mbΣb along the generators of I +. By construction, these fields

vanish on O ⊂ ∂H�. Therefore, following a generator on H+(H�) off ∂H�

one finds that Θ = 0, lbΣb = 0, mbΣb = 0 until, possibly, one arrives at a

caustic point. Consequently, there is at least a portion of H+(H�) where the
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16.3 A priori structure of the conformal boundary 449

conformal factor vanishes. It follows from the above that on O the field Σa must

be proportional to la – more precisely, one can write

Σa =
(
nbΣb

)
la on O ⊂ ∂H�. (16.13)

The portion of the Cauchy horizon where Θ vanishes can be identified with

a portion of I + as given by Equation (16.11). On this part of H+(H�), the

conformal field Equations (16.12b) and (16.12c) imply that

la∇a

(
nbΣb

)
= s,

la∇as = −
(
ncΣc

)
Labl

alb.

Since naΣa = 1 on ∂H� it follows from the homogeneity of the above equations

that s and nbΣb cannot vanish simultaneously. Moreover, contracting ∇aΘ = Σa

with ma, m̄a one obtains

s = −
(
naΣa

)
ρ, (16.14)

where ρ ≡ mam̄b∇bla is the Newman-Penrose spin coefficient associated to the

expansion of the congruence of null generators. Thus, ρ is a measure of its con-

vergence; see, for example, Stewart (1991), section 2.7. It follows from Equation

(16.14) that ρ → ∞ if dΘ = 0 at some point p ∈ H+(H�); see Figure 16.6.

The discussion of the previous subsection shows that the development of

hyperboloidal data suitably close to Minkowski data will contain an isolated

point i+ on the conformal boundary for which dΘ = 0. As I + and H+(H�)

coincide wherever there are no caustics, it follows that the null geodesics on

H+(H�) must converge to i+. Accordingly, H+(H�) is the past light cone of

i+, and the causal past J−(i+) and the future domain of dependence D+(H�)

coincide.

Figure 16.6 Null generators of I + meeting at i+, as discussed in the main
text. The causal past of the caustic point i+ corresponds to the future domain
of dependence of hyperboloidal data; that is, J−(i+) = D+(H+

� ).
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450 Minkowski-like spacetimes

16.4 The proof of the main existence and stability result

Once the background Minkowski spacetime has been analysed in terms of a

conformal Gaussian system adapted to the standard hyperboloid, a proof of

semiglobal existence and stability is obtained by a procedure almost identical to

the one used for the de Sitter spacetime in Section 15.4.

As in the case of the analysis of the de Sitter spacetime, it is convenient to

consider an ansatz for the solutions to the conformal evolution equations of the

form

eAB
0 = ĕAB

0, eAB
α = ēAB

α + ĕAB
α,

ξABCD = ξ̄ABCD + ξ̆ABCD, χABCD = χ̄ABCD + χ̆ABCD, fAB = f̆AB,

ΘABCD = Θ̄ABCD + Θ̆ABCD, φABCD = φ̆ABCD,

where

ēAB
μ, ξ̄ABCD, χ̄ABCD, Θ̄ABCD

are the values of the exact conformal Minkowski spacetime as discussed in Section

16.1. For conciseness, the above ansatz will be written schematically as u =

ū + ŭ. Taking into account that the background fields are also a solution to

the conformal evolution equations and writing the (explicitly known) conformal

gauge fields Θ and da in the form

Θ = Θ̌ + Θ̆, da = ďa + d̆a,

one finds evolution equations for the perturbation fields of the form

∂τ̄ ῠ = Kῠ +Q(Γ̄+ Γ̆)ῠ +Q(Γ̆)ῡ + L(x)φ̆, (16.15a)(
I+A0(ē+ ĕ)

)
∂τ̄ φ̆+Aα(ē+ ĕ)∂αφ̆ = B(Γ̄+ Γ̆)φ̆, (16.15b)

in the conventions of Proposition 13.3. The natural domains for solutions to the

above equations are sets of the form

Mτ̄• ≡ [0, τ̄•]× S3

for some τ̄• > 0.

Using the evolution Equations (16.15a) and (16.15b) one obtains the following

technical version of the main theorem of this chapter:

Theorem 16.1 (semiglobal existence and stability for perturbations of

hyperboloidal data) Let u� = ū� + ŭ� be hyperboloidal initial data for the

conformal Einstein field equations given on a hyperboloidal manifold H. Given

m ≥ 4 and τ̄• > 2 there exists ε > 0 such that:
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16.4 The proof of the main existence and stability result 451

(i) For ‖ ŭ� ‖m< ε there exists a solution u = ū + ŭ to the conformal

propagation equations with a minimal existence interval [0, τ̄•] such that

u ∈ Cm−2([0, τ̄•]× S3),

and the associated congruence of conformal geodesics contains no conjugate

points in [0, τ̄•].

(ii) For every ŭ� with ‖ ŭ� ‖m< ε there is a unique point p+ in the interior of

H such that dΩ = 0 with τi+ ≡ τ̄+(p+) ∈ [0, τ̄•].

The solution u = ū + ŭ is unique on D+(H�) and implies, wherever Θ �=
0, a Cm−2 solution to the vacuum Einstein field equations with a vanishing

cosmological constant for which the set I +, as defined by

I + ≡
{
(τ, p) ∈ R× S3 | τ = τ±(p+)

}
,

represents null infinity, while the point i+ ≡ (τ̄i+ , x
α(p+)) represents timelike

infinity. Moreover, one has

D+(H�) = J−(i+).

Proof The assertion in (i) follows from the general existence result from

symmetric hyperbolic systems in Theorem 12.4 along lines similar to the ones

used in the proofs of Propositions 15.1 and 15.3. The key observation in this

respect is that as (I + A0(ē))|� is positive definite and bounded away from

zero, then
(
I + A0(ē + ĕ)

)
|� can also be made positive definite and bounded

away from zero by choosing ε > 0 small enough. This observation and the

general structure of the evolution Equations (16.15a) and (16.15b) ensure the

existence of Cm−2 solutions ŭ with ‖ ŭ� ‖m< ε on [0, τ̄•] × S3 with τ̄• > 2.

The regularity of the congruence of conformal geodesics defining the gauge is

obtained by supplementing the conformal evolution equations with evolution

equations for the conformal deviation fields, Equations (13.67a) and (13.67b),

and recalling that the deviation fields for the expanding Einstein cylinder are

given by Equation (15.14).

The proof of point (ii) follows from the discussion in Section 16.3 and

by observing that the spatial conformal factor Ω̄ for the exact (background)

hyperboloidal data has an isolated critical point (in fact, a maximum) at ψ = 0.

Accordingly, by continuity, any suitably small perturbations of this data will

also have a unique isolated critical point of its spatial conformal factor. Again,

choosing ε > 0 sufficiently small, one can ensure that τ̄+ < τ̄•.

The final remarks in Theorem 16.1 follow from a propagation of the constraints

argument using the properties of the subsidiary evolution system as given by

Proposition 13.4 and the assumption that the initial data satisfy the conformal

constraint equations on H�. The solution to the conformal field equations

obtained by the above argument implies a solution to the vacuum Einstein field

equations whenever Θ �= 0 as a consequence of Proposition 8.3. Finally, the
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452 Minkowski-like spacetimes

statements about the interpretation of I + as the conformal boundary and the

structure of i+ follow from the analysis in Section 16.3.

Remarks

(i) For conciseness, Theorem 16.1 is restricted to perturbations of the data

implied by the Minkowski spacetime on the standard hyperboloid. An

inspection of the argument, however, shows that this simplifying assumption

is non-essential and that an analogous result can be obtained, at the

expense of some further technical details, for perturbations of Minkowski

data on arbitrary hyperboloids. In other words, the location of the initial

hyperboloid within null infinity is irrelevant. A more subtle consequence of

this observation is that it is, in principle, hard to quantify how far away a

given hyperboloidal initial data set lies from spatial infinity or even whether

there is any (asymptotically Euclidean) Cauchy initial data for the Einstein

field equations whose development contains the hyperboloidal data.

(ii) Theorem 16.1 can be combined with the method of exterior gluing discussed

in Section 11.8.2 to show the existence of a large class of asymptotically

simple spacetimes with a complete conformal boundary, that is, whose null

generators are inextendible geodesics starting at i0 and ending at i+ and,

respectively, i−. These ideas are discussed in more detail in Section 20.5.

(iii) The future domain of dependence D+(H�) as given by Theorem 16.1

provides an infinite portion of spacetime where the framework of asymp-

topia , as discussed in Chapter 10, can be applied; see also, for example,

chapter 3 of Stewart (1991). In particular, if the hyperboloidal initial data

are constructed using the methods of Theorem 11.2, one can obtain a

development which has any desired degree of smoothness and, accordingly,

satisfies the peeling behaviour ; see the discussion in Section 10.2.

16.5 Extensions and further reading

The first semiglobal existence and stability result for hyperboloidal vacuum data

of Minkowski-like spacetimes was obtained in the seminal work by Friedrich

(1986b). This analysis used the standard vacuum conformal field equations

and gauge source functions. The approach adopted in this chapter, employing

the extended conformal field equations and a gauge based on the properties

of conformal geodesics, is adapted from the discussion given in Lübbe and

Valiente Kroon (2009). Similar semiglobal existence and stability results have

been obtained in Anderson and Chruściel (2005) for arbitrary even-dimensional

spacetimes using the conformal equations given by the Graham-Fefferman

obstruction tensor.

The main result of this chapter can be extended to the case of the Einstein-

Maxwell and Einstein-Yang-Mills equations. This was done in Friedrich (1991)
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16.5 Extensions and further reading 453

where the standard conformal field equations and a hyperbolic reduction proce-

dure based on gauge source functions were used. An alternative proof of the semi-

global existence and stability result for the Einstein-Maxwell equations has been

obtained in Lübbe and Valiente Kroon (2012) using an approach similar in spirit

to the one used in this chapter, that is, employing the extended conformal field

equations and a conformal gauge based on the properties of conformal curves.

Conformal curves were preferred in this analysis as they provide an explicit

expression for the conformal factor. In the presence of matter, a standard con-

formal Gaussian system does not provide an explicit expression for the conformal

factor. There is, however, no reason why a semi-global result of the type discussed

in this chapter cannot be obtained using a gauge based on conformal geodesics.

Another way of generalising the main result of this chapter is to consider the

Einstein-conformally invariant scalar field system; see Hübner (1995).

The methods in this chapter can be adapted to analyse semiglobal existence

and stability of asymptotically simple spacetimes with vanishing cosmological

constant which are neither the Minkowski spacetime nor perturbations thereof

– so-called purely radiative spacetimes. These vacuum spacetimes consist of

gravitational radiation (hence the name) which is not necessarily weak, but still

tame enough to not form a black hole; see, for example, Friedrich (1986c) and

the discussion in Chapter 19. Stability of these types of spacetimes from the

perspective of a hyperboloidal initial value problem has been analysed, for the

vacuum case, in Lübbe and Valiente Kroon (2010) and, for the Einstein-Maxwell

case, in Lübbe and Valiente Kroon (2012).

The main theorem of this chapter has been beautifully verified in numerical

simulations in Hübner (2001a). In particular, the numerical results show how

the null generators of the conformal boundary converge, to machine precision,

at timelike infinity. These numerical simulations are further discussed in

Section 21.3.
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17

Anti-de Sitter-like spacetimes

This chapter discusses the construction of anti-de Sitter-like spacetimes, that

is, solutions to the vacuum Einstein field equations with an anti-de Sitter-like

value of the cosmological constant λ. Following the general discussion in Chapter

10, an anti-de Sitter-like value of the cosmological constant implies a timelike

conformal boundary. This feature of anti-de Sitter-like spacetimes marks the

essential difference between the analysis contained in this chapter and the ones

given in Chapters 15 and 16 for de Sitter-like and Minkowski-like spacetimes,

respectively.

While the de Sitter and Minkowski spacetimes are both globally hyperbolic,

and, accordingly, perturbations thereof can be constructed by means of suitable

initial value problems, the anti-de Sitter spacetime is not-globally hyperbolic; see

the discussion in Section 14.5. Consequently, anti-de Sitter-like spacetimes cannot

be solely reconstructed from initial data. One needs to prescribe some boundary

data on the conformal boundary. Thus, the proper setting for the construction of

anti-de Sitter-like spacetimes is that of an initial boundary value problem. In this

spirit, one of the key objectives of this chapter is to identify suitable boundary

data for the conformal Einstein field equations.

For both the de Sitter and Minkowski spacetimes it is possible to obtain

conformal representations which are compact in time so that global existence

of perturbations can be analysed in terms of problems which are local in time.

However, the conformal representations of the anti-de Sitter spacetime discussed

in Chapter 6 involve an infinite range of time. As a consequence, the main result

of this chapter is local in time and makes no assertions about the stability of the

anti-de Sitter spacetime. The main result of this chapter can be formulated as

follows:

Theorem (local existence of anti-de Sitter-like spacetimes). Given

smooth anti-de Sitter-like initial data for the Einstein field equations on a

three-dimensional manifold S with boundary and a smooth three-dimensional

Lorentzian metric 
 on a cylinder [0, τ•)×∂S for some τ• > 0, and assuming that

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


17.1 General properties of anti-de Sitter-like spacetimes 455

these data satisfy certain corner conditions, there exists a local-in-time solution

to the Einstein field equations with an anti-de Sitter-like cosmological constant

such that on {0}×S it implies the given anti-de Sitter-like initial data. Moreover,

this solution to the Einstein field equations admits a conformal completion such

that the intrinsic metric of the resulting (timelike) conformal boundary belongs

to the conformal class [
].

Thus, the conformal class of the intrinsic metric of the conformal bound-

ary constitutes suitable boundary data for the construction of anti-de Sitter

spacetimes. This insight was first obtained in Friedrich (1995).

17.1 General properties of anti-de Sitter-like spacetimes

In what follows, by an anti-de Sitter-like spacetime it will be understood

an asymptotically simple spacetime (M̃, g̃) with positive (i.e. anti-de Sitter-like)

cosmological constant. The basic intuition on this type of spacetimes is obtained

from the paradigmatic example discussed in Section 6.4. In particular, it has

been shown that making use of the conformal factor

ΞadS = a cosψ, a a constant,

the anti-de Sitter spacetime (R4, g̃adS) is conformal to the region

M̃adS ≡
{
p ∈ R× S3

∣∣∣∣ 0 ≤ ψ(p) <
π

2

}
of the Einstein cylinder R × S3 described in standard coordinates (T, ψ, θ, ϕ).

Moreover, the conformal boundary of the spacetime is given by

I ≡
{
p ∈ R× S3

∣∣∣∣ ψ(p) = π

2

}
,

which can be verified to be timelike.

17.1.1 General setting for the construction of anti-de

Sitter-like spacetimes

Let (M, g,Ξ) denote a conformal extension of an anti-de Sitter-like spacetime

(M̃, g̃) with g = Ξ2g̃. It will be assumed that the spacetime is causal (i.e.

it contains no closed timelike curves) and that it contains a smooth, oriented

and compact spacelike hypersurface S� with boundary ∂S� which intersects the

conformal boundary I in such a way that S� ∩ I = ∂S�. It is convenient to

define S̃� ≡ S�\∂S�. The portion of I in the future of S� will be denoted by I +.

Furthermore, it will be assumed that the causal future J+(S�) coincides with the

future domain of dependence1 D+(S� ∪ I +) and that S� ∪ I + ≈ [0, 1) × S�

1 In Chapter 14 the domain of dependence has been defined for achronal sets. However, that
S� ∪ I + is not achronal. This feature will not play a role in the subsequent discussion.
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456 Anti-de Sitter-like spacetimes

Figure 17.1 Penrose diagram of the set up for the construction of anti-de
Sitter-like spacetimes as described in the main text. Initial data prescribed on
S� \ ∂S� allow one to recover the dark shaded region D+(S� \ ∂S�). In order
to recover D+(S� ∪ I +) it is necessary to prescribe boundary data on I +.
Notice that D+(S� ∪ I +) = J+(S�).

so that, in particular, I + ≈ [0, 1) × ∂S�. A schematic depiction of the above

setting is given in Figure 17.1. One of the key objectives of the present chapter

is to address the question: what data on S� ∪ I + are needed to reconstruct the

anti-de Sitter-like spacetime (M̃, g̃) in a neighbourhood U ⊂ J+(S�) of S�?

As a consequence of the properties of the standard Cauchy problem and

the localisation property of hyperbolic equations, the solutions to the conformal

Einstein field equations on D+(S̃�) are determined, up to diffeomorphisms,

in a unique manner by solutions to the constraint equations on S�. To

recover J+(S�) \D+(S̃�) one needs to prescribe suitable data on the conformal

boundary I . The analysis of the suitable boundary data requires the prescription

of some appropriate gauge near I . As will be seen, conformal geodesics are

ideally suited to provide such a gauge.

The conformal constraints at the conformal boundary

Because for anti-de Sitter-like spacetimes the conformal boundary is a g-timelike

hypersurface, it follows that the metric g induces on I a three-dimensional

Lorentzian metric 
. As discussed in Section 11.4.4, the conformal Einstein

field equations satisfied by the (unphysical) spacetime (M, g) imply on I a

simplified set of interior (constraint) equations. It is recalled that a solution

to these conformal constraints at the conformal boundary can be computed

from the metric 
, a smooth scalar function κ and a symmetric 
-tracefree

three-dimensional tensor on I ; see Proposition 11.1. The scalar function is,

in particular, a conformal gauge-dependent quantity which can be set to zero by

considering a different metric in [
].
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17.1 General properties of anti-de Sitter-like spacetimes 457

17.1.2 Conformal geodesics at the conformal boundary

In Section 6.4.2 it has been shown that the anti-de Sitter spacetime can be

covered by a congruence of (non-intersecting) conformal geodesics. In this

congruence, curves which for some value of their affine parameter τ̄ are tangent

to I remain on I for all values of τ̄ . It will be shown that this observation is,

in fact, a generic property of anti-de Sitter-like spacetimes.

On the conformal boundary of an anti-de Sitter-like spacetime consider

an adapted g-orthonormal frame {ea} such that e3 is inward pointing and

orthogonal to I . This frame can then be extended to a neighbourhood U of

I by requiring the frame to be parallely propagated in the direction of e3. It

follows that the connection coefficients of ∇ associated to this frame satisfy

Γ3
a
b = 0 on U .

If one uses Gaussian coordinates x = (xμ) based on I such that

I =
{
p ∈ U

∣∣x3(p) = 0
}
,

it follows from writing ea = ea
μ∂μ that

e3
μ = δ3

μ, ea
3 = 0.

To analyse the behaviour of conformal geodesics at the conformal boundary

it is convenient to consider the equations for these curves expressed in terms of

the connection ∇. These equations can be decomposed in components using the

adapted frame discussed in the previous paragraph. One writes

ẋ = zaea, β = βaω
a.

The conformal curve equations split into two groups. Firstly, one has the normal

equations:

ẋ3 = zaea
3 = z3,

ż3 = −Γa
3
bz

azb − 2(βcz
c)z3 + (zcz

c)β3,

β̇3 = Γa
c
3z

aβc + (βcz
c)β3 − 1

2
(βcβ

c)z3 + L33z
3 + Li3z

i.

Secondly, for i, α = 0, 1, 2 one has the intrinsic equations:

ẋα = ea
αza,

żi = −Γc
i
bz

czb − 2(βcz
c)zi + (zcz

c)βi,

β̇i = Γb
c
iβcz

b + (βcz
c)βi −

1

2
(βcβ

c)zi + L3iz
3 + Lciz

c.

To simplify the analysis of the above equations one can exploit the conformal

freedom and choose an element of the conformal class of the intrinsic 3-metric 


of I for which

s =
1

4
∇c∇cΞ +

1

24
RΞ = 0.
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458 Anti-de Sitter-like spacetimes

Following the discussion of Section 11.4.4, this can always be done locally. Under

this choice of conformal gauge, the solution of the conformal constraint equations

on I implies that

Γa
3
b = 0, Γa

c
3 = 0, L3a = 0.

Moreover, one has

L3a = 0, Lij = lij .

That is, the spacetime (unphysical) Schouten tensor on I is determined by the

Schouten tensor of the intrinsic metric 
.

From the previous discussion it follows that the normal subset of the conformal

geodesic equations reduces to:

ẋ3 = z3,

ż3 = −2(βcβ
c)z3 + (zcz

c)β3,

β̇3 = (βcz
c)β3 − 1

2
(βcβ

c)z3 + l33z
3.

These equations are homogeneous in the unknowns (x3, z3, β3). Thus, by

choosing initial data such that

x3
� = 0, ẋ3

� = 0, β3� = 0, (17.1)

one obtains that

x3(τ) = 0, z3(τ) = 0, β3(τ) = 0

for later times. Accordingly, conformal curves with initial data given by (17.1)

will remain on I . Looking now at the intrinsic part of the conformal geodesic

equations one observes that the equations reduce to

ẋα = ziei
α,

żi = −Γk
i
jz

kzj − 2(βkz
k)zi + (zkz

k)βi,

β̇i = Γj
k
iz

jβk + (βkz
k)βi −

1

2
(βkβ

k)zi + lkiz
k.

These are the conformal geodesic equations for the 3-metric 
 on I .

To verify the consistency between the construction described in the previous

paragraphs and the adapted g-orthonormal frame {ea}, consider a vector v

satisfying the Weyl propagation equation

∇ẋv = −〈β,v〉ẋ− 〈β, ẋ〉v + g(v, ẋ)β�,

along I . Making the ansatz v = αe3, where α denotes a scalar function on I ,

one finds the equation α̇ = −〈β, ẋ〉α. Thus, if initially one has α� �= 0, then

α �= 0 at later times. Accordingly, if one prescribes at some point of the conformal

geodesic in I an orthonormal frame {ea} containing a vector which is normal to

I , one finds that the solution to the Weyl propagation equations will be a frame
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17.1 General properties of anti-de Sitter-like spacetimes 459

Figure 17.2 Representation of conformal geodesics on the conformal boundary
of an anti-de Sitter-like spacetime: those curves that at some point are tangent
to I remain in the conformal boundary and are conformal geodesics for the
conformal structure implied by the intrinsic metric 
; see Lemma 17.1. The
conformal geodesics are depicted by black lines.

along the conformal geodesic which contains a vector normal to I . Moreover, as

the Weyl propagation preserves the orthogonality of vectors, it follows that the

elements of the frame which are at some point intrinsic to I will remain so at

later times; see Figure 17.2.

A more general result

The results obtained in the previous paragraphs make use of a particular metric

in the conformal class [
]. Thus, it is of interest to reformulate them in an

arbitrary conformal gauge. As in Chapter 10, the symbol � denotes equality

on I . Now, consider on M a conformal factor ϑ > 0 such that ϑ � 1 to perform

a rescaling of the form g′ ≡ ϑ2g. This rescaling leaves the metric 
 unchanged

in the sense that 
′ � ϑ2
 � 
. Furthermore, one finds that

s′ � (∇aΞ∇aϑ) � e3(ϑ),

with e3 = (dΞ)� as Ξ = x3 in local coordinates. The comparison of the above

expression with the solution to the conformal constraints at the conformal

boundary as given in Section 11.4.4 suggests defining

κ ≡
√

3/λ e3(ϑ)
∣∣
I
.

Defining the covector k ≡ ϑ−1dϑ, and taking into account the transformation

properties of conformal geodesics as given in Section 5.5.2, it follows that

(x(τ),β′(τ)), with β′ ≡ β − k,

is a solution to the conformal geodesic equations associated to the connection

∇′ ≡ ∇ + S(k). From the definition of k it follows that ∇′ is the Levi-Civita

connection of the metric g′ = ϑ2g. Observe, in particular, that

β′
3(τ) � −k3(τ) � −e3(ϑ) � −s′.

The discussion of this section can be summarised as follows:
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460 Anti-de Sitter-like spacetimes

Lemma 17.1 A conformal geodesic in an anti-de Sitter-like spacetime which

passes through a point p ∈ I , is tangent to I at p and which satisfies

〈β,ν〉|p = −s,

with ν the unit normal to I , remains in I and defines a conformal geodesic

for the conformal structure of I . Furthermore, the Weyl propagation equations

admit a solution containing a vector field normal to I .

17.2 The formulation of an initial boundary value problem

The properties of conformal geodesics in anti-de Sitter-like spacetimes will now be

exploited to construct a conformal Gaussian system for the extended conformal

Einstein field equations. As will be seen, the hyperbolic reduction associated to

this gauge leads to an initial boundary value problem for the conformal evolution

equations.

17.2.1 Construction of a boundary adapted gauge

Following the discussion of Chapter 14, the solution to the Einstein field

equations on the domain of dependence D+(S̃�) = D+(S�\∂S�) is determined in

a unique manner, up to diffeomorphisms, by a pair of tensors (h̃, K̃) satisfying

the Einstein constraint equations on S̃�. On S�, let

Ω ≡ Θ
∣∣
S̃�
, Σ̃� ≡ ν̃(Θ)|S̃�

,

with ν̃ the future-directed unit normal field of S̃� with respect to g̃. In addition

to the usual smoothness and positivity assumptions, the fields Ω and Σ̃� are

restricted by their behaviour near ∂S� where one requires that Σ� ≡ ν(Θ)
∣∣
S�

=

Ω−1Σ̃�, with ν the future-directed g-unit normal, to be smooth. Using the above

fields one can use Equations (11.1a) and (11.1b) to compute the unphysical

fields (h,K).

To simplify the subsequent discussion, it is assumed that the initial hypersur-

face S� is such that the unit normal ν is tangent to I on ∂S�. Accordingly, one

has

Σ� ≡ ν(Θ)
∣∣
S�

= 0 on ∂S�.

Moreover, recalling that at the conformal boundary s can be made to vanish by

a convenient choice of conformal gauge, it is assumed that

s = 0, on ∂S�.

In what follows, each p ∈ S� will be considered as the starting point of a future-

directed conformal geodesic (x(τ),β(τ)) and an associated Weyl propagated

frame {ea}. The parametrisation of the curves is naturally chosen so that τ = 0

on S�. For points p ∈ S̃�, the data for these curves are set in terms of g̃ and its

Levi-Civita connection ∇̃ by the conditions:
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17.2 The formulation of an initial boundary value problem 461

(i) ẋ is future directed, orthogonal to S̃� and satisfies the normalisation

condition

g̃(ẋ, ẋ)� = Θ−2
� .

(ii) β� = Ω−1dΩ so that 〈β�, ẋ�〉 = 0 —as Σ� = 0 by assumption.

(iii) e0� = ẋ� and g̃(ea, eb)� = Θ−2
� ηab.

On suitable neighbourhoods W ⊂ J+(S�) of S�, the conformal geodesics x(τ)

define a smooth timelike congruence in W, {ea} a smooth frame field and β,

a smooth covector. The conformal geodesics can be used to fix a conformal

Gaussian coordinate system on W by setting x0 = τ and then extending

local coordinates x = (xα) on S� by requiring them to remain constant along

conformal geodesics. The coefficients ea
μ = 〈dxμ, ea〉 of the frame {ea} with

respect to the Gaussian coordinates satisfy on W the condition e0
μ = δ0

μ.

Observe, however, that in general ea
0 = 0 only on S�. The conformal factor

Θ is then fixed on W by requiring

g(ea, eb) = ηab.

The discussion of the conformal geodesics in the conformal boundary needs to

be done in terms of the metric g and its Levi-Civita connection ∇. In terms

of these, the conformal geodesics are represented by a pair (x(τ),f(τ)) with

f ≡ β −Θ−1dΘ. Accordingly, one has

f = 0, on S�.

As a result of Lemma 17.1, conformal geodesics which start on ∂S� remain on I .

As s = 0 on ∂S� one can write

s� = Ως�, (17.2)

with ς� a smooth function on ∂S�. It follows from Proposition 5.1 that

Θ = Ω

(
1− 1

2
ς�τ

2

)
, (17.3)

while for da ≡ 〈d, ea〉 one obtains the explicit expression

da =
(
Θ̇, ei(Ω)�

)
, ei(Ω)� ≡ (ei

α∂αΩ)�, (17.4)

where the functions Ω, ς� and ei(Ω)� defined initially on S� are extended to W
so that they are constant along conformal geodesics.

Remark. Insight into the behaviour of the conformal factor (17.3) can

be obtained from the constraint Equation (11.35c). Using Equation (17.2),

exploiting that in an adapted gauge (dΩ)� = −e3 and evaluating at ∂S� one

concludes

ς� � −L03Σ− L33.
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462 Anti-de Sitter-like spacetimes

Finally, from Equations (11.40) and (11.41) it follows that in a conformal gauge

for which s � 0 one also necessarily has L03 � 0. Thus, one obtains the simple

expression

ς� � −L33.

In particular, if L33 > 0, then from Equation (17.3) the conformal factor Θ

vanishes only if Ω vanishes. This observation is consistent with the discussion of

Section 17.1.2 – conformal geodesics which start normal to S� and away from

∂S� cannot enter the conformal boundary. Ideally, one would like to deduce the

property L33 > 0 from an analysis of the conformal constraint equations. For

data for the exact de Sitter spacetime, Equation (6.8b) implies L33 = 1
2 on ∂S�.

Suitable perturbations of data for the anti-de Sitter spacetime should preserve

this property.

17.2.2 The conformal evolution system

Combining the gauge construction with the hyperbolic reduction for the extended

conformal field equations discussed in Section 13.4 one obtains an evolution

system of the form

∂τ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ, (17.5a)(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ̂)φ, (17.5b)

where the notation of Proposition 13.3 is retained and the matrix-valued function

L(x) is given explicitly in terms of the conformal gauge fields Θ and da as

given by Equations (17.3) and (17.4). In the above system, Equation (17.5b)

is understood to correspond to the boundary-adapted Bianchi evolution system

(13.60a) and (13.60b) in Chapter 13. The evolution system (17.5a) and (17.5b) is

ideally suited to the formulation of a boundary value problem, as the equations

described by the subsystem (17.5a) are mere transport equations along

the conformal boundary which do not need to be supplemented by boundary

conditions. Hence, all the boundary conditions arise from the subsystem (17.5b)

associated to the evolution of the Weyl tensor.

Following the discussion of initial boundary value problems for symmetric

hyperbolic equations as described in Section 12.4, the identification of suitable

boundary conditions for Equation (17.5b) stems from an analysis of the

normal matrix A3 at the conformal boundary. Making use of the explicit

expression for the principal part of the boundary-adapted Bianchi system given

in Equation (13.61) and taking into account that, in the boundary adapted

conformal Gaussian gauge, one has

e00
3 � 0, e11

3 � 0,
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17.2 The formulation of an initial boundary value problem 463

it follows that

A3 � 2e01
3
∣∣
I

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

This normal matrix is almost in the form required by the theory of

Chapter 12. It needs only to be verified that the evolution of the frame

coefficient e01
3 on I can be decoupled from that of the components of the Weyl

tensor. An inspection of the conformal evolution Equations (13.59a)–(13.59g)

– of which Equation (17.5a) above is a schematic representation – shows that

whenever Θ = 0, the evolution equations for certain components of the fields

eAB
α, χ(AB)CD, ΘCD(AB) decouple from the evolution of φABCD. Thus, it is

possible to determine the frame coefficient e01
3 directly from the initial data at

∂S� – hence, it is independent of any boundary value prescriptions on I . This

observation will be discussed in some detail in the following subsection.

Remark. The normal matrix for the standard Bianchi system is given by

A3 � 2e01
3
∣∣
I

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0

0 −2 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

so that this normal matrix leads to a much more complicated analysis of

boundary conditions.

17.2.3 Behaviour of the frame at the conformal boundary

In this section, the discussion is restricted to a suitable open neighbourhood W of

a point on ∂S� such that the intersection with conformal geodesics is connected.

Consistent with the discussion in Section 17.2.1, one introduces on S� ∩ W an

adapted three-dimensional spatial frame {ei} such that e3 is orthogonal and

inward directed at ∂S� and such that ∇3ea = 0 on S� ∩ W. One introduces

coordinates x = (xα) on S� ∩W so that x3 vanishes on ∂S� and 〈dxα, e3〉 = δ3
α

on S�∩W. A conformal Gaussian gauge system satisfying the above assumptions

near ∂S� will be called a boundary adapted gauge.

For future reference it is observed that the conformal evolution Equations

(13.59b), (13.59e) and (13.59f) reduce, on the conformal boundary, to

∂τeAB
α � −χ(AB)

PQePQ
α, (17.6a)

∂τχ(AB)CD � −χ(AB)
PQχPQCD −ΘAB(CD), (17.6b)

∂τΘCD(AB) � −χ(CD)
PQΘPQ(AB) + i

√
2dP (AμB)CDP . (17.6c)
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464 Anti-de Sitter-like spacetimes

The above evolution equations at the conformal boundary are conveniently

analysed in terms of a 1+1+2 spinorial formalism. Given a spinorial basis

{εAA} such that

τAA′
= δ0

Aδ0′A
′
+ δ1

Aδ1′A
′
,

it is convenient to introduce a spatial spinor ρAA′
with components with respect

to the basis {εAA} given by

ρAA′ ≡ δ0
Aδ0′A

′ − δ1
Aδ1′A

′
.

The space spinor counterpart of ρAA′
is given by

ρAB ≡ τB
A′

ρAA′ = −2δ(A
0δB)

1.

It can be verified that, in addition to the condition
√
2e0 = τAA′

eAA′ , one has

√
2e3 = ρAA′

eAA′ = ρABeAB = 2e01, on S� ∩W. (17.7)

In particular, one has

eAB(Θ) = dAB = −
√
λ/6ρAB on ∂S�.

The spinor ρAB will be used to split space spinor fields into parts orthogonal

and tangent to I . Accordingly, one defines

e3⊥ ≡ ρABeAB
3, eAB

3‖ ≡ ρ(A
CeB)C

3

χ⊥⊥ ≡ ρABρCDχ̂ABCD, χ‖⊥
AB ≡ ρ(A

Eχ̂B)ECDρCD,

χ⊥‖
CD ≡ ρABχ̂ABE(CρED), χ‖‖

ABCD ≡ ρ(A
Eχ̂B)EF (CρFD),

Θ⊥⊥ ≡ ρABρCDΘ̂ABCD, Θ‖⊥
AB ≡ ρ(A

EΘ̂B)ECDρCD,

where

χ̂ABCD ≡ χ(AB)CD, Θ̂ABCD ≡ ΘAB(CD).

Observing that ∂τρAB = 0, it follows from Equations (17.6a)–(17.6c) that

∂τeAB
3 � −χ̂AB

PQePQ
3,

∂τ
(
χ̂ABCDρCD

)
� −χ̂AB

PQχ̂PQCDρCD − Θ̂ABCDρCD,

∂τ
(
Θ̂CDABρAB

)
� −χ̂AB

PQΘ̂PQCDρAB,
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17.2 The formulation of an initial boundary value problem 465

where it has been used that dP (AμB)CDP ρAB = 0 as dAB and ρAB are

proportional to each other. By further contractions with ρAB one finds that

the above equations split into the subsystems

∂τeAB
3‖ � 1

2
χ‖⊥

ABe3⊥ + χ‖‖eAB
3‖, (17.8a)

∂τχ
‖⊥

AB � 1

2
χ‖⊥

ABχ⊥⊥ + χ‖‖
ABPQχ‖⊥PQ −Θ‖⊥

AB, (17.8b)

∂τΘ
‖⊥

AB � 1

2
χ‖⊥

ABΘ⊥⊥ + χ‖‖
ABPQΘ‖⊥PQ, (17.8c)

and

∂τe
3⊥ � 1

2
χ⊥⊥e3⊥ + χ⊥‖

PQe3‖PQ, (17.9a)

∂τχ
⊥⊥ � 1

2

(
χ⊥⊥)2 + χ⊥‖

PQχ‖⊥PQ −Θ⊥⊥, (17.9b)

∂τΘ
⊥⊥ � 1

2
Θ⊥⊥χ⊥⊥ + χ⊥‖

PQΘ‖⊥PQ. (17.9c)

Initial data for e3⊥ and eAB
3‖ at ∂S� follow directly from (17.7). Namely, one

has

e3⊥
∣∣
∂S�

=
√
2, eAB

3‖∣∣
∂S�

= 0. (17.10)

For χ‖⊥
AB and χ⊥⊥, initial data can be extracted from the conformal constraint

Equation (11.35b) which, taking into account that by assumption Σ = 0 and

La = 0 on S�, takes the form χa
cDcΩ = 0 on ∂S�. It follows then that

χ⊥⊥ = 0, χ‖⊥
AB = 0, on ∂S�. (17.11)

Finally, to compute the data for Θ‖⊥
AB and Θ⊥⊥ one considers the conformal

constraint (11.35c) which, in the present context, takes the form

D3s = −DbΩLb3.

Recalling that s = Ως� and that, in local Gaussian coordinates, Ω = x3 one

concludes that

Θ⊥⊥ = 2ς�, Θ‖⊥
AB = 0, on ∂S�. (17.12)

Using the initial conditions (17.10), (17.11) and (17.12) together with the

homogeneity of the subsystem (17.8a)–(17.8c), it follows directly that

eAB
3‖ � 0, χ‖⊥

AB � 0, Θ‖⊥
AB � 0.

The solution to the subsystem (17.9a)–(17.9c) is given by

e3⊥ = − 2
√
2

2 + τ2ς�
, χ⊥⊥ = − 4τς�

2 + τ2ς�
, Θ⊥⊥ =

4ς�
2 + τ2ς�

.
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466 Anti-de Sitter-like spacetimes

The discussion in this section is summarised in the following:

Lemma 17.2 For any solution to the conformal evolution Equations (17.5a)

and (17.5b) satisfying on ∂S� the conditions (17.10), (17.11) and (17.12), one

has that the normal matrix A3
∣∣
I

of the boundary adapted Bianchi system is

given by

A3 � 2
√
2

2 + τ2ς�

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

irrespectively of the value of φABCD on W ∩ I .

17.2.4 Identification of boundary conditions

The results of the previous paragraphs allow the identification of maximally

dissipative boundary conditions for the conformal evolution equations. Following

the discussion in Section 12.4, the basic condition to be satisfied by the normal

matrix is the inequality

〈φ,A3
∣∣
I
φ〉 ≤ 0,

which, assuming that 2 + τ2ς� > 0, implies that

|φ4|2 − |φ0|2 ≤ 0. (17.13)

To characterise the subspaces of C5 satisfying the above condition consider two

smooth complex-valued functions c1 and c2 on I and let

φ4 = c1φ0 + c2φ̄0.

Exploiting that (c1φ0 − c2φ̄0)(c̄1φ̄0 − c̄2φ0) ≥ 0 one finds that

|φ4|2 − |φ0|2 ≤ (|c1|2 + |c2|2 − 1)|φ0|2.

Thus, condition (17.13) is satisfied if one requires

|c1|2 + |c2|2 ≤ 1.

The above discussion shows that suitable inhomogeneous maximally

dissipative boundary conditions for the conformal evolution equations are

given by

φ4 − c1φ0 − c2φ̄0 = q, |c1|2 + |c2|2 ≤ 1, (17.14)

with c1, c2, q smooth complex-valued functions on I .
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17.2 The formulation of an initial boundary value problem 467

Corner conditions

As seen in Section 12.4, the smoothness of a solution to an initial boundary

value problem requires certain compatibility conditions between the initial data

and the boundary conditions at the edge ∂S� – so-called corner conditions.

Following the general discussion given in Section 12.4, one can use the boundary-

adapted Bianchi system (17.5b) to determine a formal expansion in terms of τ

of the vector φ on I near ∂S�. This expansion implies, in turn, an expansion

for φ4 − c1φ0 − c2φ̄0 and must be consistent with the prescription of the freely

specifiable function q. The explicit form of these corner conditions is rather

cumbersome. In what follows, it will be assumed that these corner conditions

are satisfied to any order.

17.2.5 The local existence result

The analysis of the boundary conditions leads to a local existence result for an

initial boundary value problem for the conformal evolution system (17.5a) and

(17.5b) with boundary conditions of the form (17.14). This result is a direct

application of Theorem 12.6. More precisely, one has the following:

Proposition 17.1 (local existence for the initial boundary value prob-

lem) Given an initial boundary value problem for Equations (17.5a) and (17.5b)

with smooth initial data (
υ̂�(x),φ�(x)

)
, on S�,

and inhomogeneous maximally dissipative boundary data

φ4 − c1φ0 − c2φ̄0 = q, |c1|2 + |c2|2 ≤ 1, on I ,

with c1, c2, q smooth complex-valued functions on I and assuming that the

required corner conditions at ∂S� between initial and boundary data are satisfied

to any order, there exists τ• > 0 such that the initial boundary value problem has

a unique smooth solution (υ̂(τ, x),φ(τ, x)) defined on

Mτ• ≡ [0, τ•)× S.

Remark. Although the above result is local in time, it is nevertheless global in

space. As already mentioned, existence onD+(S�\∂S�) follows from the standard

Cauchy problem. The solutions away from the boundary and those close to the

boundary are then patched together to render the full solution.

17.2.6 Propagation of the constraints

In order to transform the existence result given by Proposition 17.1 into an

assertion about the Einstein field equations it is necessary to provide an analysis

of the propagation of the constraints.
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468 Anti-de Sitter-like spacetimes

The subsidiary evolution system associated to the conformal evolution

Equations (17.5a) and (17.5b) has been discussed in Proposition 13.4. The key

structural feature of these subsidiary equations is that they are homogeneous in

the zero quantities. A further crucial feature is that the equations for the zero

quantities

Σ̂a
c
b, Ξ̂c

dab, Δ̂abc, δa, γab, ςab

are all transport equations, and, accordingly, they do not give rise to boundary

conditions on I . For the zero quantity Λabc associated to the Bianchi identity,

the subsidiary system implied by the boundary-adapted system contains no

derivatives with respect to the coordinate x3 and, thus, has a vanishing normal

matrix; compare Equations (13.66a)–(13.66c). It follows that the subsidiary

evolution equations require no boundary condition on I . From the uniqueness

result for initial boundary value problems, Theorem 12.5, if the conformal

Einstein equations are satisfied on S – that is, the zero quantities vanish – then

they are also satisfied on Mτ• . Combining this discussion with Proposition 8.3

one obtains the following existence result for the Einstein field equations:

Theorem 17.1 (propagation of the constraints for the initial boundary

value problem) Consider smooth anti-de Sitter-like initial data for the extended

conformal Einstein field equations on a three-dimensional manifold S and

boundary initial data of the form (17.14) on I . Assume that the above data

satisfy the required corner conditions to all orders on ∂S� = S� ∩ I . Then the

solution of the initial boundary value problem given by Proposition 17.1 implies

a solution to the extended conformal Einstein field equations on Mτ• . This

solution, in turn, implies an anti-de Sitter-like solution to the vacuum Einstein

field equations on

M̃τ• ≡ Mτ• \ I ,

for which I represents the conformal boundary.

Remark. For an anti-de Sitter-like initial data set it is understood a

collection of conformal fields satisfying the conformal constraint equations with

the required anti-de Sitter asymptotic behaviour; see Section 11.7.

17.3 Covariant formulation of the boundary conditions

From a geometric point of view, the formulation of the boundary conditions

in Proposition 17.1 is not satisfactory. The fields appearing in the maximally

dissipative boundary conditions (17.14) are expressed with respect to a certain

boundary adapted gauge. This gauge specification is an integral part of the

boundary conditions: changes on the adapted boundary imply changes in the

data. It is therefore important to recast the conditions (17.14), or at least
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17.3 Covariant formulation of the boundary conditions 469

a subclass thereof, in a covariant manner. In what follows, attention will be

restricted to the subclass

φ4 − cφ̄0 = q, c constant, |c| ≤ 1. (17.15)

17.3.1 Space spinor split of the boundary data

To recast the boundary condition (17.15) in a covariant manner, it is first

necessary to express the fields in terms of objects intrinsic to the conformal

boundary I . It is convenient to make use of a timelike spinor formalism

based on the spacelike spinor

ρAA′
= δ0

Aδ0′A
′ − δ1

Aδ1′A
′
,

as defined in Section 17.2.3, to project spinorial fields into I in analogy to

the space spinor splits with respect to τAA′
. The spinor ρAA′

is the spinorial

counterpart of the inward-pointing normal ν = e3 to I . Notice, however, the

normalisation ρAA′ρAA′
= −2. Define the space spinor version τAB of τAA′ as

τAB = ρB
B′

τAB′ = 2δ(A
0δB)

1.

Now, taking into account the decomposition of the spinorial counterpart of the

Weyl spinor one can compute its electric and magnetic parts with respect to

ρAA′
as

EABCD ≡ 1

2
ρB

A′
ρEE′

ρD
C′

ρFF ′
dAA′EE′CC′FF ′ =

1

2

(
φABCD + φ‡

ABCD

)
,

BABCD ≡ 1

2
ρB

A′
ρEE′

ρD
C′

ρFF ′
d∗AA′EE′CC′FF ′ = − i

2

(
φABCD − φ‡

ABCD

)
,

with

φ‡
ABCD ≡ ρA

A′
ρB

B′
ρC

C′
ρD

D′
φ̄A′B′C′D′ .

By construction EABCD = E(ABCD) and BABCD = B(ABCD).

The spinors EABCD and BABCD can be decomposed in a 1 + 2 manner

with respect to the spinor τAB. The subsequent discussion will be restricted

to BABCD, but an identical analysis can be carried out for EABCD. This

decomposition is best carried out using tensor frame components and then

translating the result into spinors. One obtains

BABCD = μABCD + μABτCD + τABμCD +
1

4
μ
(
3τABτCD − 2εA(CεD)B

)
,

(17.16)

with the fields

μABCD = μ(ABCD), μAB = μ(AB), μ = μ̄,
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470 Anti-de Sitter-like spacetimes

satisfying

τABμABCD = 0, τABμAB = 0.

The geometric interpretation of the various spinors follows from the above prop-

erties. By inspection, it can be shown that the only non-vanishing components of

the spinor μABCD are given by μ1111 = μ0000. Similarly, for the rank-2 spinor

μAB one has the non-vanishing components and μ00 = μ11. From the definitions

of the magnetic parts of φABCD it follows that

μ1111 = − i

2

(
φ1111 − φ̄0′0′0′0′

)
μ11 = − i

2

(
φ0111 − φ̄1′0′0′0′

)
,

μ = −i
(
φ0011 − φ̄1′1′0′0′

)
.

It follows from the above expressions and their analogues for EABCD that the

boundary condition (17.15) can be rewritten in terms of the components of the

spinors EABCD and BABCD. Of particular interest are the cases

c = 1 : B1111 = q, (17.17a)

c = −1 : E1111 = q. (17.17b)

The Bianchi constraints at the conformal boundary

Now, assume that one is provided with boundary data in the form (17.17a)

or (17.17b). A natural question is whether it is possible to recover the full

spinor EABCD and, respectively, BABCD. It is recalled that the conformal field

equation

∇A
A′φABCD = 0

implies on I the constraint equations

DPQηPQAB = 0, DPQμPQAB = 0, (17.18)

with DAB ≡ ρ(A
A′∇B)A′ ; see Section 11.4. The above equations are the

spinorial versions of the conformal constraints (11.39f) and (11.39g). They can

be decomposed by introducing the directional derivatives

P ≡ τAA′∇AA′ , δAB ≡ τ(A
QDB)Q,

along, respectively, the direction dictated by the conformal geodesics threading

the conformal boundary and the direction orthogonal to them. A direct

computation gives

DAB =
1

2
τABP + δAB.
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17.3 Covariant formulation of the boundary conditions 471

Combining this split with the decomposition (17.16) of the spinor BABCD one

finds that the constraint Equations (17.18) imply the system

2Pμ+ 4δABμAB = 2μABPτAB − 3μDABτAB

+ 2τEFDABμABEF , (17.19a)

4PμCD + 2δCDμ = 4(μCDDEF τEF + μEFDEF τCD)− 3μPτCD

+ 4(δC
EδD

F + τCDτEF )DABμABEF . (17.19b)

A similar system is satisfied by the components of EABCD. Direct inspection

reveals that the above equations constitute a linear symmetric hyperbolic system

(intrinsic to I ) for the fields μ and μAB if the field μABCD is provided; that

is, μABCD plays the role of source terms. The terms involving derivatives with

respect to the spinor field τAB appearing in the right-hand sides of the above

equations can be simplified if one assumes a boundary-adapted gauge on I .

The discussion of the previous paragraphs can be summarised in the following

manner: suppose one is given boundary data on I of the form (17.17a) and

suppose one knows the values of the fields μ and μAB on ∂S�; then, at least

in a neighbourhood of the edge ∂S�, it is possible to determine the components

μ and μAB by solving the hyperbolic system (17.19a) and (17.19b). A similar

discussion holds for the electric part.

17.3.2 Prescribing the Cotton tensor of the conformal boundary

Despite the formal symmetry between the boundary conditions (17.17a) and

(17.17b), the former condition possesses a much stronger geometric content.

As a consequence of Equation (11.42), the magnetic part of the rescaled Weyl

tensor corresponds, essentially, to the components of the Cotton tensor yijk of

the intrinsic Lorentzian metric 
 of I . Thus, one can ask whether, given the

components yijk of a tensor on I with the symmetries of the Cotton tensor, it

is possible to find a Lorentzian metric 
 on I such that yijk are the components,

with respect to a boundary-adapted frame, of the Cotton tensor of 
. If this is

possible, then, as a consequence of its conformal transformation properties, one

has obtained a way of reexpressing a subset of the general maximally dissipative

boundary conditions for the conformal field equations in terms of the conformal

structure on I . One has the following result, adapted from lemma 7.1 in

Friedrich (1995):

Proposition 17.2 (geometric formulation of boundary conditions)

Suppose one has a solution to the extended conformal field equations with anti-

de Sitter-like cosmological constant on Mτ• = [0, τ•) × S for τ• > 0 for which

I = [0, τ•)× ∂S represents the conformal boundary. Let g denote the metric on

Mτ• obtained from the solution to the conformal field equations and let 
 denote

the 3-metric induced on I by g. Assume that the boundary-adapted conformal

Gaussian gauge system can be extended to all of Mτ• . One then has:
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472 Anti-de Sitter-like spacetimes

(i) Given the restriction to ∂S� of the data for the conformal Einstein field

equations in the boundary-adapted gauge and given the conformal class [
],

it is possible to compute the function q appearing in the boundary condition

(17.17a).

(ii) Conversely, given on ∂S� the restriction of the data for the conformal

Einstein field equations in the boundary-adapted gauge and the boundary

condition (17.17a), it is possible to determine, in a unique manner, the

conformal class [
].

Proof To prove (i) it is observed that as a consequence of Lemma 17.1, the

boundary-adapted conformal Gaussian gauge at the conformal boundary can be

constructed by solving the conformal geodesic equations for the metric 
. Once

the associated Weyl-propagated frame {ei} has been obtained, one can directly

compute the components yijk of the Cotton tensor. Using the discussion of the

previous subsection one can, in turn, compute the function q appearing in the

boundary condition (17.17a).

The proof of (ii) is much more involved and only a sketch of the main ideas will

be provided. Here, one has to verify whether a given three-dimensional tensor

is the Cotton tensor of a three-dimensional Lorentzian metric. In view of the

Lorentzian nature of this problem, one can address this question by formulating

a suitable initial value problem on I with data on ∂S� for the evolution equations

implied by the structural equations on I . Formulated in this manner one has a

situation which is very similar to the Cauchy problem for the extended conformal

Einstein field equations.

In what follows, let D denote the Levi-Civita covariant derivative of the

metric 
, and let D̂ denote a Weyl connection in the conformal class of 
. As

in the four-dimensional case, the connections are related to each other via a

relation of the form D̂ − D = S(f), with f representing a three-dimensional

covector and S the three-dimensional version of the transition tensor discussed

in Section 5.2.1. Let {ei} denote an 
-orthogonal frame on I , and let γ̂i
j
k

be the associated connection coefficients of the connection D̂. Moreover, let l̂ij
denote the components of the Schouten tensor of the connection D̂. In analogy

to the discussion of the conformal field equations, it is convenient to introduce

a number of zero quantities encoding the structure equations to be satisfied

by the various geometric fields:

Σ̂i
k
jek ≡ [ei, ej ]− (γ̂i

k
j − γ̂j

k
i)ek,

Ξ̂k
lij ≡ ei(γ̂j

k
l)− ej(γ̂i

k
l) + γ̂m

k
l(γ̂j

m
i − γ̂i

m
j)

+ γ̂j
m

lγ̂i
k
m − γ̂i

m
lγ̂j

k
m − 2Sl[i

km l̂j]m,

Δ̂ijk ≡ D̂i l̂jk − D̂j l̂ik − yijk,

Λj ≡ Diyij ,
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where

yij ≡ −1

2
εj

klyikl, yi
i = 0, yij = yji,

is the so-called Bach tensor. The zero quantity Σ̂i
k
j encodes the vanishing

of the torsion of the connection D̂, Ξ̂k
lij contains the relation between the

geometric and algebraic curvatures (the Ricci identities), Δ̂ijk describes the

second Bianchi identity for D̂ while Λj corresponds to the so-called third

Bianchi identity – the differential identity satisfied by the Bach tensor.

To obtain a hyperbolic reduction of the above equations one considers the

conformal Gaussian system implied by the conformal geodesics on I . Using

arguments similar to the ones in the four-dimensional case one has

ei
α = δαi , γ̂0

k
j = 0, l̂0j = 0, (17.20)

and one considers the evolution equations

Σ̂0
k
jek = 0, Ξ̂k

l0j = 0, Δ̂0jk = 0, Λ̂j = 0. (17.21)

Taking into consideration the gauge conditions (17.20), it can be verified that

the first three equations in (17.21) are transport equations on I . The fourth

equation requires a more careful discussion: using the solution to the conformal

constraint equations as given by Equation (11.42) some components of yij can be

expressed in terms of the boundary conditions; for the remaining components one

has that Equations (17.19a) and (17.19b) imply a symmetric hyperbolic system.

Thus, one has obtained a symmetric hyperbolic system for the fields ei
α, γ̂i

k
j ,

l̂ij and for the components of yij not determined by the boundary conditions.

Initial data on ∂S� for these fields can be computed from the restriction to ∂S�

of the initial data for the conformal evolution equations. Hence, using the general

theory of symmetric hyperbolic systems as discussed in Chapter 12, one obtains

a solution to Equations (17.21) in a neighbourhood U in I of ∂S�. To show that

this solution implies, in turn, a solution to the equations

Σ̂i
k
jek = 0, Ξ̂k

lij = 0, Δ̂ijk = 0, Λj = 0, on U

provided that they are satisfied at ∂S, one needs to discuss the propagation of

the constraints along the lines of Section 13.4.5. The resulting frame {ei} can

be used to construct on U ⊂ I a Lorentzian metric 
. This metric characterises

the conformal class of the intrinsic metric of the conformal boundary.

Reflective boundary conditions

An important class of boundary conditions covered by the prescription (17.17a)

is that of the so-called reflective boundary conditions. These correspond to

the particular choice of q = 0 so that one has

φ11111 = φ̄0′0′0′0′ , on I .
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474 Anti-de Sitter-like spacetimes

In what follows, this boundary condition will be supplemented by the conditions

φ0111 = φ̄0′0′0′1′ , φ0011 = φ̄0′0′1′1′ , on ∂S�.

Accordingly, from the discussion in Section 17.3.1 it follows that BABCD = 0

on ∂S�. Furthermore, using the interior evolution system (17.19a) and (17.19b)

one has

BABCD = 0, on I .

As BABCD corresponds to the Cotton tensor of I , it follows that reflective

boundary conditions together with some supplementary conditions at the edge

imply that the intrinsic metric on I is conformally flat.

As pointed out in Friedrich (2014a), despite the above neat geometric

characterisation of reflective boundary conditions, if one wants to construct

a smooth solution to the initial boundary value problem, one still needs to

satisfy an infinite hierarchy of corner conditions. Whether this requirement is

compatible with the known procedures for constructing anti-de Sitter-like initial

data remains an open question.

Comparison with other initial boundary value problems for the

Einstein field equations

Initial boundary value problems in general relativity arise in a natural manner

in numerical applications. There exists a number of treatments of the well-

posedness of this type of partial differential equation problem for the Einstein

field equations; see, for example, Friedrich and Nagy (1999) and Kreiss et al.

(2009). The approach and formulation of the Einstein equations considered in

the former reference are similar to the ones discussed in this book.

The analysis in Friedrich and Nagy (1999) makes use of a frame formulation

of the Einstein field equations. The equations employed in this reference can

be obtained from the standard conformal Einstein field equations discussed in

Section 8.3.1 by setting Ξ = 1. Given these equations, the question is what type

of boundary data need to be prescribed on a, in principle, arbitrary, timelike

hypersurface to obtain a well-posed initial boundary value problem and to ensure

the propagation of the constraints. It turns out that the allowed boundary data

are essentially expressed as a combination of components of the Weyl tensor (with

respect to a boundary adapted frame) of the form given in Equation (17.14).

Despite these parallels, the situation of the initial boundary value problem

analysed in Friedrich and Nagy (1999) and the one discussed in this chapter

differ in a key aspect: the boundary hypersurface in anti-de Sitter spacetimes

has a canonic character. As a consequence, it is possible to formulate covari-

ant boundary conditions, and one ends up with a setting where geometric

uniqueness of the solutions can be ensured. In Friedrich and Nagy (1999) it

was not possible to obtain a geometric formulation of the boundary conditions
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on the timelike hypersurface. Thus, they remain tied to the prescription of the

boundary-adapted gauge. As geometric uniqueness cannot be asserted, it is, in

principle, not possible to determine whether two seemingly different boundary

conditions will lead to the same spacetime, modulo diffeomorphisms. A further

discussion can be found in Friedrich (2009).

17.4 Other approaches to the construction of anti-de

Sitter-like spacetimes

The analysis of this section has been concerned with the construction of four-

dimensional anti-de Sitter-like spacetimes by means of an initial boundary value

problem for the conformal Einstein field equations. There are, however, other

approaches to this problem if, for example, one assumes the existence of a static

Killing vector on the spacetime. The assumption of staticity is a strong one and

renders results of a global nature. As an example of this type of statement one

has the following theorem from Anderson et al. (2002):

Theorem 17.2 (existence of static anti-de Sitter-like spacetimes) Let 


denote a smooth strictly globally static Lorentzian metric of non-negative scalar

curvature on R× S2. Then (R× S2, 
) is the conformal boundary of a complete

strictly globally static vacuum Lorentzian metric on R4 with anti-de Sitter-like

cosmological constant.

A strictly globally static spacetime is a spacetime containing an every-

where timelike vector which is orthogonal to the level sets of a globally defined

time function. The proof of this result relies on the use of the Fefferman-

Graham obstruction tensor; see Fefferman and Graham (1985, 2012). Related

to the above theorem is the rigidity result given in Anderson (2006), in which

it is shown that complete non-singular anti-de Sitter-like spacetimes with a

globally stationary conformal infinity and an asymptotically stationary bulk must

be globally stationary. This result seems to suggest the instability of anti-de

Sitter-like spacetimes, at least for certain types of boundary conditions. This

expectation has been reinforced by the evidence of turbulent instability observed

in numerical simulations of spherically symmetric solutions of the Einstein-scalar

field system with anti-de Sitter-like boundary conditions reported by Bizon and

Rostworowski (2011).

17.5 Further reading

The approach to the construction of anti-de Sitter-like spacetimes discussed in

this chapter has been adapted from the seminal analysis in Friedrich (1995).

Boundary conditions for a range of test fields in the anti-de Sitter spacetime

have been studied in Ishibashi and Wald (2004). General properties of the exact

anti-de Sitter spacetime are examined in detail in Griffiths and Podolský (2009),
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476 Anti-de Sitter-like spacetimes

while properties of anti-de Sitter-like spacetimes are discussed in Henneaux and

Teitelboim (1985) and Frances (2005). An issue which has not been touched on in

this chapter is that of the definition of the mass for anti-de Sitter-like spacetimes.

Conformal approaches to this question have been discussed, for example, in

Ashtekar and Magnon (1984) and Ashtekar and Das (2000). Readers interested in

a discussion of the issue of the stability/instability of the anti-de Sitter spacetime

are referred to the reviews by Bizon (2013) and Maliborski and Rostworowski

(2013) and references within.

A considerable part of the interest on anti-de Sitter-like spacetime stems from

the so-called AdS/CFT correspondence; see, for example, Maldacena (1998),

Witten (1998) and Witten and Yau (1999). A good discussion of the issues

involved from a mathematician’s point of view are presented in Anderson

(2005b).
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18

Characteristic problems for the conformal
field equations

This chapter discusses the basic theory of characteristic problems for the

conformal field equations. Characteristic problems have been of great conceptual

value in the development of the modern theory of gravitational radiation. Indeed,

the seminal works by Bondi et al. (1962) and Sachs (1962b), in which the

modern understanding of gravitational waves was established, were carried out

in a setting based on a characteristic initial value problem; see also Sachs

(1962c) and Newman and Penrose (1962). The connection between characteristic

problems and the notion of asymptotic flatness, already present in the seminal

work by Penrose (1963), was further elaborated in Penrose (1965, 1980). From a

mathematical point of view, the realisation that the characteristic initial value

problem for the Einstein field equations leads to a symmetric hyperbolic evolution

system for which the machinery of the theory of partial differential equations

(PDEs) is available was first established in Friedrich (1981b). In Friedrich (1981a,

1982) these ideas were subsequently extended to a situation in which part of

the data is prescribed at null infinity –a so-called asymptotic characteristic

initial value problem, the subject of this chapter. These results established

the local existence of analytic solutions and were later extended to the smooth

case by Kánnár (1996b) using the method of reduction to a standard Cauchy

problem by Rendall (1990); see Section 12.5.3.

There are two basic types of asymptotic characteristic problem for the

conformal Einstein field equations. The first type is the so-called standard

asymptotic characteristic problem – introduced in Friedrich (1981b) – where

initial data are prescribed on null infinity and a null hypersurface intersecting

null infinity in a two-dimensional surface with the topology of a 2-sphere; see

Figure 18.1, left. In the second type – the so-called characteristic problem

on a cone, first discussed in Friedrich (1986c) – one prescribes information on

a null cone down to its vertex; see Figure 18.1, right. For reasons discussed in

Section 12.5, characteristic problems on a cone are more technically involved.

Existence results have been obtained in Chruściel and Paetz (2013).
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478 Characteristic problems for the conformal field equations

Figure 18.1 Two possible asymptotic characteristic problems for the conformal
field equations: on the left, initial data are prescribed on an outgoing null
hypersurface N and null infinity I −; on the right, data are prescribed
on a null cone representing past null infinity I −. The vertex of the cone
corresponds to past timelike infinity, i−.

The standard and characteristic initial value problems have several structural

properties in common. Moreover, the characteristic problem on a cone can be

regarded as a limiting case of the standard characteristic problem. In both

cases, the Einstein field equations on the initial hypersurfaces split into a set

of interior (or intrinsic) equations and a set of transverse equations.

The interior equations split, in turn, into constraint equations which need to

be satisfied only on some subsets of the initial hypersurface (the intersection of

the null hypersurfaces or the vertex of the cone) and transport equations

which propagate information along the generators of the null hypersurfaces.

The transverse equations dictate the evolution off the initial hypersurfaces.

One of the key aspects of the analysis of asymptotic characteristic problems

is the identification of freely specifiable data from which the full data for the

evolution equations can be derived. An appealing feature of this type of setting

is the natural interpretation of the free data in terms of radiation fields so that a

clear-cut connection with the theory of asymptotics as discussed in Chapter 10

can be established.

The discussion in the present chapter is mostly concerned with standard

characteristic problems. Certain aspects of the characteristic problem on a cone

are briefly considered. The existence results discussed are local in nature. That

is, one obtains existence of solutions in a neighbourhood of the intersection of the

null hypersurfaces or the vertex of the initial cone. From the perspective of the

physical spacetime these local neighbourhoods represent unbounded domains in

the asymptotic region.

18.1 Geometric and gauge aspects of the standard characteristic

initial value problem

This section provides a discussion of the geometric setting and the gauge

fixing procedure for the standard asymptotic characteristic problem. Taking into

account the general theory of characteristic problems described in Section 12.5.1

one can consider two possible configurations (see Figure 18.2): (i) that of a
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18.1 Geometric and gauge aspects of the initial value problem 479

Figure 18.2 The two possible standard asymptotic characteristic problems for
the conformal Einstein field equations. Case (i) where data are prescribed on a
future-oriented (outgoing) null hypersurface N ′ and future null infinity I +,
and case (ii) where data are prescribed on a past-oriented (incoming) null
hypersurface N and past null infinity I −.

future-oriented (i.e. outgoing) null hypersurface intersecting future null infinity

or (ii) a past-oriented (i.e. incoming) null hypersurface intersecting past null

infinity. In order to compare with the characteristic problem on a cone, the

present discussion focuses in the latter case. A careful inspection of the setting

discussed here leads to the formulation of case (i).

18.1.1 Geometric setting

In what follows, let (M, g,Ξ) denote a conformal extension of an asymptotically

simple spacetime (M̃, g̃) satisfying Ric[g̃] = 0 which contains past null infinity

I −. Let W denote a region of M with W ≈ R+ × R+ × S2 bounded by an

incoming null hypersurface N and past null infinity I −. It will be assumed

that both N and I − have the topology of R+ × S2. Let Z ≡ N ∩ I − with

Z ≈ S2. One has that W ⊂ J+(Z ). A schematic representation of the geometric

setting can be seen in Figure 18.3.

An adapted coordinate system (xμ) and an associated null tetrad {eAA′}will
be used to describe the geometry of the region W. Let {ωAA′} denote the

associated coframe and require that

g(eAA′ , eBB′) = εABεA′B′ . (18.1)

On Z one considers some coordinate system (xA) where A = 2, 3. The complex

vectors e01′ and e10′ = e01′ of the null tetrad {eAA′} will be chosen so that

they span the tangent bundle T (Z ) – recall that in standard Newman-Penrose

notation the vectors e01′ and e10′ correspond to m and m.

Now, choose e00′ so that, on I −, it is tangent to the null generators of

the conformal boundary – in standard Newman-Penrose notation this vector

corresponds to l. Let v denote an affine parameter of these generators with the

property that v|Z = 0. Thus, one has that e00′ � ∂v where, following the

conventions of Chapter 10, the symbol � denotes equality at I −. The vectors

e01′ and e10′ can be extended to the rest of I − by parallel propagation along

the null generators. Accordingly, one has

∇00′e00′ � 0, ∇00′e01′ � 0, ∇00′e10′ � 0, on I −, (18.2)
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480 Characteristic problems for the conformal field equations

Figure 18.3 Schematic representation of the set up for the standard asymptotic
characteristic problem. The existence results are restricted to a neighbourhood
U of Z in J+(Z ).

where ∇00′ ≡ e00′a∇a is the directional derivative in the direction of e00′ . Given

v• ∈ [0,∞), let Zv• ⊂ I − denote the two-dimensional surfaces given by

Zv• ≡ {p ∈ I − | v(p) = v•}.

As a result of their parallel propagation, the vectors e01′ and e10′ span T (Zv•).

Having fixed the vectors e00′ , e01′ and e10′ on I −, regarding the conformal

boundary as a submanifold of M, and given that the spacetime metric g is

assumed to be known, it follows that at every point p ∈ I −, there exists a unique

future-pointing null vector linearly independent to {e00′ , e01′ , e10′}. This vector
is used to complete the null frame {eAA′} on I − – accordingly, it will be denoted

by e11′ , or n in Newman-Penrose notation. The vector e11′ is fixed by the four

conditions

g(e11′ , eBB′) = ε1Bε1′B′ .

Now, for fixed v•, there exists (at least locally) a unique null hypersurface Nv•

in M satisfying Nv• ∩I − = Zv• such that at Zv• the vector e11′ is tangent to

Nv• – this involves solving the eikonal equation g(dΦ,dΦ) = 0 for some scalar

Φ ∈ X (W) near I − with the appropriate initial conditions; for further details

see, for example, Stewart (1991), section 4.3. By varying v• one thus obtains (at

least locally) a foliation of null hypersurfaces intersecting I −. Thence, the affine

parameter v along the null generators of I − can be used as a coordinate on W.

Accordingly, one sets x0 = v, and has

Nv• ≡ {p ∈ W | v(p) = v•},
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18.1 Geometric and gauge aspects of the initial value problem 481

so that the normal to Nv• is given by dv. The vector e11′ can now be extended

into W by requiring it to be tangent to the generators of these hypersurfaces;

that is, one has

e11′ = g�(dx0, ·). (18.3)

Let r denote an affine parameter of the integral curves of e11′ so that one can

write e11′ = ∂r. Without loss of generality one can choose r � 0. The coordinate

system (xμ) on W is then completed by setting x1 = r and by extending the

coordinates (xA) on Zv so that they are constant along the integral curves of

e00′ and e11′ . As a consequence of this construction one has

N ≡ {p ∈ W | x0(p) = 0}, I − ≡ {p ∈ W | x1(p) = 0}.

The vectors e00′ , e01′ and e10′ can be extended off I − by parallel propagation

along the direction of e11′ . Accordingly, one has

∇11′e11′ = 0, ∇11′e01′ = 0, ∇11′e10′ = 0, on W. (18.4)

To obtain an explicit expression for the frame {eAA′} in the coordinates

(xμ) = (v, r, xA), it is observed that from Equation (18.3) – rewritten in the

form g(∂r, ·) = 〈dv, ·〉 – one obtains the pairings

g(∂r,∂v) = 1, g(∂r,∂r) = 0, g(∂r,∂A) = 0. (18.5)

Taking into account the above, the most general form for the frame {eAA′}
consistent with Equations (18.1) and (18.3) is given by

e00′ = ∂v + U∂r +XA∂A,

e11′ = ∂r,

e01′ = ω∂r + ξA∂A,

e10′ = ω̄∂r + ξ̄A∂A,

where U andXA are real functions and ω and ξA are complex functions. Observe,

in particular, that because of the conditions in (18.5), e01′ and e10′ cannot

have a v-component. Using, again, relation (18.1) one finds that the components

gμν = g�(dxμ,dxν) are of the form

(gμν) =

⎛
⎝ 0 1 0

1 g11 g1A

0 gA1 gAB

⎞
⎠ ,

where

g11 = 2(U − ωω̄), g1A = XA − (ξAω̄ + ξ̄Aω), gAB = −
(
ξAξ̄B + ξ̄AξB).
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In particular, one has that U � 0, XA � 0, ω � 0, consistent with the fact that

e11′ is tangent to the generators of null infinity and that v is an affine parameter;

hence, e11′ � ∂v. Observe also that e01′ � ξA∂A. Thus, the pull-back to Zv of

gAB∂A ⊗ ∂B = −
(
ξAξ̄B + ξ̄AξB)∂A ⊗ ∂B,

to be denoted by ς�, corresponds to the two-dimensional (contravariant) metric

of the sections of null infinity. Now, by assumption Zv ≈ S2 so that ς is conformal

to the standard metric of S2.

Finally, combining the propagation conditions (18.2) and (18.4) with the

definition of the spin connection coefficients – see Equations (3.31) and (3.33) –

in the form

ΓAA′BC =
1

2
εBP 〈ωPQ′

,∇AA′eCQ′〉,

one finds

Γ00′10 � 0, Γ00′00 � 0,

and

Γ00′11 = Γ̄10′1′0′ + Γ10′10, Γ01′11 = Γ̄10′1′1′ , Γ11′AB = 0, on W ⊂ M.

The discussion of this section is summarised in the following

Lemma 18.1 (frame gauge conditions for the standard characteristic

problem) Let (M̃, g̃) denote an asymptotically simple spacetime satisfying

Ric[g̃] = 0 and let (M, g,Ξ) with g = Ξ2g̃ be a conformal extension thereof for

which the condition Ξ = 0 describes past null infinity I −. The frame {eAA′}
can be chosen so that, given a null hypersurface N intersecting I − on Z ≈ S2,

one has

Γ00′11 = Γ̄10′1′0′ + Γ10′10,

Γ01′11 = Γ̄10′1′1′ , Γ11′AB = 0, on W ⊂ M.

In addition, one has that

Γ00′01 = Γ00′10 = Γ00′00 = U = XA = ω = 0, on I −.

Remark. The conventions used here for the vectors e00′ and e11′ are the

opposite of those used in Kánnár (1996b). They have been chosen to agree with

the standard conventions in the treatment of asymptotics as given in Penrose

and Rindler (1986) and Stewart (1991) and to ease the comparison with the

characteristic problem on a cone.
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18.1.2 The choice of conformal gauge

The geometric setting discussed in the previous section has an inherent conformal

gauge freedom which can be exploited to simplify the analysis.

As discussed in Section 8.2.5, the Ricci scalar R[g] plays the role of a

conformal gauge source function for the conformal field equations. A

possible choice in the present setting is to fix the conformal factor Ξ linking

the metrics g̃ and g in such a manner that R[g] = 0. To see that this can always

be done, consider first a situation involving a generic conformal factor Ξ for

which R[g] �= 0, and let

g′ ≡ ϑ2g, (18.6)

with ϑ a positive function on W. Defining Ξ′ ≡ ϑΞ one finds that g′ = Ξ′2g̃.

Consistent with the above conformal rescaling one considers the following

transformation behaviour for the g-orthonormal frame {eAA′}:

e′00′ = e00′ , e′11′ = ϑ−2e11′ , e′01′ = ϑ−1e01′ , e′10′ = ϑ−1e10′ .

Using the transformation law under conformal rescalings for the Ricci scalar,

Equation (5.6c), one finds that the requirement R[g′] = 0 is equivalent to the

wave equation

∇a∇aϑ =
1

6
R[g]; (18.7)

see also Equation (8.30). The general theory of the characteristic problem for

wave equations ensures the existence of a unique solution to this equation in

a neighbourhood U of Z in J+(Z ) if some suitable data are prescribed on

N ∪I −; see, for example, Rendall (1990). A natural requirement on the initial

data for Equation (18.7) is to have ω′11′
= dΞ′ on Z where {ω′AA′} denotes

the coframe dual to {e′AA′}. This is equivalent to setting

ω′11′
= ϑdΞ on Z .

By choosing ϑ−1|Z = e11′(Ξ)|Z = 〈dΞ, e11′〉|Z one can, in fact, ensure that

e′11′(Ξ′) = 〈dΞ′, e′11′〉 = 1 on Z .

The principal part of the wave Equation (18.7), expressed in terms of frame

derivatives, is given by

e00′
(
e11′(ϑ)

)
+ e11′

(
e00′(ϑ)

)
− e01′

(
e10′(ϑ)

)
− e10′

(
e01′(ϑ)

)
.

Thus, Equation (18.7) implies an intrinsic propagation equation on N for e00′(ϑ)

if e11′(ϑ) is known on N . Analogously, one has an intrinsic propagation equation

on I − for e11′(ϑ) if e00′(ϑ) is known on I −. The freedom in the specification
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484 Characteristic problems for the conformal field equations

of characteristic data can be exploited by observing that under the conformal

rescaling (18.6) one obtains the transformation rules

Γ′
01′11 = Γ01′11 − ϑ−1e11′(ϑ), Γ′

10′00 = ϑ−2Γ10′00 − ϑ−3e00′(ϑ).

Accordingly, by setting

e11′(ϑ) = ϑΓ01′11, e00′(ϑ) = ϑΓ10′00 on Z ,

one obtains

Γ′
01′11 = 0, Γ′

10′00 = 0, on Z .

To propagate the freely specifiable components of ∇AA′ϑ along N and I − it

is convenient to consider the transformation law under conformal rescalings of

the trace-free part of the Ricci tensor

Φ′
ab − Φab = −2ϑ−1

(
∇a∇bϑ− 2ϑ−1∇aϑ∇bϑ

− 1

4
gab(∇c∇cϑ− 2ϑ−1∇cϑ∇cϑ)

)
. (18.8)

Now, recalling that

ΦAA′BB′ = eAA′aeBB′bΦab, Φ′
AA′BB′ = e′AA′

ae′BB′
bΦ′

ab,

one can consider the propagation equations

e11′
(
e11′(ϑ)

)
− 2ϑ−1

(
e11′(ϑ)

)2
= ϑΦ22 on N , (18.9a)

e00′
(
e00′(ϑ)

)
− 2ϑ−1

(
e00′(ϑ)

)2
= ϑΦ00 on I −. (18.9b)

These two equations can be read as ordinary differential equations along the

generators of N and I − for e11′(ϑ) and e00′(ϑ), respectively. Accordingly,

a solution exists in a neighbourhood of Z on N and, respectively, on I −.

Comparing with Equation (18.8), one sees that these solutions ensure

Φ′
22 = 0 on N , (18.10a)

Φ′
00 = 0 on I −. (18.10b)

Once the solutions e11′(ϑ) and e00′(ϑ) to the propagation conditions (18.9a)

and (18.9b) have been obtained, one can use the intrinsic equations implied by

(18.7) on N ∪ I − to obtain e00′(ϑ) on N and e11′(ϑ) on I −.

The analysis of this section can be summarised in the following:

Lemma 18.2 (conformal gauge conditions for the standard characteris-

tic problem) Let (M̃, g̃) denote an asymptotically simple spacetime satisfying

Ric[g̃] = 0 and let (M, g,Ξ) with g = Ξ2g̃ be a conformal extension thereof

for which the condition Ξ = 0 describes past null infinity I −. Given the frame
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18.2 The conformal evolution equations in the initial value problem 485

{eAA′} of Lemma 18.1, the conformal factor Ξ can be chosen so that given a

null hypersurface N intersecting I − on Z ≈ S2 one has

R[g] = 0, in a neighbourhood W of Z on J+(Z ).

Moreover, one has the additional gauge conditions

e11′(Ξ) = 1, Γ01′11 = Γ10′00 = 0, on Z ,

Φ22 = 0 on N ,

ΣAA′ = e11′(Ξ)δA
1δA′1

′
, Φ00 = 0, on I −.

Remark. In the gauge given by Lemma 18.2 one has that LAA′BB′ = ΦAA′BB′ .

This fact will be used repeatedly in the following without any further mention.

18.2 The conformal evolution equations in the standard

characteristic initial value problem

This section analyses general aspects of the standard characteristic initial value

problem for the conformal Einstein field equations with data prescribed on

the null hypersurfaces N and I −. The spinorial conformal field equations, as

discussed in Section 8.3.2, will be used to formulate this problem. Accordingly,

on W it will be required that

ΣAA′BB′ = 0, ΞC
DAA′BB′ = 0, (18.11a)

ΞAA′ = 0, ZAA′BB′ = 0, ZAA′ = 0, Z = 0, (18.11b)

ΔCDBB′ = 0, ΛBB′CD = 0, (18.11c)

where, for convenience, one defines

ΞAA′ ≡ ΣAA′ −∇AA′Ξ.

Following the conventions of Chapter 13 let u denote the collection of indepen-

dent components of the unknowns appearing in the conformal field Equations

(18.11a)–(18.11c) and let u� be its value on N ∪ I +.

Strictly speaking, as no hyperbolic reduction procedure has yet been applied

to equations (18.11a)–(18.11c) – that is, the equations do not constitute a

symmetric hyperbolic system – one does not directly obtain a characteristic

problem in the sense described in Section 12.1.2. Nevertheless, the structure of

the conformal evolution equations can be used to obtain a symmetric hyperbolic

system for which the theory of Section 12.5 can be applied. Thus, it is necessary

to analyse the properties of the conformal field equations on the hypersurfaces N

and I +. When evaluated on N ∪I + the system (18.11a)–(18.11c) splits into a

set of interior and a set of transverse equations. As the name suggests, interior

equations contain only derivatives which are intrinsic to the null hypersurfaces.

The interior equations divide, in turn, into transport equations containing the

directional derivative along the generators of the hypersurface and constraint
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486 Characteristic problems for the conformal field equations

equations which do not contain this derivative. In the transverse equations one

deals with the directional derivative transverse to the surface.

To see how this split comes about, it is convenient to recall some aspects of

the hyperbolic reduction procedure for the Equations (18.11a)–(18.11c). Given

a timelike vector τμ and a suitable set of gauge source functions Fa(x) and

FAB(x) on W, one obtains a symmetric hyperbolic system for the independent

components of the various conformal fields. As discussed in Proposition 13.1,

the characteristic polynomial of this system contains factors of the form gμνξμξν .

Accordingly, the combined null hypersurface N ∩I + is a null hypersurface of the

reduced evolution system. Following the discussion of Section 12.1.2, it follows

that the reduced system contains equations which are intrinsic to N ∩I + and

equations which are transverse to the initial hypersurface. In the following, it is

shown how this observation can be extended to the full conformal field equations.

The interior equations on N

The interior equations on the null hypersurface N should contain only the

directional derivatives along the directions given by e11′ , e01′ and e10′ .

Inspection shows that the subset of (18.11a)–(18.11c) with this property is given

by the equations

Ξ11′ = 0, Z11′AA′ = 0, Z11′ = 0, (18.12a)

Σ11′BB′ = 0, ΞC
D11′BB′ = 0, (18.12b)

Δ1DBB′ = 0, ΛB1′CD = 0. (18.12c)

More explicitly, taking into account the gauge conditions given by Lemmas

18.1 and 18.2 one has the equations

e11′(Ξ) = Σ11′ , (18.13a)

e11′(Σ00′) = −ΞΦ11 − s, e11′(Σ01′) = −ΞΦ12, e11′(Σ11′) = 0, (18.13b)

e11′(s) = −Φ11Σ11′ + 2Φ12Σ01′ , (18.13c)

e11′(eBB′μ) = −ΓBB′C1eC1′μ − Γ̄B′B
C′

1′e1C′μ, (18.13d)

e11′(ΓBB′CD) = −ΓF1′CDΓBB′F 1 − Γ1F ′CDΓ̄B′B
F ′

1′

− ΞφBCD1ε1′B′ − ΦC1′DB′ε1B, (18.13e)

e11′(ΦD0′BB′) = ∇10′ΦD1′BB′ −∇D1′Φ10′BB′ +∇D0′Φ11′BB′

− 2Σ1B′φBD01 + 2Σ0B′φBD11, (18.13f)

e11′(φABC0) = ∇01′φABC1, (18.13g)

with the understanding that equations for quantities already determined by

gauge conditions are dropped from the list. Despite their apparent complexity,

the above equations possess a delicate hierarchical structure which allows one to

solve them sequentially from some basic data on Z and N . This structure is

briefly described in the following paragraphs.
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18.2 The conformal evolution equations in the initial value problem 487

One starts by combining Equation (18.13a) with the third equation in (18.13b)

and then using that e11′ = ∂r to find that ∂2
rΞ = 0. Hence, taking into account

Lemma 18.2 one concludes that Ξ = r along N . Next, one can consider Equation

(18.13e) for Γ01′11 and Γ10′11 (in standard Newman-Penrose (NP) notation γ

and λ) which, in view of the gauge conditions, gives the subsystem

∂rΓ01′11 = −(Γ01′11)
2 − Γ10′11Γ̄1′01′1′ ,

∂rΓ10′11 = −2Γ01′11Γ10′11 + Ξφ4.

The above Riccati system can be solved if φ4 is known along N . With Γ01′11

and Γ10′11 known, one can then make use of Equation (18.13d) for e01′A = ξA

which takes the form

∂rξ
A = −Γ01′11ξ

A − Γ̄1′01′1′ ξ̄A.

This equation together with its complex conjugate constitute a system of

ordinary differential equations for ξA and ξ̄A which can be solved with the

information already available. To determine the frame coefficient ω one considers

Equation (18.13d) for e01′1 = ω so that

∂rω = −Γ01′11ω − Γ̄1′01′1′ ω̄ + Γ01′01 + Γ̄1′00′1′ .

Accordingly, one also needs to consider the equations for Γ01′01 and Γ10′01

(β and α in NP notation), namely,

∂rΓ01′01 = −Γ01′01Γ10′11 − Γ10′01Γ̄1′01′1′ +Φ12,

∂rΓ10′01 = −Γ01′01Γ10′11 − Γ10′01Γ̄0′11′1′ + Ξφ3,

so that, in addition, one requires equations for φ3 and Φ12. These can be found

to be given by

∂rφ3 = ω∂rφ4 + ξA∂Aφ4 − 4Γ01′11φ3 + 4Γ01′01φ4,

∂rΦ12 = Σ01′φ4 − Σ11′φ3.

Thus, to close the system one considers the third equation in (18.13b). The key

observation is that for a given choice of φ4 on N and with the knowledge of

Γ01′11 and Γ10′11 from a previous integration one obtains a system of ordinary

differential equations along the generators of N for the unknowns ω, ξA, Γ01′01,

Γ10′01, φ3, Φ12 and Σ01′ .

At this point, one considers Equation (18.13d) for e11′A. One has

∂rX
A = −Γ00′11ξ

A − Γ̄0′01′1′ ξ̄A.

Recalling the gauge condition Γ00′11 = Γ̄10′1′0′ + Γ10′10 one has enough

information to integrate along the generators of N . Next, one considers the

equations for Γ01′00 and Γ10′00 (σ and ρ in NP notation):

∂rΓ01′00 = −Γ01′00Γ01′11 − Γ10′00Γ̄01′1′1′ +Φ02,

∂rΓ10′00 = −Γ01′00Γ10′11 − Γ10′00Γ̄10′1′1′ + Ξφ2.
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488 Characteristic problems for the conformal field equations

Hence, one has to couple the above to the equations for φ2 and Φ02:

∂rφ2 = ω∂rφ3 + ξA∂Aφ3 + Γ01′00φ4 + 2Γ01′01φ3 − 3Γ01′11φ2,

∂rΦ02 = ∇10′Φ12 +Σ01′φ3 − Σ00′φ4.

Thus, it is then necessary to consider simultaneously the first equation in (18.13b)

and Equation (18.13c) to determine Σ00′ and s – notice that at this stage one

already knows all the frame and connection coefficients appearing in ∇10′ . In

turn, this forces the coupling with the equation for Φ11 obtained from (18.13f):

∂rΦ11 = ∇10′Φ12 − Σ11′φ2 +Σ01′φ3.

Recapitulating, one has obtained a further closed subsystem of ordinary differ-

ential equations along the generators of N for the fields Γ01′00, Γ10′00, φ2, Φ02,

Φ11, s and Σ00′ . With the information obtained from the solution to this system,

one can also solve for the frame coefficient U and the connection coefficient Γ00′01

(ε in NP notation) via the equations

∂rU = −Γ00′11ω − Γ̄0′01′1′ ω̄ + Γ00′01 + Γ̄0′00′1′ ,

∂rΓ00′01 = −Γ01′01Γ00′11 − Γ10′01Γ̄0′01′1′ + Ξφ2 +Φ11.

The integration of the connection coefficients can now be completed with the

equation for Γ00′00 (κ in NP notation) dictated by (18.13e), that is,

∂rΓ00′00 = −Γ01′00Γ00′11 − Γ10′00Γ̄0′01′1′ + Ξφ1 +Φ01,

which needs to be supplemented by the equations for φ1 and Φ01:

∂rφ1 = ∇01′φ2,

∂rΦ01 = ∇10′Φ11 − Σ01′φ2 +Σ00′φ3.

Again, one has a subsystem of ordinary differential equations along the generators

of N . The integration of the interior equations on N is completed by considering

the equation for the rescaled Weyl spinor component φ0

∂rφ0 = ∇01′φ1,

which, too, is an ordinary differential equation, and by that for Φ00:

∂rΦ00 = ∇10′Φ01 −∇01′Φ01 + 2Σ00′φ2 − 2Σ01′φ1 +∇00′Φ11.

This last equation is different from the other ones in the hierarchy as its last term

in the right-hand side (i.e. ∇00′Φ11) contains transverse derivatives. However,

using the evolution equations in Section 18.2.2, this term can be formally

computed on N from the available data.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


18.2 The conformal evolution equations in the initial value problem 489

The interior equations on I −

On I − the intrinsic equations should contain only the derivatives along the

directions given by e00′ , e10′ and e01′ . The relevant subset of (18.11a)–(18.11c)

is, in this case, given by

ΞAA′ � 0, ZAA′ � 0, ZAA′BB′ � 0, for AA′ �= 11′ , (18.14a)

ΣAA′BB′ � 0, ΞC
DAA′BB′ � 0, for AA′ , BB′ �= 11′ , (18.14b)

Δ0DBB′ � 0, ΛB0′CD � 0. (18.14c)

More explicitly, taking into account the gauge conditions given by Lemmas

18.1 and 18.2 the above equations encode the following transport equations:

e00′(Ξ) � 0, (18.15a)

e00′(Σ11′) � −s, (18.15b)

e00′(s) � −Φ11Σ11′ , (18.15c)

e00′(e01′μ) � Γ00′CC′
01′eCC′μ − Γ01′CC′

00′eCC′μ, (18.15d)

PCD00′BB′ � −ΞφBCD0ε0′B′ − ΦC0′DB′ε0B BB′ �= 11′ , (18.15e)

∇00′φABC1 � ∇10′φABC0, (18.15f)

∇00′ΦD1′BB′ +∇D0′Φ01′BB′ −∇01′ΦD0′BB′

−∇D1′Φ00′BB′ � 2Σ1B′φ0DB1, (18.15g)

where, following the notation of Chapter 8, the field PCDAA′BB′ denotes the

geometric curvature. In addition to the above, Equations (18.14a)–(18.14c) also

contain the constraint equations

e01′(Ξ) � 0, e01′(Σ11′) � 0, e01′(s) � −Φ01Σ11′ , (18.16a)

e01′(e10′μ)− e10′(e01′μ) � Γ01′CC′
10′eCC′μ − Γ10′CC′

01′eCC′μ, (18.16b)

PCD01′10′ � Ξφ1CD0ε1′0′ − ΦC1′D0′ . (18.16c)

If Equations (18.16a)–(18.16c) hold in a certain section of I −, then using an

argument similar to that of the propagation of the constraints in the standard

Cauchy problem, it can be shown that they will hold everywhere else on null

infinity by virtue of the transport Equations (18.15a)–(18.15g). Thus, they need

to be solved only on Z .

In analogy to the transport equations on N , the transport Equations (18.15a)–

(18.15g) can be solved along the generators of I − exploiting a hierarchical

structure if some basic data are provided. Some inspection reveals that the

basic data are given by either the connection coefficient Γ10′11 or the rescaled

Weyl spinor component φ0. The details of this construction will not be further

elaborated.
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490 Characteristic problems for the conformal field equations

18.2.1 The freely specifiable data

The discussion of the hierarchical structure of the interior equations on N ∪I −

allows the identification of the basic reduced initial data set r� from which

the full initial data u� on N ∪ I − for the conformal Einstein field equations

can be computed. As already observed, the choice of reduced initial data sets is

not unique. Two possible ways of specifying the reduced data are given in the

following:

Lemma 18.3 (freely specifiable data for the standard characteristic

problem) Assume that the gauge conditions given by Lemmas 18.1 and 18.2

are satisfied in a neighbourhood U of Z on N ∪ I −. Initial data u� for the

conformal Einstein field equations on N ∪ I − can be computed from either of

the two following reduced initial data sets:

(i) r1� consisting of

Γ10′11 on I −,

φ4 on N ,

φ3, φ2 + φ̄2, ξA, on Z ;

(ii) r2� consisting of

φ0 on I −,

φ4 on N ,

Γ10′11, Φ20, φ3, φ2 + φ̄2, ξA, on Z .

In both cases the field ξA is chosen so that −(ξAξ̄B+ξ̄AξB)∂A⊗∂B is conformal

to the standard (contravariant) metric on S2.

Remark. The reduced set r2� in (ii) has the advantage of being symmetric with

respect to N and I −.

Proof The proof of this lemma follows from the discussion in the previous

subsection. Further discussion can be found in Friedrich (1981a).

18.2.2 The reduced conformal field equations

To apply the theory on the characteristic initial value problem discussed in

Section 12.5 one has to extract a suitable symmetric hyperbolic system out of the

conformal field Equations (18.11a)–(18.11c). Given the split between intrinsic

and transverse equations, a hyperbolic reduction procedure such as the one

discussed in Chapter 13 is not required. Instead, a suitable choice of reduced

conformal field equations is given by the combinations

Ξ11′ = 0, Z11′ = 0, Z11′AB′ = 0, (18.17a)

Σ11′BB′ = 0, ΞC
D11′BB′ = 0, (18.17b)
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18.3 A local existence result for characteristic problems 491

−Δ1BC0′ = 0, Δ0BC0′ −Δ1BC1′ = 0, Δ0BC′1′ = 0, (18.17c)

− Λ01′00 = 0, Λ00′BC − Λ11′BC = 0, Λ10′11 = 0. (18.17d)

A more explicit form of the equations is discussed in Section 18.3. From

these expressions, adopting the matricial notation of Chapter 12 and considering

suitable multiples of the equations, the reduced conformal field equations can be

written schematically in the form

Aμ(x,u)∂μu+B(x,u) = 0, (18.18)

with Aμ Hermitian matrices and

Aμ(ω00′
μ + ω11′

μ) positive definite. (18.19)

Thus, one obtains a symmetric hyperbolic system for the components of u.

Using the expressions for the principal part of the system (18.17a)–(18.17d),

a computation shows that the characteristic polynomial of the reduced system

contains factors of the form gμνξμξν so that the null hypersurfaces N and I −

are indeed characteristics of the system. It follows from (18.19) that the surfaces

with normal ω00′
+ ω11′

are spacelike for the symmetric hyperbolic system.

Although the coordinates x0 = v and x1 = r have been constructed so that they

have non-negative values, the reduced Equations (18.17a)–(18.17d) also hold for

negative values of the coordinates. It follows that the hypersurface

S� ≡
{
p ∈ R× R× S2 | x0(p) + x1(p) = 0

}
(18.20)

is spacelike for Equation (18.18) in a neighbourhood of Z .

18.3 A local existence result for characteristic problems

As discussed in Section 12.5, the existence and uniqueness of solutions to a

characteristic initial value problem can be obtained via an auxiliary Cauchy

initial value problem on a spacelike hypersurface – in the present case the

hypersurface S� defined by (18.20). The formulation of this auxiliary Cauchy

problem crucially depends on Whitney’s extension theorem so that initial data

on N ∪I − can be extended to a spacetime neighbourhood U of Z . In turn, the

application of Whitney’s theorem depends on being able to evaluate all (interior

and transverse) derivatives of the initial data on N ∪ I −.

18.3.1 Computation of the formal derivatives on N ∪ I −

To verify that one can compute all derivatives of the initial data on N ∪I − one

needs to inspect the principal part of the reduced Equations (18.17a)–(18.17d).
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492 Characteristic problems for the conformal field equations

Borrowing the notation of Proposition 13.1, the reduced Equations (18.17a)–

(18.17b) take the form

∂rσ = G(σ,Γ,Φ,φ), (18.21a)

∂re = H(e,Γ), (18.21b)

∂rΓ = K(Γ,Φ,φ); (18.21c)

that is, they are transport equations along the direction given by e00′ . For the

equations in (18.17c) one has

∂rΦ20 − ω̄∂rΦ21 − ξ̄A∂AΦ21 = L20(Γ,Φ,φ), (18.22a)

∂rΦ10 − ω̄∂rΦ11 − ξ̄A∂AΦ11 = L10(Γ,Φ,φ), (18.22b)

∂rΦ00 − ω̄∂rΦ01 − ξ̄A∂AΦ01 = L00(Γ,Φ,φ), (18.22c)

∂rΦ21 + ∂vΦ21 + U∂rΦ21 +XA∂AΦ21

− ω∂rΦ20 − ξA∂AΦ20 − ω̄∂rΦ22 − ξ̄A∂AΦ22 = M21(Γ,Φ,φ), (18.22d)

∂rΦ11 + ∂vΦ11 + U∂rΦ11 +XA∂AΦ11

− ω∂rΦ10 − ξA∂AΦ10 − ω̄∂rΦ12 − ξ̄A∂AΦ12 = M11(Γ,Φ,φ), (18.22e)

∂rΦ01 + ∂vΦ01 + U∂rΦ01 +XA∂AΦ01

− ω∂rΦ00 − ξA∂AΦ00 − ω̄∂rΦ02 − ξ̄A∂AΦ02 = M01(Γ,Φ,φ), (18.22f)

∂vΦ22 + U∂rΦ22 +XA∂AΦ22 − ω∂rΦ21 − ξA∂AΦ21 = N22(Γ,Φ,φ), (18.22g)

∂vΦ12 + U∂rΦ12 +XA∂AΦ12 − ω∂rΦ11 − ξ̄A∂AΦ11 = N12(Γ,Φ,φ), (18.22h)

∂vΦ02 + U∂rΦ02 +XA∂AΦ02 − ω̄∂rΦ01 − ξ̄A∂AΦ01 = N02(Γ,Φ,φ), (18.22i)

where L20, L10, L00, M21, M11, M01, N22, N12 and N02 are smooth functions

of their arguments – their explicit form will not be required. Finally, for the

Equations (18.17d) involving the components of the rescaled Weyl tensor one has

∂rφ0 − ω∂rφ1 − ξA∂Aφ1 = W0(Γ,φ), (18.23a)

∂rφ1 + ∂vφ1 + U∂rφ1 +XA∂Aφ1 (18.23b)

− ω̄∂rφ0 − ξ̄A∂Aφ0 − ω∂rφ2 − ξA∂Aφ2 = W1(Γ,φ), (18.23c)

∂rφ2 + ∂vφ2 + U∂rφ2 +XA∂Aφ2 (18.23d)

− ω̄∂rφ1 − ξ̄A∂Aφ1 − ω∂rφ3 − ξA∂Aφ3 = W2(Γ,φ), (18.23e)

∂rφ3 + ∂vφ3 + U∂rφ3 +XA∂Aφ3 (18.23f)

− ω̄∂rφ2 − ξ̄A∂Aφ2 − ω∂rφ4 − ξA∂Aφ4 = W3(Γ,φ), (18.23g)

∂vφ4 + U∂rφ4 +XA∂Aφ4 − ω̄∂rφ3 − ξ̄A∂Aφ3 = W4(Γ,φ), (18.23h)

with W0, W1, W2, W3 and W4 smooth functions of their arguments – again, their

explicit form will not be required.

In what follows, it is shown that all formal partial derivatives on N ∪I − can

indeed be computed from the above equations.
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18.3 A local existence result for characteristic problems 493

Computation of formal derivatives on I −

To compute the formal derivatives on I − one first observes that the partial

derivatives ∂v, ∂2, ∂3 are interior, while ∂r is transverse. In this case, direct

inspection shows that except for

∂rφ4, ∂rΦ22, ∂rΦ12, ∂rΦ02,

all ∂r-derivatives of the unknown u can be computed using Equations (18.21a)–

(18.21c), (18.22a)–(18.22f) and (18.23a)–(18.23g). The exceptional cases shown

above arise due to the fact that ω = U = 0 on I − so that Equations (18.22g)–

(18.22i) and (18.23h) evaluated at I − do not, in fact, contain ∂r-derivatives.

To get around this problem one computes the ∂r-derivative of (18.22g)–(18.22i)

and (18.23h) and then evaluates on I − to obtain the system

∂v
(
∂rΦ22

)
+ ∂rU∂rΦ22 + ∂rX

A∂AΦ22 − ∂rω∂rΦ12

− ∂rξ
A∂AΦ12 − ξA∂A∂rΦ12 � ∂rN22,

∂v
(
∂rΦ12

)
+ ∂rU∂rΦ12 + ∂rX

A∂AΦ12 − ∂rω∂rΦ11

− ∂rξ
A∂AΦ11 − ξA∂A∂rΦ11 � ∂rN12,

∂v
(
∂rΦ02

)
+ ∂rU∂rΦ02 + ∂rX

A∂AΦ02 − ∂rω∂rΦ01

− ∂rξ
A∂AΦ01 − ξA∂A∂rΦ01 � ∂rN02,

∂v
(
∂rφ4

)
+ ∂rU∂rφ4 + ∂rX

A∂Aφ4 − ∂rω̄∂rφ3

− ∂r ξ̄
A∂Aφ3 − ξ̄A∂A∂rφ3 � ∂rW4.

The latter can be interpreted as a system of first-order linear ordinary differential

equations for ∂rφ4, ∂rΦ22, ∂rΦ12, ∂rΦ02. The initial data on Z for these

equations can be computed from the data on N ∪ I −. General results of the

theory of ordinary differential equations ensures that this system of equations can

be solved in a neighbourhood of Z on I −. Accordingly, all the first transverse

derivatives on I − can be explicitly computed. The argument described in this

paragraph can be generalised, by repeatedly differentiating the reduced equations

with respect to ∂r, to iteratively compute higher order ∂r-derivatives as the

solution to a system of algebraic equations and linear PDEs.

Computation of formal derivatives on N

The analysis of the formal derivatives on N is almost the mirror image of that

on I −. In this case ∂r, ∂2, ∂3 are interior derivatives, while ∂v is transverse.

After an inspection of the list of Equations (18.21a)–(18.21c), (18.22a)–(18.22i)

and (18.23a)–(18.23h) one finds that only

∂vφ4, ∂vφ3, ∂vφ2, ∂vφ1,

∂vΦ22, ∂vΦ12, ∂vΦ11, ∂vΦ02, ∂vΦ01
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494 Characteristic problems for the conformal field equations

are algebraically determined by the initial data on N . To obtain the remaining

transverse derivatives, one computes the ∂v-derivatives of Equations (18.21a)–

(18.21c), (18.22a)–(18.22c) and (18.23a) and evaluates them on N to obtain a

first-order system of ordinary differential equations along the generators of N for

∂vσ, ∂ve, ∂vΓ, ∂vΦ02, ∂vΦ01, ∂vΦ00, ∂vφ0.

Supplementing this system with the information on Z implied by the initial

data for the reduced equations, one finds that the general theory of ordinary

differential equations ensures the existence of solutions in a neighbourhood of

Z on N . In this manner one obtains a complete set of first-order transverse

derivatives on N . Higher order transverse derivatives can be obtained iteratively

by computing higher order ∂v-derivatives of the reduced conformal field equations

as required.

The analysis described in the previous paragraphs can be summarised in the

following:

Lemma 18.4 (computation of formal derivatives) Any arbitrary formal

derivatives (∂αu)� of the vector unknown u on N ∪I − can be computed from the

prescribed initial data u� for the reduced conformal field equations on N ∪I −.

18.3.2 The subsidiary system

To show that the solutions of the reduced equations imply a solution to the

full conformal field equations if initial data satisfying the constraints on N and

I − are prescribed, it is necessary to obtain a suitable subsidiary system for the

zero quantities encoding the conformal field equations. The propagation of the

constraints is ensured by the following:

Proposition 18.1 (propagation of the constraints) A solution u of the

reduced conformal field Equations (18.17a)–(18.17d) on a neighbourhood U of Z

on J+(Z ) that coincides with initial data on N ∪ I − satisfying the conformal

equations is a solution to the conformal field Equations (18.11a)–(18.11c) on U .

A subsidiary system adapted to the geometry of the characteristic problem

described in the previous sections is obtained from the following derivatives of

the zero quantities associated to the conformal field equations:

∇11′ΞAA′ , ∇11′ZAA′ , ∇11′ZAA′BB′ ,

∇11′ΣAA′BB′ , ∇11′ΞCDAA′BB′

(∇00′ +∇11′)ΔCDBB′ , (∇00′ +∇11′)ΛBB′CD.

Using arguments similar to those employed in Sections 13.3 and 13.4.5 one

rewrites the above derivatives as homogeneous expressions in the zero quantities.

Further details of these lengthy calculations can be found in Friedrich (1981a).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


18.3 A local existence result for characteristic problems 495

Once a subsidiary system of the required form has been obtained, the propagation

of the constraints follows from the uniqueness of solutions to the characteristic

problem.

In addition to Proposition 18.1 one has the following:

Corollary 18.1 (preservation of the conformal gauge) Let u denote a

solution to the characteristic problem for the conformal field equations on a

neighbourhood U of Z on J+(Z ) which satisfies the gauge conditions given in

Lemmas 18.1 and 18.2. Then the metric g constructed from the components of

the solution u satisfies the vacuum Einstein field equations R[g] = 0.

This result follows from an argument similar to the one used to prove the

propagation of the algebraic conformal field equation encoding the trans-

formation rule for the Ricci scalar in Lemma 8.1. Here one considers the

derivative

∇11′
(
Ξ∇AA′∇AA′Ξ− 2∇AA′Ξ∇AA′

Ξ
)

and makes use of the conformal field equations to rewrite it as a homogeneous

expression in zero quantities. In view of the transformation law of the Ricci

scalar under conformal rescalings, the term in brackets coincides with R[g]. Now,

from the discussion leading to Lemma 18.2 one concludes that R[g] = 0 on

N ∪I −. The corollary then follows from the uniqueness of the solutions to the

characteristic problem.

18.3.3 The existence result

Combining the analysis developed in the previous subsections with the theory

of characteristic initial value problems for symmetric hyperbolic systems of

Section 12.5, one obtains the following existence result:

Theorem 18.1 (existence and uniqueness to the standard asymptotic

characteristic problem) Given a smooth reduced initial data set r� for the

conformal Einstein field equations on N ∪ I −, there exists a unique smooth

solution of the conformal field equations in a neighbourhood U of Z in J+(Z )

which implies the prescribed initial data on N ∪ I −.

Proof It follows from Lemma 18.4 that the formal derivatives of u can be

computed to any arbitrary order from the reduced data r� on N ∪ I −.

Hence, it is possible to formulate an auxiliary Cauchy problem for the reduced

conformal field Equations (18.17a)–(18.17d) with data implied by the extension

to a neighbourhood of Z given by Whitney’s theorem. Thus, using Theorem

12.7 and the discussion in Section 12.5.3 there is a neighbourhood W of Z in

J+(Z ) in which there exists a unique solution u to the reduced conformal field

equations which on N ∪I − coincides with the data u� implied by the prescribed
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496 Characteristic problems for the conformal field equations

reduced initial data – as Z ≈ S2, it is necessary to combine solutions in two

different patches. Finally Proposition 18.1 and Corollary 18.1 imply that the

solution to the reduced equations is, in fact, a solution to the full conformal field

equations.

The characteristic problem on N ′ ∪ I +

The analysis leading to Theorem 18.1 can be adapted to analyse the dual

asymptotic characteristic problem with data on N ′∪I + where N ′ is a future-

oriented null hypersurface. In this case one endeavours to find a solution in a

neighbourhood U ′ of Z ′ = N ′ ∩ I + in J−(Z ′). All the relevant expressions

can be obtained from those for the characteristic problem on N ∪ I − through

the replacements 0 �→ 1, 1 �→ 0 in the spinorial frame indices so that

e00′ �→ e11′ , e11′ �→ e00′ , e01′ �→ e10′ , e10′ �→ e01′ .

In particular, one has

φ0 �→ φ4, φ1 �→ φ3, φ2 �→ φ2, φ3 �→ φ1, φ4 �→ φ0

and

ω �→ ω̄, ξA �→ ξ̄A.

Similarly, for the connection coefficients and the components of the trace-free

Ricci spinor one has

Γ01′00 �→ Γ10′11, Φ12 �→ Φ10 = Φ01, and so on.

For consistency, one should replace the coordinate v along the generators of I −

with a coordinate u along the generators of I +.

18.4 The asymptotic characteristic problem on a cone

As discussed in the introduction, an alternative characteristic problem for the

conformal Einstein field equations consists of a configuration where initial data

is prescribed in a neighbourhood of the vertex of a cone representing the

timelike infinity of a Minkowski-like spacetime; see Figure 18.1, right. This

type of geometric setup for a characteristic initial value problem was originally

introduced in Friedrich (1986c) and is intended to model purely radiative

spacetimes, that is, a system describing gravitational radiation from past

null infinity which interacts non-linearly with itself and eventually escapes to

future null infinity. Intuitively, one would expect this type of solution to the

Einstein field equations to have a smooth structure at null infinity. To ensure

that the gravitational field consists only of gravitational radiation one requires

that the generators of null infinity are complete and that past timelike infinity is

represented by a point i− which is regular from the point of view of the conformal

completion.
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18.4 The asymptotic characteristic problem on a cone 497

To discuss the geometric setting in a more precise manner it is convenient to

introduce some definitions.

Definition 18.1 (spacetimes with a cone past boundary) A spacetime

(M, g) is said to have a cone past boundary if:

(i) There exists a causal, oriented and time-oriented spacetime (M′, g′) (the

ambient manifold).

(ii) There exists a point o ∈ M′ such that the set consisting of o and all points

of M′ which can be joined to o by a causal curve in M′ – to be denoted by

J+(o,M′) – is closed in M′.

(iii) Given No ≡ ∂J+(o,M′), then No \ {o} is a smooth null hypersurface of

M′.

(iv) The set M corresponds to J+(o,M′) together with the structures it inherits

from (M′, g′) – in particular, g is the pull-back of g′ to M.

Given p ∈ M, the set Np ⊂ M is called the future null cone of p.

In terms of the above notions one introduces the further notion:

Definition 18.2 (spacetimes with a complete past null infinity cone)

A vacuum spacetime (M̃, g̃) is said to be a solution to the Einstein field

equations with complete null cone at past timelike infinity i− if there

exists a conformal extension (M, g,Ξ) with cone-like past boundary Ni− such

that the conformal factor satisfies

Ξ > 0 on M\ Ni− , (18.24a)

Ξ = 0 on Ni− , (18.24b)

dΞ �= 0 on Ni− \ {i−}, (18.24c)

dΞ = 0, HessΞ non-degenerate at i−, (18.24d)

and there is a diffeomorphism by means of which the manifolds M̃ and M\Ni−

can be identified so that g = Ξ2g̃ on M\ Ni− . The set Ni− \ {i−} is swept by

the future-directed null geodesics through i− and represents the past null infinity

I − of the spacetime.

Equipped with the above definitions, one can formulate a pure radiation

problem in which one asks: given data on a cone No, is there a unique solution

to the Einstein field equations with complete past null infinity implying fields on

I − which can be identified with the data prescribed on No and such that the

point o can be identified with i−?

18.4.1 Gauge conditions

This section gives a brief discussion of the gauge specification process for the

characteristic initial value problem on a cone. As is the case in all initial value
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498 Characteristic problems for the conformal field equations

problems concerning the conformal field equations, one has to consider three

different types of gauges: conformal, coordinate and frame gauges. These are

analysed in turn.

The conformal gauge

Given a null cone No with vertex o, let l denote the vector tangent to the null

generators of No. Consistent with conditions (18.24a)–(18.24d), it is assumed

that one has a conformal factor Ξ such that

Ξ = 0, dΞ = 0, s �= 0 at o.

Mimicking the discussion of Section 16.3, one can transvect the conformal field

equations

∇a∇bΞ = −ΞLab + sgab, ∇as = −∇bΞLba, (18.25)

with l to find that Ξ = 0 and s �= 0 on No and, moreover, that dΞ �= 0 on No\{o}.
It is also observed that if s|o = 0, then dΞ = 0 on No. The behaviour of the

conformal gauge at o can be refined by considering a rescaling as in Equation

(18.6) with ϑ > 0. Making use of the transformation formula for the Friedrich

scalar s, Equation (8.29b), one finds that s′|o = (sϑ−1)|o. Let γ(ς) with ς ∈ R

denote a future-directed null geodesic on No with γ(0) = o such that l = γ̇

and, consequently, ∇ll = 0. Setting l′ ≡ ϑ−1l, one finds that g′(l′, l′) = 0 and

∇′
l′l

′ = 0 as well. Using the transformation formula for the trace-free Ricci tensor

Φab, Equation (18.8), one finds that along γ it holds that

ϑ3l′al′bΦ′
ab = ϑ−1lalbΦab + 2lb∇b

(
la∇a(ϑ

−1)
)
.

Thus, if the value of the component l′al′bΦ′
ab is prescribed, the above equation

can be read as an ordinary differential equation for ϑ along the null geodesic γ.

The initial value of ϑ can be fixed through the specification of s|o. Using the first

of the equations in (18.25) one finds that

s|og′(l′, l′)|o = ∇l′∇l′Ξ
′|o.

In order to have a local minimum of Ξ at o, one needs that ∇l′∇l′Ξ
′|o > 0 forcing

s|o > 0 – in the signature (+−−−). Without loss of generality, one can then set

s = 2 at o, (18.26)

and

lalbΦab = 0 on No near o. (18.27)

In this construction there is still the freedom of specifying the value of dϑ at o.

Adapting the arguments of Section 18.1.2 one can set a characteristic initial value

problem on No for the wave Equation (18.7) in such a way that

R[g] = 0 on J+(No) near o. (18.28)
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18.4 The asymptotic characteristic problem on a cone 499

The coordinates and the frame near o

A convenient four-dimensional description of the null cone No is obtained using

g-normal coordinates y = (yμ) centred at o; see Sections 2.4.5 and 11.6.2.

Accordingly, one has that yμ(o)= 0, gμν(o)= ημν , ∂λgμν(o)= 0 and Γμ
ν
λ(o)= 0.

These properties can be more concisely summarised in the expression

yμgμν = yμημν in a neighbourhood of o. (18.29)

In these coordinates, for fixed (yμ) �= 0 one has that the curve γ : ς → ςyμ is a

geodesic through o and that

No = {yμ ∈ R4 | ημνyμyν = 0, y0 ≥ 0}.

Thus, in these coordinates the null cone No can be thought of as being the null

cone through the origin in Minkowski spacetime.

Associated to the g-normal coordinates, it is natural to consider a normal

frame centred at o, that is, a frame {ea} which, in a neighbourhood U of o,

satisfies g(ea, eb) = ηab and ∇γ̇ea = 0 for any geodesic passing through o.

Without loss of generality, one can assume that the frame coefficients in ea =

ea
μ∂μ satisfy ea

μ(o) = δa
μ. Using the properties of the exponential function, it

can be shown that the frame coefficients ea
μ depend smoothly on the coordinates

(yμ). It can then be verified that g(γ̇, ea) is constant along γ. Moreover, using

that gμν = ηabω
a
μω

b
ν , it can be shown that

yμδμ
aea

ν(y) = yν , yμημνea
ν(y) = yμημνδa

ν . (18.30)

The above conditions can be regarded as an alternative definition of normal

coordinates. More precisely, if a set of coordinates y = (yμ) and frame coefficients

{eaμ} satisfy the conditions in (18.30) the metric components gμν will satisfy

condition (18.29).

To complete the discussion, it is convenient to introduce the vector field

y(y) = yμ∂μ tangent to the geodesics through o. One then has

y(o) = 0, (∇μy
ν)|o = δμ

ν , ∇yy = y.

Writing y in terms of a g-normal frame one has that y = yaea where ya(y) =

δν
ayν . Furthermore, using ∇yea = 0 one concludes that

ya(y)Γa
b
c(y) = δν

ayνΓa
b
c(y) = 0, close to o.

The coordinates y = (yμ) and the frame {ea} satisfying the conditions

discussed in the previous paragraphs will be collectively known as a normal

gauge. This gauge system is supplemented by a normalised spin frame {εAA}
satisfying yAA′∇AA′εA

B = 0 such that {eAA′} = {εAε̄A′} with eAA′ =

σAA′aea – here yAA′
is the spinorial counterpart of the vector y. In what follows,

all spinors will be expressed in components with respect to this type of frame.
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500 Characteristic problems for the conformal field equations

Adapted coordinates on No

The coordinates y = (yμ) introduced in the previous subsections provide

a convenient spacetime description of No. However, to analyse the intrinsic

geometry of the cone, one needs adapted coordinates. The construction of these

coordinates is similar to that of the coordinates (v, r, xA) used in the analysis

of the characteristic problem on N ∪ I − in Section 18.1.1. The fundamental

difference is that, in the case of a cone, these adapted coordinates degenerate

at the vertex o. More precisely, one can consider adapted coordinates x = (xμ)

such that No is given as a level surface by the condition r ≡ x1 = 0 and v ≡ x0

is a parameter along the generators with tangent l – thus, l = ∂v. The two-

dimensional spacelike surfaces Zv• ≡ {p ∈ N | v(p) = v•} satisfy Zv• ≈ S2,

except for the limit case Z0 = {o} which is a point. As in Section 18.1.1, (xA)

denote local coordinates on Zv• . On No the covector n� ≡ dr is null and normal

to No. The coordinate r can be chosen so that one has the usual normalisation

g(l,n) = 1. Finally, the vectors l and n can be completed to a frame by choosing

a pair of complex conjugate vectors m, m̄ ∈ T (Zv•), for v• �= 0, such that

g(m, m̄) = −1. As in Section 18.1.1 the vectors m and m̄ can be parallelly

propagated along the generators of No off some fiduciary section Zv• .

18.4.2 Null data on the cone

As in the case of the characteristic problem on N ∪I −, there are several ways of

prescribing the free data. The most physically meaningful specification consists

of the so-called radiation field encoding information on the two components

of the Weyl tensor with the slowest fall-off at null infinity, and can be thought

of as describing the two polarisation states of incoming radiation.

To describe the null data, let, as in previous sections, l denote the vector

tangent to the generators of the null cone No. As l is a null vector, there exists a

spinor κA such that lAA′
= κAκ̄A′

with lAA′
the spinorial counterpart of l. The

spinor κA is defined up to a phase κA �→ eiϑκA with ϑ ∈ R constant along the

null generators. The radiation field is then defined as the component

φ0 ≡ κAκBκCκDφABCD

of the rescaled Weyl spinor. Due to the phase ambiguity in κA, the radiation

field is a spin-weighted quantity. The information encoded in the radiation field is

equivalent to information on the pull-back of dabcdl
alc to No. More precisely, ifm

and m̄ are complex vectors tangent to the sections of No such that g(l,m) = 0,

then it follows from the symmetries of the Weyl tensor that φ0 = dabcdl
amblcmd.

Solving the constraints on No

In analogy to the characteristic problem on N ∪ I −, and making use of the

adapted coordinates x = (v, r, xA) and of the frame {l, n, m, m̄}, the conformal
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18.4 The asymptotic characteristic problem on a cone 501

Einstein field equations split into equations transverse and intrinsic to No. The

intrinsic equations divide, in turn, into propagation equations (i.e. ordinary

differential equations) along the generators of the cone and constraints which

need to be solved only at a particular cut. Assuming the conformal gauge

discussed in Section 18.4.1, the knowledge of the radiation field φ0 on No allows

one to compute the value of the remaining conformal fields in a neighbourhood

of o on No. More precisely, one has the following:

Proposition 18.2 (reduced initial data for the asymptotic characteristic

problem on a cone) In the conformal gauge given by conditions (18.26),

(18.27) and (18.28), the transport equations induced by the conformal Einstein

field equations and the structure equations on No uniquely determine the fields Ξ,

s, ΦAA′BB′ and φABCD on No once the radiation field φ0 has been prescribed.

The resulting fields satisfy the constraint equations on No.

Details on this result can be found in Friedrich (2014b).

Evaluating formal derivatives on No

In addition to solving the constraint equations on No, and in order to apply the

theory of characteristic problems on a cone, given a choice of radiation field, it is

necessary to show that the (formal) derivatives of any order of the conformal

fields can be determined on the null cone along the generators of No. This

analysis is analogous to the one discussed in Section 18.3.1 for the characteristic

problem on N ∪I −. In the present case, however, the analysis is more delicate

as the set Z = N ∩ I − shrinks to a point, so that the information for the

integration along the generators has to be extracted solely from the null data.

The key result is the following (see Friedrich (2014b)):

Proposition 18.3 (computation of formal derivatives at the vertex ) In

a neighbourhood of the point o let the fields Ξ, s, ΦAA′BB′ φABCD, eAA′μ,

ΓAA′BC be smooth and be expressed in an o-centred normal gauge and a

conformal gauge satisfying Equations (18.26), (18.27) and (18.28). If the above

fields satisfy the conformal field equations, then the Taylor expansions of the fields

Ξ, s, ΦAA′BB′ and φABCD in a suitable neighbourhood of o are determined by

the null datum φ0.

Remark. In the above proposition, the neighbourhoods of o are spacetime

neighbourhoods in the ambient manifold M′ containing the cone No.

18.4.3 The existence result

The setting described in the previous paragraphs leads to the following existence

result, adapted from Chruściel and Paetz (2013):
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502 Characteristic problems for the conformal field equations

Figure 18.4 Schematic representation of the set up for the asymptotic
characteristic problem on a cone. The existence results are restricted to a
neighbourhood U of o in J+(o).

Theorem 18.2 (local existence for the asymptotic characteristic prob-

lem on a cone) For any smooth prescription of the radiation field φ0 on the null

cone at the origin of the Minkowski spacetime, No, there exists a neighbourhood

U ⊂ J+(o) of o, a smooth metric g and a smooth function Ξ such that:

(i) No is the light cone of o for g.

(ii) Ξ = 0 on No.

(iii) dΞ = 0, HessΞ �= 0 on o.

(iv) dΞ �= 0 on ∂J+(o) ∩ U \ {o}.
(v) The function Ξ has no zeros on U∩I+(o) and the metric g̃ = Ξ−2g satisfies

the vacuum Einstein field equations on U ∩ I+(o).

Moreover, the rescaled Weyl spinor φABCD of the pair (g,Ξ) extends smoothly

across No and the restriction of φABCDε0
Aε0

Bε0
Cε0

D to No\{o} coincides with

the prescribed radiation field φ0. The solution is unique up to isometries.

Remark. It follows from points (ii), (iii) and (iv) that the set No \ {o}
corresponds to the past null infinity I − of the resulting spacetime, while the

vertex o is its past timelike infinity i−. A schematic representation of the set up

of the above theorem is given in Figure 18.4.

The proof of the above theorem, as given in Chruściel and Paetz (2013), makes

use of the metric version of the conformal field equations and the associated wave

equations discussed in Paetz (2015); see also Section 13.5.2. The reason behind

the use of a hyperbolic reduction based on wave equations – as opposed, say, to

the first-order symmetric hyperbolic systems used throughout this book – lies

in the fact that the available theory of characteristic problems on a cone is well

understood for this type of equations; see Dossa (1986, 2002).

18.5 Further reading

Characteristic problems in general relativity have a long history. The first sys-

tematic discussion has been given in Sachs (1962c). Further classical discussions

can be found in Penrose (1965, 1980) and Müller zu Hagen and Seifert (1977).
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18.5 Further reading 503

A review on the various approaches to the problem, including an analysis of the

possible choices of free data, can be found in Chruściel and Paetz (2012); this

reference provides a convenient point of entry to the literature on the subject.

The basic theory of asymptotic characteristic initial value problems for

the conformal field equations has been developed in the articles by Friedrich

(1981a,b). A version of Theorem 18.1 in the analytic setting was given in Friedrich

(1982). This result has been extended to the smooth setting in Kánnár (1996b)

using the reduction to an auxiliary Cauchy problem given in Rendall (1990).

The geometric set up for the asymptotic characteristic problem on a cone has

first been given in Friedrich (1986c). The relation between Taylor expansions at

the vertex of the null cone and the interior equations implied by the conformal

Einstein field equations has been examined in Friedrich (2014b). The existence

result for the characteristic problem in the cone has been given in Chruściel

and Paetz (2013). Characteristic problems on a cone are less studied than those

on intersecting null hypersurfaces. A good point of entry to the literature is

Choquet-Bruhat et al. (2011).

Characteristic problems provide a natural approach to the construction

of solutions to the Einstein equations by means of numerical methods. An

advantage of this formulation is its clear-cut connection with the notion of

gravitational radiation; see, for example, Damour and Schmidt (1990). A review

on the subject can be found in Winicour (2012).

The characteristic initial value problem has been used in the seminal work by

Christodoulou on the collapse of a spherically symmetric self-gravitating scalar

field; see Christodoulou (1986).
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Static solutions

In this chapter a study of static solutions to the vacuum Einstein field equations

from the point of view of conformal methods is undertaken. Static and, more

generally, stationary solutions provide valuable physical and mathematical

intuition concerning the behaviour of solutions to the Einstein field equations.

Static solutions describe the exterior region of time-independent, non-rotating,

isolated bodies. Accordingly, they provide an interesting class of solutions to

analyse the structure of spatial infinity; see Chapter 20. In addition, some

particular static solutions (the Schwarzschild spacetime) are expected to describe

the asymptotic state of the evolution dictated by the Einstein field equations.

From a mathematical point of view, the results discussed in this chapter are

of particular interest as they lie at the interface of classical potential theory,

conformal geometry and general relativity. Throughout this chapter, the focus is

restricted to the asymptotic region of an asymptotically flat static spacetime.

Several of the key results for static spacetimes admit a suitable stationary

counterpart; the interested reader is referred to the literature for further details.

These generalisations of the theory are much more technically involved than the

original static version and they will not be considered here.

19.1 The static field equations

For a static spacetime it will be understood a solution to the Einstein field

equations Ric[g̃] = 0 endowed with a hypersurface orthogonal Killing vector ξ

which, in a suitable asymptotic region, is timelike. Using coordinates (t, y) =

(t, yα) adapted to this Killing vector, one has that ξ = ∂t. As ξ is hypersurface

orthogonal, then there exists a function v = v(y) such that

ξ� = g̃(ξ, ·) = v2dt.

Thus, v2 = g̃(∂t,∂t) is the square of the norm of ξ. It follows that the

hypersurfaces of constant coordinate t define a foliation of the spacetime. In what
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19.1 The static field equations 505

follows, it will be convenient to consider a frame {ea} adapted to the static

Killing vector and set e0 to be parallel to ξ; that is, one has ξ = ve0. The

spatial part of the frame, {ei}, spans the tangent bundle of the hypersurfaces

of constant t. Without loss of generality, the spatial frame can be parallely

propagated along the direction of e0 so that using the definition of the connection

coefficients one has that Γ̃0
a
i = 0. Let {ωa} be the associated coframe. One

readily finds that ω0 = vdt. It follows from this discussion that the metric g̃

takes the form

g̃ = v2dt⊗ dt+ h̃, v = v(y) > 0, h̃ = h̃αβ(y)dy
α ⊗ dyβ , (19.1)

where h̃ denotes a (negative definite) Lorentzian metric on the hypersurfaces of

constant time coordinate.

Derivation of the static equations

The equations satisfied by the fields v and h̃ appearing in the metric (19.1) can

be deduced using the frame formalism introduced in the previous paragraphs.

Observing that ξ0 ≡ 〈ξ�, e0〉 = v one concludes that ξa = vδa
0. It follows that

the Killing equation

∇̃aξb + ∇̃bξa = 0

takes the form (
∇̃avδb

0 + ∇̃bvδa
0
)
+ v
(
Γ̃a

0
b + Γ̃b

0
a

)
= 0.

As v is time independent, one concludes from setting a, b = 0 that Γ̃0
0
0 = 0.

Setting a = i and b = j one finds that Γ̃i
0
j+Γ̃j

0
i = 0 so that from the definition

of the extrinsic curvature, Equation (2.45), one concludes that Kij = 0; that

is, the surfaces of constant coordinate t are time symmetric. Accordingly, the

Einstein constraint Equations (11.13a) and (11.13b) reduce to the condition

r[h̃] = 0. (19.2)

A further condition can be obtained from the equation

∇̃0

(
∇̃aξb + ∇̃bξa

)
= 0.

Commuting covariant derivatives and using that the Killing equation implies

∇̃0ξb = −∇̃bξ0 = −∇̃bv

one finds that

∇̃a∇̃bv + vR̃0a0b = 0.

From the last equation, using the Gauss-Codazzi identity, Equation (2.47), one

concludes that

∇̃i∇̃jv = vr̃ij (19.3)
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506 Static solutions

where rij denotes the components with respect to {ei} of the Ricci tensor of the

3-metric h̃.

Equations (19.2) and (19.3) provide the required static Einstein field

equations for the fields v and h̃. After some further slight manipulations they

can be rewritten in tensorial form as

Δh̃v = 0, (19.4a)

r̃ij =
1

v
D̃iD̃jv, (19.4b)

where D̃i and r̃ij denote, respectively, the Levi-Civita connection and the Ricci

tensor of the 3-metric h̃. In what follows, a pair (v, h̃) solving the static

equations (19.4a) and (19.4b) will be called a static solution. A static

solution, expressed in terms of h̃-harmonic coordinates is analytic; see Müller

zu Hagen (1970).

Observe that discarding the field v, a solution to the static equations gives rise

to a solution to the time-symmetric Einstein constraints. This dual perspective of

static solutions as a spacetime and as time-symmetric initial data for a spacetime

will be used often. The context will dictate the appropriate point of view.

Equations (19.4a) and (19.4b) can be regarded as a three-dimensional analogue

of the Einstein field equations in which the curvature is coupled to a fictitious

matter field described by v. This interpretation also holds for other symmetry

reductions of the vacuum Einstein field equations, say, axial symmetry; see, for

example, Geroch (1971a, 1972a).

Asymptotic conditions and the Licnerowicz theorem

Of special interest are static solutions describing the asymptotic region of isolated

systems. For simplicity, it will be assumed that S̃ has a single asymptotic region

in which coordinates y = (yα) can be found such that

v = 1− m

|y| +Ok(|y|−(1+ε)), (19.5a)

h̃αβ = −
(
1 +

2m

|y|

)
δαβ +Ok(|y|−(1+ε)), (19.5b)

as |y| → ∞ where m �= 0 denotes the Arnowitt-Deser-Miser (ADM) mass and

ε > 0. The notation Ok has been described in the Appendix to Chapter 11.

The above decay conditions can be deduced from more primitive assumptions

which make no reference to asymptotic flatness; see Reiris (2014a,b). In order

to describe an isolated system – say, the exterior of a star – Equations (19.4a)

and (19.4b) need to be supplemented with suitable boundary conditions at an

interior boundary ∂S̃ – say, the surface of a star. An analysis of this type has

been carried out by Reula (1989) and Miao (2003). The role played by boundary

conditions in the determination of static solutions is nicely exhibited in the case
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where S̃ ≈ R3. In this case, it follows from Equation (19.4a) by integration by

parts that

0 =

∫
S̃
vΔh̃vdμ = −

∫
S̃
D̃ivD̃ivdμ,

so that D̃iv = 0 on S̃. This implies that v has to be constant on S̃. Moreover,

using (19.5a) one concludes that v = 1. Substituting into Equation (19.4a) one

finds that r̃ij = 0 so that h̃ must be flat – recall that in three dimensions

the curvature is fully determined by the Ricci tensor. Consequently, in order to

have static solutions other than the Minkowski solution one needs hypersurfaces

S̃ with a non-trivial topology or with some inner boundary ∂S̃. This result is

usually known as Licnerowicz’s theorem.

19.1.1 The conformal static field equations

In the remainder of this chapter, the discussion of static solutions will be

restricted to a suitable asymptotic region where the decay conditions (19.5a)

and (19.5b) hold. Accordingly, it is convenient to make use of the definition of

asymptotically Euclidean and regular manifolds given in Section 11.6.2. Hence,

one considers a function Ω on S ≡ S̃ ∪ {i} with Ω ∈ C2(S̃) ∩ C∞(S̃), Ω > 0 on

S̃ which conformally extends h̃ to a smooth metric

h ≡ Ω2h̃ on S,

in such a way that

Ω = 0, DiΩ = 0, DiDjΩ = −2hij , at i. (19.6)

In order to exploit the above conformal setting, it is convenient to rewrite

the static Equations (19.4a) and (19.4b) in terms of fields satisfying regular

equations in a neighbourhood of i. The procedure of constructing a system of

regular conformal static equations is similar in spirit to the one carried out

in Chapter 8 to obtain the conformal field equations. The key idea is to identify

quantities which in the conformally rescaled picture are both suitably regular and

which satisfy equations that are formally regular at i. In this spirit, the equation

obtained from combining the static Equation (19.4b) with the transformation

law of the three-dimensional Ricci tensor, Equation (5.16a), should be read not

as a differential condition for the components of a conformally rescaled metric

but rather as differential equations involving second derivatives of a quantity

associated to the conformal factor. Similar considerations need to be taken into

account when attempting to construct a conformal equation for the scalar field v.

Using the transformation law for the Yamabe operator, Equation (11.23), one

obtains (
Δh − 1

8
r[h]

)(
Ω−1/2v

)
= 0.
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508 Static solutions

This equation is formally singular at i unless it is possible to tie the behaviour

of Ω with that of v. Alternatively, one could try to find a regular equation for a

quantity which indirectly allows one to gain knowledge about v. These ideas are

explored in the following subsections.

Fixing the conformal gauge

The standard approach to obtain a set of regular conformal static field equations

relies on a specific choice of conformal gauge which explicitly prescribes the

conformal factor Ω in terms of the norm of the static Killing vector v; see,

for example, Beig and Simon (1980a) and Friedrich (1988, 2004, 2007). In the

following, the approach taken in the last two references will be followed. A general

version of the conformal static equations which retains the whole conformal

freedom has been given in Friedrich (2013).

It can be verified that the conditions (19.6) expressed in terms of physical

coordinates y = (yα) require Ω to behave like 1/|y|2 as |y| → 0. This observation

suggests, in turn, considering a conformal factor of the form

Ω =

(
1− v

m

)2

. (19.7)

As will be seen in Section 19.2, this is not the only possible way of fixing the

conformal freedom. The choice in Equation (19.7) fixes the value of the Ricci

scalar of the conformal metric h. This can be seen from the transformation law

of the Yamabe operator, Equation (11.23), by setting u = Ω1/2 and making the

replacements φ �→ Ω1/2, h′ �→ h, h �→ h̃ so that, on the one hand, one has

Lh[1] = Ω−5/2Lh̃

(
1− v

m

)
= − 1

m
Ω−5/2Δh̃v = 0,

while, on the other hand,

Lh[1] =

(
Δh − 1

8
r[h]

)
[1] = −1

8
r[h].

Hence, one concludes that r[h] = 0.

A decomposition of the conformal factor

Following the general discussion of Section 11.6.3, one has that the conformal

factor Ω satisfies (
Δh − 1

8
r[h]

)(
Ω−1/2

)
= 0, on S̃,

and |x|Ω−1/2 → 1 as |x| → 0. Here, and in what follows, let x = (xα) denote

some coordinates in a neighbourhood U ⊂ S with xα(i) = 0. Close to i one has

the representation

Ω−1/2 = ζ−1/2 +W, (19.8)
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with ζ, W smooth – confront this decomposition with the discussion in Section

11.6.4. In particular, one has(
Δh − 1

8
r[h]

)
W = 0, W (i) =

m

2
, (19.9)

and (
Δh − 1

8
r[h]

)
(ζ−1/2) = 4πδ[i]. (19.10)

From this last equation it follows that

ζ(i) = 0, Diζ(i) = 0, DiDjζ(i) = −2hij(i). (19.11)

One has that ζ is essentially the Green function of the Yamabe operator

and describes the local geometry in a neighbourhood of i, while W encodes

information of a global nature – in particular, its ADM mass m. Accordingly,

the functions ζ and W will be called, respectively, the massless part and mass

part of the conformal factor Ω. Given a conformal metric h, the decomposition

(19.8) is unique. Moreover, using the so-called Hadamard’s parametrix

construction, it can be shown that ζ and W are analytic if h is analytic;

see Friedrich (1998c, 2004) for further details about this last statement and

Garabedian (1986) for the underlying PDE theory. In particular, for the choice

of the conformal factor (19.7) it follows that the parametrisation (19.8) takes the

form

ζ =
1

μ

(
1− v

1 + v

)2

, W =
m

2
, μ ≡ m2

4
. (19.12)

It can be verified that the function ζ satisfies the asymptotic conditions (19.11)

and that W is, indeed, a solution of Equation (19.9).

Using the chain rule to rewrite Equation (19.10) as an equation for Δhζ and

taking into account the asymptotic conditions (19.11), one finds that

2ζς = DiζD
iζ, with ς ≡ 1

3
Δhζ, (19.13)

which is a regular equation in a suitable neighbourhood of i. In particular,

it can be verified that ς(i) = −2. Equation (19.13) is the analogue of the

conformal Einstein field Equation (8.24). It encodes a regularised version of the

transformation equation for the Ricci scalar. As will be seen in the following,

it can be interpreted as a constraint which is automatically satisfied if other

equations hold.

Equations for the curvature

To exploit the fact that one is working with a gauge for which r[h] = 0, it is

convenient to introduce an h-tracefree tensor sij such that

rij [h] = sij .
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510 Static solutions

Recalling that in three dimensions the Riemann curvature tensor rijkl is fully

determined by the Ricci tensor, it is then natural to interpret the tensors

rij and sij as describing, respectively, the geometric and algebraic three-

dimensional curvatures; see Section 8.3.1 for further discussion on these

notions in the context of the conformal Einstein field equations. If the zero

quantity

Ξij ≡ rij [h]− sij

vanishes, then the three-dimensional (contracted) Bianchi identity takes the form

Disij = 0. (19.14)

The fields ζ, ς and sij can be used to obtain a regular version of the formally

singular transformation law for the Ricci tensor; see Equation (5.16a). Rewriting

derivatives of the conformal factor Ω as derivatives of ζ one obtains

Sij ≡ DiDjζ − ςhij + ζ(1− μζ)sij = 0. (19.15)

Equation (19.15) will be read as a differential equation for ζ. To close the system

one needs differential equations for ς and sij . Suitable equations can be obtained

from the integrability conditions

DiSij = 0, D[kSi]j +
1

2
DlSl[khi]j = 0, (19.16)

encoding the three-dimensional second Bianchi identity in contracted and

uncontracted form, respectively. The identities (19.16) can be verified through a

direct computation and introducing the zero quantities

Si ≡ Diς + (1− μζ)sijD
jζ = 0,

Hkij ≡ (1− μζ)D[ksi]j − μ
(
2D[kζsi]j +Dlζhl[ksi]j

)
.

It follows from a further computation that Si = 0 and Hkij = 0 are equivalent

to the integrability conditions (19.16). The condition Hkij = 0 can be read as

an expression for the Cotton tensor

bjki ≡ D[kri]j −
1

4
D[krhi]j = 2D[kli]j ,

where lij denotes the three-dimensional Schouten tensor. In the remainder of

this chapter it is often more convenient to work with the dualised version of bjki,

bij ≡ 1
2biklεj

kl. A computation shows that

bij =
μ

1− μζ

(
sliεj

klDkζ −
1

2
slmεji

lDmζ

)
.
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19.1 The static field equations 511

Summary: the conformal static equations

In what follows, the conditions

Ξij = 0, Si = 0, Sij = 0, Hkij = 0 (19.17)

will be known as the conformal static equations. They provide an overdeter-

mined system of differential conditions for the fields hij , sij , ζ and ς. As will be

seen, the equations in (19.17) imply an elliptic system for the components of the

various conformal fields.

Remark. A direct computation yields the identity

Di

(
2ζς −DkζD

kς
)
= 2ζSi − 2SikD

kζ.

Thus, if Si = 0 and Sij = 0, then 2ζς − DkζD
kς is a constant. Evaluating at

i and using the known values of the various fields at this point, one concludes

that the expression in brackets must vanish. This argument shows that Equation

(19.13) plays the role of a constraint. Hence, it has not been included in the list

(19.17).

19.1.2 Spinorial version of the equations

To write the spinorial version of the conformal static equations, let sABCD =

s(ABCD) denote the spinorial counterpart of the trace-free tensor sij . The Bianchi

identity (19.14) takes the form

DABsABCD = 0.

In terms of the spinor sABCD the equation Hkij = 0 takes, after exploiting the

antisymmetry in the pair ki, the simple form

DA
QsBCDQ =

2μ

1− μζ
sQ(ABCDD)

Qζ. (19.18)

The spinorial transcription of equations Si = 0 and Sij = 0 is completely

direct. When working with spinors, the equation rij = sij is replaced by the

Cartan structure equations, Equations (2.41) and (2.42), for the 3-geometry with

an algebraic 3-curvature given by sij . These structure equations provide,

respectively, differential conditions for the coefficients of a frame and for the

associated spin connection coefficients; see, for example, Friedrich (2007). It will

often be convenient to express the various spinorial fields and the associated

equations in terms of their components (e.g. sABCD) with respect to some spin

dyad {εAA}.
For later use, let bABCDEF denote the spinorial counterpart of the Cotton

tensor bijk. Exploiting the antisymmetry in the indices jk, one obtains the

decomposition

bABCDEF = bABCEεDF + bABDF εCE , bABCD ≡ DQ
(AsBCD)Q. (19.19)
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512 Static solutions

Consequently, one has the symmetry bABCD = b(ABCD). Moreover, it can be

verified that

DABbABCD = 0.

In what follows, bABCD will be referred to as the Cotton spinor.

19.2 Analyticity at infinity

The conformal static Equations (19.17) allow one to show that, under some basic

regularity assumptions, there exist coordinates in a neighbourhood of the point

at infinity for which all the conformal fields are analytic. This result brings to the

forefront the inherent ellipticity of the equations and constitutes the foundation

of any further analysis of static solutions from a conformal perspective. The

result was originally proven by Beig and Simon (1980a). In the following, an

adaptation of this result will be given. One has:

Theorem 19.1 (analyticity of static solutions at infinity) Let (v, h̃)

denote a solution to the static Equations (19.4a) and (19.4b) such that Ω as

defined by Equation (19.7) satisfies the conditions (19.6) with hαβ = Ω2h̃αβ the

components of a C4,α metric for some coordinates x = (xα) in a neighbourhood

of i. Then there exist coordinates x′ = (x′α) defined in a neighbourhood of i such

that h′
αβ, ζ

′, ς ′ and s′αβ are analytic.

Remark. The regularity assumptions in this result are expressed in terms of

Hölder spaces; see the Appendix to this chapter.

Proof The proof exploits the fact that the Ricci operator of a Riemannian

metric expressed in harmonic coordinates is elliptic – the Lorentzian counterpart

of this observation has been discussed in the Appendix to Chapter 13. The

general theory of elliptic equations – see, for example, Garabedian (1986) – shows

that it is always possible to find a neighbourhood of i in which the equations

Δhx
′α = 0 (19.20)

have a solution x′α = x′α(x). The coefficients of the differential operator in

Equation (19.20) consist of hαβ and its derivatives so that they are of class C3,α.

The general theory of elliptic partial differential equations (PDEs) shows that

solutions of second-order elliptic equations gain two derivatives with respect to

the coefficients of the equation. Accordingly, one has that x′α = x′α(x) is C5,α.

This regularity is sufficient to invert the coordinates. Taking into account the

transformation law of the metric tensor under change of coordinates,

h′
αβ =

∂xγ

∂x′α
∂xδ

∂x′β hγδ,

it follows that h′
αβ is C4,α. Similarly, the field ζ ′ can be verified to be C4,α, while

ς ′ and s′αβ are C2,α. To conclude the proof, one needs to construct a system
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19.2 Analyticity at infinity 513

of elliptic equations for the various fields. In the remainder of the proof it is

assumed that all the fields are expressed in terms of the coordinates x′, and

the primes will be dropped from the expressions. Let γα
β
γ denote the Christoffel

symbols of the metric h and denote by γβ ≡ hαγγα
β
γ the associated contracted

Christoffel symbols. A discussion analogous to that of the hyperbolic reduction

of the Einstein field equations in generalised wave coordinates – see the discussion

in the Appendix of Chapter 13 – shows that

rαβ −D(αγβ) = sαβ

is an elliptic equation for the components hαβ of the metric h in the coordinates

(xα) if sαβ are known. To close the system one considers the equations

Sα
α = 0, DαSα = 0, DγHγαβ = 0.

Using the Bianchi identity (19.14) and the conformal static field equations to

remove all the second derivatives of the conformal fields which are not Laplacians,

one obtains a system of the form

Δh

(
hαβ , ζ, ς, sαβ

)
= F(hαβ , ζ, ς, sαβ , Dγhαβ , Dαζ,Dας,Dγsαβ), (19.21)

with F an analytic vector-valued function of its entries. Despite having a

Laplacian operator on the left-hand side, it is a priori not clear that the system

(19.21) is elliptic as Δh applied to hαβ and sαβ gives rise to further second-

order derivatives of hαβ which come from derivatives of the Christoffel symbols.

To verify ellipticity one needs to compute the determinant of the symbol of

(19.21). A calculation shows that this determinant is, in fact, proportional to

(hαβξαξβ)
13 so that one, indeed, has an elliptic system as hαβ are the components

of a Riemannian metric; compare the definition of ellipticity in Section 11.2. The

general theory of the regularity of solutions of elliptic systems shows that if one

has a C2,α solution to the above equation, then it must, in fact, be analytic in

U ; a discussion of this result is given in Morrey (1958).

Remarks

(i) The original proof in Beig and Simon (1980a) was carried out in a conformal

gauge obtained from writing the static metric (19.1) in the form

g̃ = e2Udt⊗ dt− e−2U ĥαβdy
α ⊗ dyβ ,

where U is a scalar field and ĥαβ denote the components of a Riemannian

3-metric. Their analysis shows that ω ≡ (U/m)2 and h′ ≡ ω2ĥ are analytic

in h′-harmonic coordinates. This gauge and the one used to prove Theorem

19.1 can be related by letting Ω′ ≡ ωeU . One has by analogy to Equation

(19.8) the split Ω′−1/2 = ζ ′−1/2 +W ′ with

ζ ′ =
ω

cosh2 U/2
, W ′ =

m sinhU/2

U
.
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514 Static solutions

It can be verified that the conformal metrics h and h′ are related to each

other via h = ϑ4h′ with ϑ ≡ 2W ′/m.

(ii) Kennefick and O’Murchadha (1995) have shown that the smoothness

assumption on the conformal metric made in Theorem 19.1 can be

deduced from weaker differentiability and decay conditions on the physical

3-metric h̃.

(iii) Theorem 19.1 can be further strengthened by considering h-normal coor-

dinates based on i. It can be verified that the coordinate transformation

relating the analytic coordinate system x′ and normal coordinates is also

analytic.

A remark concerning the notion of analyticity at i

As a consequence of the analytic behaviour ensured by Theorem 19.1 one has

that, for example, the field ζ can be expressed in a suitably small neighbourhood

U of i as a convergent series of the form

ζ =

∞∑
p=2

ζα2···αp
xα2 · · ·xαp , ζα2···αp

∈ R. (19.22)

The other conformal fields have similar expansions. An alternative description

of the above expansion can be obtained by introducing polar coordinates.

Accordingly, one defines

ρ2 ≡ |x|2 = δαβx
αxβ , ρα ≡ xα

|x| . (19.23)

The unit position vector ρα can be parametrised by means of some coordinates

θ = (θA) on the 2-sphere S2 so that one can write ρα = ρα(θ). In what follows it

will be assumed, for convenience, that the coordinates (θA) are analytic functions

of the original coordinates x – clearly, the coordinates (θA) cannot cover the

whole of S2. This fact will not play a role in the sequel. In terms of the coordinates

(ρ, θA) the expansion (19.22) takes the form

ζ =
∞∑
p=2

ζα2···αp
ρα2 · · · ραpρp.

Accordingly, ζ is also an analytic function of the coordinates (ρ, θA). Decom-

posing the product ρα2 · · · ραp (which depends only on the angular coordinates)

into symmetric, trace-free terms one obtains the usual expansion in terms of

spherical harmonics Ylm. This computation can be conveniently performed in

space spinors; see, for example, Torres del Castillo (2003).

Remark. Not every analytic function of (ρ, θA) is an analytic function of the

associated Cartesian coordinates. The standard counterexample for this is the

radial coordinate ρ as defined by Equation (19.23), whose second derivative with

respect to the coordinates (xα) is singular at i. To have analyticity with respect
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19.2 Analyticity at infinity 515

to the coordinates (xα) one needs the right combination of spherical harmonics

and powers of ρ.

A particular case of the above discussion concerns the conformal factor Ω.

From Equation (19.8) it follows that

Ω =
ζ

(1 + ζ1/2W )2
.

A direct computation taking into account the asymptotic conditions (19.11)

shows that while Ω is C2 at i, it will fail to be of class C3 unless W = 0 –

which, in the present gauge, means that m = 0. Thus, in general, the conformal

factor Ω is not analytic in the harmonic coordinates (xα) even if ζ is analytic. It

is, nevertheless, analytic in ρ.

19.2.1 A spacetime conformal completion of static solutions

Theorem 19.1 is a statement about the conformal structure of hypersurfaces of a

canonical foliation of a static spacetime. Thus, it is of natural interest to analyse

the consequences of this property from a spacetime perspective. Intuitively, one

expects that the nice conformal properties of the leaves of the foliation will lead

to a good spacetime conformal behaviour. As the spatial conformal factor is not

analytic with respect to the harmonic coordinates x = (xα), one cannot expect

analyticity of a spacetime conformal extension in terms of these coordinates.

Instead, one looks for extensions which are analytic in the associated radial

coordinate.

Following Remark (iii) after Theorem 19.1, it is assumed that the harmonic

coordinates x = (xα) are h-normal and centred at i. Writing θ = (θA), one has

that for θ = θ� fixed and s ∈ [0, s�) for s� ≥ 0 suitably small, xα(s) = sρα(θ�)

describes a geodesic passing through i. A function f : U → R evaluated along

one of these geodesics will be denoted by f(sρα). From xα = ρ ρα it follows that

dxα = ραdρ+ dρα = ραdρ+ ρ∂Aρ
αdθA,

so that, using the normal coordinates condition hαβx
α = −δαβx

α, one concludes

that

h = −dρ⊗ dρ+ ρ2k, (19.24)

where

k ≡ hαβdρ
α ⊗ dρβ = hαβ∂Aρ

α∂Bρ
βdθA ⊗ dθB

corresponds to the metric of the two-dimensional surfaces of constant ρ. In

particular, one has that k|ρ=0 = −σ – the negative definite standard metric

of S2.

Putting together the discussion of the previous paragraph and recalling that

h = Ω2h̃, one finds that the static metric (19.1) can be rewritten as

g̃ = v2dt⊗ dt− Ω−2dρ⊗ dρ+Ω−2ρ2k. (19.25)
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516 Static solutions

The claim is now that the conformal metric g ≡ Ξ2g̃ with

Ξ = Ω1/2

gives rise to a conformal extension of the static spacetime which is as regular

as one can possibly expect, that is, analytic in the coordinates (ρ, θA). From

Equation (19.25) one has that

g = Ωv2dt⊗ dt− Ω−1dρ⊗ dρ+ ρ2Ω−1k. (19.26)

Recalling that Ω = O(ρ2) and v = O(1), one finds that while the first and third

terms of the above metric are regular, the second one is singular. This singularity

is a coordinate artefact which can be removed by considering the null coordinate

u ≡ t+

∫ ρ�

ρ

ds

v(sρα)Ω(sρα)
,

for fixed ρα and ρ� > 0. Observe, in particular, that as a consequence of the

behaviour of Ω near i one has that u → −∞ as ρ → 0. The differential of the

null coordinate u is given by

du = dt− 1

vΩ
dρ+ λ,

where

λ ≡ λAdθ
A, λA ≡

∫ ρ�

ρ

∂A

(
1

v(sρα)Ω(sρα)

)
ds.

Substituting the above expressions into the conformal metric (19.26) yields

g = Ωv2du⊗ du+ v(du⊗ dρ+ dρ⊗ du)− Ωv2(du⊗ λ+ λ⊗ du)

− v(λ⊗ dρ+ dρ⊗ λ) + Ωv2λ⊗ λ+ ρ2Ω−2k,

which is regular whenever Ω = 0. Moreover, following the discussion of Section

19.2, the various metric coefficients are analytic in the coordinates (ρ, θA). The

conformal representation of static spacetimes given above shows that static

spacetimes admit a smooth conformal extension which includes a portion of null

infinity. However, this description is not suitable for a spacetime discussion of

spatial infinity. This issue will be elaborated in Chapter 20. The discussion of

this section can be extended to include stationary spacetimes; for a discussion

of the required considerations, see Dain (2001b).
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19.3 A regularity condition 517

19.3 A regularity condition

As an application of the results on the analyticity of solutions to the conformal

static equations at i, in this section a proof is given of a property of the conformal

structure of static solutions which plays a central role in the discussion of

Chapter 20. The analysis of this section is best carried out in spinors and is

adapted from Beig (1991).

Before stating the main result of this section it is convenient to discuss some

ancillary consequences of the conformal static equations. In what follows, all

the spinors are expressed in terms of their components with respect to some

spin dyad {εAA} associated to the frame {ei} corresponding to the particular

realisation of harmonic h-normal coordinates at i.

Lemma 19.1 (behaviour of the symmetrised derivatives of ζ at i)

A solution to the conformal static equations satisfies

D(ApBp
DAp−1Bp−1 · · ·DA1)B1

ζ(i) = 0.

Proof For the cases p = 0, 1, 2, the result follows from a direct computation

using the conditions in (19.11), observing that h(ABCD) = 0. For higher order

derivatives, the result follows by induction, using that the spinorial version of

the equation associated to the zero quantity Sij is given by

DABDCDζ = ςhABCD + (μ− 1)ζsABCD, (19.27)

and using that DEF hABCD = 0 and h(ABC)D = 0.

Remark. Lemma 19.1 implies, in particular, that

D(ApBp
DAp−1Bp−1

· · ·DA1B1)ζ(i) = 0.

The main result of this section is the following:

Proposition 19.1 (behaviour of the derivatives of the Cotton spinor at

i) A solution to the conformal static equations satisfies

D(ApBp
DAp−1Bp−1 · · ·DA1B1bABCD)(i) = 0, p = 0, 1, 2, . . . . (19.28)

The original proofs of this result were given independently by Friedrich (1988)

and Beig (1991).

Proof The proof of this result follows from considering Equation (19.18) in the

form

(1− μζ)bABCD = 2μsQ(ABCDD)
Qζ. (19.29)
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518 Static solutions

Using the conditions in (19.11) one obtains bABCD(i) = 0. Repeated differenti-

ation and symmetrisation of Equation (19.29) yields

(1− μζ)D(ApBp
DAp−1Bp−1

· · ·DA1B1
bABCD)

− pμD(ApBp
ζDAp−1Bp−1

· · ·DA1B1
bABCD)

+ · · · − μD(ApBp
DAp−1Bp−1 · · ·DA1B1ζbABCD)

= D(ApBp
· · ·DA1B1s|Q|ABCDD)

Qζ

+ · · ·+ sQ(ABCDApBp
· · ·DA1B1

DD)
Qζ.

Using Lemma 19.1 it follows that every term in the above expression, save for

the first one in the left-hand side, vanishes when evaluated at i. This yields the

desired result.

Remark. Condition (19.28) has been called in Friedrich (1988), for reasons to

be elaborated in Chapter 20, the radiativity condition. In Friedrich (1998c) it

has been given the name regularity condition. In tensorial notation Equation

(19.28) takes the form

D{αp
Dαp−1

· · ·Dα1
bβγ}(i) = 0 p = 0, 1, 2, . . . .

Conformal transformation properties

Let ω denote a smooth function defined in a neighbourhood of i satisfying

ω(i) �= 0. From the conformal transformation properties of the Cotton tensor –

see Equation (5.19) – it follows that under the rescaling h �→ h′ = ω2h the

Cotton spinor satisfies

b′ABCD = ω−1bABCD.

Thus, b′ABCD(i) = 0 if bABCD(i) = 0. Using the transformation law of

the connection one finds that D′
A1B1

b′ABCD(i) = DA1B1
bABCD(i) as the

correction terms associated to the transition tensor involve bABCD(i) = 0.

Hence, D′
(A1B1

b′ABCD)(i) = 0. Proceeding inductively one concludes that

D′
(ApBp

D′
Ap−1Bp−1

· · ·D′
A1B1

b′ABCD)(i) = 0, p = 0, 1, 2, . . . .

Consequently, the regularity condition (19.28) is conformally invariant. This

conformal invariance allows the following reading of Proposition 19.1: the

conformal class of a 3-metric satisfying the static equations cannot be arbitrary.

More precisely, condition (19.28) is a necessary condition for a metric h to belong

to the conformal class of a static metric.

19.4 Multipole moments

In Newtonian gravity time-independent gravitational fields are characterised by

a sequence of multipole moments. It is desirable to have a similar characterisation

for time-independent solutions to the Einstein field equations describing isolated

bodies. One of the advantages of the conformal approach to static spacetimes
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19.4 Multipole moments 519

is that it allows a geometric formulation of the notion of multipole moments.

Following the original treatment in Geroch (1970a,b) one defines a sequence

of tensor fields
{
P, Pi, Pi1i2 , . . .

}
in a neighbourhood U of i via the recursive

relations

P ≡ Ω−1/2(1− v),

Pi ≡ DiP,

Pi2i1 ≡ D{i2Pi1} −
1

2
Pri2i1 ,

Pip+1···i1 ≡ D{ip+1
Pip···i1} −

1

2
p(2p− 1)P{ip+1···i3ri2i1}, p = 2, 3, . . . .

The particular form of the lower order correction terms in the definition of the

tensors Pip+1···i1 has been chosen so as to ensure conformal invariance of the

definition of multipole moments to be given below – this observation follows from

a tedious computation which will not be further elaborated here. The multipole

moments of a static solution are then obtained by evaluating the above tensors

at i. To this end, choose a smooth coordinate system x = (xα) on U and denote

by Pα, Pα2α1
, . . . the components of the tensors with respect to these coordinates

and define the multipole moments of the static solution with respect to

the coordinates x to be the sequence {m, mα, mα2α1
, . . .} with

m ≡ P (i), mαp···α1
≡ Pαp···α1

(i), p = 1, 2, 3 . . . .

For a given p, the 2p quantities mαp···α1
are called the 2p-poles. In particular, m

is the monopole (the mass) and mα is the dipole moment. As the multipole

moments are expressed as the value of a tensor at a point, it follows that, under

a coordinate transformation x′ = (x′α(x)), the multipole moments transform as

m′ = m, m′
α = Aα

βmβ , m′
αp···α1

= Aαp

βp · · ·Aα1

β1mβp···β1
, (19.30)

where (Aα
β) are the components of 3×3 invertible real matrices; that is, (Aα

β) ∈
GL(3,R). Observe that the monopole is invariant under a change of coordinates.

For the particular choice of the conformal factor given by Equation (19.7) one

has that P = m so that DiP = 0 and accordingly mα = 0; in other words, in

the conformal gauge determined by (19.7) one is automatically in the centre of

mass.

The properties of the multipole expansions in Newtonian gravity raise the

question of to what extent the general relativistic multipole moments determine a

solution to the static equations, and vice versa. The construction described in the

previous paragraph can be thought of as mapping a static solution (v, h̃) to the

collection of multipoles {m, mα, mα2α1
, . . .}. Now, two collections of multipoles

{m, mα, mα2α1
, . . .} and {m′, m′

α, m
′
α2α1

, . . .} are said to be equivalent if

there exists (Aα
β) ∈ GL(3,R) such that the relations in (19.30) hold. In Beig

and Simon (1980a) the following has been proved:
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520 Static solutions

Theorem 19.2 (multipole theorem) If two static solutions (v, h̃) and (v′, h̃
′
)

lead to multipole sequences which are equivalent, then the static solutions are

isometric in a neighbourhood of i.

Although a detailed proof of the above theorem will not be provided, it is

of interest to discuss the basic underlying ideas. The fundamental problem is

the following: given a sequence of multipoles {m, mα, mα2α1
, . . .}, how can

one reconstruct the pair (v, h̃) solving the static equations? To answer this

question one first employs an inductive argument which relies on the definition

of the multipole moments, the conformal static equations and the commutator

of covariant derivatives to show that the values of the fields ζ, s, sαβ and any

of their covariant derivatives at the point i can be expressed in terms of the

multipole moments. Thus, one can compute the Taylor expansions (in harmonic

h-normal coordinates) of these fields around i. From the general theory of Taylor

expansions one knows that the expansions are unique. Moreover, it is a classical

result of Riemannian geometry that the sequence

{rαβγδ(i), Dηrαβγδ(i), Dη2η1
rαβγδ(i), . . .}

determines, in a unique way, the Taylor expansion of the components of the

metric hαβ – again, in h-normal coordinates (xα) centred at i; see, for example,

Günther (1975). A final argument shows that applying the above procedure to

two equivalent sequences of multipoles leads to two metrics which are isometric.

Now, given any set of multipole moments subject to the appropriate conver-

gence condition, it is natural to expect that there exists a static solution having

precisely those multipole moments. In other words, the sequence of multipoles

characterises (in a suitable) unique manner the static spacetime. As a result of

the analyses in Friedrich (2007) and Herberthson (2009) one has the following:

Theorem 19.3 (sufficient conditions on the sequence of multipoles

for the existence of a static solution) Let {m, mα, mα2α1
, . . .} denote the

components of a sequence of real valued, totally symmetric trace-free tensors

at the origin of R3 expressed in terms of Cartesian coordinates x = (xα). If

constants M, C > 0 can be found such that

|mαp···α1
| ≤ p!M

Cp
, (19.31)

then there exists a static, asymptotically flat spacetime having the multipole

moments {m, mα, mα2α1
, . . .}.

The proof of the above result goes beyond the scope of this book. Again, only

the basic underlying ideas are briefly discussed. The starting point of the analysis

is to exploit the analyticity of the solutions to the conformal static equations

provided by Theorem 19.1 to implement a complex analytic extension of

the whole setting. More precisely, the fields hαβ , ζ, ς, sαβ can be extended
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19.4 Multipole moments 521

near i by analyticity into the complex domain and regarded as holomorphic (i.e.

complex analytic) fields on a complex analytic manifold SC. Restricting SC to

be a sufficiently small neighbourhood of i one can use similarly extended normal

coordinates x = (xα) centred at i to define an analytic system of coordinates on

SC which identifies the latter with an open neighbourhood of the origin in C3.

The original manifold S is then a three-dimensional real analytic submanifold

of SC. Under the analytic extension the main differential geometric concepts

and formulas remain valid. In particular, the extended fields, to be denoted

again by hαβ , ζ, s, sαβ , satisfy the conformal static vacuum field equations on

SC. In order to provide a geometric perspective of the problem, one considers

the function Γ ≡ δαβx
αxβ on S which extends to a holomorphic function on

SC satisfying the equation hαβDαΓDβΓ = −4Γ. While restricted to S, the

function Γ vanishes only at i. On SC its set of zeros is a two-dimensional complex

submanifold of SC,

Ni ≡ {p ∈ SC |Γ(p) = 0},

the so-called complex null cone at i. This cone is generated by the complex

null geodesics through i; see Figure 19.1. The analogy between the (spacetime)

conformal field equations and the conformal static field equations discussed in

Section 19.1.1 suggests the formulation of a characteristic initial value problem

for the conformal static field equations on the null cone Ni. The formulation of

this characteristic initial value problem requires the determination of suitable

initial data. An argument involving the idea of exact sets of fields – see Penrose

and Rindler (1984) – allows one to show that the basic data for this characteristic

problem are is given by the sequence of fields

{
sαβ(i), D{α1

sαβ}(i), . . . , D{αp···α1
sαβ}(i), . . .

}
.

Figure 19.1 Schematic representation of the complex null cone through i, Ni,
as described in the main text.
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522 Static solutions

The above null data can be obtained by repeated differentiation along the

direction of the complex null generators of Ni of the components of sαβ ; see, for

example, the discussion in Friedrich (2004, 2007).

Given the analyticity of the setting described in the previous paragraphs, one

can make use of the Cauchy-Kowalewskaya theorem to discuss the existence

of analytic solutions to this characteristic problem and to provide convergence

conditions on the null data which ensure the existence of a solution; see the

Appendix to this chapter. The convergence conditions thus obtained are similar

to the ones in Equation (19.31) of Theorem 19.3 and, in particular, ensure the

existence of a real static solution. This is the main result of Friedrich (2007).

To obtain the convergence condition on the sequence of multipoles one needs

to analyse the relation between the null data and the sequence of multipoles.

Inspection shows that the null data and the multipole moments are in a one-to-

one correspondence. This correspondence, however, is non-linear and implicit.

The detailed analysis of this correspondence in Herberthson (2009) allows the

transformation of the convergence conditions for the null data into convergence

conditions for the sequence of multipoles.

19.5 Uniqueness of the conformal structure of static metrics

As a final application of the conformal static equations, the extent to which the

conformal class of the 3-metric h̃ determines a solution to the static equations

will be analysed. This question was first analysed in Beig (1991) from where the

main ideas of the analysis are adapted. An alternative discussion of some aspects

of this problem is given in Friedrich (2008a,b).

The multipole Theorem 19.2 shows that a static solution is determined by its

multipole moments. Thus, it is natural to try to relate the multipole moments

to the conformal class of the metric h. In what follows, for p = 1, 2, 3, . . . define

βApBp···A1B1A0B0
≡ DQ

(Bp
DAp−1Bp−1

· · ·DA1B1
bA0B0ApQ)(i).

Using an inductive argument similar (albeit lengthier!) to the one leading to

Proposition 19.1 one obtains the family of identities

βApBp···A1B1A0B0
= 6μD(ApBp

· · ·DA2B2
sA1B1A0B0)(i), (19.32)

for p = 1, 2, 3, . . . with μ = m2/4; see Equation (19.12). The above identities

constitute the main tool for the reminder of the section. Observe that the

tensorial counterpart of the symmetrised derivatives of the spinor enter directly

in the definition of the multipole moments. The quantities βApBp···A0B0
have

good conformal properties. Recalling that under the rescaling h′ = ω2h with

ω(i) �= 0, one has the transformation rules

b′ABCD = ω−1bABCD, ε′AB = ω−1εAB.
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19.5 Uniqueness of the conformal structure of static metrics 523

It follows that

β′
ApBp···A0B0

= ω−2(i)βApBp···A0B0 .

Consider now two solutions (h, sABCD, ζ, ς) and (h′, s′ABCD, ζ ′, ς ′) to the

conformal static equations such that

h′ = ω2h,

and consider the question of under which circumstances will the above two

solutions determine the same physical static solution (v, h̃) – modulo isometries.

The identities (19.32) show how the multipole moments of the two solutions

are connected to each other. One then needs further conditions that allow one

to constrain the relation between solutions further. In view of the conformal

nature of the problem, the natural object to look for those extra conditions

is the Cotton spinor. Proposition 19.1 and the identities (19.32) already

provide information about some of the derivatives of bABCD at i. The only

derivatives which have not yet been considered are divergences of the form

DPQD(PQDApBp · · ·DA1B1bABCD). A direct computation using Equations

(19.27) and (19.29) yields

DPQbPQCD(i) = 0, (19.33a)

DPQD(PQbABCD)(i) = 0, (19.33b)

DPQD(PQDEF bABCD)(i) = 0. (19.33c)

However, a lengthy computation reveals that

DPQD(PQDGHDEF bABCD)(i) = −24μD(GHsQEFA(i)sBCD)Q(i).

Defining, for convenience, OGHEFABCD ≡ D(GHsQEFA(i)sBCD)Q(i), a

computation using the definition of the quantities βApBp···A0B0
allows the

reexpression of this quantity in the form

OGHEFABCD =
1

36
βQ

(GHFEAβBCD)Q. (19.34)

The conformal transformation properties can be easily read from this last

expression. Namely, one has that

O′
GHEFABCD = ω−5(i)OGHEFABCD.

On the other hand, it can be checked that

D′PQD′
(PQD′

GHD′
EF b

′
ABCD)(i) = ω−3(i)DPQD(PQDGHDEF bABCD)(i).

From the above transformation rules, assuming that OGHEFABCD �= 0 one

concludes that

ω2(i) = μ′/μ.
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524 Static solutions

Observe that if OGHEFABCD = 0, no conclusion can be extracted from the anal-

ysis. As a consequence of Equation (19.34), the requirement OGHEFABCD �= 0 is

a condition on the conformal structure of the static solutions under consideration.

If it holds, then using the identities (19.32) one concludes that the two solutions

to the conformal static equations will have the same multipole moments if they

have the same mass. Moreover, as a consequence of the multipole Theorem 19.2,

they are isometric. The analysis of this section is summarised in the following

theorem, first proven in Beig (1991):

Theorem 19.4 (uniqueness of the conformal structure of static solu-

tions) Two solutions to the conformal static equations with the same mass, lying

in the same conformal class and satisfying OGHEFABCD �= 0 are isometric.

The condition OGHEFABCD �= 0 can be seen to be violated if the two static

solutions are axially symmetric about a common axis; see, for example, Beig

(1991). As discussed in Friedrich (2008a) this is, in fact, the only possibility.

More precisely, a static solution which admits a non-trivial rescaling leading to

a new static solution must be axially symmetric and admit a conformal Killing

vector. There exists a three-parameter family of such solutions. These have been

explicitly found in Friedrich (2008b).

The Schwarzschild solution

A case of particular interest is when h̃ is conformally flat. It then follows that

βApBp···A0B0
= 0 for all p, and the only non-vanishing mass multipole is the

mass m. Invoking, again, the multipole Theorem 19.2 it follows that for a given

value of m there exists only one solution, up to isometries, with this property –

namely, the Schwarzschild solution. An alternative derivation of the uniqueness of

the Schwarzschild spacetime among the class of conformally flat static solutions

which makes no use of the multipole theorem has been given in Friedrich (2004).

In this analysis the conformal static equations are explicitly integrated along

geodesics starting at i.

19.6 Characterisation of static initial data

An issue related to the questions discussed in the previous section concerns the

characterisation of initial data for a static spacetime – this question will be

of relevance in Chapter 20. More precisely, one is interested in the following

question: given a 3-metric h, under which circumstances does there exist in

the conformal class [h] another metric h̃ which, together with some scalar v,

constitutes a solution to the static equations?

As in the rest of the chapter, the above question is restricted to a suitable

neighbourhood of infinity. Proposition 19.1 shows that not every conformal class

will contain a static metric. In other words, condition (19.28) is a necessary
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condition for a metric h to be conformal to a static metric. Now, condition

(19.28) is not sufficient. The relations (19.33b) and (19.33c) show that there exist

further conditions (in fact, an infinite hierarchy of them) on the conformal class,

algebraically independent from (19.28), which need to be satisfied by a metric h

in order to be conformal to a static metric. The gap between a conformal class

of 3-metrics satisfying the regularity condition (19.28) and a conformal class

containing a static metric has been analysed in detail in Friedrich (2013).

The level of detail required to discuss the main result of Friedrich (2013)

goes well beyond the scope of this chapter, and only the key ideas are

briefly mentioned. If a metric h is conformal to a metric h′ solving the

conformal static equations, then writing h′ = ω2h for some suitable conformal

factor ω, it is possible to rewrite the conformal static equations as a highly

overdetermined system of differential equations for ω. To analyse the solvability

of the conditions one needs to consider the associated integrability conditions. As

already anticipated by (19.33b) and (19.33c), these integrability conditions give

rise, in addition to (19.28), to restrictions on the conformal structure which take

the form of an infinite hierarchy of differential conditions on the Cotton tensor

at i. These conditions can be expressed in terms of requirements on a covector

constructed from the 3-metric h. An interesting feature of the analysis is that

the overdetermined system involving the conformal factor ω is highly singular

at i. For this system to have a solution, a hierarchy of regularity conditions

need to be imposed on the singular part of the equation so that it admits a

smooth extension to a neighbourhood of i – this is reminiscent of a procedure

which arises in the construction of radiative initial data sets in Section 20.2.

Remarkably, the required regularity conditions turn out to be nothing else but

the conditions (19.28).

19.7 Further reading

A systematic analysis of time-independent solutions to the Einstein field

equations is provided in Beig and Schmidt (2000). This reference provides an

excellent point of entry to the extensive literature on static and stationary

solutions in general relativity. A survey of the various approaches to define

multipole moments for time-independent solutions to the Einstein field equations

can be found in Quevedo (1990). An analysis of global aspects of static and

stationary spacetimes can be found in Anderson (2000).

Several of the results discussed in this chapter admit a generalisation to the

case of stationary solutions. The definitions of multipole moments given by

Geroch (1970a,b) have been extended to the stationary case in Hansen (1974).

The analyticity of solutions of the conformal stationary field equations has been

analysed in Beig and Simon (1980b, 1981); see also Kundu (1981). However, in

this case the 3-metric h of a surface of constant time will not be analytic; see

Dain (2001b). Instead, the analyticity refers to the 3-metric γ of the quotient

space obtained from identifying points on the spacetime lying on the same orbit
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526 Static solutions

of the stationary Killing vector. The analysis of the convergence conditions for

null data of static solutions in Friedrich (2007) has been extended to the case

of stationary solutions in Aceña (2009). An alternative analysis of multipole

expansions of static solutions with the aim of obtaining convergence conditions

on sequences of multipoles has been given in Bäckdahl and Herberthson (2005a,b,

2006) and Bäckdahl (2007).

The analysis of the conformal static equations by means of the complex null

cone through i was first introduced in Friedrich (1988). Further extensions of

this method have been given in Friedrich (2004, 2007, 2013).

Appendix 1: Hölder conditions

Given 0 < α ≤ 1, a real valued function f on an open set U ⊂ Rn is said to satisfy

the Hölder condition with exponent α on U if there exists a non-negative

constant C such that

|f(x)− f(y)| ≤ C|x− y|α, for all x, y ∈ U .

If the above is the case, one writes f ∈ C0,α(U). The Hölder condition is a

stronger notion of continuity; that is, a function satisfying the Hölder condition

is continuous, but not all continuous functions satisfy the Hölder condition for

some α. More generally, one says that f ∈ Ck,α(U) if all its derivatives up to

order k satisfy the Hölder condition for a given α. The Hölder condition plays an

important role in the regularity of solutions to elliptic PDEs; see, for example,

Evans (1998) for further details.

Appendix 2: the Cauchy-Kowalewskaya theorem

The Cauchy-Kowalewskaya theorem asserts the local existence, in a neigh-

bourhood of t = 0, of a real analytic solution u(t, x) to the quasilinear first-order

initial value problem

∂tu = Aα(t, x,u)∂αu+B(t, x,u),

u(0, x) = u�(x),

where Aα(t, x,u), B(t, x,u) and u�(x) are real analytic functions of their

arguments; see, for example, Evans (1998) for further details. A discussion of the

various approaches to prove this result can be found in Shinbrot and Welland

(1976).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


20

Spatial infinity

This chapter discusses the properties of the conformal Einstein field equations

and the behaviour of their solutions in a suitable neighbourhood of spatial infin-

ity. This analysis is key in any attempt to extend the semiglobal existence results

for Minkowski-like spacetimes of Chapter 16 to a truly global problem where

initial data is prescribed on a Cauchy hypersurface. An interesting feature of the

semiglobal existence Theorem 16.1 is that the location of the intersection of the

initial hyperboloid with null infinity does not play any role in the formulation

of the result. This observation suggests that the essential difficulty in formulating

a Cauchy problem is concentrated in an arbitrary (spacetime) neighbourhood of

spatial infinity. The subject of this chapter can be regarded, in some sense, as

a natural extension of the study of static spacetimes in Chapter 19 to dynamic

spacetimes – a considerable amount of the discussion of the present chapter

is devoted to understanding why this is indeed the case. A further objective

of this chapter is to understand the close relation between the behaviour of the

gravitational field at spatial infinity and the so-called peeling behaviour discussed

in Chapter 10. The main technical tool in this chapter is the construction of

the so-called cylinder at spatial infinity – a conformal representation of spatial

infinity allowing the formulation of a regular initial value problem by means

of which it is possible to relate properties of the initial data on a Cauchy

hypersurface with the behaviour of the gravitational field at null infinity.

Despite recent developments in the understanding of the behaviour of solutions

to the Einstein field equations in a neighbourhood of spatial infinity, several key

issues still remain open.

20.1 Cauchy data for the conformal field equations

near spatial infinity

To begin to understand the difficulties behind the formulation of a standard

initial value problem for a Minkowski-like spacetime, it is convenient to look at

the behaviour of Cauchy data for the conformal equations near spatial infinity.
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528 Spatial infinity

20.1.1 General set up

In what follows, initial data sets (S̃, h̃, K̃) which are asymptotically Euclidean

and regular in the sense of Definition 11.2 will be considered. As the discussion

in this chapter will be mainly concerned with the behaviour of the data in

a neighbourhood of spatial infinity, it will be assumed, without any loss of

generality, that the manifold S̃ has only one asymptotic end. The basic aspects

of the analysis of spatial infinity are already present in time-symmetric initial

data sets. Thus, attention is restricted to this type of configuration. Finally, it

will be assumed, unless otherwise explicitly stated, that the conformal metric h

is analytic in a suitable neighbourhood of the point at infinity i. This assumption

allows the simplification of a number of arguments and calculations and allows

one to analyse the solutions to the Einstein field equations under optimal

regularity assumptions of the initial data – it is, however, non-essential.

Remark. Static initial data sets satisfy the assumptions described in the

previous paragraph.

In Chapter 11 it has been seen that the conformal factor Ω linking a particular

choice of conformal metric h with the physical metric h̃ admits, in a suitable

neighbourhood U of i and in terms of normal coordinates x = (xα) centred at i,

the decomposition

Ω =
|x|2

(U + |x|W )2
, |x|2 = δαβx

αxβ , (20.1)

where U/|x|2 is the Green function of the Yamabe operator and describes the

local geometry around i, while W contains global information; see the discussion

in Section 11.6.4. In particular, one has that U = 1 + O(|x|2) is analytic if h

is analytic and, moreover, W (i) = m/2 where m denotes the Arnowitt-Deser-

Misner (ADM) mass of the initial data set.

There is a certain amount of freedom in the choice of the conformal scaling

of the metric h. For the purposes of the present discussion, it is convenient to

consider the scaling introduced in Section 11.6.2 for which

hαβ = −δαβ +O(|x|3), (20.2)

so that the curvature tensor of h satisfies, in this gauge, rαβγδ(i) = 0. This gauge

construction is supplemented by an h-normal frame {ei} centred at i; that is,

one has

hij ≡ h(ei, ej) = −δij , Dγ̇ei = 0,

where γ̇ denotes the tangent vector to any geodesic passing through i; compare

the discussion in Section 18.4.1. Consistent with Equation (20.2), the frame

coefficients in ei = ei
α∂α satisfy

ei
α = δi

α +O(|x|3).
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20.1 Cauchy data for the conformal field equations near spatial infinity 529

Moreover, the associated connection coefficients are of the form

γi
j
k = O(|x|2),

and one has that

rij = O(|x|),

where rij ≡ rαβei
αej

β are the components of the Ricci tensor of h with respect

to the frame {ei}.

20.1.2 The rescaled Weyl and Schouten tensors on U

For time-symmetric initial data, the components of the electric part of the

rescaled Weyl tensor, dij , and the Schouten tensor, Lij , with respect to the

frame {ei} are given on U , respectively, by

dij =
1

Ω2

(
D{iDj}Ω+ Ωsij

)
, Lij = − 1

Ω
D{iDj}Ω+

1

12
rhij ;

see Section 11.4.3. The spinorial version of the above expressions is readily found

to be given by

φABCD =
1

Ω2

(
D(ABDCD)Ω+ ΩsABCD

)
, (20.3a)

LABCD = − 1

Ω
D(ABDCD)Ω+

1

12
rhABCD. (20.3b)

The first of the above equations implies an expression for the Cotton spinor

bABCD; see Equation (19.19). Rewriting Equation (20.3a) in the form

Ω2φABCD = D(ABDCD)Ω+ ΩsABCD,

taking the spinorial curl of the latter, commuting covariant derivatives in the

term with the triple derivatives of Ω and recalling that the Cotton spinor is

given by bABCD = D(A
QsBCD)Q, one concludes that

bABCD = 2D(A
QΩφBCD)Q +ΩD(A

QφBCD)Q. (20.4)

Behaviour close to infinity

As in the case of hyperboloidal data discussed in Section 11.7, the expressions

(20.3a) and (20.3b) are formally singular whenever Ω = 0. Accordingly, the

discussion of the behaviour of dij and Lij close to i requires some care.

In view of the decomposition (20.1) it is convenient to define the massless

part of the conformal factor as Ὼ ≡ |x|2/U2. By construction one has

Ὼ(i) = 0, DiῺ(i) = 0, DiDjῺ(i) = −2δij , (20.5)
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so that one obtains the expansion

Ὼ = δαβx
αxβ +O(|x|3).

In particular, it is observed that D{iDj}Ὼ = O(|x|3).
One can define a massive part of the conformal factor as Ω̌ ≡ Ω − Ὼ.

Rewriting Equation (20.1) as

Ω = Ὼ

(
1 +

|x|W
U

)−2

,

and using that

Di|x| =
xi

r
+O(|x|2), DiDj |x| =

1

|x|3 (|x|
2δij − xixj) +O(|x|),

where xi ≡ δi
βδαβx

α, one concludes, taking into account the boundary

conditions (20.5), that

D{iDj}Ω = −
3mx{ixj}

|x| +O(|x|2).

Finally, observing that, in the present gauge, sij = O(|x|) and r = O(|x|), one
finds

dij = −
3mx{ixj}

|x|5 +O(|x|−2), Lij =
3mx{ixj}

|x|3 +O(|x|0).

Accordingly, one concludes that both dij and Lij are singular at i with

dij = O(|x|−3), Lij = O(|x|−1), as |x| → 0.

The analysis of the consequences of this singular behaviour and how to deal with

it will be the central subject of the remainder of this chapter.

Remark. Even if the massive part of the conformal factor vanishes, one still

has a potential source of singularities in the fields dij and Lij . This can be seen

from computing the massless part of the electric part of the Weyl tensor

given by

d̀ij ≡ 1

Ὼ2
(D{iDj}Ὼ + Ὼsij)

=
1

|x|4
(
U2D{iDj}|x|2 − 4UD{i|x|2Dj}U

− 2|x|2UD{iDj}U + 6|x|2D{iUDj}U + |x|2U2sij
)
. (20.6)

A similar expression holds for L̀ij – the massless part of the Schouten tensor. In

the next section, it will be seen that under suitable assumptions on the metric

h, both d̀ij and L̀ij extend to analytic fields in a neighbourhood of i.
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20.2 Massless and purely radiative spacetimes 531

20.2 Massless and purely radiative spacetimes

Intuition on the behaviour of solutions to the conformal Einstein field equations

in a neighbourhood of spatial infinity can be obtained from the analysis of

massless initial data sets , that is, data sets for which Ω = Ὼ. In view of the

mass positivity theorem – see Schoen and Yau (1979) – the idea of considering

initial data sets which are massless might at first seem strange. The rigidity part

of this theorem implies that if the ADM mass m of an initial data set vanishes,

then one has, in fact, initial data for the Minkowski spacetime or the initial data

set is singular somewhere. Since the present chapter is mainly focused on an

analysis local to i (i.e. in a suitably small neighbourhood of i) the presence of

singularities in the interior of the 3-manifold S can be disregarded.

20.2.1 Geometric setting

Given a massless initial data set for the conformal Einstein field equations in a

neighbourhood U of the point at infinity i, the conformal evolution equations

determine a (future and past) development (M, g,Ξ) which is contained in

D(U) = D+(U) ∪ D−(U). Following the notation of Chapter 14, let I+(i) and

I−(i) denote the timelike future and timelike past of i in (M, g) and by N +
i and

N −
i the null cones generated by the null geodesics passing through i. From the

boundary conditions (20.5) satisfied by Ὼ it follows that the spacetime conformal

factor Ξ has a non-degenerate critical point at i which, for simplicity, is assumed

to be the only critical point of Ξ. The locus of points for which Ξ = 0 coincides

with N +
i ∪ N −

i ; see the discussion in Section 16.3.

As observed in Friedrich (1988), the development (M, g,Ξ) of the conformal

field equations can be regarded from a dual perspective:

(i) On the set Mc
i ≡ M \

(
I+(i) ∪ N +

i ∪ I−(i) ∪ N −
i

)
, corresponding to the

exterior of the null cones, the metric g̃ ≡ Ξ−2g is a solution to the Einstein

field equations with vanishing mass for which i represents spatial infinity i0.

(ii) On I+(i) the metric g̃ represents a solution to the Einstein field equations

for which the point i represents past timelike infinity i− and the set I − ≡
N +

i \ {i} past null infinity. For suitably smooth initial data, the solution

thus obtained has a regular past timelike infinity and provides an example

of purely radiative spacetimes; see the discussion in Section 18.4.

A schematic depiction of the above geometric setting can be found in

Figure 20.1.

20.2.2 A regularity condition at spatial infinity

Not all initial data sets lead to developments (M, g,Ξ) such that I+(i) admits

a regular past timelike infinity – as given in point (ii) of the previous section.

The purpose of this section is to identify the initial data sets with this property.
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532 Spatial infinity

Figure 20.1 Schematic depiction of the geometric set up for massless space-
times as described in the main text. The set Mc

i ≡ M\
(
I+(i)∪N +

i ∪I−(i)∪
N −

i

)
contains a solution to the vacuum Einstein field equations with vanishing

mass for which i represents spatial infinity i0, while on I+(i) one obtains a
purely radiative solution where N +

i represents past null infinity I − and i
corresponds to past timelike infinity i−.

The arguments of this section are always carried out in a suitable neighbourhood

of the vertex i.

As already discussed, direct inspection of expression (20.6) shows that

although Ὼ = |x|2/U2 is a real analytic function in a suitable neighbourhood

U of i fixed by the equation

2ῺΔhῺ = 3DiῺDiῺ− 1

2
Ὼ2r[h]

and the boundary conditions (20.5), in general, the corresponding fields d̀ij and

L̀ij will not have the same degree of smoothness.

To identify conditions on h ensuring that the fields d̀ij and L̀ij are also

analytic, it is convenient to consider a complex analytic extension of U
similar to the one discussed in Section 19.4. To this end, one allows the normal

coordinates x = (xα) in U to take values in a neighbourhood UC of the origin of

C3 so that the original neighbourhood U is a real three-dimensional analytic

submanifold of UC. Accordingly, the fields Γ ≡ |x|2, h, ei, Ὼ, sij and r[h]

are extended by analyticity into the complex domain and are regarded as

holomorphic fields over UC. Assuming that i = {p ∈ UC | xα(p) = 0} is the

only critical point of Ὼ in UC, the complex null cone generated by the complex

null geodesics through i is given by the two-dimensional complex submanifold

NC(i) ≡ {p ∈ UC | Γ(p) = 0}.

By construction, the set of points in UC where Ὼ vanishes coincides with NC(i).
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20.2 Massless and purely radiative spacetimes 533

A first criterion ensuring the analyticity of φ̀ABCD – or, equivalently, d̀ij – is

given by the following:

Proposition 20.1 (analyticity of the massless part of the Weyl spinor:

first version) The analyticity of φ̀ABCD near i is equivalent to the requirement

D(P pQp
· · ·DP 1Q1)

DEF

(
D(ABDCD)Ὼ + ῺsABCD

)
(i) = 0 (20.7)

for p = 0, 1, 2, . . ..

Remark. As will be seen in the following, this condition is, in fact, a condition

on the conformal class of h. The conformal constraint equations imply that L̀ij

is analytic if d̀ij is analytic.

Proof The proof of the lemma makes repeated use of a factorisation lemma for

holomorphic functions, which is discussed in the Appendix to this chapter; see

Lemma 19.2. The analyticity of h implies that the field φ̀ABCD on U extends

to a holomorphic field on UC \ NC(i) which satisfies

Ὼ2φ̀ABCD = D(ABDCD)Ὼ + ῺsABCD. (20.8)

Now, if φ̀ABCD is analytic at NC(i) one can take a derivative of the above

expression and evaluate on NC(i) to find that

DEF

(
D(ABDCD)Ὼ + ῺsABCD

)∣∣
NC(i)

= 0. (20.9)

Conversely, given condition (20.9), one would like to verify that φ̀ABCD is

analytic at NC(i). Using the factorisation Lemma 19.2 in the Appendix to this

chapter, it follows that there is a holomorphic field fABCDEF such that, in a

neighbourhood of NC(i), one has

DEF

(
D(ABDCD)Ὼ + ῺsABCD

)
= ῺfABCDEF . (20.10)

Defining ZABCD ≡ D(ABDCD)Ὼ + ῺsABCD, the last equation can be written

as DEFZABCD = ῺfABCDEF . Moreover, transvecting Equation (20.10) with

DEF Ὼ one obtains

DEF ῺDEFZABCD

∣∣
NC(i)

= 0, (20.11)

which can be read as an ordinary differential equation for ZABCD along the

generators of NC(i). It follows that the field ZABCD is constant along the

generators, so that evaluating Equation (20.11) at the vertex one concludes that

D(ABDCD)Ὼ + ῺsABCD = 0 on NC(i).

Using again Lemma 19.2 again, one finds that there exists a further holomorphic

field fABCD such that

D(ABDCD)Ὼ + ῺsABCD = ῺfABCD in a neighbourhood of NC(i).
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534 Spatial infinity

Taking a derivative of this expression and comparing the result with Equa-

tion (20.10) it follows that(
DEF ῺfABCD

)∣∣
NC(i)

= 0.

One observes that DEF Ὼ �= 0 on UC \ {i}. It follows that there exists a

holomorphic function gABCD such that fABCD = ῺgABCD so that

Ὼ2gABCD = D(ABDCD)Ὼ + ῺsABCD.

Comparing the latter with Equation (20.8) one concludes that gABCD coincides

with φ̀ABCD on UC \ NC(i), and, thus, φ̀ABCD is analytic near i as required.

Having encoded the analyticity of φ̀ABCD in terms of the vanishing of a

spinorial field at NC(i), one makes use of Lemma 19.3 in the Appendix to this

chapter to express the latter condition as an equivalent series of conditions at

the vertex i.

An alternative way of imposing conditions on the metric h ensuring that

φ̀ABCD is analytic at i can be obtained using expression (20.4) for the Cotton

spinor. One has the following:

Proposition 20.2 (analyticity of the massless part of the Weyl spinor:

second version) A necessary condition on the metric h for φ̀ABCD to be

analytic in a neighbourhood of i is given by the sequence of conditions

D(P pQp
· · ·DP 1Q1

b̀ABCD)(i) = 0, p = 0, 1, 2, . . . (20.12)

Proof As in the proof of Proposition 20.1, one considers an arbitrary null

geodesic γ(s) ∈ NC(i), s ∈ C, such that γ(0) = i with tangent vector having

the spinorial counterpart κAκB with κA parallely propagated along γ(s). The

latter implies that

κADABῺ = 0. (20.13)

For Ω = Ὼ, relation (20.4) takes the form

b̀ABCD = 2D(A
QῺφ̀BCD)Q + ῺD(A

Qφ̀BCD)Q,

which can be extended to UC by analyticity. In particular, at NC(i), contracting

the previous expression four times with κA one obtains, in view of (20.13), that(
κAκBκCκD b̀ABCD

)∣∣
NC(i)

= 0.

Applying repeatedly κP κQDPQ one finds that(
κP pκQp · · ·κP 1κQ1κAκBκCκDDP pQp

· · ·DP 1Q1
b̀ABCD

)∣∣
NC(i)

= 0,

for p = 0, 1, 2, . . . Restricting the previous expression to i and recalling that κA

is arbitrary, one obtains (20.12).
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Remark. In Chapter 19 it has been shown that the Cotton spinor of the 3-

metric of a static solution satisfies a condition that is identical to (20.12); see

Proposition 19.1. The role it plays in ensuring the analyticity of the rescaled

Weyl tensor at i motivates the alternative name regularity condition. From

the analysis of Section 19.3 it follows that the expression (20.12) is conformally

invariant and, accordingly, is a condition on the conformal class [h].

In Friedrich (1998c) it has been proven that conditions (20.7) and (20.12) are,

in fact, equivalent. The following proposition rounds out nicely the discussion of

this section.

Proposition 20.3 (equivalence between the conditions ensuring ana-

lyticity of the Weyl spinor) Conditions (20.7) and (20.12) are equivalent.

Consequently, a necessary and sufficient condition on the conformal class [h] to

ensure that the fields φ̀ABCC and L̀ABCD extend analytically to i is given by

D(P pQp
· · ·DP 1Q1

b̀ABCD)(i) = 0, p = 0, 1, 2, . . .

The proof of the equivalence between (20.7) and (20.12) involves a lengthy

computation that goes beyond the scope of this section. Interested readers are

referred to Friedrich (1998c), theorem 4.2 and its proof, for full details.

20.2.3 Construction of massless data

In Friedrich (1988) it has been observed that asymptotically initial data sets can

be used as seeds for the construction of massless initial data sets.

Let (h�, sij , ζ, ς) denote an asymptotically Euclidean solution to the conformal

static Equations (19.17). The above fields are expressed in a conformal gauge for

which r[h�] = 0. Moreover, the conformal factor linking the conformal metric

h� with the physical metric h̃� via h� ≡ Ω2
�h̃� satisfies

Ω
−1/2
� = ζ−1/2 +

1

2
m (20.14)

with m the ADM mass of the static solution; compare Equation (19.8). One can

then look for conformal factors Ω solving the conformal Hamiltonian constraint

2ΩΔh�Ω = 3|D�Ω|2

– compare Equation (11.15a) – where D� and Δh� denote, respectively, the

Levi-Civita covariant derivative and Laplacian of the conformally static metric

h�. Making use of the ansatz Ω = Ω(ζ), observing that

DiΩ =
dΩ

dζ
Diζ, DiDjΩ =

d2Ω

dζ2
DiζDjζ +

dΩ

dζ
DiDjζ,

and taking into account the conformal static equations one arrives at the ordinary

differential equation
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536 Spatial infinity

2ζΩ
d2Ω

dζ2
+ 3Ω

dΩ

dζ
= 3ζ

(
dΩ

dζ

)2

.

The general solution to this equation is given by

Ω =
c1ζ

(1 + c2
√
ζ)2

, c1, c2 constants.

The subclass of analytic solutions is given by c2 = 0, so that – up to a constant

factor – one has

Ω = ζ. (20.15)

When c2 �= 0, that is, in the case of a non-analytic solution, one has a non-

vanishing mass. In hindsight, the solution (20.15) could have been guessed

directly from Equation (20.14) as ζ satisfies the boundary conditions (20.5);

compare also Equation (19.11). Summarising, one has:

Proposition 20.4 (massless initial data out of static data) Given a

solution to the conformal static equations (h�, sij , ζ, ς) in a neighbourhood U
of the point at infinity i, the metric

h̃ = ζ−2h�,

defined in a suitable punctured neighbourhood of i, satisfies the time-symmetric

Hamiltonian constraint r[h̃] = 0 and has vanishing mass. Moreover, the rescaled

Weyl and Schouten spinors obtained from Equations (20.3a) and (20.3b) by

setting Ω = ζ are analytic at i.

The above result can be generalised to obtain massless initial data for the

conformal Einstein-Maxwell field equations; see Simon (1992).

20.2.4 Evolution of massless data

Proposition 20.4 can be combined with the conformal evolution equations to

obtain a development admitting the dual interpretation discussed in Section

20.1.1. The simplest way of implementing the construction is to make use of the

extended conformal Einstein field equations expressed in terms of a conformal

Gaussian gauge; see Section 13.4.

Initial data for the congruence of conformal geodesics (x(τ), β̃(τ)) underlying

the conformal Gaussian gauge can be set by the conditions

τ = 0, ẋ ⊥ U , Θ� = ζ, Θ̇� = 0, d� ≡ Θ�β̃� = dζ, on U .

The conformal factor associated to the congruence of conformal geodesics – see

Proposition 5.1 – is then given by

Θ = ζ

(
1 +

ςτ2

2ζ

)
, ς ≡ 1

3
Δh�ζ.
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20.2 Massless and purely radiative spacetimes 537

In the above expression ζ and ς are regarded as constant along a given conformal

geodesic. Now, one has that ς(i) = −2. Hence, by choosing U sufficiently small

so that ς < 0 in this neighbourhood, one can ensure that Θ has real roots at

τ = ±
√
2ζ/|ς|. Observe, in addition, that Θ = 0 at i.

The existence of a development for the massless data provided by Proposition

20.4 is given by the following result:

Theorem 20.1 (existence of purely radiative spacetimes) Let u� denote

initial data for the extended conformal Einstein field equations on a neighbour-

hood U of i constructed from a pair (h�, ζ) as given by Proposition 20.4. Then

there exists τ• > 0 ensuring the existence of a smooth solution u to the conformal

Einstein field equations on

Mτ• ≡ D+(U) ∩
(
[0, τ•)× U

)
,

such that the restriction of u to U coincides with u�. Define

Nτ• ≡ {p ∈ Mτ• |Θ(p) = 0},

and let g be the Lorentzian metric constructed from the solution u. For this

solution one has the following:

(i) On Mτ• \ (Nτ• ∪ (I+(i) ∩Mτ•)) the metric g̃ ≡ Θ−2g is a solution to the

vacuum Einstein field equations with vanishing mass for which Nτ• \ {i}
represents future null infinity I + and the point i corresponds to spatial

infinity i0.

(ii) On I+(i)∩Mτ• the Lorentzian metric g̃ is a purely radiative solution to the

Einstein field equations for which Nτ• \ {i} represents past null infinity and

the point i corresponds to past timelike infinity.

A schematic depiction of the spacetimes constructed via the above result is

given in Figure 20.1.

Proof The local existence of smooth solutions follows from the hyperbolic form

of the evolution equations given in Proposition 13.3 together with the local

existence for this type of evolution equations provided by Kato’s Theorem 12.2.

The existence of an actual solution to the full conformal Einstein field equations

follows from the form of the associated subsidiary system – see Proposition 13.4 –

while the existence of a solution to the Einstein field equations is obtained from

Proposition 8.3 whenever Θ �= 0. The interpretation of the solutions in the

regions where Θ > 0 and Θ < 0 follows from the discussion in Section 20.2.1.

Remark. Although the result is, from the conformal perspective, purely local,

from the physical point of view, it is nevertheless of a semi-global nature. It

follows from the smoothness of the solution u to the conformal Einstein field

equations provided by Theorem 20.1 on Nτ• \ {i} and, in particular, of the field
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538 Spatial infinity

φABCD, that the Weyl tensor of both of the spacetimes in (i) and (ii) satisfy

the Peeling behaviour ; see Theorem 10.4.

20.3 A regular initial value problem at spatial infinity

The purpose of this section is to discuss the formulation of a regular asymptotic

initial value problem for the conformal evolution equations for data with non-

vanishing mass.

Consider a suitable neighbourhood U of the point at infinity i of the point-

compactification (S,h,Ω) of an asymptotically Euclidean (time-symmetric)

Cauchy hypersurface of a vacuum spacetime (M̃, g̃). Let {ei} denote an

h-orthonormal frame and let {εAA} denote an associated spin frame. The key

idea behind the formulation of a regular asymptotic initial value problem is based

on the observation that a conformal rescaling of the form

Ω �→ Ω′ ≡ κ−1Ω (20.16)

induces a rescaling of the frame of the form

ei �→ e′i ≡ κei, εA
A �→ ε′A

A ≡ κ1/2εA
A.

Accordingly, the components of the rescaled Weyl spinor with respect to the spin

frame {εAA} rescale as

φABCD �→ φ′
ABCD ≡ κ3φABCD.

Now, if one considers the rescaling (20.16) with a function κ of the form

κ = |x|κ, with κ smooth such that κ(i) �= 0, (20.17)

one finds that φ′
ABCD = O(1). Thus, the components of the Weyl spinor with

respect to the new frame are bounded at i.

20.3.1 Rescaling of the initial data for the conformal field equations

The discussion of the previous paragraph suggests that the rescaling (20.16) with

κ given by (20.17) could be used to formulate a regular Cauchy problem on U .
Note, however, that while φ′

ABCD is bounded at i, there is no guarantee that

it will be smooth since |x| is not a smooth function of the normal coordinates

x = (xα). Thus, one needs to resort to polar coordinates similar to the ones

used in Section 19.2.1 to analyse the spacetime conformal extensions of static

spacetimes. Letting

ρ2 ≡ δαβx
αxβ , ρα ≡ xα

|x| ,

and using some coordinates θ = (θA) on S2 to parametrise the position vector

ρα, one has that the 3-metric h can be written as

h = −dρ⊗ dρ+ ρ2k, k ≡ hαβ∂Aρ
α∂Bρ

βdθA ⊗ dθB,
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20.3 A regular initial value problem at spatial infinity 539

with k|ρ=0 = −σ; compare Equation (19.24). It is natural to consider an h-

orthonormal frame {ei} with dual coframe {ωi} satisfying

ω3 = dρ, ρ2k = −ω1 ⊗ ω1 − ω2 ⊗ ω2.

The indexing of the basis vectors has been chosen so as to match that of the

spatial Infeld-van der Waerden symbols; see Equations (4.11a) and (4.11b).

From the above expressions it follows, writing ωi = ωi
αdx

α, that ω3
α = O(1),

ω1
α, ω

2
α = O(ρ), while for the frame coefficients in ei = ei

α∂α one has that

e3
α = O(1), e1

α, e2
α = O(ρ−1).

Consistent with the rescaling (20.16), let

e′i ≡ κei, ω′i ≡ κ−1ωi, (20.18)

and set e′i = e′i
α∂α and ωi = ω′i

αdx
α. It follows that if the function κ is chosen

as in Equation (20.17), then

e′3
α = O(ρ), e′1

α, e′2
α = O(1),

ω′3
α = O(ρ−1), ω′

1
α, ω′

2
α = O(1),

and, moreover, that

h′ ≡ κ−2h = − 1

ρ2
dρ⊗ dρ+ k. (20.19)

Thus, the coframe coefficients and, consequently, also the metric coefficients

are singular at ρ. This singular behaviour is, however, not an obstacle for the

construction of a regular initial value problem as these objects do not explicitly

appear as unknowns in the spinorial conformal Einstein field equations in either

their standard or their extended form. Introducing the coordinate r ≡ − log ρ so

that r → ∞ as ρ → 0 one obtains the line element

h′ = −dr ⊗ dr + k.

Hence, the locus of points for which ρ = 0 lies at infinity with respect to

the metric h but has finite circumference – and is, in fact, a metric 2-sphere.

Accordingly, the rescaling (20.19) resolves (blows up) the point at infinity into a

2-sphere which is described locally in terms of the coordinates θ = (θA).

In the remainder of this chapter, for the blow up of i to S2 it will be

understood the pair (
C(U), {e′i}

)
consisting of a 3-manifold C(U) with boundary ∂C(U) ≈ S2 such that C(U) \
∂C(U) can be identified with U \ {i} and where the frame {e′i} is given as in

Equation (20.18) with a choice of κ as in Equation (20.17). The set I0 ≡ ∂C(U)
will be called the sphere at infinity. Observe that the definition of a blow up

makes reference neither to the metric h′ nor to the coframe {ω′i} which are

singular as ρ → 0.
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540 Spatial infinity

The previous definition of the blow up of i has the purpose of simplifying the

discussion in the remainder of the chapter. A precise and rigorous discussion of

this construction requires the use of the language of fibre bundles. The interested

reader is referred to Friedrich (1998c, 2004) for a detailed account; see also Aceña

and Valiente Kroon (2011).

The rescaling of the conformal fields

The effects of the frame rescaling (20.18) on the connection coefficients can be

analysed by means of the usual transformation formulae for the connection.

One has

γ′
i
j
k = ω

′j
ke

′
i
iD′

ie
′
k
k

= ω
′j

ke
′
i
iDie

′
k
k − κ−1ω′j

ke
′
i
ie′k

lSil
mkDmκ

= κγi
j
k − (δk

jDiκ+ δi
jDkκ+ δikD

jκ);

compare a similar computation in Section 15.1.2. The spinorial version of the

above expression is given by

γ′
ABCD = κγABCD − 1

2
(εACDBDκ+ εBDDACκ).

To complete the discussion of the connection, one needs to consider the rescaling

of the covector f . From the transformation rules of solutions to the conformal

geodesics equations, Equation (5.40), it follows that f ′ = f+dκ. Thus, if f� = 0,

it follows that

f ′
i = Diκ, f ′

AB = DABκ.

Finally, it follows from the transformation rules of the components of the

Schouten tensor under the transition to a Weyl connection that

L̂ij = κ2Lij , Θ′
ABCD = κ2ΘABCD.

Comparing the above expressions with (20.3b), it follows that if κ is chosen as

in (20.17), then Θ′
ABCD = O(1).

A closer look at the frame

It is convenient to have a more detailed expression for the frame {ei} or,

alternatively, its frame spinorial index counterpart {eAB} – recall that eAB ≡
σi

ABei. Let {∂+, ∂−} denote a local basis of vectors on S2 with dual cobasis

{α+, α−} such that ∂− = ∂+ and, furthermore,

σ = 2(α+ ⊗α− +α− ⊗α+),

with σ denoting the standard metric of S2. The vectors can be expressed in terms

of the local coordinates θ = (θA), but the explicit correspondence will not be

required. The vectors {∂+, ∂−} originally defined on S2 can be extended to C(U)
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20.3 A regular initial value problem at spatial infinity 541

by Lie propagation along the radial direction given by ∂ρ; that is, one requires

that [∂ρ,∂±] = 0. Using the vector fields {∂ρ, ∂±} one can then locally write

eAB = eAB
3∂ρ + eAB

+∂+ + eAB
−∂−,

for suitable frame coefficients eAB
3 and eAB

±. These coefficients can be

expanded, in turn, in terms of the basic valence-2 symmetric spinors

xAB ≡
√
2ε(A

0εB)
1, yAB ≡ − 1√

2
εA

1εB
1, zAB ≡ 1√

2
εA

0εB
0,

satisfying

xABxAB = −1, xAByAB = 0, xABzAB = 0, (20.20a)

yAByAB = 0, yABzAB = −1

2
, zABzAB = 0. (20.20b)

Expressing the spinorial basis {εAA} in the form ε0
A = oA, ε1

A = ιA one finds

that the fields xAB, yAB and zAB are, up to a normalisation, the components

of the pairs o(AιB), oAoB and ιAιB with respect to the spin basis. Taking into

account the contractions (20.20a) and (20.20b) and the line element (20.19) one

finds the more detailed expression

eAB = xAB∂ρ + eAB
+∂+ + eAB

−∂−, e01
± = 0.

20.3.2 The cylinder at spatial infinity

After providing regular initial data for the conformal field equations in the

neighbourhood U of i, one can now specify in more detail the conformal Gaussian

system underlying the hyperbolic reduction of the conformal Einstein field

equations.

In what follows, the initial data for the congruence of conformal geodesics will

be fixed, so that for p ∈ U \ {i} one has:

x� ≡ x(0) = p, ẋ� ≡ ẋ(0) = e0 future directed and orthogonal to S̃,
Θ�g̃(ea, eb) = ηab, Θ� > 0,

〈β̃, ẋ〉� = 0.

For the above data one further lets

Θ� = κ−1Ω, β̃� = Ω−1dΩ in U \ {i}, (20.21)

where, in a slight abuse of notation, β̃� denotes the pull-back of β̃ to U \ {i}.
While β̃� is singular at i, d� ≡ Θ�β̃� is regular under the present assumptions.

Using Proposition 5.1 in Chapter 5 it follows that

Θ = κ−1Ω

(
1− κ2τ2

ω2

)
, da =

(
− 2κΩτ

ω2
, κ−1dΩ

)
, (20.22)
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542 Spatial infinity

where

ω ≡ 2Ω√
|dΩ|2

.

Now, as Ω = O(ρ2), it follows that ω = O(ρ) so that, together with the choice

(20.17) for κ one finds that κ/ω → 1. Moreover, both Θ and da can be seen to

have well-defined limits as ρ → 0. Accordingly, the conformal Gaussian gauge

can be extended to the set

I0 ≡ {p ∈ U | ρ(p) = 0} ≈ S2,

despite the fact that the second prescription in (20.21) is singular at the

above set.

Assume now that the congruence of conformal geodesics underlying the gauge

has no conjugate points on D(U). A point p ∈ D(U) is described by coordinates

(τ, x�) where x� denotes the normal coordinates of the intersection of the unique

conformal geodesic passing through p with U . Accordingly, a suitable region of

D(U) close to U can be thought of as a subset of R× U . In the following it will

be convenient to consider the sets

M(U) ≡
{
(τ, q) ∈ R× U

∣∣ − ω(q)

κ(q)
≤ τ ≤ ω(q)

κ(q)

}
, (20.23a)

I ≡
{
(τ, q) ∈ M(U) | q ∈ I0, |τ | < 1

}
, (20.23b)

I± ≡
{
(τ, q) ∈ M(U) | q ∈ I0, τ ± 1

}
, (20.23c)

I ± ≡
{
(τ, q) ∈ M(U)

∣∣ τ = ±ω(q)

κ(q)

}
. (20.23d)

If an existence result for solutions to the conformal evolution equations can be

obtained, then the set M(U) gives rise to an extension of the physical spacetime

manifold M̃ in a neighbourhood of spatial infinity, while I ± describe the two

components of null infinity. In this representation the point i0 is replaced by

an extended set I, the cylinder at spatial infinity, with both spatial and

temporal dimensions. The sets I± where “null infinity touches spatial infinity”

will be called, for reasons which will become clearer in the subsequent discussion,

the critical sets.

The set up discussed in the previous paragraphs is fixed up to a specific choice

of the function κ in (20.17). A convenient and simple choice of this function

consists in setting κ = ρ so that κ = 1 – this choice will be called the basic

representation . A schematic depiction of the sets in (20.23a)–(20.23d) of the

basic representation is given in Figure 20.2. An alternative choice consists of

setting κ = ω. In this case Θ vanishes at τ ± 1, and, accordingly, one calls

this construction the horizontal representation. A schematic depiction of

the sets in (20.23a)–(20.23d) of the horizontal representation is given in Figure

20.3.
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20.3 A regular initial value problem at spatial infinity 543

Figure 20.2 Schematic depiction of the basic representation of the set up of
the cylinder at spatial infinity. Left, a three-dimensional diagram; right, a two-
dimensional longitudinal section. See the main text for further details. Note
that the diagram to the right is not a conformal diagram but a graph of the
location of the conformal boundary in the conformal Gaussian coordinates.

Figure 20.3 Schematic depiction of the horizontal representation of the set
up of the cylinder at spatial infinity. Left, a three-dimensional diagram; right,
a two-dimensional longitudinal section. See the main text for further details.
Note that the diagram to the right is not a conformal diagram but a graph of
the location of the conformal boundary in the conformal Gaussian coordinates.

20.3.3 The cylinder at spatial infinity for the Minkowski and

Schwarzschild spacetimes

A good way of obtaining intuition about the properties of the conformal evolution

equations in a neighbourhood of I is to consider the case of initial data for the

Schwarzschild spacetime. The discussion in this section follows that of section 6

in Friedrich (1998c).
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544 Spatial infinity

Time-symmetric initial data for the Schwarzschild spacetime has been dis-

cussed in Section 11.6. It has been shown that the hypersurface S̃ characterised

by the condition t = 0 is conformally flat, so that setting ρ = 1/r̄, with r̄ the

Schwarzschild radial isotropic coordinate, one obtains the following conformal

metric and conformal factor:

h = −dρ⊗ dρ− ρ2σ, Ω =
ρ2(

1 + 1
2mρ

)2 . (20.24)

A comparison with the split (20.1) shows that, close to the point at infinity i

(i.e. for ρ close to 0), one has

U = 1, W =
m

2
.

The basic data (20.24) allow one to compute the data for the conformal

evolution equations. Following the discussion of Section 20.3.1 and setting κ = ρ

(i.e. using the standard representation) one finds that

eAB
0 = 0, eAB

1 = ρxAB, eAB
+ = zAB, eAB

− = yAB, (20.25a)

fAB = xAB, ξABCD = 0, χ(AB)CD = 0, (20.25b)

ΘABCD =
6mρ(

1 + 1
2mρ

)2 ε2ABCD, φABCD = −6mε2ABCD, (20.25c)

where ε2ABCD ≡ ε(A
0εB

0εC
1εD)

1. In addition, the functions associated to the

conformal Gaussian gauge can be computed to be

Θ =
ρ(

1 + 1
2mρ

)2
(
1− τ2(

1 + 1
2mρ

)2
)
, Θ̇ = − 2τρ(

1 + 1
2mρ

)4 ,
dAB =

2ρxAB(
1 + 1

2mρ
)3 .

The simple form of the initial data (20.25a)–(20.25c) suggests that the

discussion of the conformal evolution equations can be simplified by considering

a specific ansatz for the solutions. Some experimentation shows that a consistent

ansatz is given by

eAB
0 = e0xAB, eAB

1 = e1xAB, eAB
+ = e+zAB, eAB

− = e−yAB,

fAB = fxAB, ξABCD =
1√
2
ξ(εACxBD + εBDxAC),

χ(AB)CD = χ2ε
2
ABCD +

1

3
χhABCD,

ΘABCD = θ2ε
2
ABCD +

1

3
θhhABCD +

1√
2
θxεABxCD,

φABCD = φε2ABCD,
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20.3 A regular initial value problem at spatial infinity 545

where the components of the vector-valued unknown

u = (e0, e1, e+, e−, f, ξ, χ2, χ, θ2, θh, θx, φ)

are assumed to be real-valued functions of (τ, ρ). The ansatz allows one to reduce

the spinorial evolution equations to a system of scalar equations. A lengthy

computation renders

∂τe
0 =

1

3
(χ2 − χ)e0 − f, ∂τe

1 =
1

3
(χ2 − χ)e1,

∂τe
± = −1

6
(χ2 + 2χ)e±, ∂τ ξ = −1

6
(χ2 + 2χ)ξ − 1

2
χ2f − θx,

∂τf =
1

3
(χ2 − χ)f + θx, ∂τχ2 =

1

6
χ2
2 −

2

3
χ2χ− θ2 +Θφ,

∂τχ = −1

6
χ2
2 −

1

3
χ2 − θh, ∂τθ2 =

1

6
χ2θ2 −

1

3
(χ2θh + χθ2)− Θ̇φ,

∂τθh = −1

6
χ2θ2 −

1

3
χθh, ∂τθx =

1

3
(χ2 − χ)θx − 2ρ

3
(
1 + 1

2mρ
)3φ,

∂τφ = −1

2
(χ2 + 2χ)φ.

Initial data for these components can be obtained from a comparison of the

ansatz with Equations (20.25a)–(20.25c). One concludes that

e0 = 0, e1 = ρ, e+ = 1, e− = 1, f = 1, ξ = 0, χ2 = 0, χ = 0,

θ2 =
6mρ(

1 + 1
2mρ

)2 , θh = 0, θx = 0, φ = −6m.

The symmetry reduced system and associated initial data can be written in

a schematic form as

∂τu = F (u, τ, ρ;m), u(0, ρ;m) = u�(ρ;m), (20.26)

where F and u� are analytic functions of their arguments.

The m = 0 case

The particular case m = 0 – that is, the Minkowski spacetime – can be solved

explicitly with the only non-vanishing geometric fields given by

e0 = −τ, e1 = ρ, e± = 1, f = 1, (20.27)

while the fields associated to the conformal gauge are

Θ = ρ(1− τ2), dAB = 2ρxAB.

Consequently, this solution exists for all τ, ρ ∈ R. From the expressions in (20.27)

one finds that

ω ≡ τAA′ωAA′
=

√
2

(
dτ +

τ

ρ
dρ

)
, ωAB = −1

ρ
xABdρ− 2yABα+ − 2zABα−.
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546 Spatial infinity

Using the above covectors one can recover the metric associated to the

conformal representation of the Minkowski spacetime under consideration. From

Equation (4.14) one finds

g =
1

ρ2
(
ρ2dτ ⊗ dτ + τρ(dτ ⊗ dρ+ dρ⊗ dτ)− (1− τ2)dρ⊗ dρ− σ

)
.

Consistent with the discussion of the previous sections, this metric is singular at

ρ = 0. Now, as

f = fABωAB =
1

ρ
dρ

is a closed form, it follows that the Weyl connection ∇̂ associated to this

representation is, in fact, the Levi-Civita connection of the metric ρ2g. The

standard Minkowski metric can be recovered by setting x0 = τρ so that

g̃ = Θ−1g =
1(

ρ2 − (x0)2
)2 (dx0 ⊗ dx0 − dρ⊗ dρ− ρ2σ

)
,

=
1

(xλxλ)2
ημνdx

μ ⊗ dxν .

Performing the inversion xμ �→ −xμ/(xλx
λ) in the last line element one obtains

the standard Minkowski metric; compare the discussion in Section 6.2.2.

Null geodesics orthogonal to the spheres of constant ρ are given by

τ =
s

1± s
, ρ = ρ�(1± s), θ = (θA) = (θA� ), (20.28)

for constant ρ�, θ
A
� and s an affine parameter. A direct computation shows that

outgoing null geodesics intersecting future null infinity I + correspond to the

choice of the minus sign in Equations (20.28) – the intersection occurring at

s = 1
2 so that ρ = 1

2ρ�. These outgoing null geodesics do not intersect past

null infinity I − for a finite value of s. As ρ� → 0, the outgoing null geodesics

approach in a non-uniform manner the set I − ∪ I ∪ I+ ∪ I−. An analogous

discussion applies to the incoming null geodesics obtained from taking the plus

sign in (20.28). Accordingly, the cylinder at spatial infinity can be regarded as a

limit set of outgoing and incoming null geodesics ; see Figure 20.4.

The m �= 0 case

Now, returning to the casem �= 0, it follows from the Cauchy stability of ordinary

differential equations – see, for example, Hartman (1987) – that given τ• > 1

there exist m• > 0, ρ• > 0 such that the solution u(τ, ρ;m) is analytic in all

variables and exists for

|τ | ≤ τ•, ρ ≤ ρ•, |m| ≤ m•.

By choosing τ• sufficiently large and observing the properties of the

reference m = 0 solution, one can ensure that for each conformal geodesic with
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20.3 A regular initial value problem at spatial infinity 547

Figure 20.4 Schematic depiction of the null geodesics close to the cylinder at
spatial infinity for the Minkowski spacetime as discussed in the main text; see
the parametric equations in (20.28). The curves intersecting I + are outgoing
geodesics, while the ones intersecting I − are incoming. The cylinder I can
be seen as a limit set of the two classes of geodesics.

0 < ρ < ρ• there exists a τI < τ• such that Θ|±τI
= 0, dΘ|±τI

�= 0. To obtain

a statement that is valid for any value of m, it is observed that the symmetry-

reduced evolution equations and the associated data are invariant under the

rescaling

m �→ 1

�
m, ρ �→ �ρ, φ �→ 1

�
φ, e1 �→ �e1, Θ �→ �Θ,

for � > 0. Consequently, for any arbitrary m it is always possible to obtain a

solution to the symmetry-reduced system (20.26) reaching null infinity if ρ is

sufficiently small. Moreover, if ρ is sufficiently small, the underlying congruence

of conformal geodesics is free of conjugate points on M(U). Null geodesics in

the Schwarzschild spacetime behave more and more like null geodesics in the

Minkowski spacetime as ρ → 0. Numerically constructed solutions of the reduced

spherically symmetric evolution system for the Schwarzschild spacetime can be

found in Zenginoglu (2006, 2007).

20.3.4 Structural properties of the conformal evolution equations

near the cylinder at spatial infinity

Having briefly analysed the regular initial value problem at spatial infinity for

the Minkowski and the Schwarzschild spacetimes, one is now in the position of

making some general remarks about this type of initial value problem.

The cylinder at spatial infinity as a total characteristic

Following Proposition 13.3, the hyperbolic reduction of the extended conformal

Einstein field equations by means of a conformal Gaussian system leads to an

evolution system which can be written as
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548 Spatial infinity

∂τ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ, (20.29a)(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ̂)φ. (20.29b)

For convenience, it is assumed that Equation (20.29b) corresponds to the

boundary adapted Bianchi system; see Section 13.4.4. Despite the fact that the

cylinder I is, from the point of view of the metric g, a singular hypersurface, it

is regular from the point of view of Equations (20.29a) and (20.29b) and its data

(υ̂�,φ�); see Section 20.3.1.

Inspection of the explicit form of the conformal evolution equations reveals

that L(x) = 0 whenever the conformal factor Θ and the covector d vanish. It

follows that, on I, the conformal evolution equations decouple and one has

∂τ υ̂
[0] = Kυ̂[0] +Q(Γ̂

[0]
)υ̂[0], υ̂[0] ≡ υ̂|I , Γ̂

[0] ≡ Γ̂|I .

These transport equations can be integrated along the cylinder I from the

observation that, irrespective of the particular choice of κ, the restriction of

the initial data υ̂� to I0 coincides with the restriction of initial data for the

Minkowski spacetime as given in Section 20.3.3. Accordingly, the solution one

obtains must also coincide with the Minkowskian one – namely,

(e0AB)[0] = −τxAB, (e1AB)[0] = 0, (e+AB)[0] = yAB, (e−AB)[0] = zAB,

(ξABCD)[0] = 0, (χ(AB)CD)[0] = 0, (fAB)[0] = 0, (ΘABCD)[0] = 0.

Substituting the above values in the restriction to I of the partial differential

equation (PDE) (20.29b) one finds that the normal matrix A3 satisfies

A3|I = 0. (20.30)

Hence, on I the restriction of Equation (20.29b) acquires the simplified form

(
I+A0(e[0])

)
∂τφ

[0]+A+(e[0])∂+φ
[0]+A−(e[0])∂−φ

[0] = B(Γ̂
[0]
)φ[0] (20.31)

where φ[0] ≡ φ|I ; that is, one obtains an interior system. It follows that the

cylinder at spatial infinity I is a total characteristic of the conformal evolution

Equations (20.29a) and (20.29b) and the restriction to I of all the conformal

fields can be obtained from the restriction of the initial data to I0 by solving the

resulting system of transport equations. Thus, although at first sight it seems that

the construction of the cylinder at spatial infinity is introducing a set on which

boundary data must be prescribed, the structural properties of the equations

do not allow this: no boundary conditions can be prescribed on I; compare the

discussion in Section 12.4.

The solution to the interior equations for the Weyl tensor, Equation (20.31),

can be obtained by observing that the restriction of the initial data for the Weyl

tensor coincides with that of Schwarzschildean data so that the solution must be
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20.3 A regular initial value problem at spatial infinity 549

the Schwarzschild spacetime. From the symmetry-reduced conformal evolution

equations it follows that φABCD is constant along I. Accordingly, one finds that

(φABCD)[0] = −6mε2ABCD.

The conformal evolution system and the critical sets

The analysis of the transport equations on I provides valuable insights into the

hyperbolicity of the conformal evolution system (20.29a) and (20.29b). Observing

that (e0AB)[0] = −τxAB it follows that

(
I+A0(e)

)
|I =

⎛
⎜⎜⎜⎜⎝

1− τ 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 + τ

⎞
⎟⎟⎟⎟⎠ ;

compare Equation (13.61). Accordingly, the matrix A0 loses rank at the critical

sets I± and is no longer positive definite. Thus, the standard theory of hyperbolic

PDEs as discussed in Chapter 12 cannot be employed to make assertions about

the existence and uniqueness of solutions of the evolution system (20.29a) and

(20.29b) up to I±. This degeneracy of the conformal evolution system is the

essential source of difficulties in the analysis of the so-called problem of spatial

infinity and requires the development of tailor-made techniques in order for one

to be able to make assertions about the behaviour of its solutions.

Expansions in a neighbourhood of the cylinder at spatial infinity

On an intuitive level, one would expect the degeneracy of the conformal evolution

system at the critical sets I± to manifest itself through a loss of smoothness of

its solutions. The discussion of Section 20.3.3 shows that this potential loss of

regularity does not occur for all initial data. This observation hints that the

precise algebraic structure of the evolution equations plays a decisive role in the

nature of the solutions. In Friedrich (1998c) a procedure to analyse in detail

the properties of the solutions to the conformal evolution equations has been

put forward. Exploiting the total characteristic nature of the cylinder at spatial

infinity one can repeatedly differentiate the evolution Equations (20.29a) and

(20.29b) with respect to ∂ρ and then evaluate on I. In view of condition (20.30)

one obtains a hierarchy of transport equations for the fields

υ̂[p] ≡ ∂p
ρ υ̂|I , φ[p] ≡ ∂p

ρφ|I , p = 1, 2, 3, . . . ,

of the form

∂τ υ̂
[p] = Kυ̂[p] +Q(Γ̂

[0]
)υ̂[p] +Q(Γ̂

[p]
)υ̂[0]

+

p−1∑
j=1

(
p

j

)(
Q(Γ̂[j])υ̂[p−j] + L[j]φ[p−j]

)
+ L[p]φ[0],
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(
I+A0(e[0])

)
∂τφ

[p] +A+(e[0])∂+φ
[p] +A−(e[0])∂−φ

[p]

= B(Γ̂[0])φ[p] +

p∑
j=1

(
p

j

)(
B(Γ̂[j])φ[p−j] −A+(e[j])∂+φ

[p−j]

−A−(e[j])∂−φ
[p−j]

)
.

The above equations will be called the transport equations of order p. The

non-homogeneous terms depend on υ̂[j] and φ[j] for 0 ≤ j < p. Thus, if these

lower order solutions are known, the above pair of equations constitutes an

interior system for υ̂[p] and φ[p] on I. The principal part of these equations

is universal – in the sense that it is independent of the value of p. Initial data for

these transport equations can be obtained from repeated ρ-differentiation and

evaluation on I0 of the initial data υ̂�, φ� on U . The coefficients obtained from

this integration can, in turn, be collected in formal expansions of the form

υ̂ =

∞∑
p=0

1

p!
υ̂[p]ρp, φ̂ =

∞∑
p=0

1

p!
φ[p]ρp. (20.32)

At the time of writing, the analysis of the convergence of these formal expansions

and the way they relate to actual solutions to the conformal Einstein field

equations is an outstanding open aspect in the understanding of the problem of

spatial infinity. Some ideas on how this problem could be addressed can be found

in, for example, Friedrich (2003b) and Valiente Kroon (2009).

The structure of the hierarchy of transport equations for υ̂[p] and φ[p] makes

them amenable to a treatment by means of computer algebra methods. This

approach has been pursued in Valiente Kroon (2004a,b) where solutions up to

order p = 8 have been obtained. As is to be expected, the algebraic complexity

of the solutions increases as p increases, eventually making the evaluation of

further orders in the expansion no longer feasible due to computer limitations.

The solutions to the transport equations obtained in this manner provide a

valuable insight into the behaviour of the conformal field equations at spatial

infinity.

As first observed in Friedrich (1998c), quite remarkably, there is a non-trivial

relation between the regularity condition for the Cotton tensor, Equation (20.12),

and the smoothness of the solutions to the transport equations:

Theorem 20.2 (necessary conditions for the regularity of solutions

to the conformal field equations at the critical sets) Given a vacuum

time-symmetric initial data set with a conformal metric which is analytic in a

neighbourhood of infinity, the solution to the regular finite initial value problem

at spatial infinity is smooth through I± only if the regularity condition

D(EpF p
· · ·DE1F 1

bABCD)(i) = 0 (20.33)

holds for p = 0, 1, 2, . . . If this condition is violated at some order p′, the solutions

to the transport equations at order p′ will develop logarithmic singularities at I±.
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20.3 A regular initial value problem at spatial infinity 551

The analysis leading to the above result requires only the homogeneous part

of the transport equations.

A toy model: the spin-2 massless field

A way of gaining insight into the behaviour of the solutions to the conformal

evolution equations on the cylinder I is to consider an analogous discussion for

a test spin-2 massless field on the Minkowski spacetime. Accordingly,

let ζABCD denote the components of a totally symmetric rank-4 spinorial field

satisfying the equation

∇Q
A′ζABCQ = 0. (20.34)

The principal part of the evolution equations implied by (20.34) along the

cylinder I is identical to that of the Bianchi evolution equations. Several aspects

of this toy model have been considered in Valiente Kroon (2002), Friedrich

(2003b) and Beyer et al. (2012), and the following discussion is adapted from

various parts of these references.

The background Minkowski geometry has already been obtained in Section

20.3.3; see Equation (20.27). From these expressions, a computation shows that

the evolution equations implied by the spin-2 massless field equation can be

explicitly written as

(1− τ)∂τ ζ0 + ρ∂ρζ0 − ðζ1 − 2ζ0 = 0, (20.35a)

∂τ ζ1 −
1

2
(ðζ2 + ð̄ζ0)− ζ1 = 0, (20.35b)

∂τ ζ2 −
1

2
(ðζ3 + ð̄ζ1) = 0, (20.35c)

∂τ ζ3 −
1

2
(ðζ4 + ð̄ζ2) + ζ3 = 0, (20.35d)

(1 + τ)∂τ ζ4 − ρ∂ρζ4 − ð̄ζ3 + 2ζ4 = 0, (20.35e)

where ζ0 ≡ ζ0000, ζ1 ≡ ζ0001, . . ., and where for convenience of the subsequent

discussion, the connection coefficients associated to S2 (i.e. Γ00CD and Γ11CD)

have been absorbed in the differential operators ð and ð̄; see the Appendix to

Chapter 10. The subsequent analysis will also require the constraint equations

implied by Equation (20.34). These are given by

τ∂τ ζ1 − ρ∂ρζ1 −
1

2
(ðζ0 − ð̄ζ2) = 0, (20.36a)

τ∂τ ζ2 − ρ∂ρζ2 −
1

2
(ðζ1 − ð̄ζ2) = 0, (20.36b)

τ∂τ ζ3 − ρ∂ρζ3 −
1

2
(ðζ2 − ð̄ζ4) = 0. (20.36c)

Differentiating Equations (20.35a)–(20.35e) and (20.36a)–(20.36c) repeatedly

with respect to ∂ρ and evaluating at I one obtains the transport equations
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552 Spatial infinity

(1− τ)∂τ ζ
[p]
0 − ð̄ζ

[p]
1 + (p− 2)ζ

[p]
0 = 0, (20.37a)

∂τ ζ
[p]
1 − 1

2
(ðζ

[p]
0 + ð̄ζ

[p]
2 )− ζ

[p]
1 = 0, (20.37b)

∂τ ζ
[p]
2 − 1

2
(ðζ

[p]
1 + ð̄ζ

[p]
3 ) = 0, (20.37c)

∂τ ζ
[p]
3 − 1

2
(ðζ

[p]
2 + ð̄ζ

[p]
4 ) + ζ

[p]
3 = 0, (20.37d)

(1 + τ)∂τ ζ
[p]
4 − ðζ

[p]
3 − (p− 2)ζ

[p]
4 = 0, (20.37e)

and

τ∂τ ζ
[p]
1 − 1

2
(ðζ

[p]
4 + ð̄ζ

[p]
2 )− pζ

[p]
1 = 0, (20.38a)

τ∂τ ζ
[p]
2 − 1

2
(ðζ

[p]
3 − ð̄ζ

[p]
1 )− pζ

[p]
2 = 0, (20.38b)

τ∂τ ζ
[p]
3 − 1

2
(ðζ

[p]
2 − ð̄ζ

[p]
0 )− pζ

[p]
3 = 0. (20.38c)

The linearity of the above equations suggests eliminating the angular depen-

dence of the solutions through an expansion in terms of spin-weighted spherical

harmonics. Consistent with the spin weight of the various components of ζABCD

one considers the ansatz

ζ
[p]
k =

p∑
l=|k−2|

l∑
m=−l

zk,p;l,m(τ) k−2Ylm.

Observe, in particular, that the number of l-modes is bounded by the differenti-

ation order p. This ansatz can be shown to be the most general possible. Taking

into account the action of the operators ð and ð̄ on the spin-weighted spherical

harmonics, a calculation combining Equations (20.37a)–(20.37e) and (20.38a)–

(20.38c) shows that the coefficients zk,p;l,m(τ) satisfy the Jacobi ordinary

differential equation

(1− τ2)z̈k,p;l,m +
(
2(k− 2) + 2(p− 1)τ

)
żk,p;l,m +

(
l(l + 1)− p(p− 1)

)
zk,p;l,m = 0,

where ˙ denotes differentiation with respect to τ . The solutions to this equation

are well understood; see, for example, Szegö (1978). For |k − 2| ≤ l < p the

solutions are a linear combination of the polynomials

P
(−p−6+k,−p+k−2)
p−l−1 (τ),

(
1− τ

2

)p+k−2

P
(p+k−2,−p+k−2)
l−2 (τ),

where P
(α,β)
n (τ) denotes the Jacobi polynomial of degree n with integer

parameters (α, β) given by

P (α,β)
n (τ) ≡

n∑
s=0

(
n+ α

s

)(
n+ β

n− s

)(
τ − 1

2

)n−s(
τ + 1

2

)s

.
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The case l = p is the one of most interest as the general solution can be found

to be a linear combination of(
1− τ

2

)p+k−2(
1 + τ

2

)p+2−k

,(
1− τ

2

)p+k−2(
1 + τ

2

)p+2−k ∫ τ

0

ds

(1− s)p−1+k(1 + s)p+3−k
.

Using partial fractions one finds that the integral in the second solution can be

expressed as∫ τ

0

ds

(1− s)p−1+k(1 + s)p+3−k
= a• ln(1 + τ) +

ap+2−k

(1 + τ)p+2−k
+ · · ·+ a1

1 + τ

+ b• ln(1− τ) +
bp−2+k

(1− τ)p−2+k
+ · · ·+ b1

1− τ
+ b0,

where a•, b•, ap+2−k, . . . , a1, bp−2+k, . . . , b0 are some constants. Thus, gener-

ically, the solutions for the l = p modes will be non-smooth and develop

logarithmic singularities at the critical sets I± even in the case where the initial

data is as smooth as it can be. Direct inspection of the above expressions shows

that at τ = 1 the most singular component of ζABCD is ζ0, while at τ = −1 it

is ζ4.

The singular behaviour can be avoided if the initial data is fine tuned. Indeed,

a lengthy analysis renders the following (see Valiente Kroon (2002)):

Proposition 20.5 (regularity of solutions to the massless spin-2 field

equations at the critical sets) The solutions to the transport equations

implied on the cylinder at spatial infinity I of the Minkowski spacetime by the

spin-2 massless field Equation (20.34) extends analytically to the critical sets I±

if and only if the regularity condition

D(EpF p
· · ·DE1F 1

b̆ABCD)(i) = 0, p = 0, 1, 2, . . . ,

where

b̆ABCD ≡ 2DP (AΩζBCD)
P +ΩDP (AζBCD)

P

denotes the linearisation of the Cotton spinor around Minkowski data.

This result is the spin-2 field version of Theorem 20.2 for the full conformal

Einstein field equations.

20.3.5 The cylinder at spatial infinity and static solutions

The analysis of static solutions provides deeper insights into the behaviour of

the solutions to the transport equations on I. The discussion in Section 19.2.1

shows that static solutions admit a smooth conformal completion at null infinity.

Thus, it is natural to conjecture that they also extend smoothly through the
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critical sets I±. The analysis of the conformal evolutions for the Schwarzschild

spacetime provides further support to this idea – this evidence, however, must

be taken with care as the spherical symmetry of the spacetime gives rise to a

number of non-generic simplifications.

A lengthy computation which combines the ideas of Sections 19.2.1 and 20.3.3

yields the following satisfactory result:

Proposition 20.6 (regularity of static solutions at the critical sets) The

solutions to the transport equations at I for static data extend smoothly (and, in

fact, analytically) through the critical sets I±.

A proof of this result can be found in Friedrich (2004). A generalisation of the

analysis to the stationary case is given in Aceña and Valiente Kroon (2011).

20.4 Spatial infinity and peeling

At the time of writing, one of the outstanding challenges in the analysis of

the problem of spatial infinity is to obtain a satisfactory understanding of the

connection between the solutions to the transport equations on I and the peeling

(or lack thereof) of the Weyl tensor at I .

The key hypothesis in the peeling theorem, Theorem 10.4, is the smoothness

of the rescaled Weyl tensor on null infinity. Direct inspection allows one to relax

this assumption to a certain minimum regularity threshold. Now, it has been

seen in the previous section that generic solutions to the transport equations

on the cylinder I have logarithmic singularities at the critical sets I±. In view

of the hyperbolic character of the conformal evolution equations, it is to be

expected that this singular behaviour will spread along the conformal boundary,

thus destroying the smoothness of the rescaled Weyl tensor along the conformal

boundary. These singularities may lead to a restricted peeling behaviour ; see,

for example, Chruściel et al. (1995) and Valiente Kroon (1998, 1999a,b) for a

discussion of more general types of peeling. A detailed and rigorous treatment

of these ideas is not yet available; some heuristic discussions can be found in

Valiente Kroon (2002, 2003, 2005, 2007a).

The most promising avenue to obtain a link between the generic singular

behaviour at the critical sets and the peeling behaviour at null infinity consists

of computing the formal expansions (20.32) up to a certain order N . Letting υ̂

and φ denote the actual solutions (if any) to the conformal evolution equations

one defines the remainders

RN [υ̂] ≡ υ̂ −
N∑

p=0

1

p!
υ̂[p]ρp, RN [φ] ≡ φ−

N∑
p=0

1

p!
φ[p]ρp.

If the expansion order N is sufficiently high, it may be possible to use the

conformal evolution equations to obtain estimates on the remainders RN [υ̂]

and RN [φ]. The idea behind this approach is that the expansion terms should
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contain the most singular part of the solution, thus leaving a remainder which

is more regular and, accordingly, more amenable to an analytic treatment. This

strategy has been implemented with success for the model problems of the spin-

2 massless field in the Minkowski spacetime in Friedrich (2003b) and for the

spinorial Maxwell equations (i.e. the spin-1 massless field) on the Schwarzschild

spacetime in Valiente Kroon (2009).

20.5 Existence of asymptotically simple spacetimes

The regularity of static solutions at spatial infinity provides a procedure to

construct a wide class of asymptotically simple solutions to the Einstein field

equations from a Cauchy initial value problem: the so-called Cutler-Wald-

Chruściel-Delay construction ; see Cutler and Wald (1989); Chruściel and

Delay (2002) and Corvino (2007). The key idea behind this construction is to

consider time-symmetric initial data sets (S̃, h̃) for the Einstein field equations

which are exactly Schwarzschildean in a suitable exterior region Ẽ of the

asymptotic end but otherwise arbitrary in a compact region B in the interior.

The existence of such initial data sets is ensured by the exterior asymptotic

gluing construction ; see Theorems 11.3 and 11.4. Denote by (S,h) a suitable

point compactification of the data (S̃, h̃) and let E denote the neighbourhood of i

corresponding to the exterior region Ẽ . As a consequence of the causal properties

of general relativity, the development of (S̃, h̃) is such that D+(E) coincides with
a suitable spacetime neighbourhood of the spatial infinity of S. In a slight abuse

of terminology one can say that these data have compact support. Accordingly,

D+(S) will contain hyperboloidal hypersurfaces H which coincide with S \ E on

D+(S \ E). On H ∩ D+(E), the initial data for the conformal field equations

implied by the development on H will be Schwarzschildean hyperboloidal data –

and, thus, smooth at I ∩H. An important technical aspect of this construction is

to ensure that the gluing region does not drift away into the asymptotic region as

one considers a sequence of data tending to data for the Minkowski spacetime.

This is ensured by Theorem 11.4. Now, if the data on B are sufficiently close

to data for the Minkowski spacetime, one can apply the semi-global existence

Theorem 16.1 to the data on H to obtain a development D+(H) which is

asymptotically simple. As the Schwarzschild spacetime is asymptotically simple,

one concludes that D+(S) is asymptotically simple; see Figure 20.5. In view

of the time symmetry of the initial data, one, in fact, obtains a spacetime

where the two components of null infinity I − and I + are complete. While the

development D+(S) is static in D+(E), in general, radiation will be registered

on I + ∩ J+(S \ E) and I − ∩ J−(S \ E).
For further details on the construction described in the previous paragraph,

see Chruściel and Delay (2002).

Remark. The original version of the above construction was carried out for

solutions to the Einstein-Maxwell equations. Remarkably, it is possible to
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Figure 20.5 Schematic depiction of the Cutler-Wald-Chruściel-Delay con-
struction. The spacetime is asymptotically simple and coincides with the
Schwarzschild spacetime on D+(H). Generically, radiation is registered on
I + ∩ J+(S \ E).

construct initial data with compact support for the Einstein-Maxwell equations

without the need of a gluing construction; see Cutler and Wald (1989).

20.6 Obstructions to the smoothness of null infinity

The spacetimes obtained from the Cutler-Wald-Chruściel-Delay construction

are very special. Thus, it is natural to ask whether it is possible to construct

asymptotically simple spacetimes which do not have such a rigid behaviour in

a neighbourhood of spatial infinity. Insight into this question can be obtained

from the analysis of the transport equations on the cylinder at spatial infinity.

The systematic analysis of the transport equations on I has shown that two

different types of obstructions to the smoothness of null infinity arise

in the development of time-symmetric data (S̃, h̃) admitting a smooth point

compactification (S,h) at spatial infinity. These are briefly discussed in the

following.

Obstructions associated to the conformal class [h̃]

As already discussed, obstructions to the smoothness of null infinity associated

to the conformal class [h̃] can be removed by requiring that the Cotton tensor

of the conformal metric h satisfies the regularity condition (20.33).

Obstructions associated to the scaling of the conformal metric

To discuss the obstructions to the smoothness of null infinity associated to the

particular scaling of the conformal metric, suppose that the conformal metric h�
is a solution to the conformal static equations with associated conformal factor

Ω; see Chapter 19. Now, restricting the subsequent considerations to a suitable
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small neighbourhood U of i consider another conformal factor Ω′ satisfying the

boundary conditions of a point compactification and such that the metric h̃
′ ≡

Ω′−2h� satisfies the time-symmetric Hamiltonian constraint on Ũ ≡ U \{i}; that
is, r[h̃

′
] = 0. It follows that there exists ϑ ∈ C2(U)∩C∞(Ũ) such that Ω′ ≡ ϑΩ.

Now, assume that ϑ(i) = 1, dϑ(i) = 0 and Hessϑ(i) = 0 so that the metrics

h̃ and h̃
′
= ϑ−2h̃ have the same mass. As the conformal metric h� is static it

satisfies the regularity condition (20.33). Moreover, as h′ = ϑ2h� ∈ [h�] it also
satisfies the regularity condition. After a lengthy inductive argument one obtains

the following:

Theorem 20.3 (obstructions to the smoothness of null infinity associ-

ated to the scaling of the conformal metric) Given time-symmetric initial

data with an analytic conformal metric h, the solution to the regular finite

initial value problem at spatial infinity for the conformal Einstein field equations

is smooth through the critical sets I± (and, in particular, free of logarithmic

singularities) if and only if ϑ− 1 vanishes at i at all orders.

The proof of this result can be found in Valiente Kroon (2010, 2011). The

analysis leading to the above theorem assumed the analyticity of the metric

in U . However, the result also holds if one assumes smoothness. This result

provides strong indication that static initial data play a privileged role among

the class of time-symmetric data which extend smoothly through the critical

sets. A precise clarification of this role is one of the outstanding challenges in

the analysis. Despite the insights obtained so far, at the time of writing, it

cannot be excluded that there exist data which are not asymptotically static at

i and for which the solutions to the transport equations on I extend smoothly

through the critical sets. To address this point, it is necessary to identify the gap

between initial data satisfying the regularity condition (20.33) and static data.

The further conditions required to single out static data have been analysed in

Friedrich (2013). It has been found that a sufficient condition for the staticity

of the data satisfying condition (20.33) and the non-degeneracy requirement

associated to the hypothesis of Theorem 19.4 (concerning the uniqueness of

the conformal structure of a static solution) can be expressed in terms of a

covector with conformally invariant differential. The challenge is now to analyse

whether data violating this sufficient condition develop singularities at the

critical sets.

20.7 Further reading

Although it has long been recognised that, for spacetimes with a non-vanishing

mass, spatial infinity is a singular point of the conformal structure – see,

for example, Penrose (1963, 1965) – systematic attempts to understand the

behaviour of the geometry of spacetime in a neighbourhood of this point

in the light of the Einstein field equations took time to get started. Early
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analyses of the behaviour of the Einstein field equations in a neighbourhood

of a suitable representation of spatial infinity have been given in Schmidt (1981),

Beig and Schmidt (1982), Beig (1984) and Schmidt (1987). The approach to

the analysis of spatial infinity discussed in this chapter started in Friedrich

(1988). The construction of the cylinder at spatial infinity was presented in

Friedrich (1998c) which to date remains the most comprehensive reference in

the matter. A useful discussion which overlaps with the previous reference but

also expands in certain aspects not covered in the original work is given in

Friedrich (2004); this reference provides, in particular, a detailed discussion

of the construction of the cylinder at spatial infinity for static solutions. The

extension of the later analysis to stationary solutions has been carried out in

Aceña and Valiente Kroon (2011). A programme to analyse the solutions to

the transport equations on I was started in Friedrich and Kánnár (2000a);

see also Friedrich and Kánnár (2000b). Expansions to a sufficiently high order

to observe the first obstructions to the smoothness of null infinity have been

carried out in Valiente Kroon (2004a,b,c, 2005). General results concerning

these expansions showing the special role played by static solutions (in a time-

symmetric setting) are given in Valiente Kroon (2010, 2011). An account of

the state of the art concerning the problem of spatial infinity is provided in

Friedrich (2013) where the gap between data satisfying the regularity condition

on the Cotton tensor and static data is analysed in detail. A discussion of general

aspects of the behaviour of the massless spin-2 field in a neighbourhood of spatial

infinity of the Minkowski spacetime can be found in Valiente Kroon (2002); see

also Beyer et al. (2012). A method for the construction of estimates for the

massless spin-2 field which remain regular at the critical sets of the Minkowski

spacetime has been provided in Friedrich (2003b). These ideas have been

adapted to the case of the Maxwell equations on a Schwarzschild background in

Valiente Kroon (2007b, 2009).

Appendix: properties of functions on the complex null cone

The following result of complex analysis is used repeatedly in the main text of

this chapter.

Lemma 19.2 (factorisation lemma) Let f denote a holomorphic function

on a neighbourhood UC of the origin of C3, and let NC(0) denote the complex

null cone through the origin. If f |NC(0) = 0, then there exists a holomorphic

function g defined on a neighbourhood of the origin of C3 such that f = Γg

where Γ = |x|2.

The proof of this result can be found in Kodaira (1986). Recall that NC(0)

coincides with the locus of points in C3 for which Γ vanishes. One also has the

following:
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Lemma 19.3 (characterisation of functions vanishing on the null cone)

A holomorphic spinorial field ζA···D in some neighbourhood UC of the origin in

C3 vanishes on NC(0) if and only if it satisfies the sequence of conditions

D(P pQp
· · ·DP 1Q1)

ζA···D(0) = 0, p = 0, 1, 2, . . . (20.39)

The proof of this result is based on the observation that the conditions (20.39)

can be used to construct a Taylor-like expansion of the field ζA···D of the form

ζA···D(γ(s)) =
∞∑
p=0

1

p!
spκP pκQp · · ·κP 1κQ1DP pQp

· · ·DP 1Q1
ζA···D(0)

along the generators γ(s) of NC(0) for s an affine parameter sufficiently close to 0.

As a consequence of the analyticity of the set up, the above expansion uniquely

determines the function ζA···D in a neighbourhood of 0 onNC(0). A more detailed

discussion of the proof can be found in Friedrich (2013), lemma 6.1.
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Perspectives

And it seemed as though in a little while the solution would be found, and then

a new and splendid life would begin; and it was clear to both of them that they

had still a long, long road before them, and that the most complicated and

difficult part was only just beginning.

– A. Chekhov, The lady with the dog

Conformal notions provide valuable tools for the analysis of global properties of

spacetimes. In Part IV of this book it has been shown how a conformal point of

view leads to proofs of the global existence and non-linear stability of de Sitter-

like spacetimes, of the semiglobal existence and non-linear stability of Minkowski-

like spacetimes, and how they provide a systematic procedure for the construction

of anti-de Sitter-like spacetimes. Moreover, conformal methods provide a robust

framework for the analysis of the gravitational field of isolated systems in a

neighbourhood of both null and spatial infinity.

The application of conformal methods in general relativity is a mature area of

research with a considerable number of open problems. Several of these have been

discussed in various places of this book. Unavoidably, there are other problems

and aspects of the subject which, for reasons of space, could not be covered in

the main text. This last chapter presents a list of ideas and problems which,

in the opinion of the author, may play a role in the future development of the

subject.

21.1 Stability of cosmological models

The global non-linear stability of the de Sitter spacetime was discussed in

Chapter 15. This exact solution can be regarded as a basic cosmological model.

The analysis of Chapter 15 can be extended to include a non-vacuum matter

content with good conformal properties: for example, the Maxwell, Yang-Mills

and conformally coupled scalar field; see Friedrich (1991) and Lübbe and Valiente
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Kroon (2012). More recently, the ideas behind these proofs have been adapted

in Lübbe and Valiente Kroon (2013b) to provide an analysis of the future

stability of Friedman-Robertson-Walker cosmological models with a perfect fluid

with the equation of state of radiation; see Section 9.4. A natural question is

whether conformal methods could be adapted to more general matter models,

that is, matter models with a non-vanishing trace. That this may be possible is

suggested by the analysis in Friedrich (2015b) where it is shown that massive

scalar fields for which the mass parameter is related to the cosmological constant

by the condition 3m2 = −2λ give rise to a set of regular conformal evolution

equations for the Einstein-massive scalar field system. A further indication

that conformal methods may be applicable to more general matter models is

provided by the observation that for a large class of equations of state, perfect

fluid Friedman-Lemâıtre-Robertson-Walker (FLRW) cosmological models can be

smoothly conformally compactified – see, for example, Griffiths and Podolský

(2009), section 6.4 – this despite the fact that the “natural” conformal evolution

equations for these models are not conformally regular.

An important motivation behind the analysis of the future non-linear stability

of cosmological models is the so-called cosmic no-hair conjecture – the

expectation that for a large class of models the late-time evolution approximates,

in some sense, a de Sitter state; see, for example, Wald (1983). As the analysis

of Lübbe and Valiente Kroon (2013b) exemplifies, conformal methods provide a

convenient setting for this discussion – at least for some suitable matter models.

Conformal methods provide a natural tool for the analysis of so-called

isotropic cosmological singularities. These are singularities of the physical

spacetime that can be removed by means of a conformal rescaling of the metric.

The singularity of the rescaled metric is assumed to occur on a spacelike surface.

Accordingly, the conformal structure can be extended through the singularity

and one can study the Cauchy problem for the cosmological model with data at

the location of the singularity; see, for example, Tod (2002) for an introduction

into the subject and Anguige and Tod (1999a,b) and Tod (2003) for further

details. The Big Bang singularity in FLRW models provides the prototypical

example of this type of singularity: as these spacetimes are conformally flat, any

curvature singularity must be restricted to the (physical) Ricci tensor. In view

of the highly symmetric nature of FLRW spacetimes, the Ricci tensor has only

one essential component; combining this observation with the fact that under

conformal rescalings the Ricci tensor satisfies a transformation law which is non-

homogeneous, one can then see that in FLRW spacetimes the conformal factor

can be chosen so as to absorb the singular behaviour of the curvature.

In the analysis of isotropic singularities, the role of the conformal factor is

different from the one in the study of asymptotics: the conformal factor diverges

at the singularity rather than going to zero – thus, it “blows up” the shrinking

physical metric to make it finite. This type of behaviour is not expected to be

a general feature of cosmological solutions to the Einstein field equations. This
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observation is related to Penrose’s Weyl curvature hypothesis: the idea that

the early geometry of the universe should be such that the Weyl tensor vanishes,

singling out a state of low gravitational entropy ; see Penrose (1979).

In the discussion of isotropic cosmological singularities one pursues conformal

rescalings of the form g̃ = �2g where g̃ denotes the physical metric, while the

unphysical metric g extends the conformal structure through the singularity

characterised by the condition � → 0. Under these conventions the Einstein

field equations, written in a suitable gauge, lead to conformal evolution equations

having a well-understood singular behaviour at the Big Bang. These evolution

equations are an example of so-called Fuchsian differential equations – a

class of equations with a well-defined theory. Using this theory, a number of

statements concerning isotropic singularities can be obtained; see again Tod

(2002) and references within for further details. More recently, it has been shown

that a duality property of the conformally coupled scalar field equation allows

one to analyse isotropic singularities in a framework involving the conformal

Einstein field equations; see Lübbe (2014). It is of interest to see whether these

ideas can be pursued further and extended to more general contexts.

21.2 Stability of black hole spacetimes

One of the outstanding open problems in mathematical general relativity is the

question of the non-linear stability of the Kerr spacetime ; see, for example,

Dafermos and Rodnianski (2010) for an entry point into the literature of the

subject. The expectation associated with this question is that perturbations of

a Kerr metric should dynamically approach a member of the Kerr family of

solutions in the exterior of the black hole region. This problem involves both

an orbital and an asymptotic stability analysis; see the discussion in Section

14.4. The non-linear stability of the Kerr spacetime poses both technical and

conceptual challenges. On the technical side, it requires the development of

robust partial differential equation (PDE) techniques to control the behaviour

of the Einstein field equations in the strong gravitational field regime of a black

hole. Current efforts in this direction have involved a detailed analysis of linear

wave equations whose solutions propagate on the domain of outer communication

of a Kerr background. This analysis makes systematic use of so-called vector

field methods. The expectation is that these wave equations provide a suitable

model for the Einstein equations written, say, in harmonic coordinates; see

again Dafermos and Rodnianski (2010) for an account of this approach. On the

conceptual side, the problem needs a detailed specification, compatible with the

needs of PDE theory, of what is meant by the statement that a given spacetime is

close to the Kerr spacetime; some ideas on how to address this issue are discussed

in Bäckdahl and Valiente Kroon (2010a,b).

Given that conformal methods, as discussed in this book, provide a tool for the

analysis of the non-linear stability of asymptotically simple spacetimes – compare
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Chapters 15 and 16 – it is natural to wonder whether they could also provide

an avenue for the analysis of the non-linear stability of black hole spacetimes.

The stability proofs discussed in this book start from the premise that a detailed

understanding of the conformal geometry of a background solution is key to the

analysis. Once this has been achieved, the existence and stability results follow

by means of general results of the theory of PDEs – namely, the Cauchy stability

guaranteed by Theorem 12.2. From the perspective of conformal geometry, the

essential difference between the basic asymptotically simple spacetimes and the

exact solutions describing black hole spacetimes is that while the former are

conformally regular, the latter have a conformal structure with singular regions.

This observation rules out the possibility of directly using arguments based

solely on the notion of Cauchy stability to prove global existence and stability of

black hole spacetimes. In order to go any further, it seems necessary to analyse

the structure of the singularities in the conformal structure of the background

solutions so as to obtain, if possible, conformal representations of the black hole

spacetimes for which the conformal Einstein field equations acquire a form which

is amenable to a PDE analysis. An example of the regularisation of singularities

in the conformal structure is provided by the analysis of the problem of spatial

infinity in Section 20.3 where a detailed knowledge of the singular behaviour of

the various conformal fields led to the construction of a regular Cauchy problem

for the conformal field equations. It is possible that some singular regions in the

conformal structure of black hole spacetimes – such as neighbourhoods of i± in

the extreme Reissner-Nordström and extreme Kerr spacetimes – are amenable

to an analogous discussion; see, for example, Lübbe and Valiente Kroon (2014).

A systematic approach to the analysis of the conformal structure of black

holes is through the study of suitable congruences of conformal geodesics. In

Friedrich (2003a) it is shown that it is possible to construct a non-intersecting

congruence of conformal geodesics that covers the whole of the Kruskal extension

of the Schwarzschild spacetime. This congruence is prescribed by initial data on

the time symmetric hypersurface of the spacetime, and it provides a preferred

conformal representation of the spacetime as well as a global conformal Gaussian

gauge system from which, say, a global numerical evaluation of the spacetime

can be undertaken; see the discussion in the next section. In addition, this type

of construction sheds some light on the singular behaviour of the conformal

structure at the timelike infinity; see Friedrich (2002), section 1.4.4. A similar

analysis has been carried out in the Reissner-Nordström spacetime (including

the extremal case) using so-called conformal curves in Lübbe and Valiente

Kroon (2013a) and the Schwarzschild-de Sitter and Schwarzschild-anti de Sitter

spacetime with conformal geodesics in Garćıa-Parrado et al. (2014). It would be

of great interest extend this type of analysis to stationary black holes, that is,

the Kerr spacetime.

The expectation driving the constructions described in the previous paragraph

is that they will lead to a suitable conformal representation of the background
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black hole spacetimes which, in turn, lends itself to the formulation of an

initial value problem allowing the analysis of the non-linear stability of black

hole spacetimes. Nevertheless, the presence of singular points of the conformal

structure of the background solution will require considerations of asymptotic

stability – rather than just orbital stability as in the case of the proofs of stability

of the de Sitter and Minkowski spacetimes given in Chapters 15 and 16. The

development of methods that allow this type of analysis for the conformal field

equations is an interesting and challenging problem.

Finally, it should be mentioned that the notion of conformal compactification

of spacetimes, as introduced in Chapter 7, has been used as the starting point of

a programme to construct a theory of peeling and scattering of fields (including

gravity) on black hole spacetimes; see Nicolas (2015) and references within. It

would be of great interest to combine this approach to the asymptotic analysis of

spacetimes with the methods for the conformal Einstein field equations developed

in this book.

21.3 Conformal methods and numerics

Numerical relativity, the study of the Einstein field equations by means of

numerical methods, has undergone a great development in recent years. Extended

numerical simulations of coalescing black holes have become almost routine; see,

for example, Alcubierre (2008), Pretorious (2009) and Baumgarte and Shapiro

(2010). To a great extent, these numerical simulations have been concerned with

astrophysical aspects of black holes – most notably the extraction of gravitational

wave forms; see, for example, Lehner and Pretorious (2014). In addition to this

important application aimed at the detection of gravitational waves, numerical

relativity offers a powerful tool in mathematical investigations of the equations

of general relativity. Some promising areas for this type of interaction have been

described in, for example, Jaramillo et al. (2008); for an alternative perspective,

see Andersson (2006).

The conformal field equations suggest the possibility of performing global

numerical evaluations of spacetimes, that is, evaluations which are not limited

in their spatial and temporal dimensions by the finiteness of the computational

grids. In addition, one would expect such evaluations to be free, to some extent, of

the problems posed by the presence of unphysical boundary conditions required

to obtain a discretisation in a finite grid without periodic boundary conditions.

There have been a number of efforts geared towards the construction of global

numerical evaluations of spacetimes using the conformal Einstein field equations.

An early implementation of these ideas for the spherically symmetric Einstein-

conformally invariant scalar field system can be found in Hübner (1995). A

programme to construct a computer code for numerical simulations using the

metric vacuum conformal field equations has been reported in Hübner (1999a,b,

2001b) and culminated in Hübner (2001a) where a numerical demonstration of

the semi-global existence result for hyperboloidal data discussed in Chapter 16
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Figure 21.1 Focusing of the generators of null infinity in a numerical evaluation
of hyperboloidal initial data close to Minkowski initial data. From Figure
2 in P. Hübner (2001), From now to timelike infinity in a finite grid,
Class. Quantum Grav. 18, 1871–1884. © IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved.

has been provided. Remarkably, the numerical simulations obtained by means

of this code show how the generators of null infinity intersect, up to numerical

precision at a single point, future timelike infinity i+; see Figure 21.1. An alterna-

tive approach based on the frame version of the standard vacuum conformal field

equations has been described in Frauendiener (1998a,b, 2002) and implemented

in Frauendiener and Hein (2002); see also the review by Frauendiener (2004).

A critical discussion of the numerical implementation of the standard conformal

Einstein field equation can be found in Husa (2002).

Conformal Gaussian gauge systems provide an alternative approach to the

numerical implementation of the conformal Einstein field equations. As shown

in Chapter 13, the evolution equations implied by the extended conformal

Einstein equations in this type of gauge splits into a subsystem of transport

equations for the components of the frame, connection and Schouten tensor

and a symmetric hyperbolic system for the components of the rescaled Weyl

tensor. This remarkable structure, highlighting the special role of the Weyl

tensor as describing the free gravitational field, may facilitate the numerical

implementation of the system. An added advantage of this formulation of the

conformal field equations is, in the vacuum case, the a priori knowledge of the

conformal factor linking the unphysical spacetime with the physical spacetime

for which the Einstein equations hold.

A programme to analyse the global dynamics of cosmological spacetimes

by numerical methods using the extended conformal field equations has been

pursued in Beyer (2007, 2008, 2009a,b). This work has provided valuable insights

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


566 Perspectives

into the cosmic no-hair conjecture – see Section 21.1 – and the role of the so-

called Nariai solution. Cosmological spacetimes provide a convenient testbed for

the numerical implementation of the conformal field equations as they allow the

use of compact spatial domains – say, the 3-sphere S3, the 3-torus S × S × S or

the 3-handle S2 × S – so that no boundary conditions in the spatial domain are

required. In addition, compact spatial sections are naturally amenable to the use

of spectral methods; see, for example, Beyer (2009c).

A further application of the extended conformal Einstein field equations

is the global numerical evaluation of spherically symmetric static black hole

spacetimes. This idea was first investigated in Zenginoglu (2006, 2007) for the

Schwarzschild spacetime and later extended to the electrovacuum case (i.e. the

Reissner-Nordström spacetime) in Valiente Kroon (2012). The assumption of

spherical symmetry implies a great simplification in the equations so as to render

a reduced evolution system consisting of transport equations solely. Notice,

however, that the conformal gauge in terms of which the evolution equations

are expressed is not adapted to the orbits of the static Killing vectors, and, thus,

one has non-trivial gauge dynamics. An important property of these spherically

symmetric reduced equations is that their essential dynamics is governed by a

core system consisting of three equations in the vacuum case (for a component

of the connection, a component of the Schouten tensor and the non-vanishing

component of the rescaled Weyl tensor) and four equations in the electrovacuum

case (connection, Schouten tensor, rescaled Weyl tensor and the single non-

vanishing component of the Faraday tensor). These equations can be easily

implemented and numerically solved with present-day desktop computers and

allow the global computation of a privileged conformal representation of the

black hole spacetime from an initial hypersurface to either the singularity or null

infinity and beyond; see Figure 21.2. These small-scale numerical simulations

could be used, in the future, as the first step in the global numerical evaluation

of dynamic, non-spherically symmetric spacetimes.

More recently, there have been efforts aimed at the numerical implementation

of the construction of the cylinder at spatial infinity described in Section

20.3.2. The ultimate goal of this programme is the numerical computation of

hyperboloidal data from Cauchy data and to obtain insight into the numerical

consequences of the obstructions to the smoothness of null infinity discussed

in the later sections of Chapter 20. At the time of writing, the analysis has

been restricted to the analysis of the spin-2 field equation on a Minkowski

background – in the spirit of Section 20.3.4 – with the expectation that this

situation contains the essential difficulties in the implementation; see Beyer et al.

(2012) and Frauendiener and Hennig (2014).

Foliations of spacetimes by means of hyperboloidal hypersurfaces have been

used in numerical simulations aimed at analysing radiative processes in gravi-

tational collapse and perturbations of black hole spacetimes; see, for example,

Zenginoglu (2008, 2011a,b), Rinne (2010, 2014), Zenginoglu and Kidder (2010)
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Figure 21.2 The Schwarzschild spacetime in a conformal Gaussian gauge
system; see the discussion in the main text and compare also Section 20.3.3.
From Figure 3.3, page 57, of A. Zenginoglu, A conformal approach to numerical
computations of asymptotically simple spacetimes, PhD thesis, University of
Postdam (2006). Reproduced courtesy of the author.

and Rinne and Moncrief (2013). These numerical investigations make use of

formulations of the Einstein field equations alternative to the ones discussed

in this book. Finally, hyperboloidal foliations have also been used in the

implementation of fully spectral (i.e. in time and space) evolution schemes for

various fields; see Hennig and Ansorg (2009) and Macedo and Ansorg (2014).

21.4 Computer algebra

The analysis of hyperbolic reductions in Chapter 13 shows that despite their

elegance and appealing geometric nature, the study of the consequences of

the conformal field equations requires a considerable amount of algebraic

manipulations. Modern computer algebra systems provide a natural way of

performing these manipulations in an effective and efficient way. At the time

of writing, the suite of packages xAct for Mathematica provides a robust

and versatile framework for the type of tensorial and spinorial manipulations

discussed in this book; see Mart́ın-Garćıa (2014). The packages in the suite xAct

allow one to perform tensorial and spinorial abstract index computations on

generic tensors as well as explicit component computations for a given metric.

At the core of xAct is a canonicalisation routine which allows one to simplify

large tensorial and spinorial expressions by identifying “dummy” indices and

exploiting the symmetries of the various objects involved. In addition, xAct

allows one to carry out cumbersome operations such as the decomposition of

spinors into irreducible parts. An additional appeal of this system is that it
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provides its output in standard index notation. The system also provides facilities

to produce Latex output of the calculations

The capabilities of modern computers have reached the point that, for exam-

ple, using xAct, it is possible to perform certain types of analyses which would

have been impractically long otherwise. As an example, the study of asymptotic

expansions using the framework of the cylinder at spatial infinity described

in Chapter 20 and reported in Valiente Kroon (2004a,b,c, 2005) depended, in

a crucial manner, on computer algebra calculations. These calculations were

carried out with purpose-built routines in the computer algebra system Maple V.

21.5 Concluding remarks

This book has discussed a particular approach to the use of conformal methods in

mathematical general relativity. Clearly, the approach presented is not the only

one possible nor are the potential applications restricted to the ones discussed

in these pages. It constitutes a body of work extending over a period of more

than 30 years starting with the work of H. Friedrich in the early 1980s – or

50 years if one considers the seminal work by R. Penrose in the 1960s. This

extended period of time is proof of the vitality of the subject. Nevertheless,

a more exacting assessment of its vitality and relevance should come from its

influence in the whole of mathematical general relativity and its ability to foster

new ideas and research problems. Time will be the ultimate judge on this matter.

This book is an attempt to bring to the fore the relevance of conformal methods

in modern research in general relativity and to make the subject as accessible

as possible to those interested in using these ideas in their own research. The

reader is left to decide whether this goal has been achieved.
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Bartnik, R. 1986. The mass of an asymptotically flat manifold. Comm. Pure Appl.
Math., 661.

Bartnik, R., and Isenberg, J. 2004. The constraint equations. Page 1 of: Chruściel,
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Chruściel, P. T. 1991. On the uniqueness in the large of solutions of Einstein’s equations
(“Strong Cosmic Censorship”). Centre for Mathematics and Its Applications,
Australian National University.
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�AB-operator, 89
2-sphere, standard metric, 142
3-sphere, 142

North and South Poles, 142

acceleration vector, 106
achronal set, 392
ADM-angular momentum, 273
ADM-linear momentum, 273
ADM-mass, 273
algebraic curvature, 195, 203, 264

spinorial counterpart, 198, 207
anti-de Sitter spacetime, 159

behaviour of geodesics, 160
conformal geodesics, 162
instability, 475

anti-de Sitter-like spacetimes, 17, 223, 454
boundary adapted gauge, 460, 463
conformal geodesics, 457
covariant formulation of boundary data,

468
formulation of an initial boundary value

problem, 460
identification of boundary conditions, 466
initial data, 286
local existence, 455, 467, 468

asymptopia, 12, 452
asymptotic characteristic initial value

problems, see characteristic initial
value problems

asymptotic distance functions, 274
asymptotic Einstein condition, 224
asymptotic end, 271
asymptotic initial value problem, 419
asymptotic Killing vectors, 239
asymptotic simplicity, 178, see

asymptotically simple spacetimes, 222
asymptotic symmetries, 239
asymptotically Cartesian coordinates, 271
asymptotically empty and simple spacetimes,

179
asymptotically Euclidean manifolds, 271
asymptotically Euclidean and regular

manifolds, 274, 507
conformal gauge freedom, 274

asymptotically simple spacetimes, 13, 178

existence, 555
global hyperbolicity of, 394
related definitions, 181
remarks concerning, 179

atlas, 28
maximal, 28

Bach tensor, 473
Banach spaces, 306
basis

dual, 31
orientation, 32
orthonormal, 45
spin, 66

Bianchi identity
boundary adapted evolution system, 375,

548
constraint equations, 351
electric-magnetic parts decomposition, 370
first, 41
hyperbolic reduction, 350
second, 42

Weyl connection, 120
standard evolution system, 351, 373
subsidiary evolution equations, 362, 379
third, 473

Birkhoff theorem, 163
black holes, 163

uniqueness theorems, 163
BMS group, 238
Bondi coordinates, 236
Bondi mass, 238, 438
boost-rotation symmetric spacetimes, 181
boundary, of a manifold, 29
boundary defining function, 285
bundles

cotangent, 34
tangent, 34
tensor, 34

Cartan’s formula, 355, 389
Cauchy development, 6, 393, 398

maximal, 7
Cauchy horizon, 394, 448
Cauchy hypersurface, 7, 393
Cauchy-Kowalewskaya theorem, 522, 526
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Cauchy stability, 16, 309
causal future/past, 391
causality, 8

for symmetric hyperbolic systems, 296
Causality Principle, 4
caustic, see conformal geodesic
characteristic initial value problems, 16, 319

asymptotic, 16, 477
on a cone, 496
local existence, 491, 501
standard, 478

constraint equations, 478, 486
freely specifiable data, 478, 490, 500
interior equations, 321, 478, 485, 486, 489
reduced conformal field equations, 490
reduction to a Cauchy problem, 324
transport equations, 478
transverse equations, 485
well- and ill-posed problems, 320

characteristic polynomial, 297
characteristic set, 297
characteristics, 9, 297
charts, 27
chronological future/past, 391
classical determinism, 7
Codazzi-Mainardi equation, 62, 254

relation to the conformal constraints, 262
commutation coefficients, 339
commutator, 34

Jacobi identity, 35
compact 3-manifolds, 268
complex analytic extensions, 520, 532
complex null cone, 521
computer algebra, 567
concomitants, 48
cone past boundary, 497
conformal boundary, 10

conformal constraints on, 266
conformal class, 11, 113
conformal compactification, 114
conformal covariance, 11
conformal decompactification, 280
conformal Einstein constraint equations, 259

basic properties, 263
relation to the Einstein constraints, 265

conformal Einstein field equations, 13
frame formulation, 195
gauge freedom, 193, 200
metric formulation, 185, 190
relation to the Einstein field equations,

191, 196, 199
solutions to, 191, 196
spinorial formulation, 198
vacuum, 191
as wave equations, 384

conformal extension, 9, 114
conformal factor

evolution equations for concomitants, 352
massive part, 530

massless part, 530
conformal flatness, 118
conformal gauge source functions, see gauge

source functions
conformal Gaussian coordinates, 367
conformal Gaussian gauge systems, 331, 366

model equations, 368
conformal geodesic, 14

canonical factor associated to, 132
caustics, 136
as conformal invariant, 128
definition, 127
g̃-adapted equations, 134
physical acceleration, 134
reparametrisation, 129
spiralling, 135
transformation under change of

connection, 127
conformal geodesic deviation equation, 135

g̃-adapted form, 137
conformal geometry, 10
conformal group, 114
conformal infinity, 179
conformal invariance, 11
conformal Killing operator, 257
conformal Killing vectors, 239
conformal normal gauge, 276
conformal rescaling, 9, 112
conformal static field equations, 507, 511
conformal structure, see conformal class
conformal transformation, 113
conformally invariant scalar field, see scalar

field
conformomorphism, see conformal

transformation
congruence, 55

acceleration, 57
expansion, 57
twist, 57

connection, 38
coefficients, 51

spatial, 109
coefficients for a metric connection, 52
Levi-Civita, 46
metric, 46
Weyl, 120

constraint equations, see Einstein constraint
equations

contracted Christoffel symbols, 387, 513
coordinate gauge source functions, see gauge

source functions
corner conditions, 316, 467
cosmic censorship, 7, 400
cosmic no-hair conjecture, 561, 566
cosmological models, 561
cosmology, 2
Cotton spinor, 512
Cotton tensor, 116, 510

rescaled, see rescaled Cotton tensor

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
Downloaded from https://www.cambridge.org/core. IP address: 52.14.63.59, on 18 May 2024 at 14:03:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/72AC946BEF2C74BD5D0AB790B31FAEB7
https://www.cambridge.org/core


Index 589

Cotton-York tensor, 118, 188, 471
3-dimensional, 118

covariant derivative, 38
commutator, 39
modified commutator, 40

covariant directional derivative, 51
covector, 31
critical sets, 542
curvature, 40

3-dimensional Riemann tensor, 60
Riemann tensor, 40

frame components, 53
spinorial counterpart, 84

transformation under conformal
rescalings, 124

curve
complete integral, 55
definition, 30
extendible/inextendible, 30
integral, 55
proper time parametrisation, 45

cuts, of null infinity, 225
cylinder at spatial infinity, 541

basic representation, 542
horizontal representation, 542
Minkowski spacetime, 543
Schwarzschild spacetime, 543
static solutions, 553
structural properties, 547
transport equations, 548, 550

cylindrical asymptotic end, 273

D’Alambertian operator, 89
de Sitter spacetime, 155

behaviour of geodesics, 157
compactification into the Einstein

cylinder, 157
in conformal Gaussian gauge, 412
conformal geodesics, 158
gauge source functions, 411
Gaussian coordinates, 409
as a solution to the conformal field

equations, 408
de Sitter-like spacetimes, 16, 223

a priori structure of the conformal
boundary, 426

asymptotic initial data, 419
evolution equations, 421, 429
global existence and stability results, 407,

425, 430
standard Cauchy initial data, 416

derivations, 30
deviation covector, 135

g̃-adapted form, 137
deviation vector, 43, 135

g̃-adapted form, 137
diffeomorphism, 27
differential, 31
differential manifolds, see manifolds

differential operators, 252
Dirac delta, 279, 293
direct sum, 56
directional covariant derivative, 82

space spinors, 109
distribution, 55
divergence theorem, 278, 293
domain, 28

of dependence, 304, 393
dual space, 31

edge, 313, 392
Einstein constraint equations, 5, 254

on compact manifolds, 268
conformal gauge freedom, 258

Einstein cosmos, 144
conformal geodesics, 144

Einstein cylinder, see Einstein Cosmos
Einstein field equations, 1

vacuum, 2
Einstein spaces, 2
Einstein static universe, see Einstein Cosmos
Einstein tensor, 49
Einstein-Rosen bridge, 271
Einstein’s summation convention, 31, 32
electric-magnetic parts decomposition, 249

frame expressions, 251
electromagnetic field, see Maxwell field
ellipticity, 252

overdetermined, 252
undetermined, 252

embedding, 54, 247
energy density, 254

unphysical, 255
energy flux vector, 254

unphysical, 255
energy-momentum tensor

physical, 186, 211
unphysical, 186, 211

equivalent multipole sequences, 519
Euclidean metric, definition, 47
exact solutions, 3
expanding Einstein cylinder, 145, 438
exponential map, 44, 275
extended conformal Einstein field equations,

14, 201
conformal covariance, 205
evolution system, 370
frame formulation, 204
relation to the Einstein field equations, 208
spinor formulation, 208
subsidiary equations, 376

extended Einstein constraint equations, 286
extension, of smooth functions, 292, 307
exterior asymptotic gluing, 288, 452, 556
extrinsic curvature, 61

conformal transformation formulae, 248
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590 Index

Faraday tensor, 213
auxiliary fields, 214
dual, 213
self-dual, 213
spinorial counterpart, 215
unphysical, 214

first fundamental form, see intrinsic metric
foliation, 54
formal adjoint of a differential operator, 253
formally regular equations, 185
frame gauge source functions, see gauge

source functions
Frobenius’s theorem, 55, 119
Fuchsian equations, 562
Fundamental Theorem of Riemannian

Geometry, 46
future null cone, 497

gauge freedom, 4, 14
gauge source functions, 331, 336

conformal, 193, 347, 483
coordinates, 338, 387
frames, 344
a model equation, 337

Gauss-Codazzi equation, 62, 254
relation to the conformal constraints, 262

generalised wave coordinates, 339, 386
generators, of null infinity, 225, 448
geodesic balls, 275
geodesic deviation equation, 43
geodesic distance, 276
geodesics, 43

as conformal geodesics, 130
congruence of, 43
transformation under conformal rescaling,

126
geometric curvature, 194, 203, 264

spinorial counterpart, 197, 206
geometric uniqueness, 6, 400, 475
global hyperbolicity, 7
gravitational radiation, 237

Hadamard’s parametrix construction, 509
Hamiltonian constraint, 254

conformal, 255
harmonic coordinates, 287, 387, 512
Hermitian conjugation, 96
Hermitian inner product, 94, 295
Hodge dual, 50, 250

left, right, 50
Hölder condition, 512, 526
hyperbolic equations, 4
hyperbolic reductions, 4, 331
hyperboloidal initial data set

definition, 284
existence, 285

hyperboloidal manifolds, 284
hyperboloids, 18, 154
hyperplane, 55
hypersurface, 54

incoming radiation, 237
indices

abstract index notation, 35
index-free notation, 35
lowering and raising, 44
spacetime frame, 32

Infeld-van der Waerden symbols, 74
spatial, 99

initial boundary value problems, 313
existence, 318
geometric uniqueness, 475
uniqueness, 316

initial data sets, 255
initial value problems, 4, 296

Cauchy, 4, 298
characteristic, 298
regular at spatial infinity, 538

interior equations, 297
intrinsic metric, 57
isolated systems, 2, 182
isometries, 44
isotropic coordinates, 273
isotropic cosmological singularities, 561

Jacobi identity, 68
Jacobi ordinary differential equation, 552
Jacobi polynomials, 552
Jacobian, 28

Kerr spacetime, non-linear stability, 562
Killing horizons, 167
Killing vector, 504
Koszul formula, 46
Kronecker’s delta, 31

2-dimensional, 68

Laplace operator, see Laplacian
Laplacian, 253
lapse, 55
leave, 54
lens-shaped domain, 301
Licnerowicz equation, 256
Licnerowicz’s theorem, 507
Licnerowicz-York conformal method,

255
Lie derivative, 37
linear connection, see connection
linearised Ricci operator, 289
local coordinates, 28
Lorentz group, relation to spinors, 73
Lorentz transformations, 80, 114
Lorentzian causality, 8, 390, 448

manifolds
with boundary, 29
definition, 27
dimension, 28
Husdorff, 29
integrable, 55
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Index 591

orientable, 29
paracompact, 29

map, 36
mass positivity theorem, 531
massless initial data sets, 531

construction, 535
evolution, 536

maximal analytic extension, 4, 400
maximal Cauchy development, 400
maximal hypersurfaces, 249
maximally dissipative boundary conditions,

315, 466
maximum principle, 268, 283
Maxwell equations, 213

behaviour under conformal rescaling, 215
hyperbolic reductions, 332
propagation of the constraints, 335
spinorial constraint equations, 333
spinorial evolution equations, 333
spinorial version, 215
as a symmetric hyperbolic system, 333

Maxwell field, 213
energy-momentum tensor, 213, 215

Maxwell spinor, 215
mean curvature, 249
mean value theorem, 302, 329
metric, 44

conformal/conformally related, 113
conformally flat, 113, 118
Lorentzian, 44
Riemannian, 44

negative-definite, 44
signature, 44

metric tensor, see metric
Minkoswki metric, definition, 47
Minkowski spacetime, 145

behaviour of geodesics, 149
compactification into the Einstein

cylinder, 147
conformal geodesics, 151

in the Einstein cylinder, 153
future and past null infinity, 148
future and past timelike infinity, 148
hyperboloidal data, 442
null coordinates, 146
Penrose diagram, 148
semiglobal existence and stability, 437, 450
spatial infinity, 148
standard hyperboloids, 154, 440
standard metric, 145
translated hyperboloids, 155

Minkowski-like spacetimes, 13, 18, 223
a priori structure of the conformal

boundary, 444
general properties of null infinity, 225
hyperboloidal initial data, 442
timelike infinity, 447

momentum constraint, 254
conformal, 255

Monge cone, see characteristic set
multipole moments, 518
multipole theorem, 519

Nariai spacetime, 181, 566
Newman-Penrose constants, 240
Newman-Penrose formalism, 91
Newman-Penrose gauge, 231
news function, 237
non-trivial topology, 271
normal, 54, 248

of a foliation, 55
normal coordinates, 275, 499
normal frame, 499
normal gauge, 499
normal matrix, 314, 466, 548
normal neighbourhoods, 275
normal vector, 54
null cone, 45, 496
null infinity, 10

adapted frames, 232
future, 225
general properties, 225
obstructions to the smoothness, 556
past, 225

null tetrads, 77
null vectors

future pointing, 76
past pointing, 76

numerical relativity, 564

O(3) transformation, 100, 114
order symbols, 223, 291
orthogonal transformation, see O(3)

transformation
orthogonal vectors, 44
outgoing radiation, see radiation field

parallel propagation, 43
Pauli matrices, 75
peeling behaviour, 180, 452, 554
peeling theorem, 230
Penrose diagrams, 10

Eddington-Finkelstein coordinates, 170
elementary blocks, 167
flipping blocks, 169
gluing blocks, 169
Kruskal-like coordinates, 171
seams, 167

Penrose’s proposal, 13, 182
perfect fluids, 219

barotropic equations of state, 220
density, 220
energy-momentum tensor, 220
equation of energy conservation, 220
equations of motion, 220
pressure, 220
radiation equation of state, 220
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592 Index

perturbations, 401
Petrov type, 230
physical spacetime, 184
point compactification, 143, 274
points at infinity, 274

regularity, 277
polar coordinates, 514, 538
positive definite matrices, 308
principal part, of a differential operator, 252,

295
projector, 55, 249

spinorial counterpart, 103
propagation, of the constraints, 6, 331, 354
pull-backs, 37
pure radiation problem, 497
purely radiative spacetimes, 453, 496, 531,

536
push-forwards, 36

quasilinear differential operators, 253
quasilinear evolution equations, 294

radiation field, 237, 500
radiativity condition, see regularity condition
rays, see generators, of null infinity
reduced Einstein field equations, 388
reflective boundary conditions, 473
regularity condition, 518, 533–535
Reissner-Nordström spacetime

extremal, 172, 174
non-extremal, 173

rescaled Cotton tensor, 189, 212
spinorial decomposition, 198

rescaled Weyl spinor, 198
rescaled Weyl tensor, 11, 188
Riccati system, 487
Ricci scalar, 48, 110
Ricci tensor, 48

3-dimensional, 60
spinorial counterpart, 88

Riemann mapping theorem, 226
Riemann tensor, see curvature

spinorial counterpart, 84
right-handedness, 77, 78

sameness map, 67
scalar field, 30, 216

auxiliary fields, 218
conformally invariant, 216
energy-momentum tensor, 217
massive, 561
relation to other wave equations, 219
spinorial description, 217
unphysical, 216

Schouten tensor
3-dimensional, 60
4-dimensional, 48
of a Weyl connection, 122

Schwarzschild spacetime, 163
conformal extension, 164
Eddington-Finkelstein coordinates, 163
isotropic radial coordinate, 270
Kruskal-Székeres extension, 164
maximal conformal extensions, 176
negative mass case, 176
Penrose diagram, 165
standard coordinates, 163
time symmetric initial data, 270

Schwarzschild-de Sitter and -anti de Sitter
spacetimes, 175

second fundamental form, see extrinsic
curvature

see-saw rule, 68
semiglobal existence, 437
semilinear equations, 295
Sen connection, 105
shear, 225
slice, see leave
smooth tensor field, see tensor field
smoothness, 27
Sobolev embedding theorems, 307
Sobolev norm, 306
Sobolev spaces, 306
soldering forms, 80
spacetime

causal, 391
with complete past null cone, 497
definition, 1, 45
globally hyperbolic, 391
strongly causal, 392
time oriented, 45

spatial infinity, 19
problem of, 438, 527, 549, 563, 566

sphere, at infinity, 539
spherical coordinates, 142
spherical symmetry, 141

centre of symmetry, 141
quotient manifold, 141
quotient metric, 141
warped product form, 142

spin algebra, 67
spin connection coefficients, 82, 197, 206

spatial, 109
transformation under conformal rescaling,

123
Weyl connection, 124

spin-2 massless field, 551
spin-boosts, 241
spin-weight, 242
spin-weighted spherical harmonics, 240, 242
spinor covariant derivative, 81

space spinors, 108
spinor fields, 81
spinorial divergence equation, 298
spinors, 15

1 + 1 + 2 formalism, 464
abstract index notation for, 66
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Index 593

complex conjugation, 72
components with respect to a basis, 71
contravariant, 67
covariant, 67
decomposition in irreducible components,

70
flag, 77
Hermitian, 73
higher rank, 67
imaginary, 97
real, 97
space spinor formalism, 97
valence 1, 67

stability, 401
standard Euclidean metric, 142
star shaped neighbourhood, 275
static equations, 506
static solutions, 506

cylinder at spatial infinity, 553
static spacetimes, 504

conformal completions, 515
static spherically symmetric spacetimes, 165

conformal extension, 165
strictly globally static spacetimes, 475
structure equations, 472
SU(2,C) transformation, 100
submanifolds, 54
subsidiary evolution system, 331, 354, 388

model equations, 354
supertranslations, 239
supremum norm, 292
symbol, of a differential operator, 252, 295
symmetric hyperbolic systems, 295

characteristic initial value problems,
319

constraint equations, 297
existence of solutions, 312
finite speed of propagation, 304
global existence, 328
initial boundary value problems, 313
initial data, 296
local existence, 308
localisability of solutions, 304, 310
null directions, 297
patching of solutions, 311
stability, 309, 312
uniqueness of solutions, 301

symmetry reduced evolution system, 545
symplectic transformation, 66

tangent space, 31
Taylor expansions, 292
tensor algebra, 33
tensor field, 34
tensors, 32

antisymmetric, 33
antisymmetric part, 36
contraction, 35
contravariant, 32

covariant, 32
mixed, 32
product, 33
space of, 33
space spinor counterpart, 97
spatial, 250
spinorial counterpart, 76
symmetric, 33
symmetric part, 36
temporal and spatial components, 53
trace-free, 47
transverse and longitudinal components,

56
time function, 54, 394
time independent solutions, 19
time reflection symmetric initial data sets,

255
topological spaces, 27
torsion, 39

frame components, 53
tensor, 39

total characteristics, 297, 548
trace, 47
trace-free Ricci tensor, 48

spinorial counterpart, 110
transition tensor, 42
translations, 239
transport equations, 368, 462, 548
transverse equations, 297

unit normal vector, see normal vector
unit position vector, 514
unphysical spacetime, 184

vector spaces
complex, 65
complex conjugate, 65
simplectic, 65

vectors, 31
causal, 391
future directed, 45
future/past pointing, 391
future pointing, 78
past directed, 45
tangent, 30
timelike, null, spacelike, 45
Weyl propagated, see Weyl propagation

volume form, 49
spatial, 249
spatial, spinorial counterpart, 105
spinorial counterpart, 78

wave coordinates, 387
wave equation

existence theory, 328
as a symmetric hyperbolic system, 300

weakly asymptotically simple spacetimes,
181

Weingarten map, 56
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594 Index

Weingarten tensor, 57
well-posedness, 6, 298
Weyl candidates, 250
Weyl connection, see connection
Weyl curvature hypothesis, 561
Weyl propagation, 121
Weyl tensor, 11, 48

rescaled, 11, 188
spinorial counterpart, 87

Weyl-Schouten theorem, 118
Whitney’s extension theorem, 324, 330
world tensor, 73
world-vector, 74

Yamabe classes, 258
positive, 269

Yamabe equation, 278
Yamabe invariant/number, 280
Yamabe operator, 256, 508
Yamabe problem, 258, 269
York splitting, 257

zero-quantities, 195, 198, 199, 203, 207

ε-spinor, 67
ð and ð̄ operators, 228, 242
X-linearity, 34
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