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Diffusion and convection in viscous flow

A. F. Pillow

A survey is made of the way in which a variety of physical scalar

and vector quantities are diffused, and convected out of fixed

regions in moving fluids. In particular, viscous flow itself is

viewed as the diffusion and convection of circulation which is

generated at the boundaries of the fluid by the no-slip

condition. The non-linearity of the problem arises from the fact

that the convection field is in part self-generated by the

diffused circulation. Ways of overcoming these difficulties are

reviewed in the light of the above point of view. New kinematic

interpretations are given for the equations governing

axisymmetric viscous flow and these are used to determine the

flow vector for ring circulation, angular momentum and other

relevant physical quantities.

1. Convection and diffusion of scalar quantities

For any scalar quantity Q , the amount of Q in any arbitrary fixed

two- [three-] dimensional region S at time t is given by the set

function

, t) = [(1) Q(S, t) = [ odS ,

where o(r, t) is the area [volume] density of Q at the point with

position vector r at time t . If m{v, t) is the area [volume]

density of the sources of production of Q , then
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146 A.F. Pillow

(2a) %= [ !£dS= ( mdS - | dsn.F

or, locally,

(2b) ' | | + divF = m. ,

where n is the unit outward normal to the "boundary 35 of 5 and

F(r, t) is the flux vector for Q . The flux vector F is the time rate

of discharge of Q per unit length [area] at time t across an

infinitesimal line [area] element at r perpendicular to F .

2. Conservation of area [volume] in an incompressible f lu id

Consider first the case where Q is the total mass of fluid in the

region 5 and a = p , the fluid density. Conservation of mass then

requires m = 0 in equation (2) and F "becomes the mass flux vector pq

where q(r, t) is the fluid velocity vector. In particular, if the fluid

is incompressible, conservation of mass entails conservation of fluid area

[volume] in two[three] dimensions. If Q denotes fluid area [volume],

then a = 1 and F = q in equations' (2), so that

(3a) d> dsn.q = 0

hs
or, locally,

(3b) divq = 0 .

In two dimensions, equation (3) permits the introduction of a stream

function ty(r, t) such that, if r = an + yj ,

(h) q = wi + vi = ty i - \j> j = curl^k .
y *^

The increase in ty along any curve is the discharge of fluid area per unit

time across that curve from left to right. The curves I/J = constant are

consequently streamlines.

Similarly, in axisymmetric motion, a stream function $(r, t) can

also be introduced, such that the increase in 2iri|) along an arc in an

axial half-plane gives the volume discharge per unit time across the

surface generated by the arc when it is rotated about the axis of

symmetry. Let (x, o, 4>) be cylindrical polar coordinates with the
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Diffusion and convection in viscous flow 147

x-axis as the axis of symmetry. Then

(5) q = u9. + yd + u$ = curl[ (£)$] + w$ = -[\\> X - i|> 8] + u$ .

3. Conservation of heat in an incompressible homogeneous fluid

If the fluid has constant specific heat a and constant thermal

conductivity K , the heat flux vector pcF is the sum of a diffusive and

a convective component. Thus

(6) F = -

where T(r, t) and q(r, t) are the temperature and velocity fields and

k , the thermal diffusivity, is defined by k = K/pa . Conservation of

heat requires that m "be zero in equation (2). Since the heat density is

pcT , it follows that

(7a)

or, locally, for suitably differentiable fields,

(7b) |f + divF = 0 .

Since divq = 0 [equation (3b)], the last equation may also be written in

the form

(8) | | + q.VT = kV2T .
at

In terms of the stream function ij; introduced in equation (U) this last

equation takes the form

in two dimensions.

In the axisymmetric case the corresponding equation reads

where v ^ ^ a i + ^
3o2 0 8 o dx2
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4. Conservation of circulation in two-dimensional
incompressible viscous flow

In two dimensions the motion of a viscous incompressible homogeneous

fluid under the action of conservative body forces can be described

kinematically entirely in terms of the conservation of fluid area and of

circulation.

In a fixed arbitrary region 5 in two dimensions let T(S, t) be

the total circulation. Then

(11) r = d> q.ds = wdS ,

hs >s

where to , the vorticity, is the area density of circulation

(12) co = curiq = uk = -(V2<|))k .

In a viscous fluid in two dimensions, the flux vector F for circulation

is, in complete analogy with the heat case, given by

(13) F = -vVw + qw ,

where V , the kinematic viscosity, is constant. Again, it will be noted

that F has both a diffusive and a convective component.

The ratio of the magnitude of these terms is called the local

Reynolds number R . Thus

v|gradw|

and R « 1 implies diffusion dominates convection whilst R >> 1

implies that the opposite is true. The local angle a between the two

flux terms is given by

q • gradto
cosa = |gradw| "

If the body forces are conservative, there can be no production of

circulation within the fluid. Consequently just as in the case of

conservation of heat it follows that

\

where F is now given by (13). In its local form (l^a) becomes
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|v + divF = 0 .

Since, in view of (3b), divq = 0 , equation (ll+b) may be rewritten as

(15) I7+ q.Vw = v72u .
Of

Introduction of \p leads to the alternative form

where

(IT) V2u = -co .

In a viscous fluid, circulation diffuses into the fluid from the

boundaries, where it is generated by boundary forces arising from the

enforcement of the no-slip boundary condition. At fixed solid boundaries

(18) q = 0 , i.e. I|J = constant and n. Vxjj = 0 .

Circulation may also be introduced by the external forcing flow prescribed

at infinity. Whilst for a given convection field 4i , the temperature

field T in (9) is linear, the essentially non-linear character of

viscous flow is revealed by the convective Jacobian in (l6). The

convection field ip is generated not only by the, externally provided,

forcing flow, but also by the self-convection induced by the distributed

circulation which has either been convected from upstream infinity or has

diffused in previously from the boundaries and been convected downstream.

The self-convection field is generated in accordance with the Poisson

equation (IT). The unknown line density of circulation production at the

boundary is such that the distribution of circulation within the fluid at

any time induces at each point of the boundary a counter-velocity which

just nullifies that of the forcing flow past the body at that time.

From the present viewpoint it is equations (5) and (lk) that are

basic for the kinematic description of two-dimensional viscous fluid flow.

Together with the definition of vorticity (12) and the no-slip boundary

conditions (18), these equations provide a complete phenomenological

definition of a viscous fluid in two dimensions. In this approach, the

equation of motion of the fluid is relegated to an auxiliary role in that
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it serves only to determine the dynamical pressure field p(r, t) in terms

of kinematical quantities and the known force potential per unit mass A .

Thus

(19) -V[p/p+A] = TjS- + q.Vq + vcurlu .

If the Bernouilli function H = p/p + A + ±q2 is introduced, then (19) can

be written in the alternative form

(20) -V# = -̂ 3. _ q x u + vcurlu .

The Helmholtz vor t i c i ty equation (15) follows direct ly i f the curl

operator is applied to equation (20).

5. Steady viscous flow in two dimensions

For two-dimensional steady flow equation (20) simplifies to the form

(21) -V# = k x F .

It follows that the decrease in H along any curve is equal to the

discharge of circulation per unit time across that curve from left to

right. In particular, the curves H = constant are the flux lines of the

circulation flux vector F . Thus if . F = f^i + F23 then

-H = wo) - V0) = F\
\ y X(22)
+Hx = UU) "

6. Use of conformal mapping

It should be noted that the steady form of (9) or (l6) is invariant

under conformal mapping. This can rapidly be seen by allowing x and y

to be complex and introducing the auxiliary independent complex variables

z = x + iy and z* = x - iy . The transformation z = fit,) then

provides

(23)

(210 v72u+ »™. = 0 ,
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dz 2

32 32

where V2 = +

The Poisson equation (17) is not invariant, since circulation is the

true invariant under conformal mapping and consequently the sources of the

ip field are altered in strength by a factor equal to the reciprocal of the

area magnification.

For steady potential flow past a two-dimensional heated body with

complex velocity potential w = <j> + i\ , Boussinesq (1905) [?] noted that

(9) reduces to

(26) kV2T - T = 0
W <f>

in the (<j>, A) plane and corresponds in that plane to diffusion in a

uniform flow with unit velocity parallel to the real <f> axis past a

correspondingly heated slit on that axis.

7. Heat sources and doublets in uniform convection

In one dimension in a medium moving with velocity U along the

a;-axis equation (9) takes the form

(27) g

For a point source at the origin emitting Q units of heat per unit time

the appropriate solution is

It will be seen that downstream of the source the entire heat is carried

away by convection and that the diffusive flux is zero. Upstream of the

source the two fluxes are equal but oppositely directed, and both fall off

exponentially in magnitude. There is no nett flow of heat towards

upstream infinity.

For uniform flow parallel to the ar-axis in two dimensions the
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corresponding equation is

(29) U— = kV2T .

This may be rendered self-adjoint by the substitution T = exp tr-) <j> which

yields

= 0 .
kk2

The radially symmetric solution of this equation is

where A and B are arbitrary constants.

If this is to decay at infinity, B = 0 . For a source strength

at the origin we require

In the limit r -*• 0 only the diffusive term contributes significantly.

Hence we find

(30) T = ® cxp (—] X (-̂"**) •

It is instructive to consider the behaviour of this solution for

large r . Substitution of the result

1

!) as 3 -»• +°°

gives

The exponential which now appears typifies a wake-like behaviour about the

positive x-axis. Inside the parabola,

where the argument of the exponential lies between 0 and -1 , the
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temperature is significant and decays algebraically as x -»• +°° only as a

result of the sideways spreading of the wake by diffusion. If p -*• +<a

for any other value of 9 the temperature falls off exponentially. The

strongest decay is in the upstream direction for 9 = IT . It is

interesting, however, to calculate the rate at which heat is being

convected across any line x = x . Since

it is still true that the total convective discharge per unit time across

x = x is Q if xQ > 0 , and that this quantity falls off exponentially

•oo-for x < 0 like exp - -r\x\ . For x > 0 the nett diffusive

discharge across x = x must therefore be zero. In the neighbourhood of

the centre of the wake the diffusion aids the convection whilst further

out it acts in the opposite direction.

An example more directly relevant to the viscous fluid case is that

of a heat doublet of strength M at the origin. The corresponding result

For large r , T again exhibits wake-like behaviour with the same

exponential wake factor.

l

m „ M /-TTk-i

Again, it is still strictly true that the convective discharge of dipole

moment about y = 0 across the line x = x is M for x > 0 , i.e.

r paUyTdy = M for xQ > 0 .
—00

For x < 0 this discharge falls off exponentially like

exp[- M •
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8. Brief survey of methods for steady two-dimensional viscous flow

Whilst a variety of exact special solutions of the steady form of

equations (l6) and (17) are available, the bulk of the methods used have

relied upon an initial appropriate physical approximation to either the

diffusive or convective term in the circulation flux vector F . Usually

such approximations are only locally valid and elaborate asymptotic

matching procedures become necessary if a global solution is to be built up

iteratively.

The commonest approach amounts to replacing the actual convection

field ijj by a known convection field \{x, y) and then studying the

resulting equations

(33) V2u = -co ,

which become linear if the right-hand side of (32) is iteratively

approximated. More radical procedures are also listed below.

A. Potential flow

to = 0 ,

(3k)

yzi> = o .

This is appropriate in uniform flow past bodies for R » 1 in regions

far from the body and its wake.

B. Diffusion negligible R » l . Euler flow

(35)

y2i> = -fW •
The commonest cases are f(4>) = const, IJJ and fify) = u (const . ) . The
l a t t e r i s appropriate to ce l lu lar flow where if there i s no production of

ci rcula t ion within a closed streamline C , we must demand

ID (isn.Vct) = 0 , i . e . f (if)) ffl dsn.VtJ; = 0 . If the circumstances are
>C >C

such t h a t r ={= 0 , where T = i q.ds = ID dsn.Vfy , then f W = 0 , i . e .
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to = to

C. Stokes flow R « 1 (convection negligible) (X = o)

V2w = 0 ,

(36)
V2I|J = 0 .

In uniform flow with velocity t/i past a finite body this linearisation is

only of local validity near the body where \q\ « U . The effect of the

circulation production at the body is that roughly of a circulation

dipole at the origin of strength M , say. Thus w and if q ̂  f/i

as r •*• °° then R = o(—) as r -*• » and hence there is an infinite

region where this approximation is inadequate.

D. Oseen flow (X = Uy)

This is appropriate for uniform flow with velocity U\ past a finite

body. Put \ = Uy in (32) and neglect the right-hand side

fvV2

(37)

o) + = 0

V2lp = -0) .

These equations are valid in a complete neighbourhood of infinity and

provide the basis for an adequate asymptotic description of such flows.

E. Burgers flow

Here X in (32) is taken as the stream function of potential flow

past the body, i.e. V2X = 0 . If (f + iX is the complex potential and

w = IIexp(<j>/2v) then

(38)

v2n - —
Itv2

= o ,

= -IIexp((t>/2v) .

Separable solutions of these equations are available in simple coordinate

systems and use can also be made of conformal mapping.
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F. Prandtl flow cosa « l

In the immediate neighbourhood of boundaries on streamline bodies and

other regions of rapid change across streamlines, the downstream component

of the diffusive flux is often negligible compared with its lateral

component. For slowly curving streamlines with e denoting distance along

the streamline and n distance perpendicular to it, the governing

equations within these layers of rapid change are taken as

(39)

A variety of solutions is then available in terms of a similarity variable

r\ = -j-7—r for different layer thickness functions 6(s) . These solutions

permit matching to a range of external conditions.

9. Conservation of whirl in three dimensions

The conservation theorems presented in para, k can be extended to the

general three-dimensional case if a vector quantity T (which might well

be called the "whirl" in a volume V) is introduced.

, t) = f(1*0) T(V

where 03 = curio, . The quantity F has been called vector circulation by

Mi I ne-Thomson [2], but this can cause confusion when ordinary scalar

circulation round a closed curve is considered in three dimensions. The

meaning of the term "total vorticity" used by Lighthi II [3] is clear but

it is dimensionally misleading.

The conservation equation (lU) is now replaced by a vector equation,

CD §= fdt Jy

in which the flux of the vector quantity T now requires a tensor F for

its specification. For a viscous fluid, a possible flux tensor F for

whirl is given by
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(1*2) F = -vVu + qu - wq .

For suitably differentiable q and F the local form of (1*1) is the

Helmholtz vorticity equation,

(1*3) -JCT + 9-vw - w.Vq = vV2u) .

This equation can, of course, be obtained directly from (20) by applying

the curl operator and it is on this basis that (Ul) is justified.

Whilst (l+l) may be interpreted as saying that there is no production

of whirl within V , there will of course be local changes in its vector

density b) arising from the stretching and twisting of vortex filaments.

It is for this reason that (1*3) appears somewhat more complicated than its

two-dimensional counterpart.

10. Conservation of ring circulation and
angular momentum in axisymmetric flow

Introduce cylindrical polar coordinates as in para. 2 and in accord

with (5) put

(MO q = wx + u3 + u$ = u + u$ = curl % + u$ .

We shall assume that all variables are independent of the azimuthal angle

<)> but that the swirl velocity U$ is not necessarily zero. Let T = OW

so that 2TTT is the axial circulation and pT the angular momentum

density. Note that divu = 0 and put

The equations of motion of a viscous incompressible fluid can then be

put in the following form:

(1*6) | x - u x 0 = -VH

(i*7) | | + u.vr = -vv. L

Here

(1*8) H = p / p + Uu2+v2y + A and G = h2a ,
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where h. denotes w/a and is the azimuthal angular velocity. An

important consequence of (k6) is that so far as the component U of the

fluid velocity in an axial half-plane is concerned, the sole effect of the

swirl velocity u$ may be described in terms of an artificial force field

G (per unit mass) which essentially is the centrifugal force which would

arise in an accelerating frame rotating with the local swirl angular

velocity. Such a force field G is not in general conservative. It is

closely analogous to the buoyancy force proportional to the temperature

excess which arises in free convection problems. It follows that to each

axisymmetric flow with swirl there corresponds an equivalent swirl-free

flow in an appropriate "centrifugal force" field. These remarks clearly

extend to axisymmetric flows viewed from a uniformly rotating frame of

reference.

Consider now a ring vortex filament of radius a with its centre on

the x-axis. As the ring moves, the ring vorticity C, will change, but if

the cross-section of the filament has area 6A , the ring circulation

£(6A) will, in the absence of viscosity, remain constant. Further, the

volume, 2TTO"(6A) , of the filament will also remain constant. It follows

that the ring circulation volume density ?/2ira , which we will denote by

1/2V , remains constant throughout the motion of the vortex if viscosity

is absent. We may obtain an equation for I in a viscous fluid by

applying the operator —curl to equation (1*6).

(U9)

How

Hence

(50) H- + U.VZ =

If the artificial convection field Ui = —d arising from a uniform line

O

source of fluid on the axis of strength 2TT per unit length is

introduced, equation (50) can be reduced to the standard form (2b). Note

first that
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(51) = 2ir6(o) .

Here 6(a) denotes a distribution with unit line density along the axis of

symmetry where 0 (the position vector component perpendicular to that

axis) is zero. Equation (50) can then be rephrased in the form

(52)

at
•gT- + divJ = - Uirv6(o)Z , where

J = (u-2vinH - W Z - h2% .

Here J is the flux vector for ring circulation.

Similarly (̂ 7) can also be cast in the form

(53)

aT
•r— + divK = 0 , where
at

K = (ll+2vu1)2' - vVT .

Here K is the flux vector for angular momentum about the X-axis of

symmetry. If ty is zero on the axis, the definition of I in terms of \p

takes the related form

(51*) div[2un(/ - v<(i] = O2l .

Confirmation of (52) may be obtained by considering the time rate of

change of the circulation T in a fixed closed circuit C described in an

axial half-plane. Consider first the case where C does not contain any

points of the X-axis of symmetry. Then

2TTF = 2ir i u.ds =

>C V
Idv ,

where V is the region generated by rotation of the area A enclosed by

C around the axis of symmetry. Now

4(2TrD = f

But, since

4r(2wT) = 2TT I ~.ds and G = o$
at j au
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we can use (^6) di rect ly to obtain

-4r(2TiT) = -2ir <i ads x $.[(u-2vu1)^ - vVZ - 7z2x]
J Q

= - I dS.J .
' dV

The curve C , being arbitrary, may now be contracted to the neighbourhood

of any point P , not on the axis, in the axial half-plane. An application

of the divergence theorem then shows that

If- + divJ = 0 .
oV

In the limiting case, when C contracts to the neighbourhood of a point P

on the axis, proper account must be taken of the discontinuity in Uj in

the integral over 8K . If this is done then equation (52) is recaptured

completely.

A verification of (53) may be obtained in a like manner by appealing

to the angular momentum principle. The torque about the X-axis of the

viscous forces acting on the boundary dV of V is given by

= - u [
v

The viscous torque gives rise to a rate of increase of angular momentum

within V together with a rate of flow of angular momentum out of V .

Hence

f ( ^rr [
hv Jy dV hv

An application of the divergence theorem gives

\dV = 0 .

Equation (53) then results if V is contracted to the neighbourhood of

the field point P , since the integrand is continuous.

The flux vectors J and K in (52) and (53) lend themselves to
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simple interpretation in terms of diffusion and convection just as before.

The new feature is that, in addition to ordinary convection by the flow

field, there is a fictitious radial convection field 2vUi which now

plays a role both in (52) and (53). In the case (52) of ring circulation,

the radial convection is inwards and gives rise to a viscosity dependent

uniform line sink for ring circulation on the axis, which completely

removes the amount of this quantity discharged there by the radial

convection field/ Note also that when swirl is present there is an

additional flux component -?z2x of ring circulation parallel to the axis.

In the case (53) of angular momentum, the fictitious radial

convection is outwards and there is no corresponding viscosity dependent

fictitious line source of angular momentum on the axis.

Off the axis, the three equations (52), (53), (5k) can also be recast

in a form similar to (10).

(57) - ,n - ̂ 4, - f |* .

It is also instructive to consider the steady state form of (U6). If

F = F\% + i^Q is the flux vector for ring circulation displayed in (52),

then under steady conditions C+6) gives

(58)

P 7 Zl ,2 1
F1 = ul ~ ^ " h 2 = " a

a dx

These equations (58) are analogous to (21) and again -H plays the role of

a flux function for F . The increase in -2irfl along an arc in the

(x, 0) plane gives the discharge from left to right across the surface

generated by rotating this arc about the axis.

11. Conservation of moment of whirl

The axial component of the moment of whirl in a region V is defined

in axisymmetric flow as
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(59) xM = i f r x z$dV = f f o2ldV .= i f r x z$dV = f f
J7 ^ JK

It can toe shown that —•j£—^ is the amount of momentum which is produced

within V per unit time parallel to the X-axis. If -57 is calculated

3 7
from the expression for — provided by (52), the resulting integrand can

aV

toe expressed as a divergence of a possitole flux vector F for moment of

whirl. The manipulation yields

(60) | | + div[(u+2vu!)fe - Wfe + ±{u2-v2-o2h2}X + uvd] = 0

where |o2Z. , the density of moment of whirl, is denoted by k .

In two dimensions the moment of circulation atoout the a:-axis is given

M = yudS ,
>S

where again it can be shown that —^r—- is the amount of momentum parallel

to the x-axis produced within 5 per unit time. A similar calculation

provides the flux vector F for moment of circulation

(61) F = 2/[-vVw + qu] + |(«2-u2)i + (vu+uv)j .

With these flux vectors, integral invariants for the flow field can

toe constructed which describe the total flux through any surface enclosing

the flow-producing singularities, in terms of the total strength of those

singularities. Such invariant integrals are needed if the constants in

the asymptotic expansion of the flow in the far field are to be

determined.

12. Some axisymmetric flows which are solely dependent
on distance from the axis

Simple illustrations of the types of singularities which occur are

provided by the steady state versions of (55), (56) and (57) when there is

no dependence upon the axial coordinate x .
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*

3a2 ° 8o

The solution T = A of (63) (where A is a constant) arises when there

is a uniform line source of angular momentum on the axis with line density

ki\\>A per unit length. The diffusive flux is zero, but there is steady

(fictitious) radial convection carrying the angular momentum produced on

the axis out to a = °° .

The solution T = Ba2 of (63) (where B is a constant) which

describes solid body rotation with angular velocity B arises from

infinite production of angular momentum at a = °° . The diffusive flux of

angular momentum is inwards and at each station is just balanced by the

(fictitious) radial convection of angular momentum outwards. Both are

zero on a = 0 .

Similarly the solutions,

of (62) and (64) (where C is a constant) arise from a (fictitious)

uniform line sink of ring circulation on the axis with line density 4TTVC

per unit length. The diffusive flux is zero but there is steady

(fictitious) radial convection of ring circulation inwards from 0 = °° to

the sink on the axis.

The solutions,

I = ~ . * = - ~°2ln(o) •
a2 2

of (62) and {6k) describe production of moment of ring circulation (or

axial momentum) on the axis.
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