OBSERVATIONS OF INTERSTELLAR HI TOWARD NEARBY LATE-TYPE STARS

Wayne B. Landsman¹ NASA/Goddard Space Flight Center

Richard C. Henry and H. Warren Moos Johns Hopkins University

Jeffrey L. Linsky² JILA, Universtiy of Colorado, and NBS

ABSTRACT

High-dispersion <u>Copernicus</u> and <u>IUE</u> observations of chromospheric Ly α emission are used to study the distribution of HI in the local interstellar medium. Interstellar parameters are derived toward 3 stars within 5 pc of the sun, and upper limits are given for the Ly α flux from 9 other stars within 10 pc.

INTRODUCTION

Interstellar HI may be detected as an absorption feature cutting into the chromospheric Ly α emission of nearby late-type stars. McClintock et al. (1978) have detailed methods for deriving interstellar parameters from <u>Copernicus</u> Ly α data. Landsman <u>et al.</u> (1984) have applied these methods to highdispersion <u>IUE</u> observations of α Cen A. Further discussion of the results in this paper is given by Landsman (1984).

RESULTS

Copernicus Upper Limits

The Copernicus data consist of repeated scans with the highresolution Ul tube of the central 1.2Å of the Ly α emission. Listed in Table 1 are those observations for which the hypothesis of a featureless spectrum cannot be rejected at a confidence level greater than 90%. Upper limits have been expressed in terms of a typical solar flux of F₀ = 4.3 x 10¹¹ ph cm⁻² s⁻¹ Å⁻¹ at 1 A. U..

70 Oph A (KOV, d=5.0 pc, $1^{II}=30^{\circ}$, $b^{II}=11^{\circ}$, $V_{r}=-7$ km s⁻¹)

Reduced spectra from <u>Copernicus</u> observations of 70 Oph A in 1976 and 1978 are shown in Figure 1 along with typical error bars. Definite structure is seen longward of the expected emission center at 1215.67 Å. The asymmetric emission is not

¹ NRC-NASA Research Associate ² Staff Member, Quantum Physics Division, National Bureau of Standards unexpected, since 70 Oph is only 5° from the direction of the incoming gas as defined by Crutcher (1982). To further model this low signal-to-noise data, the following assumptions were made; (1) a gaussian intrinsic stellar profile with a total flux less than 100 times solar, (2) a fixed ratio D/H = 2.0 x 10^{-5} , and (3) a velocity dispersion $b_{\rm HI}$ <20 km s⁻¹. With these constraints, and acceptable fit to the data can be made if the intervening gas has a volume density 0.04 cm⁻³ < $n_{\rm HI}$ < 0.45 cm⁻³, and a heliocentric bulk velocity $v_{\rm HI}$ < -14 km s⁻¹.

Altair (= α Aql, A7IV, d=5.0 pc, 1^{II}=48°, b^{II}=-9°, V_r=-26 km s⁻¹)

The solid line in Figure 2 is from a large-aperture <u>IUE</u> observation (SWP 3427) of Altair, originally discussed from a chromospheric perspective by Blanco <u>et al.</u> (1980). Points contaminated by geocoronal emission have been deleted. The signal-to-noise is poor due to the existence of spectrograph scattered light. The dashed line in Figure 2 shows a <u>Copernicus</u> spectrum obtained on 20 Aug 1976, with the absolute flux level divided by a factor of two. After this scaling of the absolute flux, there is reasonable agreement between the two data sets. If the intrinsic stellar emission is modeled with a gaussian profile, then an upper limit can be set on the interstellar HI volume density of $n_{\rm HI} < 0.11$ cm⁻³.

Procyon (= α CMi F5IV-V, d=5.0 pc, $1^{II}=214^{\circ}$, $b^{II}=13^{\circ}$, $V_{r}=-3$ km s⁻¹)

Figure 3 shows a Ly α spectrum of Procyon derived from a large-aperture IUE observation (SWP6660). The removal of the substantial geocoronal contribution and the estimation of uncertainties followed the procedure in Landsman et al. (1984) Modeling of the data yielded 90% confidence limits of 0.07 cm⁻³ < $n_{\rm HI} < 0.2$, D/H > 0.8 x 10⁻⁵, and $b_{\rm HI} < 14$ km s⁻¹. These values are consistent with determinations using <u>Copernicus</u> data by Anderson <u>et al.</u> (1978). It is expected that substantially improved limits on interstellar parameters may be derived using small-aperture observations and co-addition of IUE spectra.

References

Anderson, R.C., Henry, R.C., Moos, H.W., and Linsky, J.L. 1978, <u>Ap. J.</u>, <u>226</u>, 883. Blanco, C., Catalano, S., Marilli, E. 1980, in <u>Proceedings of the</u> <u>Second European IUE Conference</u>, (ESA SP-157), p.63. Crutcher, R.M. 1982, <u>Ap. J.</u>, <u>254</u>, 82. Landsman, W.B. 1984, Ph.D. Thesis, Johns Hopkins University. Landsman, W.B., Henry, R.C., Moos, H.W., and Linsky, J.L. 1984, to be published in <u>Ap. J.</u> McClintock, W. Henry, R.C., Linsky, J.L. and Moos, H.W. 1978, <u>Ap.</u> J., <u>202</u>, 733.

Star	Sp.T.	dis (pc)	Day	Year	Upper Limit	
	-				$Cts (14 s)^{-1}$	F/F
β Hyi	G2IV	6.3	197	1976	2.1	2.8
δ Eri	K0 I V	8.8	300	1976	1.6	4.3
δPav	G8V	5.7	199	1976	1.3	1.4
n Boo	GOIV	9.3	110	1976	1.3	1.4
ζ Her	GOIV	9.8	174	1976	1.0	3.3
n Cas	GOV	5.7	304	1976	1.5	1.6
			299	1978	1.0	3.5
u Her	G5IV	7.5	213	1976	1.3	2.4
,			197	1978	1.3	5.4
τCet	G8V	3.5	264	1976	1.4	0.6
			267	1977	1.3	0.7
40 Eri	K 1 V	4.8	198	1976	1.6	1.2
			297	1978	1.4	3.5

Table l <u>Copernicus</u> Ly ¤ Upper Limits

Figure 1: Copernicus spectra of 70 Oph A in 1976 and 1978.

63