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ON STOCHASTIC RECURSIVE
EQUATIONS OF SUM AND MAX TYPE

LUDGER RÜSCHENDORF,∗ Albert-Ludwigs-Universität Freiburg

Abstract

In this paper we consider stochastic recursive equations of sum type, X
d= ∑K

i=1 AiXi+b,
and of max type, X

d= max{AiXi + bi : 1 ≤ i ≤ k}, where Ai , bi , and b are random,
(Xi) are independent, identically distributed copies of X, and ‘

d=’ denotes equality in
distribution. Equations of these types typically characterize limits in the probabilistic
analysis of algorithms, in combinatorial optimization problems, and in many other
problems having a recursive structure. We develop some new contraction properties of
minimal Ls -metrics which allow us to establish general existence and uniqueness results
for solutions without imposing any moment conditions. As an application we obtain a
one-to-one relationship between the set of solutions to the homogeneous equation and
the set of solutions to the inhomogeneous equation, for sum- and max-type equations.
We also give a stochastic interpretation of a recent transfer principle of Rösler from
nonnegative solutions of sum type to those of max type, by means of random scaled
Weibull distributions.
Keywords: Additive recursive equation; recursive algorithm; contraction method
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1. Introduction

Stochastic recursive equations of sum and max type arise in a great variety of problems
with a recursive stochastic component, as in the probabilistic analysis of algorithms or in
combinatorial optimization problems. For a list of examples in these areas, see the recent
survey [1] on max-recursive equations, and see [19] for additive equations. In particular, the
limiting distribution of parameters of algorithms of divide-and-conquer type leads typically,
for additive parameters such as path length or insertion depth in random trees, to equations of
sum type, while parameters such as worst-case behaviour, height of random trees, and others
lead typically to equations of max type. The contraction method is an effective tool for proving
limit theorems and existence and uniqueness results for recursive algorithms and, in particular,
recursive equations. The method was introduced for the analysis of the Quicksort algorithm
in [25] and then independently developed further in [26] and [24] (which was submitted prior
to [26]). It was then used and extended to the analysis of a large variety of algorithms in a series
of papers; see, in particular, [19], [20], [21], and [27], which give general and easy-to-apply
conditions for convergence results. The contraction method has also been successfully applied
to some nonlinear stochastic equations, e.g. for the analysis of iterated function systems, random
fractal measures, and fractal stochastic processes (see [13], [14], [15], and [24]).

There is an extensive literature on the characterization and existence of solutions to additive
equations of sum type (as for branching type processes) and quite general existence results
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are known in the homogeneous nonnegative case (see [3], [4], [5], [8], [12], [17], and [18]).
Contraction arguments based on suitable probability metrics for this problem were given in [6],
[24], and [26].

In particular, the minimal Ls-metric �s and the Zolotarev metric ζs have been applied to
stochastic equations. For sum recursions, the metrics �2 and ζs are particularly well suited. They
yield good contraction factors for the distributional operator T on the set, Ms , of distributions
with finite sth moments:

T : Ms → Ms, T X
d=

K∑
i=1

AiXi + b. (1.1)

Here (Xi) are independent, identically distributed (i.i.d.) copies of X, (Ai, b)1≤i≤K are inde-
pendent of (Xi), and ‘

d=’ denotes equality in distribution. We assume throughout the paper
that K < ∞, even though most of our discussion can be extended directly to the case where
K = ∞ or to the case where K is random. We obtain

�2
2(T X, T Y ) ≤ E

( K∑
i=1

A2
i

)
�2

2(X, Y ),

if E X = E Y , and, for all s > 0,

ζs(T X, T Y ) ≤ E
K∑

i=1

|Ai |sζs(X, Y ); (1.2)

see [23], [24], and [26]. For 0 < s ≤ 1, �s has the same good contraction factor, E
∑K

i=1 |Ai |s ,
as the ζs-metric, but for 1 < s < 2 we obtain only

�s(T X, T Y ) ≤ Ks

(
E

K∑
i=1

|Ai |s
)1/s

Ls(X, Y ), (1.3)

for any coupling (X, Y ) with E(Y − X) = 0, where Ks > 1 is a constant; see [23]. Inequal-
ity (1.3) is based on Woyczynski’s inequality. It is valid in general Banach spaces under
a type condition. For real random variables, the type is two and Ks can be taken to be
Ks = 18s3/2(s − 1)1/2 for 1 < s ≤ 2. In fact, in the real case Vatutin and Topchiı̆ [30]
and Alsmeyer and Rösler [2] established this inequality for K = 2.

For max-type recursions it has been established in [21], [23], and [24] that the minimal
Ls-metric �s is well suited even though it is not an ideal metric in the sense of Zolotarev. For
the max operator, such that

T X
d=

K∨
i=1

(AiXi + bi) (1.4)

where (Xi) are again i.i.d. copies of X independent of (Ai, bi)1≤i≤K , and ‘
∨

’ denotes the
maximum, for any s > 0 we obtain

�s(T X, T Y ) ≤
(

E
K∑

i=1

|Ai |s
)1/s∧1

�s(X, Y ). (1.5)
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The contraction properties in (1.2)–(1.5) can be extended to random K or to K = ∞ as well as
to Banach spaces, but in this paper we restrict to the case of distributions and random variables
in R

1. In the following, we will freely use random variables or their distributions as arguments
of the metrics.

For the application of contraction arguments to the problem of existence and characterization
of solutions in the sum case, it is important also to be able to apply the �s-metrics in the domain
1 ≤ s ≤ 2, since, compared with the Zolotarev metric ζs , they allow us much more easily to
obtain upper estimates for the sum-recursive equation in (1.1). In Section 2 we prove that, in
spite of the poor contraction factor Ks in (1.3), we can obtain existence and uniqueness results for
sum recursions with respect to �s for any s, 1 < s ≤ 2, under the natural contraction condition
ηs = E

∑K
i=1 |Ai |s < 1. The proof of this result uses a coupling construction based on weighted

branching trees. We then extend the existence results without using any moment conditions on
the solutions. To do so we introduce a new variant of the minimal Ls-metric, denoted �0

s , which
allows us to apply contraction arguments without imposing moment conditions. This extension
of the applicability of �s-metrics to the analysis of sum equations is the main contribution of
this paper.

As a consequence of these developments we obtain an interesting equivalence theorem
which establishes a one-to-one relationship between the sets of all solutions to homogeneous
and, respectively, inhomogeneous additive recursive equations. For max-recursive sequences,
the minimal Ls-metrics �s have recently been shown, in [21], to be ideally suited to obtaining
existence and stability results. In Section 4 we establish the corresponding one-to-one relation-
ship between homogeneous and inhomogeneous equations for max-recursive sequences. The
basic structure of the arguments is the same as in the sum case. However, there are specific
differences. While the �s-metrics can be directly applied in the max case without any restriction,
for s > 0, they have to be considered in combination with weighted branching processes in
the range 1 ≤ s ≤ 2 in the sum case in M1. Furthermore, for the general existence result
in M = M1(R1, B1), the class of all probability distributions on (R1, B1), we finally need
to introduce the modified metrics �0

s (see Theorem 2.3). These differences prevent us from
combining these results into a single master theorem.

We also give an analogue of Guivarc’h’s transformation method for sum recursions (see [11])
in the case of max-recursive equations. This principle allows us to transfer nonnegative solutions
to additive stochastic equations to max-recursive equations. A central role in this transformation
is played by the Weibull distribution, and the solution set constructed in this way can be seen
as a set of random scaled Weibull distributions. In operator language, this transfer was noted
recently in [28].

Limits of max-recursive sequences constitute a basic source of max-recursive equations. We
end the paper with an application of the recent limit theorem for max-recursive algorithms in
[21] to the limit for the worst case of FIND, which is characterized by a max-recursive stochastic
equation.

2. Additive recursive equations: analysis using �s-metrics

For probability measures µ, ν ∈ M = M1(R1, B1), for s > 0 we denote by �s(µ, ν) the
minimal Ls-metric

�s(µ, ν) = inf{(E |X − Y |s)1/s∧1 : X
d= µ, Y

d= ν}. (2.1)

Also, we synonymously use the notation �s(X, Y ) or �s(X, µ) for the distance of the corre-
sponding distributions. While �s(µ, ν) in (2.1) is defined for all µ, ν ∈ M , it is not always
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finite. For µ ∈ M , we denote by Ms(µ) the set of all ν ∈ M for which �s(µ, ν) is finite:

Ms(µ) := {ν ∈ M : �s(µ, ν) < ∞}.
For any µ ∈ Ms , the class of all probability measures with finite sth moments, we have
Ms(µ) = Ms. For s ≥ 1, we will additionally have to consider subsets of Ms(µ) in which the
first moment is fixed to have the value c:

Ms(µ, c) =
{
ν ∈ M1 : �s(µ, ν) < ∞,

∫
x dν(x) = c

}
.

Let T denote the operator, on the set of probability measures corresponding to (1.1), such that
T X

d= ∑K
i=1 AiXi + b. The �s-metrics have the following contraction properties with respect

to the operator T .

Lemma 2.1. Let µ0 ∈ M and µ, ν ∈ Ms(µ0). Then,

(a) for any s > 0, with r := min(s, 1) we have

�s(T µ, T ν) ≤
K∑

i=1

E |Ai |r�s(µ, ν); (2.2)

(b) for s = 2 and µ, ν ∈ M2(µ0, c), we have

�2(T µ, T ν) ≤
(

E
K∑

i=1

A2
i

)1/2

�2(µ, ν);

(c) for 1 ≤ s ≤ 2 and µ, ν ∈ Ms(µ0, c), we have

�s(T µ, T ν) ≤ Ks

(
E

K∑
i=1

|Ai |s
)1/s

�s(µ, ν), (2.3)

where K1 = 1 and Ks = 18s3/2(s − 1)1/2, 1 < s ≤ 2.

For the proof of Lemma 2.1, see [23], [24, Propositions 2 and 3], and, for s = 2, [26].
In these references the results were stated for the moment class Ms , but can be extended to
the generalized classes Ms(µ0) and Ms(µ0, c) considered here. In the cases in which s = 2
and 0 < s < 1, we obtain existence and uniqueness results for additive recursive stochastic
equations of the type T X

d= X, under the natural contraction condition ηs = E
∑K

i=1 |Ai |s < 1,

in Ms(µ0) for 0 < s ≤ 1 and in M2(µ0, c) for s = 2.

Theorem 2.1. Assume that ηs < 1 and consider the stochastic equation

X
d=

K∑
i=1

AiXi + b. (2.4)

(a) If 0 < s ≤ 1 and µ0 ∈ M satisfies �s(µ0, T µ0) < ∞, then (2.4) has a unique solution in
Ms(µ0).
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(b) If s = 2, b ∈ L1, �2(µ0, T µ0) < ∞ for some µ0 ∈ M , and either

E b = 0 and E
K∑

i=1

Ai = 1, (2.5)

or

E
K∑

i=1

Ai �= 1, (2.6)

then either (2.4) has a unique solution in M2(µ0, c) for any c ∈ R
1 (under (2.5)), or (2.4) has

a unique solution in M2(µ0, c
∗) for c∗ := E b/(1 − E

∑K
i=1 Ai) (under (2.6)).

Proof. (a) We have to establish that T maps Ms(µ0) to Ms(µ0). Let µ ∈ Ms(µ0). Then
there exist random variables X

d= µ0 and Y
d= µ with E |X − Y |s < ∞. Let (Xi, Yi) be

i.i.d. random variables with (Xi, Yi)
d= (X, Y ). Then

W :=
K∑

i=1

AiYi + b
d= T µ and V :=

K∑
i=1

AiXi + b
d= T µ0

are couplings of T µ and T µ0 with

E |W − V |s ≤
K∑

i=1

E |Ai |s E |X − Y |s

(cf. (2.2) for 0 < s ≤ 1). By assumption, �s(µ0, T µ0) < ∞. Thus, there exist couplings U

and Ũ of µ0 and T µ0 with E |U − Ũ |s < ∞. Without loss of generality, we may assume that
Ũ = V as defined above (otherwise, we may use a suitable measure-preserving transformation).
Thus, (U, W) is a coupling of (µ0, T µ) with E |U − W |s ≤ E |U − V |s + E |V − W |s < ∞,

i.e. T µ ∈ Ms(µ0). The completeness of (Ms(µ0), �s) is a consequence of the completeness of
Ls. If (µn) ⊂ Ms(µ0) is a Cauchy sequence in Ms(µ0) (and we denote by Fn the distribution
function of µn), then, by choosing optimal couplings Xn = F−1

n (U), n ≥ 0, simultaneously
for all µn, we find that (Xn −X0)n≥1 is a Cauchy sequence in Ls and, thus, has a limit Z ∈ Ls .
This implies that �s(µn, τ ) → 0, where τ

d= X0 + Z. An application of Banach’s fixed point
theorem using the contraction property in (2.2) now yields the existence and uniqueness of a
fixed point in Ms(µ0).

(b)As in the proof of (a), we have to establish that T maps M2(µ0, c) to M2(µ0, c). This follows
similarly to (a), using conditions (2.5) and (2.6) (as appropriate) to establish that

∫
x dµ(x) = c

implies
∫

x dT µ(x) = c.

Remark 2.1. If µ0 ∈ Ms and b ∈ Ls, 1 ≤ s ≤ 2, then

Ms(µ0, c) ≡ Ms(c) :=
{
µ ∈ Ms :

∫
x dµ(x) = c

}
⊂ Ms,

Ms(µ0) = Ms, and the condition �s(µ0, T µ0) < ∞ is satisfied due to the assumptions
on Ai and b. The contraction and the existence and uniqueness results can respectively be
found in this case in [26], for s = 2, and [24]. The respective extensions to the classes
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Ms(µ0) and Ms(µ0, c) ⊂ M1 allow us to consider more general stochastic equations, including,
e.g. characterizations of the Cauchy distribution by an equation of the form

A1X1 + A2X2 + b
d= X, (2.7)

where b = A3C(0, 1) (C(0, 1) being a Cauchy-distributed random variable), 0 ≤ Ai , A1 +
A2 + A3 = 1, and E(As

1 + As
2) < 1 for some s ≤ 1.

Theorem 2.1(a) then implies that the Cauchy distribution µ0 = C(µ, σ ) is the unique
solution to (2.7) in Ms(µ0).

For 1 < s < 2, only the contraction property in (2.3), which has an additional contraction
factor Ks > 1, is available. Our next aim is to establish an existence and uniqueness result
in M1 for this case under the natural contraction condition ηs < 1, which extends part (b) of
Theorem 2.1.

Theorem 2.2. (Existence and uniqueness in M1.) Consider the stochastic equation

X
d=

K∑
i=1

AiXi + b

(as in (2.4)) and let 1 ≤ s ≤ 2. Furthermore, let µ0 ∈ M1 and b ∈ L1 and assume that
ηs = E

∑K
i=1 |Ai |s < 1 and that either (2.5) or (2.6) holds.

If �s(µ0, T µ0) < ∞ then the stochastic equation (2.4) has a unique solution in Ms(µ0, c).

Proof. For the proof we establish, in the first step, that the mth iterate, T m, of T is, for
all m ≥ m0, a contraction on Ms(µ0, c), i.e. that �s(T

mµ, T mτ) ≤ κs�s(µ, τ) for some κs ,
0 < κs < 1, and all τ, µ ∈ Ms(µ0, c).

We consider the random weighted K-ary branching tree, T X
m , of depth m, where each node

σ = σ1 · · · σr (including the root, ∅) is supplied with independent copies, Xσ and bσ , of the
random variables X

d= µ and b, and the K edges, e1, . . . , eK , leading from σ to the successor,
σσi , of σ are supplied with independent copies, (Ae1 , . . . , AeK

), of (A1, . . . , AK) such that
(Ae1 , . . . , AeK

, bσ )
d= (A1, . . . , AK, b) (see, e.g. [29] for this construction). Furthermore, for

each node ν = ν1 · · · νr at level r , we define the multiplicative weights L(ν) = Aν1 · · · Aνr

along its path ν1 · · · νr in the tree, and we define the additively weighted size of the branching
tree by

Zm :=
∑

|σ |=m

L(σ)Xσ +
m−1∑
i=1

∑
|ν|=i

L(ν)bν, m ∈ N. (2.8)

Let τ, µ ∈ Ms(µ0, c), let X
d= µ and Y

d= τ with E X = E Y and E |X − Y |s < ∞, and let T Y
m

be the induced random weighted branching tree with i.i.d. copies, Yσ , of Y at the nodes and
with the same random weights (Aσ , bσ ) on the edges as in the tree T X

m . The random variables
{(Xσ , Yσ )} are i.i.d. and such that (Xσ , Yσ )

d= (X, Y ). Denote the corresponding additively
weighted size by

Wm :=
∑

|σ |=m

L(σ)Yσ +
m−1∑
i=1

∑
|ν|=i

L(ν)bν, m ∈ N. (2.9)
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Then Zm and Wm respectively display the recursive structures

Zm
d=

K∑
i=1

AiZ
(i)
m−1 + b, Wm

d=
K∑

i=1

AiW
(i)
m−1 + b,

where (Z
(i)
m−1) and (W

(i)
m−1) are respectively i.i.d. copies of Zm−1 and Wm−1. This recursive

structure is obtained by splitting the tree at the root. The weighted sizes Zm and Wm are versions
of the mth iterate of the distributional operator T :

Zm
d= T mX, Wm

d= T mY. (2.10)

By the multiplicative structure presented, and using the independence assumptions, from
the Woyczynski inequality (see (2.3)) we obtain

Ls
s(Zm, Wm) = E

∣∣∣∣ ∑
|σ |=m

L(σ)(Xσ − Yσ )

∣∣∣∣
s

≤ Ks E
∑

|σ |=m

|L(σ)|s E |X − Y |s

= Ks

(
E

K∑
i=1

|Ai |s
)m

E |X − Y |s

= Ksη
m
s E |X − Y |s . (2.11)

For this estimate, the equality of first moments is needed. Passing to the minimal Ls-metric �s ,
we obtain

�s(T
mX, T mY ) ≤ Ksη

m
s �s(µ, τ). (2.12)

For m ≥ m0, Ksη
m
s ≤ Ksη

m0
s =: κs < 1, i.e. the iterated operator T m is a contraction with

respect to �s on Ms(µ0, c).

By assumption, �s(µ0, T µ0) < ∞ and, thus, as in the proof of part (b) of Theorem 2.1, for
s = 2 we find that T maps Ms(µ0, c) to Ms(µ0, c). By the triangle inequality, this implies that
�s(µ0, T

mµ0) < ∞. Thus, µ0, T
mµ0, T

2mµ0, . . . is a Cauchy sequence in Ms(µ0, c) and,
so, converges to some limit µ∗ ∈ Ms(µ0, c): �s(T

kmµ0, µ
∗) → 0. For any r , 1 ≤ r ≤ m, we

obtain
�s(T

kmµ0, T
km+rµ0) ≤ κk

s �s(µ0, T
rµ0) → 0;

thus, the triangle inequality implies that �s(µ
∗, T rµ∗) = 0, 1 ≤ r ≤ m, and T nµ0 converges

to µ∗ and µ∗ is a fixed point of T in Ms(µ0, c).
Uniqueness of the fixed point follows from the estimate in (2.12) if applied to two solutions

X and Y of (2.4).

Remark 2.2. As for s = 2, the additional assumption that b ∈ Ls implies the condition
�s(µ0, T µ0) < ∞ if µ0 ∈ Ms.

We can state a corresponding existence and uniqueness result with respect to the Zolotarev
metric ζs for any s > 0. Here the proof is much simpler and does not require consideration of
the iterated operators or the weighted branching processes. The metric ζs(µ, ν) is defined, for
s = m + α, m ∈ N0, 0 < α ≤ 1, and X

d= µ and Y
d= ν, by

ζs(µ, ν) = sup{E(f (X) − f (Y )) : f ∈ Fs},
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where
Fs = {f ∈ Cm(R, R) : ‖f (m)(x) − f (m)(y)‖ ≤ |x − y|α}.

Finiteness of ζs(µ, ν) implies equality of the first m difference moments: E(Xr −Y r) = 0, 1 ≤
r ≤ m.

Proposition 2.1. Let s > 0 and let µ0 ∈ M be a probability measure such that ηs =
E

∑K
i=1 |Ai |s < 1 and ζs(µ0, T µ0) < ∞. Then the additive stochastic equation (2.4) has

a unique solution in M
ζ
s (µ0) = {µ ∈ M : ζs(µ, µ0) < ∞}.

Proof. For µ, ν ∈ M
ζ
s (µ0), we have

ζs(T µ, T ν) ≤
( K∑

i=1

E |Ai |s
)

ζs(µ, ν) (2.13)

(see, e.g. [24, Proposition 1]). The assumption ζs(µ0, T µ0) < ∞ implies, by the triangle
inequality, that T maps M

ζ
s (µ0) to M

ζ
s (µ0). Thus, {T nµ0}n∈N is a Cauchy sequence in M

ζ
s (µ0),

which implies the existence of a fixed point by completeness of (M
ζ
s (µ0), ζs). The uniqueness

part is as in Theorem 2.2.

Remark 2.3. In general, the finiteness condition, ζs(µ0, T µ0) < ∞, of Proposition 2.1 for
the Zolotarev metric ζs is not easy to check. For s ∈ N there are upper bounds of ζs in terms
of the difference pseudomoments

κs(X, Y ) = s

∫
|x|s−1|FX(x) − FY (x)| dx

(where FX and FY are the respective distribution functions of X and Y ) if the first s−1 moments
coincide, but for s /∈ N only estimates for the ζs-metric including absolute pseudomoments
are available. There have been developed several alternative probability metrics, µs , which
allow estimates as in (2.13) and simultaneously admit upper bounds in terms of difference
pseudomoments (see, e.g. [22]). However, in comparison, the estimate of �s(µ0, T µ0) with
respect to the �s-metric is particularly simple and will be very useful in the following part of
the paper.

As a consequence of Proposition 2.1, we find that, given the contraction condition ηs < 1,

demonstrating the existence of a fixed point is equivalent to finding an element µ0 ∈ M such
that ζs(µ0, T µ0) < ∞. With respect to the �s-metrics, for 0 < s ≤ 1 the same is true in
Ms(µ0). For the interesting case, 1 ≤ s ≤ 2, we obtain a characterization of fixed points
in Ms(µ0, c) ⊂ M1. In the next step we want to remove the first moment condition for the
�s-metrics. To that end we introduce, for any µ0 ∈ M ,

M0
s (µ0) = {µ ∈ M : there exist random variables X

d= µ and Y
d= µ0

such that E(X − Y ) = 0 and E |X − Y |s < ∞}.
On M0

s (µ0) we define the modified �s-metric

�0
s (µ, ν) = inf{(E |X − Y |s)1/s∧1 : X

d= µ, Y
d= ν, E(X − Y ) = 0, E |X − Y |s < ∞}.

Since M0
s (µ0) ⊂ Ms(µ0), we obtain �s(µ, ν) ≤ �0

s (µ, ν) and �0
s satisfies the triangle inequality.

Finiteness of �0
s (µ, ν) needs a more stringent coupling than does finiteness of �s(µ, ν). In the
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next theorem we will see that this finiteness is sufficient for a general existence result for
solutions to the stochastic recursive equation X

d= ∑K
i=1 AiXi + b using �s-type estimates.

Theorem 2.3. (Existence and uniqueness in M .) Let 1 ≤ s ≤ 2, let µ0 ∈ M satisfy
�0
s (µ0, T µ0) < ∞, and assume that ηs = E

∑K
i=1 |Ai |s < 1. Then the stochastic equation

(2.4) has a unique solution in M0
s (µ0).

Proof. We first establish that T maps M0
s (µ0) to M0

s (µ0). Let µ ∈ M0
s (µ0). For random

variables X and Y , by X ≈ Y we indicate that E(X − Y ) = 0 and E |X − Y |s < ∞. By
assumption, there exist random variables X

d= µ0 and Y
d= T µ0 such that X ≈ Y. Let (Xi, Yi)

be i.i.d. copies of (X, Y ). Furthermore, define couplings of T µ and T µ0 by

Z :=
K∑

i=1

AiYi + b
d= T µ, W :=

K∑
i=1

AiXi + b
d= T µ0.

Then

E(Z − W) =
K∑

i=1

E Ai E(Y − X) = 0,

E |Z − W |s ≤ Ks
s ηs E |Y − X|s < ∞,

i.e. Z ≈ W . Since �0
s (µ0, T µ0) < ∞, for �0

s we obtain

�0
s (µ0, T µ) ≤ �0

s (µ0, T µ0) + �0
s (T µ0, T µ) ≤ E |X − Y |s + E |Z − W |s < ∞,

i.e. T µ ∈ M0
s (µ0), by the triangle inequality. Now we can follow the proof of Theorem 2.2

using the branching tree construction with Zkm
d= T kmµ0 and Wkm+r

d= T km+rµ0 (cf. (2.8),
(2.9), and (2.10)) and with i.i.d. couplings, (Yσ , Xσ ), of (µ0, T

rµ0) such that Yσ ≈ Xσ . Then,
as in (2.11), for any r ≥ 1 we find that

Ls
s(Zkm, Wkm+r ) ≤ Ks

s (η
m
s )k E |Y − X|s → 0 as k → ∞, (2.14)

where (X, Y )
d= (Xσ , Yσ )

d= (T rµ0, µ0). In particular, µ0, T
mµ0, T

2mµ0, . . . is a Cauchy
sequence in M0

s (µ0) with corresponding couplings X0, X1 = Zm, X2 = Z2m, . . . .

The related differences, Xk − X0, are a Cauchy sequence in Ls(0) (i.e. they have mean 0)
and, thus, converge to some limit Z ∈ Ls(0) (we write this as Xk − X0 →Ls Z). This implies
that Xk →Ls Z + X0. Thus, with µ∗ d= Z + X0, we obtain

�0
s (T

kmµ0, µ
∗) ≤ E |Xk − (Z + X0)|s → 0.

This argument yields the completeness of (M0
s (µ0), �

0
s ). From (2.14) we conclude that

�0
s (µ

∗, T rµ∗) = 0, 1 ≤ r ≤ m,

and, thus, µ∗ is a fixed point of T in M0
s (µ0). Uniqueness follows from application of the

estimate (2.14) to two solutions, µ and ν, to the stochastic equation, and use of the corresponding
weighted branching tree construction with sizes Zn and Wn and couplings X

d= µ and Y
d= ν

such that X ≈ Y.

As a consequence of Theorems 2.3 and 2.1, we obtain the following characterization of the
existence of solutions in the class, M , of all distributions. The necessity part of the following
characterization is obvious.
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Corollary 2.1. Let 0 < s ≤ 2 and ηs = E
∑K

i=1 |Ai |s < 1. Then the stochastic equation

X
d=

K∑
i=1

AiXi + b

has a solution in M if and only if there exists some µ0 ∈ M such that

�s(µ0, T µ0) < ∞ if 0 < s ≤ 1,

�0
s (µ0, T µ0) < ∞ if 1 < s ≤ 2.

Remark 2.4. In particular, the extended contraction results for the �s-metrics allow us to
characterize stable distributions as unique solutions to the associated stochastic equations
in Ms(µ0) or M0

s (µ0). Let 0 < α < 2, let U be uniformly distributed on [0, 1], and let
X∗ d= µ0 = S(α) be a symmetric, stable distribution with index α and scale factor c, with
characteristic function

ln ϕS(α)(t) = −c|t |α.

Then X∗ is the unique solution to the stochastic recursion

X
d= U1/αX1 + (1 − U)1/αX2

in Ms(µ0), if 0 < α < s ≤ 1, or in M0
s (µ0), if 1 ≤ α < s ≤ 2.

3. Homogeneous and inhomogeneous additive recursive equations

In this section we obtain, as an application of the contraction results established in Section 2,
a one-to-one relationship between solutions to homogeneous and, respectively, inhomogeneous
linear stochastic equations. Consider the inhomogeneous equation

X
d=

K∑
i=1

AiXi + b, (3.1)

with induced operator T on M , and the corresponding homogeneous equation

X
d=

K∑
i=1

AiXi, (3.2)

with induced operator T0. To establish a one-to-one relationship we assume that b ∈ Ls and
that the natural contraction condition, ηs = E

∑K
i=1 |Ai |s < 1, holds. In Section 2 we obtained

various conditions on the existence and uniqueness of solutions to (3.1) and (3.2).

Theorem 3.1. (Homogeneous and inhomogeneous equations.) Let 0 < s ≤ 2 and Ai, b ∈ Ls

such that ηs = E
∑K

i=1 |Ai |s < 1 and E b = 0 for 1 < s ≤ 2. Then the following equivalence
holds.

(a) For any solution µ0 to the homogeneous equation T0 µ
d= µ0, there exists exactly one

solution, µ∗, to the inhomogeneous equation T µ
d= µ, such that

µ∗ ∈
{

Ms(µ0) if 0 < s ≤ 1,

M0
s (µ0) if 1 < s ≤ 2.
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(b) For any solution µ∗ to the inhomogeneous equation T µ
d= µ, there exists exactly one

solution, µ0, to the homogeneous equation T0µ
d= µ, such that

µ0 ∈
{

Ms(µ
∗) if 0 < s ≤ 1,

M0
s (µ0) if 1 < s ≤ 2.

Proof. (a) If µ0 is a solution to the homogeneous equation T0µ0
d= µ0, then we obtain a

coupling of µ0 and T µ0 from Y0 := ∑K
i=1 AiYi, where (Yi) are i.i.d., Yi

d= µ0, and X∗ :=∑K
i=1 AiYi + b = Y0 + b. This implies that E |X∗ − Y0|s = E |b|s < ∞ and, thus, that

�s(µ0, T µ0) < ∞ for 0 < s ≤ 1 and �0
s (µ0, T µ0) < ∞ for 1 < s ≤ 2, using the additional

assumption that E b = 0 in the latter case. From Theorem 2.1(a) we obtain a unique solution,
µ∗ ∈ Ms(µ0), to T µ

d= µ for 0 < s ≤ 1, while Theorem 2.3 implies the existence of a unique
solution, µ∗ ∈ M0

s (µ0), to T µ
d= µ for 1 < s ≤ 2.

(b) The converse statement is proved similarly. If µ∗ is a solution to the inhomogeneous equation
T µ

d= µ, then let (Xi) be i.i.d. random variables with Xi
d= µ∗. Then X∗ := ∑K

i=1 AiXi + b

and Y0 := ∑K
i=1 AiXi define a coupling of µ∗ and T0µ

∗ such that E |Y0 −X∗|s = E |b|s < ∞,
�s(µ

∗, T0µ
∗) < ∞ for 0 < s ≤ 1, and �0

s (µ
∗, T0µ

∗) ≤ E |Y0 − X∗|s < ∞ for 1 < s ≤ 2.
Furthermore, T0µ

∗ ∈ M0
s (µ∗). Thus, again by Theorems 2.1(a) and 2.3, we obtain a unique

solution, µ0, to the homogeneous equation T0µ = µ, with

µ0 ∈ Ms(µ
∗) if 0 < s ≤ 1,

µ0 ∈ M0
s (µ∗) if 1 < s ≤ 2.

Remark 3.1. (a) Let L0 and L respectively denote the solution sets of the homogeneous and
inhomogeneous equations (either in terms of distributions or in terms of random variables). If
Y ∈ L0 ∩ L1, E Y = c, and 1 ≤ s ≤ 2, then with µ0

d= Y we have M0
s (µ0) = Ms(µ0, c). We

obtain, as a consequence of Theorems 2.3 and 3.1, the existence and uniqueness of solutions in
Ms(µ0, c), as in Theorem 2.2, where we had to specify the first moments of the solutions. The
remarkable feature ofTheorem 3.1 is that it establishes a one-to-one relationship betweenL0 and
L without any assumptions on the moments of the solutions, µ0 and µ∗, in L0 and, respectively,
L. The existence result based on the Zolotarev metric (Proposition 2.1) does not allow us to
draw the conclusion Theorem 3.1 does since the finiteness condition, ζs(µ0, T µ0) < ∞, for
a fixed point µ0 of the homogeneous equation in general needs further moment assumptions
on µ0.

(b) Fill and Janson [9] characterized the set of all solutions to the Quicksort recursion

X
d= UX1 + (1 − U)X2 + C(U),

with C(U) = 2U log U + 2(1 − U) log(1 − U) + 1, by

L = X∗ ⊕ C, (3.3)

where X∗ is the unique solution to the inhomogeneous equation – the Quicksort distribution –
with finite 2nd moment; C = {C(µ, σ 2) : µ ∈ R

1, σ 2 ≥ 0} is the set of Cauchy distributions
C(µ, σ 2) with location parameter µ and scale parameter σ , such that C(µ, 0) = εµ; and ‘⊕’
denotes independent sums. Their method of proof, when applied to the homogeneous equation,
yields

L0 = C, (3.4)
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i.e. C is the set of all solutions to the homogeneous equation. In this case the relation between the
homogeneous solutions and the inhomogeneous solutions is explicit and simple. According to
the explicit relationship, knowledge of the solution set in the homogeneous case in (3.4) directly
yields, by the equivalence result of Theorem 3.1, the equality in (3.3) in the inhomogeneous
case.

Corollary 3.1. (Quicksort-type equation.) Let U be U[0, 1]-distributed and let b ∈ Ls under
condition (2.5) or condition (2.6) if 1 ≤ s ≤ 2. Then the Quicksort-type equation

X
d= UX1 + (1 − U)X2 + b

has a unique solution, X̃, in Ms(c) if (2.5) applies, or in Ms(c
∗) if (2.6) applies, and the set of

all solutions is given by L = X̃ ⊕ C.

Proof. Using (3.4), the proof follows from Theorems 2.1, 2.2, and 3.1.

4. Max-recursive sequences

In this section we consider max-recursive equations of the kind

X
d=

K∨
r=1

(ArXr + br), (4.1)

where (Xi) are i.i.d. copies of X and Ai and bi are random coefficients independent of (Xr).
The right-hand side of (4.1) induces an operator T : M → M defined, for Q ∈ M and X

d= Q,
by

T Q = T X
d= L

( K∨
r=1

(ArXr + br)

)
.

If Ar, br ∈ Ls and L(X) ∈ Ms , then T X ∈ Ms and, thus, T can be considered as an operator
from Ms to Ms . The following existence and uniqueness result for max-recursive equations
was stated in [21], based on the contraction property in (1.5). Note that in the max case any
s > 0 is allowed.

Theorem 4.1. (Existence and uniqueness for max-recursive equations [21].) For some s > 0,
let Ai, bi ∈ Ls and let µ0 ∈ M be such that �s(µ0, T µ0) < ∞ and ηs := E

∑K
r=1 |Ar |s < 1.

Then the stochastic max-recursive equation X
d= ∨K

r=1(ArXr + br) has a unique solution in
Ms(µ0).

Similarly to the sum case, we obtain as a consequence a one-to-one relation between the set,
L, of solutions to the inhomogeneous equation

X
d=

K∨
r=1

(ArXr + br) (4.2)

and the set, L0, of solutions to the homogeneous equation

Y
d=

K∨
r=1

ArXr. (4.3)

We denote the corresponding distributional operators by T and T0.
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Theorem 4.2. (Equivalence theorem.) Let Ar, br ∈ Ls for some s > 0 and assume that
ηs = E

∑K
r=1 |Ar |s < 1. The following statements then hold.

(a) The inhomogeneous max-recursive equation (4.2) has a unique solution in Ms .

(b) For any solution Y0 ∈ L0 to the homogeneous max-recursive equation (4.3), there exists
exactly one solution, X∗, to the inhomogeneous max-recursive equation (4.2) such that
�s(X

∗, Y0) < ∞, i.e. L(X∗) ∈ Ms(µ0) with µ0 = L(Y0).

(c) For any solution X∗ to the inhomogeneous equation (4.2), there exists exactly one
solution, Y0, to the homogeneous equation (4.3) with �s(X

∗, Y0) < ∞.

Proof. (a) The proof follows from Theorem 4.1. Let µ0 = ε0. Then

�s(µ0, T µ0) ≤ E max
r

|br |s ≤
K∑

r=1

E |br |s < ∞.

Furthermore, Ms(µ0) = Ms and, thus, (a) follows from Theorem 4.1.

(b) If Y0 ∈ L0 and µ0 = L(Y0) then let (Xi) be independent random variables with Xi
d= µ0

and consider the coupling X := ∨K
r=1 ArXr and W := ∨K

r=1(ArXr + br) of µ0 and T µ0.
From Lemma 3.1 of [21], we then obtain

�s(µ0, T µ0) ≤ (E |X − W |s)1/s∧1 ≤
(

E
K∑

r=1

|br |s
)1/s∧1

< ∞.

Theorem 4.1 implies the existence and uniqueness of a solution, µ∗, to the inhomogeneous
equation (4.2) in Ms(µ0).

(c) Conversely, let X∗ be a solution to (4.2) with X∗ d= µ∗. Furthermore, let (Xi) be i.i.d. with
Xi

d= µ∗ and consider the coupling X := ∨K
r=1 ArXr and W := ∨K

r=1(ArXr + br) of T0µ
∗

and µ∗ (as W
d= µ∗). Then

�s(µ
∗, T0µ

∗) ≤ (E |X − W |s)1/s∧1 ≤
(

E
K∑

r=1

|br |s
)1/s∧1

< ∞

and Theorem 4.1 implies the result.

According to Theorem 4.2, there is a one-to-one relationship between the set, L, of solutions
to the inhomogeneous max-recursive equation and the set, L0, of solutions to the homogeneous
max-recursive equation. In the case of nonnegative coefficients Aj ≥ 0, the homogeneous max-
recursive equation

X
d=

K∨
j=1

AjXj (4.4)

can be related to the homogeneous additive recursive equation

W(α) d=
∑

Aα
j W

(α)
j , (4.5)

where α is chosen such that E
∑K

j=1 Aα
j = 1. This equation has been studied in detail in

the literature. Equation (4.5) has a solution if and only if E
∑K

j=1 Aα
j ln Aj ≤ 0 (see [3], [4],

and [17]).
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Let

KF(t) = E
∏
j

F

(
t

Aj

)

denote the operator on the distribution functions F corresponding to (4.4). Rösler [28] showed
that, for any nonnegative solution W(α) to the additive equation (4.5),

F0(t) := E exp(−W(α)t−α) (4.6)

is a distribution function and KF0 = F0, i.e. F0 is a solution to the max-recursive equation (4.5)
(see also [16]). We can interpret Rösler’s analytic construction stochastically as an analogue
of a transformation of Guivarc’h [11] given (in the latter paper) for the sum case.

Proposition 4.1. (Additive and max-recursive equations.) Let Aj ≥ 0, let E
∑K

j=1 Aα
j = 1,

and let W(α) be a nonnegative solution to the additive stochastic equation (4.5). Furthermore,
let Z(α) be Weibull distributed with parameter α, i.e. FZ(α)(x) = exp(−1/xα), x > 0. Then
the random scaled Weibull variable X := (W(α))1/αZ(α) is a solution to the max-recursive
equation (4.4).

Proof. We verify that the distribution function of X is identical to Rösler’s [28] distribution
function F0 in (4.6):

FX(t) = P(X ≤ t)

= P((W(α))1/αZ(α) ≤ t)

= E FZ(α)

(
t

(W(α))1/α

)
= E exp(−W(α)/tα)

= F0(t).

Alternatively, we may use the max-stability of the Weibull distribution. Let Xj =(W
(α)
j )1/αZ

(α)
j

be i.i.d. copies of X. Then
K∨

j=1

AjXj =
K∨

j=1

Aj(W
(α)
j )1/αZ

(α)
j

d=
( K∑

j=1

Aα
j W

(α)
j

)1/α

Z(α)

d= (W(α))1/αZ(α)

= X,

i.e. X is a solution to (4.4).

Example 4.1. (Worst case of FIND.) The limiting distribution of the worst case of the FIND
algorithm was characterized in [10] as the unique solution, S0, in M2 to the fixed-point equation

S
d= US1 ∨ (1 − U)S2 + 1, (4.7)

where U is uniform on [0, 1] and S1 and S2 are i.i.d. copies of S (see also [7]). Moreover,
S0 has finite moments of any order and an exponentially decreasing tail. In order to study the
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solution set, L, of (4.7), we first note that the class, W = {Qλ : λ ≥ 0}, of Weibull distributions
with parameter α = 1 and distribution functions Fλ(x) = e−λ/x, x > 0, with Q0 = ε0, are
solutions to the homogeneous equation S

d= US1 ∨ (1 − U)S2. Let Xλ
d= Qλ. Then, for λ > 0,

Xλ has no finite moments of any order greater than 1 and �s(Xλ, Xλ′) = ∞ for all λ �= λ′ and
for s > 1. The existence theorem (Theorem 4.2) implies that, for all λ ≥ 0, there exists exactly
one solution, Sλ, to the worst-case FIND equation (4.7) such that �s(Xλ, Sλ) < ∞, i.e.

L ⊃ {Sλ : λ ≥ 0}.
Since there are no nonnegative solutions to the related homogeneous additive equation W

d=
UW1 + (1 − U)W2, Proposition 4.1 does not add to the set of solutions in this case. It is an
open problem as to whether there are further solutions.

Max-recursive stochastic equations arise under quite general conditions as limits of max-
recursive algorithms, as was shown recently in [21]. We finish the paper by restating this limit
result as an interesting source of max-recursive equations. We then give an application of this
limit theorem to the worst-case behaviour of FIND, characterized by the limiting fixed-point
equation stated in (4.7) and discussed above.

Consider a max-recursive sequence (Yn), with

Yn
d=

K∨
r=1

(Ar(n)Y
(r)

I
(n)
r

+ br(n)), n ≥ n0, (4.8)

induced by an algorithm of divide-and-conquer type. Here I
(n)
r are subgroup sizes, br(n) are

random toll terms, Ar(n) are random weights, and (Y
(r)
n ) are i.i.d. copies of (Yn), independent

also of (Ar(n), br(n), I (n)). For a limiting result (after normalization), the following conditions
were given in [21]. Assume that the coefficients converge in Ls as follows:

(A
(n)
1 , . . . , A

(n)
K , b

(n)
1 , . . . , b

(n)
k ) →Ls (A∗

1, . . . , a
∗
K, b∗

1, . . . , b∗
K). (4.9)

Then, as a formal limit of (4.8), we obtain

X
d=

K∨
r=1

(A∗
r Xr + b∗

r ) (4.10)

as limiting equation. We need the contraction condition for the limit equation, namely

E
K∑

r=1

|A∗
r |s < 1 for some s > 0, (4.11)

as well as a nondegeneracy condition: for any fixed �,

E[1{I (n)
r ≤�}∪{I (n)

r =n} |A(n)
r |s] → 0. (4.12)

Theorem 4.3. (Max-recursive limit theorem [21].) Let (Yn) be a max-recursive sequence in-
duced by an algorithm of divide-and-conquer type as in (4.8), and assume that conditions (4.9),
(4.11), and (4.12) hold. Then �s(Yn, Y

∗) → 0, where Y ∗ is the unique solution to the limit
equation (4.10) in Ms .
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As an application of Theorem 4.3, we next give a direct proof of the limiting worst-case
behaviour of FIND. For an alternative stochastic process approach, see [10].

Example 4.2. Let Yn,� denote the number of comparisons of the FIND algorithm required for
finding the �th order statistic. Then

Yn,�

n

d= V − 1

n
1{V >�}

YV −1,�

V − 1
+ n − V

n
1{V <�}

Yn−V,�−V

n − V − 1
+ n − 1

n
,

where V is uniform on {1, . . . , n}. With V = �U� (i.e. the smallest natural number greater
than U ), U uniform on [0, 1], and the normalization Xn,� := Yn,�/n, we obtain

Xn,�
d= �nU� − 1

n
1{�nu�/n>�/n} X�nu�−1,�

+ n − �nU�
n

1{�nU�/n<�/n} Xn−�nU�,�−�nU� + n − 1

n
.

Defining the worst case by Mn := max1≤�≤n Xn,�, we obtain the recursive equation

Mn
d= n − 1

n
+ �nU� − 1

n
M�nU�−1 ∨ n − �nU�

n
Mn−�nU�.

This leads to the limit equation

S
d= 1 + US ∨ (1 − U)S, (4.13)

the worst-case FIND equation. All conditions of Theorem 4.3 are satisfied, for any s > 1. For
any s > 1, we therefore obtain �s(Mn, S) → 0, where S is the unique solution to (4.13) in Ms .
Thus, uniqueness holds in

⋃
s>1 Ms .
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