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Abstract

Let K = Q(θ) be an algebraic number field with θ satisfying a monic irreducible polynomial f (x) of
degree n over Q. The polynomial f (x) is said to be monogenic if {1, θ, . . . , θn−1} is an integral basis of K.
Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic
number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief
note on some infinite families of monogenic polynomials’, Bull. Aust. Math. Soc. 100 (2019), 239–244]
conjectured that if n ≥ 3, 1 ≤ m ≤ n − 1, gcd(n, mB) = 1 and A is a prime number, then the polynomial
xn + A(Bx + 1)m ∈ Z[x] is monogenic if and only if nn + (−1)n+mBn(n − m)n−mmmA is square-free. We
prove that this conjecture is true.
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1. Introduction and statements of results

Let K = Q(θ) be an algebraic number field and let f (x) of degree n be the minimal
polynomial of θ over Q. The polynomial f (x) is said to be monogenic if {1, θ, . . . , θn−1}
is an integral basis of K.

Denote the ring of algebraic integers of K by ZK . The field K is said to be monogenic
if there exists α ∈ ZK such that ZK = Z[α]. It is well known that if f (x) is monogenic,
then the number field K is monogenic but the converse is not always true (for example,
Q(
√

d), where d � 1 is a square-free integer congruent to 1 modulo 4).
The discriminant of a monic polynomial over a field F of degree n having roots

θ1, . . . , θn in the algebraic closure of F is Δ f =
∏

1≤i<j≤n(θi − θj)2. It is a classical result
in algebraic number theory that if f (x) is the minimal polynomial of an algebraic
integer θ over Q, then the discriminant Δ f of f (x) and the discriminant dK of K = Q(θ)
are related by the formula
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Δ f = [ZK : Z[θ]]2dK . (1.1)

Clearly if Δ f is square-free, then f (x) is monogenic but the converse need not be true.
Jones [4, 6] constructed infinite families of monogenic polynomials having
non square-free discriminant. In [7], Jones showed that there exist infinitely many
primes p≥3 and integers t≥1 coprime to p, such that f (x)=xp−2ptxp−1+ p2t2xp−2+1
is nonmonogenic and, in [5], he gave infinite families of monogenic polynomials using
a new discriminant formula.

Throughout the paper, f (x) = xn + A(Bx + 1)m ∈ Z[x] is an irreducible polynomial
with n ≥ 3 and 1 ≤ m ≤ n − 1, θ is a root of f, K = Q(θ) is the corresponding algebraic
number field, Δ f denotes the discriminant of f (x) and IndK(θ) denotes the group index
[ZK : Z[θ]]. From [4, Theorem 3.1],

Δ f = (−1)n(n−1)/2An−1[nn + (−1)n+mBn(n − m)n−mmmA]. (1.2)

THEOREM 1.1. Let A, B, n, m be integers with 1 ≤ m ≤ n − 1, n > 2 and B � 0.
Assume that gcd(n, mB) = 1. Then an irreducible polynomial of the type f (x) =
xn + A(Bx + 1)m is monogenic if and only if both A and nn + (−1)n+mBn(n − m)n−mmmA
are square-free.

REMARK 1.2. In Theorem 1.1, the assumption that gcd(n, mB) = 1 cannot be dropped.
For example, consider the polynomial f (x)= x3−6(3x +1). Here n= 3, m= 1, A= − 6
and B = 3. Note that f (x) is irreducible over Q. The polynomial f (x) is monogenic
and has discriminant Δ f = 23.22.35. However, nn + (−1)n+mBn(n − m)n−mmmA = 23.33

is not square-free.

The following corollary is an immediate consequence of Theorem 1.1. It is
conjectured by Jones in [4, Conjecture 4.1].

COROLLARY 1.3. Let p be a prime number, and n, m and B be positive integers with
1 ≤ m ≤ n − 1, n > 2 and gcd(n, mB) = 1. Then f (x) = xn + p(Bx + 1)m is monogenic
if and only if nn + (−1)n+mBn(n − m)n−mmm p is square-free.

EXAMPLE 1.4. Let p be an odd prime number and let a, b be positive integers with
n > 2. Consider the polynomial f (x) = xn + ax2 + bx + p with b2 = 4ap. Note that f (x)
satisfies Eisenstein’s criterion with respect to p, so it is irreducible over Q. The poly-
nomial xn + ax2 + bx + p with b2 = 4ap can be reduced to the form xn + p(Bx + 1)2

with B = b/2p. If gcd(n, 2B) = 1, that is, gcd(n, b/p) = 1, then Corollary 1.3 implies
that f (x) is monogenic if and only if nn + (−1)n4(b/2p)n(n − 2)n−2 p is square-free.

EXAMPLE 1.5. Let B be an integer not divisible by 3 with |B| ≥ 4 and let A � ±1 be a
nonzero square-free integer. Then the polynomial f (x) = x3 + A(Bx + 1)2 is irreducible
by Perron’s criterion, which states that if f (x) = xn + an−1xn−1 + · · · + a1x + a0 ∈ Z[x]
with a0 � 0 and |an−1| > 1 + |an−2| + · · · + |a0|, then the polynomial f (x) is irre-
ducible over Q. In view of Theorem 1.1, the polynomial x3 + A(Bx + 1)2 is monogenic
if and only if 4AB3 − 27 is square-free.
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2. Preliminary results

In what follows, for a prime number p and a given polynomial g(x) ∈ Z[x], g(x) will
denote the polynomial obtained by reducing each coefficient of g(x) modulo p.

Let f (x) ∈ Z[x] be a monic irreducible polynomial having a root θ and let L = Q(θ)
be an algebraic number field. In 1878, Dedekind proved the following criterion which
gives a necessary and sufficient condition to be satisfied by f (x) so that p does not
divide IndL(θ).

THEOREM 2.1 (Dedekind’s criterion, [2]; see also [1, Theorem 6.1.4]). Let L = Q(θ)
be an algebraic number field and f (x) the minimal polynomial of the algebraic integer
θ over Q. Let p be a prime and f (x) = g1(x)e1 · · · gt(x)et be the factorisation of f (x)
as a product of powers of distinct irreducible polynomials over Z/pZ, with each
gi(x) ∈ Z[x] monic. Let M(x) = ( f (x) − g1(x)e1 · · · gt(x)et )/p ∈ Z[x]. Then p does not
divide IndL(θ) if and only if, for each i, either ei = 1 or gi(x) does not divide M(x).

With the notation as in Theorem 2.1, one can easily check that if f (x) is monogenic,
then for each prime p dividing Δ f , either ei = 1 or gi(x) does not divide M(x) for each i.

DEFINITION 2.2. A polynomial anxn + an−1xn−1 + · · · + a0 in Z[x] with an � 0 is
called an Eisenstein polynomial with respect to a prime p if p � an, p | ai for 0 ≤ i ≤
n − 1 and p2 � a0.

The following result is known as Eisenstein’s criterion (see [3]). It will be used in
the proof of Corollary 1.3.

THEOREM 2.3. Let g(x) = anxn + an−1xn−1 + · · · + a0 ∈ Z[x] with n ≥ 1. If there is
a prime number p such that p � an, p | an−1, . . . , p | a0 and p2 � a0, then g(x) is
irreducible over Q.

The following lemma will be used in the proof of Theorem 1.1.

LEMMA 2.4 [8, Lemma 2.17]. Let α be an algebraic integer and let L = Q(α). If the
minimal polynomial of α over Q is an Eisenstein polynomial with respect to the prime
p, then IndL(α) is not divisible by p.

3. Proof of Theorem 1.1 and Corollary 1.3

PROOF OF THEOREM 1.1. Clearly A � 0. Suppose that θ is a root of f (x) and
K = Q(θ). From (1.2),

Δ f = (−1)n(n−1)/2An−1[nn + (−1)n+mBn(n − m)n−mmmA].

First suppose that the polynomial f (x) is monogenic. Then IndK(θ) = 1. Let p be a
prime dividing Δ f . The following cases arise.

Case 1: p | A. Then f (x) ≡ xn mod p and M(x) = A(Bx + 1)m/p. As n ≥ 3, by
Dedekind’s criterion, we see that x should not divide M(x). This implies that p2 � A.
Thus, A is square-free. Suppose that p2 divides (nn + (−1)n+mBn(n − m)n−mmmA).
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Then the hypothesis p | A implies that p | n. Since n ≥ 3 and A is square-free,
we have p | Bn(n − m)n−mmm, that is, p | m(n − m)B, which is not true because
gcd(n, mB) = 1. It follows that p2 cannot divide (nn + (−1)n+mBn(n − m)n−mmmA) and
so (nn + (−1)n+mBn(n − m)n−mmmA) is square-free.

Case 2: p � A. Then p will divide (nn + (−1)n+mBn(n − m)n−mmmA). Keeping in mind
the hypothesis gcd(n, mB) = 1, it is easy to see that p � n and so p � Bm(n − m). Let α
be a repeated root of f (x) = xn + A(Bx + 1)m in the algebraic closure of Z/pZ. Then

αn + A(Bα + 1)m ≡ 0 mod p

and

nαn−1 + mAB(Bα + 1)m−1 ≡ 0 mod p.

So nαn−1 ≡ −mAB(Bα + 1)m−1 mod p. By substitution,

−αmAB(Bα + 1)m−1 + nA(Bα + 1)m ≡ 0 mod p,

that is,

(Bα + 1)m−1(αAB(n − m) + nA) ≡ 0 mod p.

If Bα + 1 ≡ 0 mod p, then α ≡ −1/B mod p, which yields the contradiction
(−1)n/B

n
= f (−1//B) = f (α) = 0. Thus, αAB(n − m) + nA ≡ 0 mod p, so that

α ≡ − nA
AB(n − m)

mod p (3.1)

is the unique repeated root of f (x) in Z/pZ and it is easy to show that α has multiplicity
2. So, assuming that α is a positive integer satisfying (3.1), we can write

f (x) = (x − α + α)n + A(B(x − α + α) + 1)m,

=

n∑
k=0

(
n
k

)
αn−k(x − α)k + A

( m∑
k=0

(
m
k

)
(Bα + 1)m−kBk(x − α)k

)
,

= (x − α)2h(x) + f ′(α)(x − α) + f (α),

where f ′(x) is the derivative of f (x) and

h(x) =
n∑

k=2

(
n
k

)
αn−k(x − α)k−2 + A

( m∑
k=2

(
m
k

)
(Bα + 1)m−kBk(x − α)k−2

)

is in Z[x]. Then f (x) = (x − α)2h(x), where h(x) ∈ Z[x] is separable. Let
∏t

i=1 hi(x)
be the factorisation of h(x) into a product of distinct irreducible polynomials hi(x) ∈
Z/pZ[x] with each hi(x) ∈ Z[x] monic. Then we can write

f (x) = (x − α)2
( t∏

i=1

hi(x) + pg(x)
)
+ f ′(α)(x − α) + f (α),
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for some polynomial g(x) ∈ Z[x]. This implies that

M(x) =
1
p

[p(x − α)2g(x) + (x − α) f ′(α) + f (α)].

In view of Dedekind’s criterion and the hypothesis that f (x) is monogenic, we see that
f (α) � 0 mod p2. Equivalently,

(nn + (−1)n+m(n − m)n−mmmBnA) � 0 mod p2.

Hence, (nn + (−1)n+m(n − m)n−mmmBnA) is square-free.
Conversely, suppose A and (nn + (−1)n+m(n − m)n−mmmBnA) are square-free. If A =

±1, then using (1.1), we see that IndK(θ) = 1, that is, f (x) is monogenic. If p be a
prime divisor of A, then f (x) is an Eisenstein polynomial with respect to the prime
p. Therefore, by Lemma 2.4, p � IndK(θ). Hence, by (1.1), f (x) is monogenic. This
completes the proof of the theorem. �

PROOF OF COROLLARY 1.3. It is easy to verify that f (x) satisfies Eisenstein’s criterion
with respect to the prime p. So f (x) is an irreducible polynomial. Hence, the result
follows from Theorem 1.1. �
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