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Abstract

Thermohaline staircases are a widespread stratification feature that impacts the vertical transport of heat and nutrients
and are consistently observed throughout the Canada Basin of the Arctic Ocean. Observations of staircases from the
same timeperiod and geographic region form clusters in temperature-salinity (T–S) space. Here, for the first time,weuse
an automated clustering algorithm called the hierarchical density-based spatial clustering of applications with noise to
detect and connect individual well-mixed staircase layers across profiles from ice-tethered profilers. Our application
only requires an estimate of the typical layer thickness and expected salinity range of staircases.We compare thismethod
to two previous studies that used different approaches to detect layers and reproduce several results, including the mean
lateral density ratio RL and that the difference in salinity between neighboring layers is a magnitude larger than the
salinity variance within a layer. We find that we can accurately and automatically track individual layers in coherent
staircases across time and space between different profiles. In evaluating the algorithm’s performance, we find evidence
of different physical features, namely splitting or merging layers and remnant intrusions. Further, we find a dependence
of RL on pressure, whereas previous studies have reported constant RL. Our results demonstrate that clustering
algorithms are an effective and parsimonious method of identifying staircases in ocean profile data.

Impact Statement

Clustering algorithms are unsupervised machine learning methods that are used across many areas of data science.
The use of such methods can automate the identification of certain features, thus allowing for the analysis of very
large datasets. Here, we show that a particular clustering algorithm called hierarchical density-based spatial
clustering of applications with noise (HDBSCAN) can be used to automatically identify thermohaline staircases
in hydrographic profiles from the Arctic Ocean. Compared to previous detection methods, HDBSCAN has the
advantages of requiring minimal prior knowledge and of automatically connecting individual staircase “steps”
across different hydrographic profiles. We expect that this method could be applied to many similar datasets,
offering a straightforward way to identify and track layers in thermohaline staircases across the world’s oceans.

1. Introduction

Thermohaline staircases, formed by differential diffusion rates of heat and salt, appear as a series of
vertically well-mixed horizontal layers, each separated by thin, strongly stratified interfaces. These
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structures have been observed throughout the world’s oceans (van der Boog et al., 2021a) as well as in
saline lakes (Newman, 1976), while related double-diffusive staircases are thought to occur in gas giants
such as Jupiter and Saturn (André et al., 2017; Pontin et al., 2021). In particular, they are well known to
occur in the Arctic Ocean (Timmermans et al., 2008; Lu et al., 2022; Ménesguen et al., 2022). Around
250 to 800 meters below the surface of the Arctic Ocean, there is a layer of water originating from the
Atlantic, which is warmer and saltier than the topmost layer that is in contact with the sea ice above
(Timmermans et al., 2008). The core of the Atlantic water (AW) is defined as the maximum subsurface
temperature and is generally at a depth of 400 m in the Canada Basin. Above this depth, in a region in
which both temperature and salinity increase downwards, lie the lower haloclinewaters (LHW),where the
staircases are found (Lu et al., 2022).

Two-thirds of the world’s oceans are alpha oceans, which are stratified by temperature, with the
warmest waters at the surface and colder waters at depth (Stewart and Haine, 2016). This is in contrast to
the 15% that are beta oceans, the only regions where sea ice can form over deep water, such as the Arctic,
which are primarily stratified by salinity, and therefore, the warm, salty AW is stable at depth (Carmack,
2007). The remaining oceans are called “transition zone oceans” (Stewart and Haine, 2016).While Arctic
sea ice has been steadily disappearing (Comiso et al., 2008), the density stratification above the AW core
has historically been strong enough to insulate surface waters from the warmth at depth (Shibley et al.,
2017). However, the lower sections of Arctic staircases have been disappearing in recent years
(Ménesguen et al., 2022). Many works have noted that the AW contains enough heat to melt all Arctic
sea ice, if it were somehow able to reach the surface (Maykut and Untersteiner, 1971; Turner, 2010;
Stranne et al., 2017; Shibley et al., 2020). Given their potential role in modulating the Arctic climate, it is
important to be able to accurately identify thermohaline staircases in observations to monitor changes.

The first recorded observation of thermohaline staircases in the Arctic Ocean was made in 1969 at Ice
Island T-3 (Neal et al., 1969). This iceberg, located somewhat northeast of the Canada Basin (often
defined as 72–84°N, 130–155°W, see, e.g., Peralta-Ferriz andWoodgate, 2015), was the site of dozens of
hydrographic profiles that contain clearly visible staircases (Neshyba et al., 1971, 1972; Neal and
Neshyba, 1973). Subsequent observations indicate that the staircases have been a consistent feature of
the Canada Basin, including from data collected during the Arctic Internal Wave Experiment (AIWEX)
(Padman and Dillon, 1987, 1988, 1989) and the Surface Heat Budget of the Arctic (SHEBA) experiment
(Shaw and Stanton, 2014). The frequency of such observations increased dramatically in 2004, when the
introduction of autonomous ice-tethered profilers (ITPs) made possible the continuous, year-round
sampling of the Arctic Ocean water column (Toole et al., 2011).

Although many early studies identified staircases by visual inspection, the recent increase in available
data has spurred researchers to turn to algorithmic approaches. Here, we detail several previous studies
whose foundational work was critical in the development of the current study. All of these studies used a
similar approach to detect data points that fall within some well-mixed layer (henceforth for brevity
simply “layer”) on a profile-by-profile basis. Timmermans et al. (2008) defined a point in a hydrographic
profile to be detected within a layer when the local vertical potential temperature gradient ∂θ=∂z is below
0:005 ° Cm�1, roughly an order of magnitude smaller than the overall gradient for a typical profile.
Shibley et al. (2017) extended the automated detection method of Timmermans et al. (2008) by including
two additional conditions: (1) For each experiment, they visually determined different threshold values on
both ∂θ=∂z and on the temperature difference between neighboring points and (2) after then running the
detection method, those authors only considered staircases that consisted of at least three layers. van der
Boog et al. (2021b) developed a similar staircase detection algorithm, but chose threshold values of
vertical density gradients that were expected to be applicable to staircases in all of the world’s oceans, not
just the Arctic. Specifically, they set a vertical gradient threshold of ∂σ1=∂p≤ 0:0005kgm�3dbar�1,
where σ1 is the density anomaly referenced to 1000 dbar. Then, from the subset of data that meets that
condition, only mixed layers with a maximum variation of density anomaly of 0:005kgm�3 or less, and
whose neighboring interfaces had thicknesses of 30 dbar or less, were considered. Lu et al. (2022) defined
the intersections between layers and interfaces as locations where the difference in the potential
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temperature gradient between two neighboring points is greater than 0:003 ° Cm�1, then disregarded the
points within the interfaces. After performing this detection, Lu et al. (2022) then made cross-profile
connections with the layer points that remained, following the work of Padman and Dillon (1988), and
used valleys in histograms of salinity to guide their choice of boundaries between layers, some of which
were manually adjusted. We find it useful to distinguish between these two steps: the detection of points
within layers for each profile and the connection of these points to those in other profiles that arewithin the
same layer. Many previous studies did not describe a connection method because it was not needed for
their ends; we use this framing to call attention to the novel aspects of our contribution.

All of the above techniques first detect a subset of the data points that are likely within layers based on
vertical gradient thresholds. This approach requires sufficient knowledge of the staircases properties to
select appropriate thresholds, as well as data with sufficient vertical resolution to accurately estimate the
gradients. The connection algorithm Lu et al. (2022) describe, after its completion, still requires some
amount of manual intervention to produce a final dataset of staircase layers. A commonality of all of these
approaches is that they are purpose-built for the task of detecting staircases in specific contexts. These
factors motivate the search for a more general approach to detect and connect thermohaline layers across
different profiles, which could offer advantages such as greater scalability and applicability as well as
more ready reproducibility, all of which would accelerate the pace of research on these important
structures.

Many studies, notably Timmermans et al. (2008), have observed that a collection of profiles that
includes well-mixed layers, such as density staircases, is associated with clustered patterns when plotted
in temperature-salinity (T–S) space (Schmitt et al., 1987; Toole et al., 2011; Yu et al., 2017; Bebieva and
Timmermans, 2019). This clustering indicates that layers are thin sheets, extending laterally for hundreds
of kilometers (Timmermans et al., 2008; Lu et al., 2022). These patterns occur where a staircase is present
because all data points within a particular layer have approximately the same temperature and salinity
values as other observations from the same layer, regardless of their vertical position within the layer. This
fact suggests that staircases could be detected by directly identifying clusters in T–S space. Clustering
algorithms are a type of unsupervised machine learning and have been previously used in a variety of
different oceanographic applications (Sonnewald et al., 2021). Examples include grouping observations
from freely drifting instruments in the Nordic Seas (Koszalka and LaCasce, 2010), studying surface wave
variability in the North Atlantic (Espejo et al., 2014), classifying the heat content of hydrographic profiles
(Maze et al., 2017), resolving trapping in mesoscale eddies (Ma et al., 2019), defining spatial regions for
Southern Ocean temperature profiles (Jones et al., 2019), detecting ENSO events (Houghton andWilson,
2020), finding hot spots formixing in the SouthernOcean (Rosso et al., 2020), and identifying shifts in the
North Atlantic circulation (Desbruyères et al., 2021). However, to the best of our knowledge, they have
never before been used to identify thermohaline staircases.

Here, we apply amethod based on the hierarchical density-based spatial clustering of applications with
noise (HDBSCAN) algorithm (Campello et al., 2013) to both detect and connect thermohaline staircases
across Arctic hydrographic profiles. This method has several advantages. It detects and automatically
connects staircase layers across large hydrographic datasets in one step. In the past, HDBSCAN has been
successfully applied to datasets with a number of points that were an order of magnitude larger than in this
study, suggesting the application we present here could be scaled to accommodate more data (Logan and
Fotopoulou, 2020). Also, it does not consider profiles individually and therefore, does not require that
each profile have fine vertical resolution. Our implementation of this algorithm does require knowledge of
the typical layer thickness and the expected global salinity range of the staircase; however, as we will
show, this is a more flexible requirement compared to determining threshold gradients. Most importantly,
it exhibits excellent performance producing a final, connected dataset of layers to which no subsequent
adjustments need to be made, and is thus suitable for application to datasets with a large number of points
as well as being more easily reproducible. The purpose of this paper is to present this method, and so we
will note possible implications of our results but will not explore them in great detail.

The structure of this paper is as follows. First, in Section 2, we introduce and explain our choice of the
datasets used in our analysis. In Section 3, we introduceHDBSCAN and describe howwe use it to identify
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staircases and howwe choose the input parameters. Then, in Section 4, we apply this method to data from
two different ITP experiments, focusing on results that reproduce those from the studies of Timmermans
et al. (2008) and Lu et al. (2022), hereafter denoted as T08 and L22, respectively. Finally, in Section 5, we
use the comparison between our results and those of T08 and L22 to evaluate the performance of the
clustering algorithm and give recommendations onwhen and how it can be best used to identify staircases.

2. Data

ITPs are automated, vertically profiling instruments that are connected via a wire cable to a surface buoy
on an ice floe (Toole et al., 2011). The wire extends from the surface, through the ice, down to depths of
500–800 m. The profiler travels up and down the wire roughly two to three times a day, collecting high-
resolution (~25 cm) measurements of salinity, temperature, and pressure with a salinity precision of
± 0:005 g/kg and a temperature precision of ± 0:001 ° C (Timmermans et al., 2008; Shibley et al., 2017;
Bebieva and Timmermans, 2019). Each traverse, alternating up or down, is recorded as a separate profile.

In this paper, data from two different ITP experiments, ITP2 and ITP3, are analyzed; see Table 1 for a
summary. Because the measuring instruments are located at the top of the profiler, we use only the
up-going profiles in order to avoid the known distortion caused by the wake of the profiling unit in the
down-going profiles (Shibley et al., 2017). Figure 1 shows the locations of all up-going profiles for each of
the two ITP experiments. We choose to analyze ITP2 and ITP3, in particular, to reproduce several results
of T08 and L22, respectively.

Table 1. Details of the ice-tethered profilers (ITPs) used in this study

ITP Start date
Days in
operation Starting position

Along-path
distance (km)

Longest
spana

(km)
Total
profiles

Up-going
profiles

2 August 19,
2004

40 77° 10.4’N, 141°
13.0’W

390 191 242 121

3 August 23,
2005

382 77° 36.1’N, 142°
11.8’W

2541 441 1531 766

aThe maximum distance between any two, not necessarily consecutive, profiles.

Figure 1. Amap showing the locations of all profiles used from ITPs 2 and 3, showing the whole Arctic in
(a) and a zoomed-in view in (b). The red box designates the Canada Basin as defined by Peralta-Ferriz
and Woodgate (2015).
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At this point, we note some choices in the study relative to those of T08 and L22. Here, we choose to
work with pressure, a directly measured quantity, while both of those studies use depth, which is
derived from pressure; as the conversion between pressure and depth is linear, this difference does not
affect our results or comparisons. Also note that although both of those earlier studies use potential
temperature θ, we choose instead to use conservative temperature Θ, as recommended by TEOS-10
(McDougall and Barker, 2011). For the range of temperatures and salinities in the data we analyze, the
difference ∣θ�Θ∣ is a systematic shift that is always less than 0.05 °C. Because this shift is relatively
constant, our results are not sensitive to this choice. Furthermore, TEOS-10 recommends using
absolute salinity SA over practical salinity SP. Our results do not change significantly using one versus
the other (see Supplementary Material), so we choose to use SP to make direct comparisons to the
salinity ranges used by T08 and L22.

Staircases are only found in certain vertical ranges of the water column. However, as noted by L22, the
salinity values of the layers are much more consistent across different profiles than their pressure or
temperature characteristics, so we focus our analyses on a specific salinity range for each ITP. An
appropriate range can be estimated by inspection of a few individual profiles or from general knowledge
of the salinity range of staircases in the region. The bounds of this range need not be precise, but choosing
a range that is too small will potentially miss layers. Running the algorithm on a liberally large range to
capture all potential layers will take longer and may also return some clusters that do not correspond to
meaningful thermohaline staircase layers. However, in Section 3.3, we detail a process of identifying
erroneous clusters. For easier comparison, we choose salinity ranges used in past work, namely, 34.05–
34.75 g/kg for ITP2 following T08 and 34.21–34.82 g/kg for ITP3 following L22.

As discussed in more detail below, the clustering algorithm does not distinguish between the different
times and locations at which different profiles were taken. It follows that a dataset to be analyzed should
not span larger temporal or spatial scales than the scales the staircases are known to be coherent across.
T08, who analyzed much of the same data we do, found staircases that spanned the entire Canada Basin
(approximately 800 km) and lasted at least 2 years. We define the longest span as the maximum distance
between any two, not necessarily consecutive, profiles.We find the longest span (≤ 441 km) and duration
(≤ 382 days) of the two ITPs we analyzed (see Table 1) are indeed smaller than the expected staircase
coherence scales.

3. Methods

3.1. The HDBSCAN clustering algorithm

To identify T–S clusters as evidence for staircases within the ITP data, we use the HDBSCAN algorithm,
which clusters data based on the relative densities in different regions. Algorithm-identified clusters in the
ITP data are expected to correspond to staircase layers, with some exceptions, as detailed in Section 3.3.
While Campello et al. (2013) present the algorithm in full detail, here we briefly review its general
principles.

In the context of density-based clustering algorithms, the term “density” refers to a measure of the
relative number of data points in a certain region of parameter space. HDBSCAN estimates the density of
a region based on the distances between points and a number of their nearest neighbors, creating a
hierarchy of clusterings fromwhich it chooses themost prominent. First, it calculates the “core distance” ε
for each point as the minimum radius of a circle needed to encompass its mpts nearest neighbors. The
inverse of ε represents density; when it is small, points are close together and when it is large, points are
spread out. HDBSCAN then creates a hierarchy of clusterings, starting with the largest ε and working
down. For each value ε0, it first detects the level-set of non-noise points, where ε≤ ε0, then connects points
together in the same cluster if they are within a distance of ε.

As the value of ε0 decreases, a particular cluster may change by shrinking, splitting, or disappearing
entirely. Having built this hierarchy tree, HDBSCAN can then select clusters at the ends of branches even
though different branches may terminate at very different values of ε0. However, when the data are
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particularly noisy, just before crossing the ε0 threshold where a cluster would disappear, it may split into
many small, spurious clusters. To avoid including these artifacts in the final result, the algorithm ignores
all clusters with fewer than mclSize number of points. The recommendation of the authors of HDBSCAN
and the default behavior of the “hdbscan” Python package is to set mclSize =mpts (Campello et al., 2013;
Moulavi et al., 2014), giving one input parameter which controls both how the core distance is calculated
and the minimum points per cluster. While there are other optional input parameters for HDBSCAN (see
Supplementary Material), the results we obtained using the default settings were satisfactory, so we did
not investigate their effects.

We choose HDBSCAN over other types of clustering algorithms for several reasons. Many previous
oceanographic studies used partitioning algorithms such as k-means (Koszalka and LaCasce, 2010;
Espejo et al., 2014; Houghton and Wilson, 2020) or Gaussian mixture models (Maze et al., 2017; Jones
et al., 2019; Rosso et al., 2020; Desbruyères et al., 2021); however, partitioning algorithms require one to
specify the number of clusters a priori, which is not known for our application. The first reason for
choosing HDBSCAN is that it does not have this requirement (Ester et al., 1996; Jones et al., 2019).
Second, HDBSCAN allows points that lie outside a cluster to be categorized as “noise.” In our case, this is
important because points in an interface between layers should not be assigned to any cluster. Third,
unlike DBSCAN, which uses the same threshold ε0 for all clusters throughout the domain (Ester et al.,
1996; Campello et al., 2013), HDBSCAN creates a hierarchy of clusterings with different ε0 and can,
therefore, correctly identify clusters that vary significantly in both the number of points per cluster and the
densities of points within the clusters (McInnes et al., 2017). Fourth, HDBSCAN can correctly identify
arbitrarily shaped clusters, whereas partitioning algorithms like k-means generally find center-defined
clusters, which, because points are assigned to clusters based on their distance from the cluster’s center
point, are only equipped to find globular or convex clusters (Ester et al., 1996; Hinneburg and Keim,
2003). This is important because the shapes of clusters associated with thermohaline staircases are not
necessarily globular. Lastly, HDBSCAN requires only one input parameter mpts

� �
to be specified,

reducing the number of choices to be made before each run of the algorithm. Further, we determine
the value of mpts systematically, as explained below.

Having chosen a clustering algorithm, we now turn to specifying the two-dimensional space within
which the clustering algorithm will operate. Figure 2(a) shows data from ITP2 in Θ–SP space, where
discrete groups of points associated with individual layers and spanning multiple profiles are apparent;
these are colored according to their eventual partitioning into clusters. Note the occurrence of occasional
gaps in Θ values, seen in the salinity ranges 34.16–34.30 and 34.65–34.74 g/kg. These result from the
uneven spatial coverage of the meandering drift path of the ITPs (see Figure 1) together with the tendency
for the temperature to vary more horizontally within a particular layer than salinity (Lu et al., 2022). In
order to avoidHDBSCAN splitting such groups of points intomultiple clusters for the same layer, for each
temperature profile Θ zð Þ, we define the local anomaly as

Θ0 zð Þ=Θ zð Þ� 1
ℓ

Z zþℓ=2

z�ℓ=2
Θ z0ð Þdz0, (3.1)

where ℓ is the width of a rectangular moving average window. Presenting the ITP2 data in Θ0 – SP space
rather than Θ – SP space, as in Figure 2(c), leads to groups that are more centered around zero along the
temperature axis, without notable gaps. We choose to work in this space as it will allow HDBSCAN to
group points more accurately.We also confirmed the difference between usingΘ or θ and SP or SA did not
significantly affect the results. Finally, we mention that HDBSCAN is sensitive to the aspect ratio of the
axes; however, because the results were found to be satisfactory, we did not investigate this dependency.

3.2. Selecting values of input parameters

It remains to choose values for themethod parameters. The HDBSCAN algorithm is deterministic; that is,
given the same arrangement of input data and the same value of the mpts parameter, it will find the same
clusters every time. The exact arrangement of data inΘ0

–SP space that we feed into the algorithm depends
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on three factors: (1) the set of profiles that we include, (2) the salinity range that we decide to analyze, and
(3) the window width ℓ used to calculate the local anomaly of conservative temperature Θ0 in Equation
(3.1). We discussed our method of selecting the profiles and salinity range previously in Section 2. Here,
we explain how we select values for ℓ and mpts.

The results of a clustering algorithm can be judged on the basis of either external or internal
validation. External validation methods involve comparing the clustering results to an external
“ground truth,” while internal validation methods use the data themselves to provide a measure of
quality for the clustering (Moulavi et al., 2014). In this application, external validation would require
detailed labeling, indicating to which layer, if any, each individual point belongs. Such labels could be
determined by a separate method; however, we aim for this method to be broadly applicable to more
than just reproducing previous results. Therefore, we tune our selection of ℓ and mpts using density-
based clustering validation (DBCV) (Moulavi et al., 2014) as an internal validation. DBCV considers
good clustering solutions to be those in which the lowest-density regions within the clusters are still
denser than the highest-density regions of the surrounding noise points. It bases the density estimates

Figure 2. Results from the clustering algorithm with mpts ¼ 170 and ℓ¼ 25 dbar run on 53,042 data
points in the salinity range 34.05–34.75 g/kg from all up-going ITP2 profiles. (a) The data inΘ–SP space
with dashed lines of constant potential density anomaly (kgm�3) referenced to the surface. The red box
bounds the clusters marked in panels (b) and (d). (b) Profiles 183, 185, and 187 from ITP2 in a limited
pressure range to show detail. Each profile is offset in SP for clarity. (c) The spatial arrangement used as
input for the algorithm where the gray points are noise and each color-marker combination indicates a
cluster. The same color-marker combinations are used in each panel, and the markers in panels (c) and
(d) are at the cluster average for each axis. (d) A subset of the data in αΘ–βSP space with the linear
regression line and inverse slope (RL) noted for each individual cluster and with dashed lines of slope
αΘ=βSP ¼ 1.
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on the so-called “mutual reachability distance,” defined for each pair of points to be the maximum ε of
either point or the distance between the two, whichever is largest. For more details, see Moulavi et al.
(2014).

To evaluate algorithm performance, we performed a parameter sweep through different values of ℓ and
mpts, and present the number of clusters found together with the DBCV scores in Figure 3. For the ℓ
dependence, see Figure 3(a), we find a downward trend in the number of clusters as ℓ increases. DBCV
scores tend to be larger in the middle of the ℓ range, with the highest score occurring for ℓ= 25 dbar. We
may also note that the choice of ℓ shapes a large-scale feature of theΘ0

–SP plots. In Figure 2(c), a zig-zag
pattern of increasing, rapidly decreasing, and then increasing againΘ0 is seen in the range of SP ≈ 34:63–
34.72 g/kg. This pattern is due to the presence of the AW subsurface temperature maximum inΘ profiles;
it disappears when ℓ is small while becoming more exaggerated for larger ℓ (see
Supplementary Material). Based upon previous studies of staircases in the Canada Basin during this
time period (Timmermans et al., 2008; Lu et al., 2022), we estimated the typical layer thickness to be 5 m
in height or 5 dbar in pressure, though we found similar results for estimates of 0.5–7.5 dbar (see
SupplementaryMaterial). The choiceℓ= 25 dbar, where the largestDBCV score occurs, thus corresponds
to approximately five times the typical layer thickness. This value is found to be large enough that the
staircases are completely smoothed out yet small enough that the features outside the analyzed pressure
range do not significantly affect the moving average.

We now turn to mpts, which under the default settings of HDBSCAN, sets the minimum number of
points in a cluster (Campello et al., 2013). If the value ofmpts is too small, the algorithm may erroneously
split a cluster that represents one layer intomultiple, smaller clusters, while a too-large value ofmpts would
lead to the incorrect grouping ofmultiple discrete layers into a single cluster. Note that this upper bound on
a reasonablempts depends greatly on the number of data points given to the algorithm themore data points
the algorithm is given, the higher the value of mpts can reasonably be set. In the parameter sweep of
Figure 3(b), we find the number of clusters decreases rapidly until mpts ≈ 60, then decreases at a much
slower rate, while the highest DBCV scores occur for intermediate values of mpts. As with ℓ, we choose
the value of mpts having the highest DBCV score. For ITP2, this led to our selection of mpts = 170.

Running HDBSCAN on ITP2 using the procedure outlined above with the choices ℓ= 100 and
mpts = 170 leads to the clusters presented in Figure 2. Following the same parameter selection process for
ITP3, we obtain the values ℓ= 25 dbar andmpts = 580 (see Supplementary Material). Table 2 summarizes
our input parameter choices and the resulting number of clusters and DBCV values for both ITP2 and
ITP3.

Figure 3.A parameter sweep showing the number of clusters found (solid lines) andDBCV (dashed lines)
in ITP2 as a function of (a) 27 different values of ℓwithmpts ¼ 170 and (b) 44 different values ofmpts with
ℓ¼ 25 dbar.

e13-8 Mikhail G. Schee et al.

http://doi.org/10.1017/eds.2024.13
http://doi.org/10.1017/eds.2024.13
http://doi.org/10.1017/eds.2024.13


3.3. Evaluating the clustering algorithm results

The DBCV score gives a measure of quality for the clusters in terms of their densities of points relative to
the surrounding noise. However, DBCV does not take into account the properties of the clusters that we
expect from the physical situation of staircases, such as their spans in Θ and SP or how far they are from
neighboring clusters. We, therefore, present two metrics to help predict whether each cluster will
accurately represent what we expect from layers within staircases: the lateral density ratio RL and the
normalized inter-cluster range IR.

The relative strength of horizontal variations in salinity and temperature along the ith layer is described
by the lateral density ratio

Ri
L =

βΔSP
αΔΘ

, (3.2)

where β = ρ�1
∂ρ=∂SP is the haline contraction coefficient, α = �ρ�1

∂ρ=∂Θ is the thermal expansion
coefficient, and ΔSP and ΔΘ are the variations in salinity and temperature, respectively, along a particular
layer (Radko, 2013; Bebieva and Timmermans, 2019). We estimate RL by finding the inverse slope of the
best-fit line through each cluster in αΘ–βSP space (see Figure 2(d)) (Chen, 1995; Timmermans et al.,
2008). These lines are found using Orthogonal Distance Regression, which is more suitable than ordinary
least squares in our case due to the presence of variability along both the αΘ and βSP axes (Winton, 2011);
however, both methods yield similar results (not shown).

RL quantifies the relative importance of SP andΘ for the density of that layer (Timmermans et al., 2008;
Bebieva and Timmermans, 2019) and is known to be directly related to the ratio of the vertical fluxes of
salinity and heat within a staircase (Bebieva and Timmermans, 2019). Note that the lateral density ratioRL

is distinct from the density ratio, Rρ, which is defined using the same Equation (3.2) but with ΔSP and ΔΘ
taken in the vertical direction (Shibley et al., 2017). The relative constancy of RL values across time and
space has been interpreted as reflecting the remarkable degree of lateral coherence of staircase layers
(Toole et al., 2011). The values of RL have also been shown to be remarkably similar across neighboring
layers (Timmermans et al., 2008). Therefore, if a value of RL lies significantly outside of the general range
of its neighbors, the cluster either reflects the erroneous grouping ofmultiple layers into a single cluster, or
else a physical merging or splitting of layers, as discussed in Section 4.2.

We also define a measure of the relative spread of a variable, such as temperature or salinity, within a
cluster in comparison with the differences between adjacent clusters. Ordering the clusters sequentially in
density, the normalized inter-cluster range for the ith cluster is given by

IRi
v =

vimax� vimin
min jvi� vi�1j, jvi� viþ1j� � , (3.3)

where i�1 and iþ1 denote the adjacent clusters to either side, v is the variable of interest (i.e., pressure,
Θ, or SP), vimax and vimin are the maximum and minimum values of the variable v within cluster i, and vi

denotes the mean value of v for cluster i. The numerator is the span between the maximum vimax and
minimum vimin within cluster i. The denominator is the span between the mean of that cluster vi and the

Table 2. The values of parameters used to run the clustering algorithm over both datasets

Input parameters Results

ITP Study to reproduce
Number of
profiles

Salinity range
(g/kg) ℓ mpts

Number of
clusters1 DBCV

2 Timmermans et al. (2008) 121 34.05–34.75 25 dbar 170 36 (31) 0.3034
3 Lu et al. (2022) 766 34.21–34.82 25 dbar 580 43 (40) 0.3862

1The first number is the total number of clusters found by the algorithm. The second is the number of clusters that were neither outliers in IRSP nor RL.
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mean of either the cluster above or below, whichever is smaller. For clusters at either end of the variable
space, we take the denominator to be the span between the mean of the ith cluster and that of its single
neighbor.

The inter-cluster range IRv, therefore, quantifies the range of a given variable, v, within a cluster in
comparisonwith the range to the nearest neighboring cluster. For a staircase, the salinity values within one
layer are generally well separated from the salinity values of the neighboring layers (Lu et al., 2022).
Therefore, we expect that the clusters with large IRSP could represent a part of a single layer that was
erroneously divided into multiple clusters by the algorithm or entirely different physical features, as
discussed in Section 4.3.

In order to evaluate clusterings, we choose a method to detect outliers in both IRSP and RL. We define
outliers as points more than two standard deviations from the mean or equivalently with a z-score greater
than 2 (approximately corresponding to a p-value of 0.05 for a two-tailed test). More sophisticated outlier
detectionmethods exist, andwhile this approach is not guaranteed to find all erroneous clusters, outliers in
IRSP and RL give us an indication, based on simple and measurable physical characteristics, of particular
clusters that may not represent a single, full layer and which therefore require closer inspection. Although
such outliers could be manually adjusted to better capture single, complete layers, we disregard them
when calculating statistics and trends.

4. Results

Now, having presented the HDBSCAN clustering algorithm, our process of selecting ℓ and mpts, and
metrics to identify erroneous clustering, we apply this method to data from ITP2 and ITP3.

4.1. Properties of detected layers

As a starting point, we examine the average value of pressure,Θ, or SP for each cluster found from profiles
collected by ITP3. Inspired by L22, we plot those values over time in Figure 4. We find that the clustering
algorithm is capable of tracking individual layers across hundreds of profiles collected along the 2541 km-
long track traced by ITP3 over 382 days. A pattern emerges where the pressures of individual layers
appear to havemore variability than temperature and salinity, consistent with T08.Moreover, we find that
salinity variations within a layer are smaller than the salinity differences between two neighboring layers,
while the opposite is true for pressure and temperature (similar to L22; see their Figure 3).We find similar
results for ITP2 (see Supplementary Material).

More quantitatively, we find differences in salinity between clusters are approximately seven times
larger than variations within a cluster. That is, we compute the standard deviation of salinity within each
cluster and find that the median is 2:2 mg/kg, while the median absolute difference between the average
salinity of adjacent clusters is 15:4 mg/kg. This is in agreement with L22, who found inter-layer salinity
differences to be an order of magnitude larger than variations within a layer. Furthermore, the median
normalized inter-cluster ranges (Equation (3.3)) in Table 3 quantitatively confirms the qualitative patterns
noted by T08 and L22 as bIRp, bIRΘ > 1 and bIRSP < 1 for both ITPs, whereb: indicates themedian. Table 3 also
contains the median of the differences between neighboring cluster averages of temperature, cΔΘ, and
salinity, dΔSP, for both ITPs. For ITP3, these values of 0.048 °C and 15.4mg/kgmatch those of L22, which
are 0.05 °C and 17 mg/kg. They also agree with T08, who reported the difference in temperature and
salinity across interfaces to be δθ≈ 0:04 ° C and δS ≈ 14 mg/kg.

4.2. Outliers and splitting/merging layers

As discussed previously in Section 3.3, outliers have been identified in the inter-cluster salinity range
IRSP as well as the lateral density ratio RL. Figure 5 shows IRSP and RL for both ITPs with outliers
indicated by red circles. We find that these outliers can either be due to erroneous clustering or indicate
the presence of different physical features, such as the splitting or merging of thermohaline staircase

e13-10 Mikhail G. Schee et al.

http://doi.org/10.1017/eds.2024.13


layers, which is a well-known phenomenon (Neshyba et al., 1972; Padman and Dillon, 1988; Kimura
et al., 2015).

We can learn more about these features from the illustrative sets of particular salinity profiles from
ITP2 presented in Figure 6. Both sets of profiles span less than a week, and we narrow the displayed
pressure ranges so that the individual steps are visible. This figure shows that, overall, the algorithm
captures the layered structure very well, marking points within interfaces as noise. Nevertheless, it is
imperfect. Near layer boundaries, the algorithm sometimes includes points from an interface within a
cluster, and sometimes neglects to include points within a layer. Additionally, as seen in the first profile of
Figure 6(b) around 236 dbar, the algorithm can also miss layers entirely, especially when the layer is
particularly thin and only present in a small number of profiles. Occasional issues such as these are to be
expected with any automated detection method.

Focusing on ITP2 as an example, we find two outliers in IRSP marked by an orange 4-pointed star and a
green “× ” in Figure 5(a). We can track the same clusters in Figure 2(c), indicated by orange or green dots
with a 4-pointed star or a “ × ” at the center of the cluster. They both have an average SP ≈ 34:67 g/kg but
are separated in Θ0. A series of individual salinity profiles associated with these outliers over approxi-
mately 6 days is shown in Figure 6(a). We find that these outliers correspond to a relatively thick single

Figure 4. The average (a) pressure, (b) Θ, and (c) SP for the points within each cluster for each profile
(profile cluster average, PCA) across time. The clustering algorithm was run withmpts ¼ 580 and ℓ¼ 25
dbar on 678,575 data points in the salinity range of 34.21–34.82 g/kg from all up-going ITP3 profiles.

Table 3. The median normalized inter-cluster ranges and differences between average values of
adjacent clusters for ITP2 and ITP3 calculated after removing outliers with z-score> 2 in the

respective variable

bIRp bIRΘ bIRSP
cΔΘ (°C) dΔSP (mg/kg)

ITP2 8.394 4.087 0.707 0.048 16.5
ITP3 16.641 7.141 0.927 0.050 15.4
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layer that was erroneously split across two clusters by the algorithm. We attribute this erroneous splitting
to the zig-zag pattern in Θ0

–SP space mentioned in Section 3.2 and note that it could be eliminated with a
different selection of ℓ. Although we can attribute these outliers in IRSP to an artifact of the method, there
are other instances where such outliers indicate the presence of physical features, as we will discuss in
Section 4.3.

Next, we examine outliers in RL, defined in Equation (3.2), for ITP2, marked by red circles in
Figure 5(b). These outliers correspond to clusters that appear to have multiple layers grouped together.
For example, the outlier cluster marked by an orange half-circle in Figure 5(b) can be seen in Figure 2(c)
spanning SP = 34:054–34:159, a much wider range than any other cluster. Similarly, in Figure 2(c), the
outlier cluster marked by a purple star spans SP = 34:233–34:261 and clearly encompasses what should be
two distinct clusters. Some outliers in RL are the result of erroneously clustering multiple layers together.
On the other hand, the particular feature of the outlier cluster marked by a teal “× ,” centered around
232 dbar with RL = �12:7 in Figure 5(b), indicates splitting or merging. As highlighted in Figure 6(b), it
typically spans multiple stair steps, but in the last few profiles, it only spans a single, larger step. This
illustrates that we can use outliers in RL to identify clusters that are not single, complete layers and to find
instances of potential splitting or merging.

Figure 5. The value of each cluster’s normalized inter-cluster range for salinity IRSP in (a) and (c) and the
lateral density ratio RL in (b) and (d) as a function of the cluster’s average pressure. The colors and
markers for ITP2 in (a) and (b) are the same as the clustering shown in Figure 2 and for ITP3 in (c) and
(d), they are the same as shown in Figure 4. Markers circled in red indicate outliers with a z-score greater
than 2. (b) The solid curve is a second-degree polynomial fit (equation given by the annotation) for the
non-outlier points from ITP2 and the dashed curve is the same for ITP3. (d) The solid curve is a second-
degree polynomial fit (equation given by the annotation) for the non-outlier points from ITP3, and the
dashed curve is the same for ITP2.
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4.3. Remnant intrusions revealed by temperature

Direct comparisons with other layer detection methods can also be used to identify interesting physical
features. To demonstrate this, here we directly compare average layer characteristics computed by
HDBSCAN to those reported by L22, both using data from ITP3. L22 used 758 profiles from ITP3,
whilewe used all 766 available up-going profiles. Based on the gaps in Figure 3 of L22,we believe that the
eight missing up-going profiles are from July 2006. Figure 7 shows the averageΘ and SP for each cluster
found in our study and by L22 based on the values in their Table A1 after converting θ to Θ. We initially
find 43 clusters and, after eliminating outliers in IRSP and RL as described in Section 3.3, we find
40 clusters.While L22 identified only 34 thermohaline layers, we find close agreement between those and
the clusters we found for SP≲34:74 g/kg. Below where this salinity occurs in the water column, we find
five more clusters than L22.

The differences between these two results appear to be related to the presence of remnant intrusions,
which display features of both staircase layers and intrusions and are thought to represent an intermediate
stage in staircase formation. Such features are known to appear near the bottom of staircases around the
AWcore and have been analyzed in detail by Bebieva and Timmermans (2019). They are characterized by
homogeneous salinity, which leads the method of L22 to treat them as single layers. However, they have a
temperature structure that is inverted (warmer above colder) compared to the typical gradient within a
thermohaline staircase. The warm and cold sections are distinct enough for the clustering algorithm to
split the structure into multiple clusters, each of which is homogeneous in salinity and relatively
homogeneous in temperature. Figure 8 highlights an example of a remnant intrusion where the method
of L22 gives results that differ from ours; the layer spanning approximately 320–340 dbar is constant in
SP, but decreases inΘwith depth and is divided into two clusters using the clustering method. These two
clusters can be found in Figure 5(c), indicated by the blue “Y” centered around 337 dbar with IRSP = 23:8
and the orange “þ” centered around 348 dbar with IRSP = 79:3.

Figure 6. Individual SP profiles from ITP2, specifically chosen to show the examples of outlier clusters in
IRSP and RL highlighted by the bands of color. (a) Profiles 67, 69, 73, 75, 81, 83, 91, 93, 97, and
99 collected between August 31 and September 5, 2004. (b) Profiles 87, 89, 95, 97, 99, 101, 103, 105,
109, and 111 collected between September 3 and 7, 2004. The colors and markers are the same as the
clustering shown in Figure 2. The gray dots are noise points, and the black lines show the profiles. Each
profile is offset in SP for clarity.
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Such remnant intrusions exist between the active intrusions of the AW core and the staircase
layers of the LHW. Staircases may be formed from intrusions, but such features have distinctly
different patterns of heat and salt flux from double-diffusively driven staircases (Bebieva and
Timmermans, 2019). The disagreement between our results and those of L22 highlights the difficulty
of detecting remnant intrusions. While neither method is designed to automatically distinguish
between these and staircase layers, the method presented here offers the opportunity to identify them
when evaluating outlier clusters. Moreover, although Table 3 supports the suggestion by L22 that
salinity is the most appropriate variable by which to identify staircase layers, having shown that a
layer identified by L22 is, in fact, a remnant intrusion illustrates why it remains important to consider
temperature as well.

Figure 7. The average Θ and SP for the 34 layers found by Lu et al. (2022) in black dots and for the 43
layers found in our study using data from ITP3 and the same colors and markers as in Figure 4. Clusters
circled in red are outliers in either IRSP or RL.

Figure 8. Individual profiles 313, 315, 317, 319, and 321 from ITP3, collected between November 10 and
12, 2005, specifically chosen to show the example of a temperature inversion highlighted by the bands of
color. The colors and markers of the individual points are the same as the clustering shown in Figures 4
and 7. The gray dots are noise points. The black lines on the left of each pair are the SP profiles, while the
red lines on the right are for Θ. Each profile is offset in both SP and Θ for clarity.
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4.4. Dependence of RL on pressure

Lastly, we revisit Figure 5(b,d), where the distribution of points suggests a dependence of RL on pressure.
This is in contrast to previous studies which have found a constant RL for the depth range we analyze
(Timmermans et al., 2008; Toole et al., 2011; Bebieva and Timmermans, 2019). For ITP2 in panel (b),
after removing the five outliers indicated across panels (a) and (b), we use a second-degree polynomial fit
to find RL = �3:81× 10�4p2þ0:24p�39:85, where p is pressure, with a coefficient of determination
R2 = 0:67. For ITP3 in panel (d), we remove the three outliers in panels (c) and (d), and then find quite a
similar dependence of RL = �3:38× 10�4p2þ0:24p�43:29 with a coefficient of determination
R2 = 0:84. Comparing these two curves in Figure 5(b,d), we find most of the difference can be explained
by a downward shift of roughly 20 dbar in the upper water column to 50 dbar in the lower water column
from ITP2 to ITP3. Note that a second-degree polynomial was chosen here as a simple parametric model
to capture the apparent non-linear dependence of that RL on pressure.

By contrast, T08 concluded there was no vertical dependence of RL. They analyzed data from ITP1
through ITP6, which sampled the Canada Basin during the period from 2004 to 2007, and found a
constant value of RL = �3:7 ± 0:9. Their Figure 6(a) shows five values of RL for ITP2 that range from
�3.5 to �3.0. While Bebieva and Timmermans (2019) found that RL changes below the depth of the
temperature maximum, those authors also found in their Figure 3(b) that RL is constant in the depth range
we consider in this study. Additionally, the presence of remnant intrusions does not explain the difference
in our results, as the pressure dependence ofRL is evident in the upper part of the water columnwhere they
are absent. Although we find that RL depends on pressure, our results agree with those of T08 on the
magnitude ofRL, as we find themean value for all non-outlier clusters of ITP2 to be�3:55with a standard
deviation of 2:24, and so we compare more of our results to those of T08.

We reproduce several of the figures from T08 in Figure 2. The combinations of color and markers for
the clusters are the same in Figures 2, 5, and 6. In Figure 2(a), we plot data from ITP2 in Θ–SP space,
reproducing Figure 5(a) from T08. Those authors noted that points from each particular layer clustered
along lines in Θ–SP space that cross isopycnals, and when we mark the clusters found by the algorithm,
those layers become visually distinct. Figure 2(b) shows profile 185 in the same depth range as Figure 4
from T08, plus the up-going profiles taken by ITP2 immediately before and after. This illustrates that the
clustering algorithm is indeed marking points within those particular layers as in the same cluster and
points within interfaces as noise. It also shows that the clustering algorithm tracks the same layers across
neighboring profiles even though the pressure at which those layers are found varies. Figure 2(c) shows
the ITP2 data on the axes used by the clustering algorithm. In Figure 2(d), we plot the clusters bounded by
the box in Figure 2(a) in αΘ–βSP space, reproducing Figure 6(a) from T08. The dashed lines of slope
1 correspond to isopycnals as Δρ= �αΔΘþβSP. Overall, the panels in Figure 2 are close visual matches
for those particular figures in T08.

After examining the differences between the two in detail (see Supplementary Material), it remains
unclear why the values ofRL we found for clusters in ITP2 data differ from T08. However, we believe that
the quantitative agreement in magnitude for the values of RL and the qualitative match between the
clustering results and the features in Figure 2 show that the clustering method reproduces those results
from T08. Overall, these findings suggest that the clustering algorithm is indeed revealing a dependence
ofRL on pressure in the datawe analyzed from ITP2 and ITP3. SinceRL is directly related to the ratio of the
vertical derivatives of the vertical fluxes of salinity and heat within a staircase (Bebieva and Timmermans,
2019), this could indicate a pressure dependence of that ratio.

5. Discussion

In this paper, we have presented amethod based on theHDBSCANclustering algorithm to both detect and
connect well-mixed layers in thermohaline staircases across Arctic Ocean hydrographic data. HDBSCAN
has previously been successfully applied to sets with millions of data points (Logan and Fotopoulou,
2020). As the comparison with results from previous studies was favorable, this suggests that this method
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may produce trustworthy results when applied to datasets with larger numbers of points. This study
contributes to a growing set of examples of clustering algorithms being used in oceanography (e.g.,
Koszalka and LaCasce, 2010; Espejo et al., 2014; Maze et al., 2017; Jones et al., 2019; Ma et al., 2019;
Houghton and Wilson, 2020; Rosso et al., 2020, Desbruyères et al., 2021, Sonnewald et al., 2021). The
continued and extended use of clustering algorithms in oceanography and related fields is an important
development since discovering and detecting features in all manner of datasets becomesmore challenging
as they grow ever larger.

Special attention was given herein to the identification of outliers using parameters output by the
method itself. We found that clusters which are outliers in the lateral density ratio RL often indicate
multiple layers that are erroneously clustered together, but can also highlight potential instances of layer
splitting or merging. By introducing the normalized inter-cluster range IRv, we quantitatively showed that
the pressure and temperature values vary more within a layer than the difference between the values of
neighboring layers, while the opposite is true for salinity. Because we know that the practical salinity SP
values in a particular layer are well separated from those of neighboring layers, we identified clusters with
notably large values of IRSP as likely to be either only part of a layer that was erroneously split by the
algorithm or a remnant intrusion. This study also suggests that there may be a pressure dependence of the
lateral density ratio RL, seen in both ITP2 and ITP3. The reasons for this dependence are unclear and are
worthy of further study. Following the model presented by Bebieva and Timmermans (2019), the ratio of
vertical fluxes of heat and salt could be recalculated using this more complex vertical dependence of RL.
This could then be compared to simulations (Yang et al., 2022) and parameterizations (Radko et al., 2014;
Shibley and Timmermans, 2019) of the flux ratio in other models. However, in order to verify these with
observations, vertical resolution fine enough to resolve the interfaces between layers, that is, finer than
provided by ITPs, would be needed.

The method we presented here has certain advantages in particular circumstances. For example, all of
the other methods referred to herein (Timmermans et al., 2008; Shibley et al., 2017; van der Boog et al.,
2021b; Lu et al., 2022) require setting one or multiple thresholds on gradients in temperature, salinity, or
density which are used to identify sections of profiles where layers may be present. However, choosing
reasonable values for these thresholds requires precise prior knowledge of the staircase properties, which
may not be available before identifying staircases in that particular region and time period. The method
presented here requires the selection of a salinity range in which to search and an estimate of the typical
layer thickness, which can be determined from a brief look at a dataset or from previous studies. To
evaluate the clusters, a selection of an outlier detection method is required. In addition, while the other
techniques require resolution high enough to resolve small-scale vertical gradients, the method presented
here—which does not distinguish between individual profiles—only requires that a sufficient number of
data points be available in order to detect clusters. Therefore, this technique could potentially find
staircases in datasets that have too low a resolution to resolve the steps in any particular profile. While, in
this study, we use all data points available after filtering, we found that subsampling profiles to every
second, third, or fourth point yielded similar results (not shown). Finally, the method automatically
connects layers across profiles. While L22 used an automated connection method, it still required
subsequent adjustments to the layers to be made manually. Consequently, the method presented here
could be readily applied to datasets with larger numbers of points and used to examine the large-scale,
lateral properties of coherent layers in thermohaline staircases.

The clustering algorithm has several limitations. It cannot be used to examine sets of profiles spanning
temporal or spatial scales larger than those on which stairs are known to be coherent. This method
considers all profiles simultaneously, and it is not applicable to identifying stair steps in datasets of
independent individual profiles. While this method could be applied on a profile-by-profile basis, each
profile would require a separate selection of mpts, which itself becomes highly sensitive with a small
number of points to cluster. Moreover, as the clustering algorithm does not consider profiles individually,
it may miss layers that are only present in a small number of profiles, as may occur especially for layers
that split or merge. Finally, although the clustering method captures the overall structure of the staircase

e13-16 Mikhail G. Schee et al.



layers well, it sometimes miscategorizes points, especially near the boundaries between layers and
interfaces.

The method presented here could be used in conjunction with other staircase detection methods. For
example, if a different detection method were used to identify which data points in a collection of profiles
are in layers, the clustering algorithm could be run on just the layer points to automatically connect the
layers across profiles. Additionally, the clustering algorithm could be used on a large collection of datasets
to identify which subsets contain staircases; then, a more specifically tuned staircase detection method
could be used on just that subset, reducing the amount of time-consuming analysis.

Because the method can be scaled to datasets with a larger number of points, a natural extension would
be to apply it to a dataset with profiles from many ITPs. Furthermore, although we have focused on
identifying upper-ocean Arctic thermohaline staircases, it could also be useful in other oceanic regimes.
Staircases with steps on the order of 50m thick have been observed in the Arctic between depths of 2000–
3000 m (Timmermans et al., 2003), much deeper than ITPs measure, while the Argo network of
autonomous profiling floats has captured staircases in regions all over the world (van der Boog et al.,
2021a). Since this method does not assume a consistent vertical resolution across the profiles, it could be
run on a mix of data from different types of instruments, assuming they operated within the same region
and time period. This method could also be adjusted to identify other structures that appear inΘ–S space,
such as different types of layers or water masses, or even structures that can appear in different spaces,
such as Θ–O2 (Rosso et al., 2020). On the technical side, another topic of future study would be to adapt
this method to automatically distinguish between well-mixed layers and intrusions. However, when using
this clustering algorithm to specifically search for staircase layers, we recommend avoiding the bottom of
the thermocline around the AW core, where remnant intrusions are known to appear (Bebieva and
Timmermans, 2019). Finally, there may be methods other than the DBCV validation process used herein
that may be better able to guide the choice of parameters, potentially improving the detection fidelity.

Acknowledgements. We acknowledge fruitful discussions with Maike Sonnewald and Carine van der Boog. M.G.S. acknow-
ledges fruitful discussions that occurred during the Kavli Institute of Theoretical Physics program on Layering in Atmospheres,
Oceans and Plasmas (supported by the National Science Foundation under grant no. NSF PHY-1748958). E.R. is grateful to the
researchers, staff, and students of the Centre for Earth Observation Science for the support received during the preparation of this
manuscript. J. M. L. thanks the Department of Physics at the University of Toronto, where he was a visiting scientist during the time
this work was carried out.

Author contribution. Conceptualization: M.G.S., N.G., E.R., J.M.L.; data curation: M.G.S.; formal analysis: M.G.S.; funding
acquisition: N.G.; investigation: M.G.S.; methodology: M.G.S.; software: M.G.S.; supervision: N.G., E.R., J.M.L.; validation:
M.G.S., N.G., E.R., J.M.L.; visualization: M.G.S.; writing – original draft: M.G.S.; writing – review& editing: M.G.S., N.G., E.R.,
J.M.L.; All authors approved the final submitted draft.

Competing interest. The authors declare none.

Data availability statement. Replication code can be found on Zenodo: https://zenodo.org/doi/10.5281/zenodo.8029947. The
Ice-Tethered Profiler data were collected and made available by the Ice-Tethered Profiler Program (Toole et al., 2011; Krishfield
et al., 2008) based at the Woods Hole Oceanographic Institution (https://www2.whoi.edu/site/itp/).

Ethics statement. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

Funding statement. M.G.S. and N.G. were supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) (funding reference numbers RGPIN-2015-03684 and RGPIN-2022-04560). J.M.L. was supported by grant number
2049521 from the Physical Oceanography program of the United States National Science Foundation. ER was supported by the
NSERC Postdoctoral Fellowship award, the NSERC Canada-150 Chair (Award G00321321), and the NSERC Discovery Grant
(funding reference number RGPIN-2024-05545).

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/eds.2024.13.

References
André Q,Barker AJ andMathis S (2017) Layered semi-convection and tides in giant planet interiors. Astronomy & Astrophysics

605, A117. https://doi.org/10.1051/0004-6361/201730765.

Environmental Data Science e13-17

https://doi.org/10.5281/zenodo.8029947
https://www2.whoi.edu/site/itp/
http://doi.org/10.1017/eds.2024.13
https://doi.org/10.1051/0004-6361/201730765


Bebieva Y and Timmermans ML (2019) Double-diffusive layering in the Canada Basin: An explanation of a long-layer
temperature and salinity gradients. Journal of Geophysical Research: Oceans 124(1), 723–735. https://doi.org/10.1029/
2018JC014368.

CampelloRJGB,Moulavi D and Sander J (2013) Density-based clustering based on hierarchical density estimates. Lecture Notes
in Computer Science 7819, 160–172. https://doi.org/10.1007/978-3-642-37456-2_14.

CarmackEC (2007) The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in
high-latitude seas. Deep-Sea Research Part II: Topical Studies in Oceanography 54(23–26), 2578–2598. https://doi.org/
10.1016/j.dsr2.2007.08.018.

Chen LG (1995) Mixed layer density ratio from the Levitus data. Journal of Physical Oceanography 25(4), 691–701. https://doi.
org/10.1175/1520-0485(1995)025<0691:MLDRFT>2.0.CO;2.

Comiso JC, Parkinson CL,Gersten R and Stock L (2008) Accelerated decline in the Arctic Sea ice cover.Geophysical Research
Letters 35(1), 1–6. https://doi.org/10.1029/2007GL031972.

Desbruyères D,Chafik L andMazeG (2021) A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since
2016. Communications Earth & Environment 2(1). https://doi.org/10.1038/s43247-021-00120-y.

Espejo A,Camus P, Losada IJ andMéndez FJ (2014) Spectral Ocean wave climate variability based on atmospheric circulation
patterns. Journal of Physical Oceanography 44(8), 2139–2152. https://doi.org/10.1175/JPO-D-13-0276.1.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.
Amsterdam, Netherlands: Elsevier, pp. 226–231.

Hinneburg A and Keim DA (2003) A general approach to clustering in large databases with noise. Knowledge and Information
Systems 5(4), 387–415. https://doi.org/10.1007/s10115-003-0086-9.

Houghton IA and Wilson JD (2020) El Niño detection via unsupervised clustering of Argo temperature profiles. Journal of
Geophysical Research: Oceans 125(9), 1–12. https://doi.org/10.1029/2019JC015947.

Jones DC, Holt HJ, Meijers AJ and Shuckburgh E (2019) Unsupervised clustering of Southern Ocean Argo float temperature
profiles. Journal of Geophysical Research: Oceans 124(1), 390–402. https://doi.org/10.1029/2018JC014629.

Kimura S, Nicholls KW and Venables E (2015) Estimation of ice shelf melt rate in the presence of a thermohaline staircase.
Journal of Physical Oceanography 45(1), 133–148. https://doi.org/10.1175/JPO-D-14-0106.1.

Koszalka IM and LaCasce JH (2010) Lagrangian analysis by clustering. Ocean Dynamics 60(4), 957–972. https://doi.org/
10.1007/s10236-010-0306-2.

Krishfield R, Toole J and Timmermans M (2008) ITP Data Processing Procedures. Woods Hole Oceanographic Institution, pp.
1–24.

Logan CHA and Fotopoulou S (2020) Unsupervised star, galaxy, QSO classification. Astronomy & Astrophysics 633, A154.
https://doi.org/10.1051/0004-6361/201936648.

LuY-Z,Guo S-X,Zhou S-Q, Song X-L andHuang P-Q (2022) Identification of thermohaline sheet and its spatial structure in the
Canada Basin. Journal of Physical Oceanography 52(11), 2773–2787. https://doi.org/10.1175/JPO-D-22-0012.1.

MaC,Li S,YangY,Yang J andChenG (2019) Extraction of revolving channels of drifters aroundmesoscale Eddy Centers based
on spatiotemporal trajectory clustering. Journal of Atmospheric and Oceanic Technology 36(9), 1903–1916. https://doi.org/
10.1175/JTECH-D-19-0007.1.

Maykut GA and Untersteiner N (1971) Some results from a time-dependent thermodynamic model of sea ice. Journal of
Geophysical Research 76(6), 1550–1575. https://doi.org/10.1029/jc076i006p01550.

Maze G, et al. (2017) Coherent heat patterns revealed by unsupervised classification of Argo temperature profiles in the North
Atlantic Ocean. Progress in Oceanography 151, 275–292. https://doi.org/10.1016/j.pocean.2016.12.008.

McDougall TJ and Barker PM (2011). Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox.
3.06.12 edition. Available at www.TEOS-10.org (accessed 9 March 2023).

McInnes L,Healy J and Astels S (2017) hdbscan: Hierarchical density based clustering. Journal of Open Source Software, 2(11),
205, https://doi.org/10.21105/joss.00205.

Ménesguen C,Lique C andCaspar-Cohen Z (2022) Density staircases are disappearing in the Canada Basin of the Arctic Ocean.
Journal of Geophysical Research: Oceans 127(11). https://doi.org/10.1029/2022JC018877.

Moulavi D, Jaskowiak PA,Campello RJGB,Zimek A and Sander J (2014) Density-based clustering validation. In Proceedings
of the 2014 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics,
vol. 2, pp. 839–847. https://epubs.siam.org/doi/10.1137/1.9781611973440.96.

Neal VT and Neshyba S (1973) Microstructure anomalies in the Arctic Ocean. Journal of Geophysical Research 78(15), 2695–
2701. https://doi.org/10.1029/JC078i015p02695.

Neal VT, Neshyba S and Denner W (1969) Thermal stratification in the Arctic Ocean. Science 166(3903), 373–374. https://doi.
org/10.1126/science.166.3903.373.

Neshyba S, Neal VT and Denner W (1971) Temperature and conductivity measurements under Ice Island T-3. Journal of
Geophysical Research 76(33), 8107–8120. https://doi.org/10.1029/JC076i033p08107.

Neshyba S, Neal VT and Denner WW (1972) Spectra of internal waves: In-situ measurements in a multiple-layered structure.
Journal of Physical Oceanography 2(1), 91–95. https://doi.org/10.1175/1520-0485(1972)002<0091:SOIWSM>2.0.CO;2.

Newman FC (1976) Temperature steps in Lake Kivu: A bottom heated saline Lake. Journal of Physical Oceanography 6(2), 157–
163. https://doi.org/10.1175/1520-0485(1976)006<0157:TSILKA>2.0.CO2.

e13-18 Mikhail G. Schee et al.

https://doi.org/10.1029/2018JC014368
https://doi.org/10.1029/2018JC014368
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1016/j.dsr2.2007.08.018
https://doi.org/10.1016/j.dsr2.2007.08.018
https://doi.org/10.1175/1520-0485(1995)025&e_x003C;0691:MLDRFT&e_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025&e_x003C;0691:MLDRFT&e_x003E;2.0.CO;2
https://doi.org/10.1029/2007GL031972
https://doi.org/10.1038/s43247-021-00120-y
https://doi.org/10.1175/JPO-D-13-0276.1
https://doi.org/10.1007/s10115-003-0086-9
https://doi.org/10.1029/2019JC015947
https://doi.org/10.1029/2018JC014629
https://doi.org/10.1175/JPO-D-14-0106.1
https://doi.org/10.1007/s10236-010-0306-2
https://doi.org/10.1007/s10236-010-0306-2
https://doi.org/10.1051/0004-6361/201936648
https://doi.org/10.1175/JPO-D-22-0012.1
https://doi.org/10.1175/JTECH-D-19-0007.1
https://doi.org/10.1175/JTECH-D-19-0007.1
https://doi.org/10.1029/jc076i006p01550
https://doi.org/10.1016/j.pocean.2016.12.008
http://www.TEOS-10.org
https://doi.org/10.21105/joss.00205
https://doi.org/10.1029/2022JC018877
https://doi.org/10.1137/1.9781611973440.96
https://doi.org/10.1029/JC078i015p02695
https://doi.org/10.1126/science.166.3903.373
https://doi.org/10.1126/science.166.3903.373
https://doi.org/10.1029/JC076i033p08107
https://doi.org/10.1175/1520-0485(1972)002&e_x003C;0091:SOIWSM&e_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006&e_x003C;0157:TSILKA&e_x003E;2.0.CO2


Padman L and Dillon TM (1987) Vertical heat fluxes through the Beaufort Sea thermohaline staircase. Journal of Geophysical
Research 92(C10), 10799. https://doi.org/10.1029/JC092iC10p10799.

Padman L and Dillon TM (1988) On the horizontal extent of the Canada Basin thermohaline steps. Journal of Physical
Oceanography 18(10), 1458–1462. https://doi.org/10.1175/1520-0485(1988)018<1458:OTHEOT>2.0.CO;2.

Padman L and Dillon TM (1989) Thermal microstructure and internal waves in the Canada Basin diffusive staircase. Deep Sea
Research Part A, Oceanographic Research Papers 36(4), 531–542. https://doi.org/10.1016/0198-0149(89)90004-6.

Peralta-Ferriz C andWoodgate RA (2015) Seasonal and interannual variability of pan-Arctic surface mixed layer properties from
1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Progress in
Oceanography 134, 19–53. https://doi.org/10.1016/j.pocean.2014.12.005.

Pontin CM, Barker AJ, Hollerbach R, André Q and Mathis S (2021) Wave propagation in semiconvective regions of giant
planets. Monthly Notices of the Royal Astronomical Society 493(4), 5788–5806. https://doi.org/10.1093/mnras/staa664.

Radko T (2013) Double-Diffusive Convection. Cambridge University Press. https://doi.org/10.1017/CBO9781139034173.
RadkoT,BultersA,Flanagan JD andCampin JM (2014) Double-diffusive recipes. Part I: Large-scale dynamics of thermohaline

staircases. Journal of Physical Oceanography 44(5), 1269–1284. https://doi.org/10.1175/JPO-D-13-0155.1.
Rosso I,MazloffMR,TalleyLD,Purkey SG,FreemanNMandMazeG (2020)Watermass and biogeochemical variability in the

Kerguelen sector of the Southern Ocean: A machine learning approach for a mixing hot spot. Journal of Geophysical Research:
Oceans 125(3), 1–23. https://doi.org/10.1029/2019JC015877.

Schmitt R, Perkins H, Boyd J and Stalcup M (1987) C-SALT: An investigation of the thermohaline staircase in the western
tropical North Atlantic. Deep Sea Research Part A. Oceanographic Research Papers 34(10), 1655–1665. https://doi.org/
10.1016/0198-0149(87)90014-8.

Shaw WJ and Stanton TP (2014) Vertical diffusivity of the Western Arctic Ocean halocline. Journal of Geophysical Research:
Oceans 119(8), 5017–5038. https://doi.org/10.1002/2013JC009598.

ShibleyNCandTimmermansM-L (2019) The formation of double-diffusive layers in aweakly turbulent environment. Journal of
Geophysical Research: Oceans. https://doi.org/10.1029/2018JC014625.

Shibley NC, Timmermans M-L, Carpenter JR and Toole JM (2017) Spatial variability of the Arctic Ocean’s double-diffusive
staircase. Journal of Geophysical Research: Oceans 122(2), 980–994. https://doi.org/10.1002/2016JC012419.

Shibley NC, Timmermans ML and Stranne C (2020) Analysis of acoustic observations of double-diffusive Finestructure in the
Arctic Ocean. Geophysical Research Letters 47(18), 1–11. https://doi.org/10.1029/2020GL089845.

SonnewaldM,Lguensat R, Jones DC,Dueben PD,Brajard J and Balaji V (2021) Bridging observations, theory and numerical
simulation of the ocean using machine learning. Environmental Research Letters 16(7), 073008. https://doi.org/10.1088/1748-
9326/ac0eb0.

Stewart KD and Haine TW (2016) Thermobaricity in the transition zones between alpha and beta oceans. Journal of Physical
Oceanography 46(6), 1805–1821. https://doi.org/10.1175/JPO-D-16-0017.1.

Stranne C, Mayer L, Weber TC, Ruddick BR, Jakobsson M, Jerram K, Weidner E, Nilsson J and Gårdfeldt K (2017)
Acoustic mapping of thermohaline staircases in the Arctic Ocean. Scientific Reports 7(1), 1–9. https://doi.org/10.1038/s41598-
017-15486-3.

Timmermans M-l,Garrett C and Carmack E (2003) The thermohaline structure and evolution of the deep waters in the Canada
Basin, Arctic Ocean. Deep Sea Research Part I: Oceanographic Research Papers 50, 1305–1321. https://doi.org/10.1016/
S0967-0637(03)00125-0.

TimmermansM-L,Toole J,KrishfieldR andWinsor P (2008) Ice-tethered profiler observations of the double-diffusive staircase
in the Canada Basin thermocline. Journal of Geophysical Research 113, 1–10. https://doi.org/10.1029/2008jc004829.

Toole JM, Krishfield RA, Timmermans ML and Proshutinsky A (2011) The ice-tethered profiler: Argo of the Arctic.
Oceanography 24(3), 126–135. https://doi.org/10.5670/oceanog.2011.64.

Turner JS (2010) Themelting of ice in the Arctic Ocean: The influence of double-diffusive transport of heat from below. Journal of
Physical Oceanography 40(1), 249–256. https://doi.org/10.1175/2009JPO4279.1.

van der Boog CG, Dijkstra HA, Pietrzak JD and Katsman CA (2021a) Double-diffusive mixing makes a small contribution to
the global ocean circulation. Communications Earth & Environment 2(1), 46. https://doi.org/10.1038/s43247-021-00113-x.

van der Boog CG, Otto Koetsier J, Dijkstra HA, Pietrzak JD and Katsman CA (2021b) Global dataset of thermohaline
staircases obtained fromArgo floats and ice-tethered profilers. Earth System Science Data 13(1), 43–61. https://doi.org/10.5194/
essd-13-43-2021.

Winton M (2011) Do climate models underestimate the sensitivity of northern Hemisphere Sea ice cover? Journal of Climate 24
(15), 3924–3934. https://doi.org/10.1175/2011JCLI4146.1.

YangY,Verzicco R,Lohse D andCaulfield C (2022) Layering and vertical transport in sheared double-diffusive convection in the
diffusive regime. Journal of Fluid Mechanics 933, A30. https://doi.org/10.1017/jfm.2021.1091.

Yu LS, Bosse A, Fer I, Orvik KA, Bruvik EM, Hessevik I and Kvalsund K (2017) The Lofoten Basin eddy: Three years of
evolution as observed by Seagliders. Journal of Geophysical Research: Oceans 122(8), 6814–6834. https://doi.org/10.1002/
2017JC012982.

Cite this article: Schee MG, Rosenblum E, Lilly JM and Grisouard N (2024). Unsupervised clustering identifies thermohaline
staircases in the Canada Basin of the Arctic Ocean. Environmental Data Science, 3: e13. doi:10.1017/eds.2024.13

Environmental Data Science e13-19

https://doi.org/10.1029/JC092iC10p10799
https://doi.org/10.1175/1520-0485(1988)018&e_x003C;1458:OTHEOT&e_x003E;2.0.CO;2
https://doi.org/10.1016/0198-0149(89)90004-6
https://doi.org/10.1016/j.pocean.2014.12.005
https://doi.org/10.1093/mnras/staa664
https://doi.org/10.1017/CBO9781139034173
https://doi.org/10.1175/JPO-D-13-0155.1
https://doi.org/10.1029/2019JC015877
https://doi.org/10.1016/0198-0149(87)90014-8
https://doi.org/10.1016/0198-0149(87)90014-8
https://doi.org/10.1002/2013JC009598
https://doi.org/10.1029/2018JC014625
https://doi.org/10.1002/2016JC012419
https://doi.org/10.1029/2020GL089845
https://doi.org/10.1088/1748-9326/ac0eb0
https://doi.org/10.1088/1748-9326/ac0eb0
https://doi.org/10.1175/JPO-D-16-0017.1
https://doi.org/10.1038/s41598-017-15486-3
https://doi.org/10.1038/s41598-017-15486-3
https://doi.org/10.1016/S0967-0637(03)00125-0
https://doi.org/10.1016/S0967-0637(03)00125-0
https://doi.org/10.1029/2008jc004829
https://doi.org/10.5670/oceanog.2011.64
https://doi.org/10.1175/2009JPO4279.1
https://doi.org/10.1038/s43247-021-00113-x
https://doi.org/10.5194/essd-13-43-2021
https://doi.org/10.5194/essd-13-43-2021
https://doi.org/10.1175/2011JCLI4146.1
https://doi.org/10.1017/jfm.2021.1091
https://doi.org/10.1002/2017JC012982
https://doi.org/10.1002/2017JC012982
https://doi.org/10.1017/eds.2024.13

	Unsupervised clustering identifies thermohaline staircases in the Canada Basin of the Arctic Ocean
	Impact Statement
	Introduction
	Data
	Methods
	The HDBSCAN clustering algorithm
	Selecting values of input parameters
	Evaluating the clustering algorithm results

	Results
	Properties of detected layers
	Outliers and splitting/merging layers
	Remnant intrusions revealed by temperature
	Dependence of RL on pressure

	Discussion
	Acknowledgements
	Author contribution
	Competing interest
	Data availability statement
	Ethics statement
	Funding statement
	Supplementary material


