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A FIXED POINT THEOREM FOR SEMIGROUPS 
OF PROXIMATELY UNIFORMLY LIPSCHITZIAN MAPPINGS 

HONG-KUN XU 

ABSTRACT. AS a generalization of Kiang and Tan's proximately nonexpansive semi­
groups, the notion of a proximately uniformly Lipschitzian semigroup is introduced and 
an existence theorem of common fixed points for such a semigroup is proved in a Ba-
nach space whose characteristic of convexity is less than one. 

1. Introduction. Let C be a nonempty closed convex subset of a Banach space X 
and let k be a positive number. A mapping T: C —• C is said to be uniformly k-Lipschitzian 
if for each integer n > 1 

(1) \\Tnx-Tny\\ <k\\x-y\\ forjc,yinC. 

If (1) is valid when k — 1, Tis called nonexpansive. Results on these classes of mappings 
can be found, for example, in Goebel and Reich [4] and Lifschitz [7]. A commutative 
semigroup J of self-mappings on C is said to be a nonexpansive semigroup on C if each 
member of F̂ is nonexpansive. An element x in C is said to be a common fixed point of 
¥ iff(x) = x for every/ in f. Generalizations of nonexpansive semigroups have been 
studied by several authors, see, e.g., Edelstein and Kiang [2,3], Kiang [5], and Kiang and 
Tan [6]. Here we particularly mention that a commutative semigroup J of self-mappings 
on C is said to be proximately nonexpansive [6] if for every x in C and e > 0 there exists 
/ in 7 such that 

\\fg(x)-f8<y)\\ < a + e)ll*-:vll 

for all ginf and y in C. Kiang and Tan [6] proved that such a semigroup 5 has a common 
fixed point if C is assumed to be a closed bounded convex subset of a uniformly convex 
Banach space. We now introduce a more general notion for semigroups of mappings than 
the one of Kiang and Tan's in [6] as follows. 

DEFINITION. Let k be a positive number. A commutative semigroup jF of 
self-mappings on a closed convex subset C of a Banach space X is said to be proxi­
mately uniformly k-Lipschitzian if for every x in C and e > 0 there exists/ in F̂ such 
that 

\\fg(x)-f8(y)\\<W + e)\\x-y\\ 
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for all gin F and y in C. 
It is immediately clear that a proximately nonexpansive semigroup is a proximately 

uniformly 1-Lipschitzian semigroup. 
In this short note, we shall show that if the characteristic of convexity of X is less 

than one, then there is a constant K(X) > 1 such that every proximately uniformly k-
Lipschitzian semigroup on a closed bounded convex subset C of X has a fixed point 
provided k < K(X). This extends to some extent Theorem 1 of Kiang and Tan [6]. 

2. The Result. Let X be a Banach space. We recall that the characteristic of con­
vexity of X is defined by 

£0(X) = sup{£ G [0,2] :«*(£) = ()}, 

where 6x(z) '•— infjl — ^||jc + y|| : \\x\\ = 1 = \\y\\ and ||JC — jy|| = e j is the modulus 
of convexity of X. It is easy to see that X is uniformly convex if and only if £o(X) = 0. 
We also recall that a positive number c is said to have the Property (P) (cf. [4, p. 35]) if 
for every 0 < k < c there are positive numbers \i and a < 1 such that 

(2) B(x,(l +/i)r)n#(.y,£(l+M)r) CB(z,ar) 

for some z £ [x,y], the segment linking x and y, whenever x, y in X and r > 0 satisfy 
II* ~~ y\\ > (1 ~ M)r> where #(v, r) denotes the closed ball with center v and radius r. 
Then we define the number 

K(X) := sup{ c > 0 : c has Property (P)}. 

It is now known (cf. [4and 1]) that for a Hilbert space//,«(//) = 21/2andthat£0W < 1 
if and only if K(X) > 1. It is also known [8] that £o(X) < 1 implies that X is super-
reflexive. 

Let us now state and prove the main result of this paper. 

THEOREM. Let X be a Banach space such that £o(X) < 1, C a closed convex subset 
ofX, and ^ a proximately uniformly k-Lipschitzian semigroup on C with k < K(X). 
Suppose there is some xo in C such that the orbit {f(xo) : / G !F} of JF at xo is bounded. 
Then there exists an element z in C such thatf(z) — zfor every f in J1', i.e., z is a common 
fixed point of J. 

PROOF. Since k < K(X), there exist positive numbers p and a < 1 satisfying 
Property (P), i.e., (2) holds. For each x in C, we set 

r(x) := inf { r > 0 : there exist yo m C and go in 7 

such that ||* -f(y0)\\ < r for a l l / in fg0}, 

where F̂go = {/go • / G ^T}. It is easy to see that r(x) is well-defined for all x in C since 
{f(xo) : / G T} is bounded (this fact implies the boundedness of {f(x) : f G ?} for 
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every x G C). Now for this xo and the positive number (1+/X)1/2— 1, using the definition 
of a proximately uniformly £-Lipschitzian semigroup, we find agi in J such that 

(3) ILfeito) -/siOOH < *(i + M ) 1 / 2 N - v|| 

for a l l / in jF and y in C. If r(xo) = 0, then xç> is a fixed point of y and we are done. In 
fact, in this case, for any e > 0, by definition of r(xo), there are gE in J and ye in C such 
that ||*o -/0>e) | | < £ for al l / G ^Fg£. It thus follows that for each/ G iF, 

ILfei(*o)-*o|| < \\fgi(xo)-fgi(fg£)y£U\\fg]fg£(y£)-x0\\ 

<k(l+fi)l'2\\x0-fg£(y£)\\^e 

< (l+k(l+fi)l/2)e. 

Since e > 0 is arbitrary, we obtain/gi(xo) = JCO for each/ in ^F. Therefore,/(xo) = 
ffgi(*o) — *o and x0 is a common fixed point of ^F. Assume now r(jt0) > 0. In this case, 
we claim that there exists g2 in f such that 

(4) ||*ô - g\g2(xo)\\ > (1 - V)r(x0). 

Indeed, if there were no such g2 in ^F, one would have ||JCO —gi£(*o)|| < (1—/iM*o)for 
all g in J and hence r(jco) < (1 — /i)r(xo)> yielding a contradiction to the fact r(xo) > 0. 
Consequently, there must be a g2 in 7 satisfying (4). On the other hand, by definition of 
r(jc0), one can find a y0 £ C and a g3 G ̂ F satisfying the following 

(5) ll*ô-/(yo)H <(i+M)1/2K*o) 

for al l / G ^Fg3- From (3) and (5), it follows that for each/ G ^F, 

(6) ||gig2C*o) -g\g2g3f(yo)\\ < ^(l + MM*O). 

Combining (2), (4) and (6), we get by Property (P) that 

D := g\g2g3(yo) C 5(x0,(l +/iM*ô)) H B(gig2(x0),k(l+fi)r(xo)) 

ÇB(x\,ar(xoJ) 

for some *i in [xo,g\g2(xo)] C C, where ^/(x) = {g/X*) : g G ^F} for/ G iF and 
x G C. This shows that 

r(jci) < «r(io) and || JCI — *o|| < Ar(jco), 

where A— 1 + a + // is a constant independent of x in C Continuing the above process 
in an obvious manner, we construct a sequence {xn}n>\ in C such that 

(7) r(xn+ï) < ar(xn)md\\ Xfi+l Xn <Ar(>„) 

for n > 0. Since a < 1, (7) indicates that lim^oo r{xn) = 0 and {xn} is norm-Cauchy 
and hence convergent. Let z = linv+oo xn. Then, since r is continuous, it is readily seen 
that r(z) = 0 and thus z is a common fixed point of jF. The proof is complete. 

REMARK. We do not require any continuity assumption on the semigroup 7 in the 
above theorem. 
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COROLLARY 1 (KIANG AND TAN [6]). Let Cbea closed convex subset of a uniformly 
convex Banach space X and let f be a proximately nonexpansive semigroup on C such 
that {f(xo) :f G ^F} is bounded for some xo in C. Then J has a common fixed point. 

Since «:(//) = 22 for a Hilbert space H, we have the following. 

COROLLARY 2. Let C be a closed convex subset of a Hilbert space H and let ^ be 
a proximately uniformly k-Lipschitzian semigroup on C with k < 21/2. Suppose there 
exists an xo in C such that the orbit {f(xo) : / € f} is bounded. Then $• has a common 
fixed point. 

When the semigroup J is singly generated, we have 

COROLLARY 3. Let T, C be as in the theorem and let T.C —> C be a mapping satis­
fying the property: for each x in C and e > 0, there is N = N(x, e) such that 

\\Tnx-ry\\ <*<l+e) | |* - ;y | | 

for all y in C and n> N, where k < K(X) is a constant. Suppose also that there is an xo 
in Cfor which { T^xo} is bounded. Then T has a fixed point. 
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