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Compact unitary periods

Erez Lapid and Omer Offen

Abstract

Let E be a CM-field and π a cuspidal representation of GLn(AE) which admits a spherical
vector (at all places) φ0. We evaluate the period of φ0 with respect to any compact unitary
group. The result is consistent with a conjecture of Sarnak.

1. Introduction

Recently there has been remarkable progress in the study of periods of automorphic forms in the
context of the relative trace formula of Jacquet. In particular, it has been proved by Jacquet that
for GLn over a quadratic extension, the non-vanishing of periods with respect to the unitary groups
precisely characterizes the image of quadratic base change. So far, the actual value of the period
integrals has received little attention (see, however, the note added in proof at the end of the paper).
In this work, we compute explicitly the absolute value of the period integral of certain automorphic
forms over anisotropic unitary groups. More precisely, let F be a totally real number field of degree
d and let E be a totally imaginary quadratic extension of F , with Galois conjugation x → x̄. Let
G′ = GLn/F and let G be the restriction of scalars of GLn from E to F . Set G′ = G′(F ) = GLn(F )
and G = G(F ) = GLn(E). Consider a unitary group

H = Hα = {g ∈ G : gαtḡ = α}
which is assumed to be anisotropic at every real place of F . That is, α ∈ G is Hermitian and either
positive or negative definite in any real embedding of F . (The group He pertaining to the identity
matrix will be particularly handy.) Now let π be an irreducible, everywhere unramified cuspidal
representation of GA. Thus, it admits a K-invariant, L2-normalized automorphic form φ0, where
K is the standard maximal compact subgroup of GA. If φ0 is not invariant under Galois conjugation
(up to a sign), that is, if π̄ �= π, then by an argument of Oda [Oda82]; (cf. also [HLR86]), the period
integral ∫

Hα\Hα
A

φ(h) dh (1)

is zero for all φ in the space of π. Assume that π̄ = π, and therefore that π is a base change from
a cuspidal representation π′ of G′

A (see [AC89]). Assume further that E/F (and therefore π′) is
unramified at all finite places and, in addition, that π′ is unramified at all real places. (The latter
is merely for convenience.) We point out that cuspidal representations which are everywhere unrami-
fied are known to exist in abundance (cf. [Mül07, LV]; strictly speaking the results in these references
are stated only for F = Q, but this is merely for convenience).

Let ω = ωE/F be the idèle class character attached to E/F by class field theory and let θ =
(θv) ∈ GA be such that θvtθ̄v = ±αv for every real place v of F and θv = e for every finite place v
of F . Our main result in this case is the following. (See § 2.1 for any unexplained notation.)
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Theorem 1. Under the above assumptions1 we have∣∣∣∣
∫
Hα\Hα

A

φ0(hθ) dh
∣∣∣∣
2

= 4 · 2−2nd · vol(He
A ∩ K)2 ·

∣∣∣∣∆E

∆F

∣∣∣∣
dimB′

· |Pα(π)|2 · L(1, π′ × π̃′ ⊗ ω)
Ress=1 L(s, π′ × π̃′)

. (2)

Here Pα(π) is a product of local factors which are given explicitly in (20). In particular, Pe(π) = 1.

Note that the L-functions on the right-hand side are the completed L-functions. The Haar
measure on Hα

A is the pull-back of the Haar measure on He
A (via an inner twist). For the normaliz-

ation of measure on GA, see § 2.1.
We may view φ0 as a function on the locally symmetric space G\GA/K which is an eigenfunction

for the ring of invariant differential operators (as well as for the Hecke operators). The integral of
π(θ)φ0 over Hα\Hα

A amounts to a finite sum of (weighted) point evaluations. It is quite remarkable
that one can evaluate it in terms of L-functions. In the case of an arithmetic quotient of the upper
half plane, there is a well-known and extremely important formula of Waldspurger of the form∣∣∣∣

∑
z∈Λd

φ(z)
∣∣∣∣
2

∼ L(1
2 ,bcQ(

√
d)

Q π).

Here, Λd is the set of Heegner points of discriminant d < 0, π is the automorphic representation
emanating from φ and bc denotes base change. (See [Wal85, Jac86, Jac87, KS93] for various inter-
pretations and generalizations.) The formula (2) is of a similar nature except that it involves the
special value at s = 1 of a quotient of L-functions. This is the first formula of this kind in higher
rank. As an application we study its connection with some recent conjectures of Sarnak about the
L∞-norm of automorphic forms (see [Sar04] and § 5 below).

The point of departure for the computation of the period is a global identity of Bessel distri-
butions that follows from the relative trace formula identity obtained by Jacquet in [Jac05] and,
in particular, from the comparison of the discrete spectrum based on [Lap06]. The Bessel distribution
that we consider on G′ is factorizable and computing the period requires an explicit computation
of the local factors. This is carried out using a local identity of the Bessel and relative Bessel distri-
butions obtained in [Off] and the explicit formulas of Hironaka in [Hir99] of the spherical functions
on the space of Hermitian matrices. Unfortunately, the latter are written only in the case where
the extension is unramified, hence the restriction on E. It should also be possible to carry this out
in the ramified case in order to lift the assumption on the ramification of E/F and, in particular,
to allow the case F = Q. This was worked out in [Hir89] for the case n = 2 and partially in [LR00,
Remark 2] for the case n = 3. We hope to address the general case in the future.

2. Bessel distributions for GLn

2.1 Notation and preliminaries
Let F denote either a number field or a local field of characteristic 0. In the global case we write
A = AF for the ring of adèles of F and IF for the group of idèles. We denote algebraic sets defined
over F by bold letters such as X and the respective sets of F -rational points by plain letters, thus
X = X(F ). In the global setting we also denote Xv = X(Fv) for every place v of F and XA = X(A).

In this section G = Gn is the group GLn defined over a number field F and Z is its center.
We denote by B = Bn the standard Borel subgroup of G, by T = Tn the group of diagonal
matrices and by U = Un the group of upper triangular unipotent matrices. Given a non-trivial
additive character ψ of F\A in the global setting and of F in the local setting we associate to it

1In particular, |∆E | = |∆F |2 but we prefer to write (2) in this way with an eye towards the general case.
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a character ψU of U\UA or U , respectively, by

ψU (u) = ψ(u1,2 + · · · + un−1,n).

We also denote by K the standard maximal compact of GA in the global setting and by K the
standard maximal compact of G in the local setting. We denote by W the Weyl group of G.
Let a∗0 = X∗(T) ⊗Z R, where X∗(T) is the lattice of rational characters of T and denote the dual
space by a0. We identify a∗0 and its dual space with Rn. The W -invariant pairing 〈·, ·〉 : a∗0 × a0 → R

is then the standard inner product on Rn. The height map H : GA → a0 is characterized by the
condition e〈α,H(utk)〉 = |α(t)| for all α ∈ X∗(T), u ∈ UA, t ∈ TA and k ∈ K. Here |·| denotes
the standard norm on A.

For an algebraic group Q defined over F , we denote by δQ the modulus function of QA in the
global setting and of Q in the local setting. Denote by ρ ∈ a∗0 half the sum of the positive roots in
X∗(T) with respect to B, thus

δB = e〈2ρ,H(·)〉.

Measures. Our conventions for Haar measures will be the following. Discrete groups will
be endowed with the counting measure. The measures on the local groups will be determined
by a non-trivial character ψ of F as follows. On F we put the measure dx which is self-dual with
respect to ψ. If we change ψ to ψa = ψ(a·), a ∈ F ∗, then the measure is changed by a factor of |a| 12 .
Set

dF = d
ψ
F =




vol(OF ) F non-archimedean,
vol([0, 1]) F real,
1
2 vol({x+ iy : 0 � x, y � 1}) F complex.

If F is non-archimedean and ψ has conductor OF then d
ψ
F = 1. The same is true if F is archimedean

and ψ(x) = e2πiTrF/R x. We have d
ψa
F = |a| 12 d

ψ
F . Next, we put on U the measure

⊗
i<j dxi,j. On F ∗

we take the measure L(1,1F ∗) dx/|x| where L(1,1F ∗) is the local L-factor of Tate. The measure
on T will be determined by the isomorphism T = (F ∗)n. On G we take the measure dt du dk with
respect to the Iwasawa decomposition where dk is the measure on K with total mass 1. In the
non-archimedean case, the measure on G satisfies vol(K) = 1 provided that the conductor of ψ
is OF .

Globally, we fix a non-trivial character ψ of F\A. On A we take the self-dual measure with respect
to ψ. It is also given by

⊗
v dxv where dxv are defined with respect to ψv. This does not depend

on the choice of ψ, and we have vol(F\A) = 1. Similarly, dF :=
∏
v d

ψv
Fv

does not depend on ψ and,

in fact, dF = |∆F |− 1
2 where ∆F is the discriminant of F . On IF we put the measure

⊗
v dtv. On I1F ,

the kernel of the norm map, we take the measure so that the measure induced on I1F \IF is the pull-
back of dt/t under the isomorphism |·| : I1F \IF → R+. Then vol(F ∗\I1F ) = λ−1 = Ress=1 L(s,1F ∗)
where L(s,1F ∗) is the completed Dedekind ζ function for F . Similarly, on GA we take dg =

⊗
v dgv ,

which is also the measure determined by the Iwasawa decomposition. We induce a measure on G1
A

by identifying GA/G1
A with R+ via |det|.

Let (πi, Vi), i = 1, 2, be a pair of admissible smooth representations of G with a G-invariant
pairing (·, ·) which is linear in the first variable and conjugate linear in the second. For any continuous
linear forms li on Vi, i = 1, 2 the Bessel distribution is defined by

B
l1,l2,(·,·)
V1,V2

(f) = Bl1,l2,(·,·)(f) = l2[l1 ◦ π1(f)]

for any f ∈ C∞
c (G). Here we view l1 ◦ π1(f) as an element of V ∨

1 and l2 as a linear form on
V ∨

1 through the pairing (·, ·) (cf. [JLR04, § 4.1]). In particular, if π is unitary with an invariant
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inner product (·, ·), then

B
l1,l2,(·,·)
V,V (f) =

∑
ϕ∈ob(π)

l1(π(f)ϕ)l2(ϕ)

for any continuous linear forms li on V where ob(π) is any choice of an orthonormal basis for V .

2.2 Bessel distributions and factorization
For any automorphic form φ on G\GA denote by Wψ(φ) its ψth Fourier coefficient given by

Wψ(φ, g) =
∫
U\UA

φ(ug)ψU (u) du.

We also denote by
Wψ(φ) = Wψ(φ, e)

the Whittaker functional and by Wψ(φ) its complex conjugate.
Let π be an irreducible, cuspidal representation of GA. The Bessel distribution attached to π is

defined by

Bψ
π (f) = B

Wψ,Wψ,(·,·)
G\G1

A (f).
It is explained in [Jac01] how to decompose the Bessel distribution into local Bessel distributions,
up to an explicit global factor. This is based on the factorization of the inner product. To recall how
this is done we now turn to the local setting. Let π be an irreducible, generic, unitary representation
of G. We denote by Wψ(π) the ψth Whittaker model of π, on which π acts by right translation.
An invariant inner product on Wψ(π) is given by

[W1,W2] = d1−n
F L(n,1F ∗) ·

∫
Un−1\Gn−1

W1

[(
g 0
0 1

)]
W 2

[(
g 0
0 1

)]
dg

(cf. [Bar03]). Note the normalization by a local Tate factor and discriminant which appears for
convenience. The integral is absolutely convergent. We define the local Bessel distribution

Bψ
π (f) = B

δe,δe,[·,·]
Wψ(π),Wψ(π)

(f)

where δe is the evaluation at the identity.
To decompose the global Bessel distribution we first write the inner product in terms of the

Whittaker function using a Rankin–Selberg integral [JS81]. Namely, for a vector φ in the space of
π =

⊗
v πv which is a pure tensor we may write Wψ(φ, g) =

∏
vWv(gv) with Wv ∈ Wψv (πv) and

Wv(e) = 1 almost everywhere. Let S be a finite set of places containing the archimedean places,
so that for v �∈ S, πv is unramified, ψv has conductor Ov, Wv is spherical and Wv(e) = 1. Then

(φ, φ)G\G1
A

= Ress=1 L
S(s, π × π̃)

∏
v∈S

[Wv,Wv ] (3)

where
LS(s, π × π̃) =

∏
v 	∈S

L(s, πv × π̃v)

is the partial Rankin–Selberg L-function.
To obtain (3) we recall the Eisenstein series

EΦ(g, s) =
∫
Z\ZA

∑
v∈Fn\{0}

Φ(vzg)|det(zg)|s+ 1
2 dz

for any Schwartz–Bruhat function Φ ∈ S(An). The integral-sum converges absolutely for Re(s) > 1
2

and admits meromorphic continuation as a Tate integral. Its residue at s = 1
2 is Φ̂(0) provided
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that the measure on ZA is defined by taking the measure on Z1
A such that vol(Z\Z1

A) = 1 and the
measure on ZA/Z

1
A determined by the isomorphism |det| : ZA/Z1

A → R+.

The unfolding gives∫
G\G1

A

φ1(g)φ2(g)EΦ(g, s) dg =
∫
UA\G1

A

Wψ(φ1, g)W
ψ(φ2, g)

∫
ZA

Φ(v0zg)|det(zg)|s+ 1
2 dz dg

where v0 = (0, . . . , 0, 1). This can be written as∫
UA\GA

Wψ(φ1, g)W
ψ(φ2, g)Φ(v0g)|det(g)|s+ 1

2 dg.

We write this as∫
PA\GA

∫
UA\PA

Wψ(φ1, pg)W
ψ(φ2, pg)Φ(v0g)|det(pg)|s+ 1

2 |det(p)|−1 dp dg

where P = Pn is the mirabolic subgroup (the stabilizer of v0). (The measure on P is given through
the isomorphism P 
 Gn−1 � Un/Un−1.) By a local unramified computation it is

∏
v∈S

∫
Pv\Gv

∫
Uv\Pv

W 1
v (pg)W 2

v(pg)Φv(v0g)|det(pg)|s+ 1
2 |det(p)|−1 dp dg × LS(s+ 1

2 , π × π̃).

The residue at s = 1
2 is therefore given by Ress=1 L

S(s, π × π̃) times
∏
v∈S

∫
Pv\Gv

∫
Uv\Pv

W 1
v (pg)W 2

v(pg) dp Φv(v0g)|det(g)| dg =
∏
v∈S

[W 1
v ,W

2
v ] · Φ̂(0)

because the pairing [·, ·] is G-invariant and∫
Pv\Gv

Φv(v0g)|det g| dg = d1−n
v L(n,1F ∗

v
)Φ̂v(0)

by polar coordinates.

The factorization (3) gives rise to the decomposition

Bψ
π

(⊗
v∈S

fv
⊗
v 	∈S

1Kv

)
=

1
Ress=1 LS(s, π × π̃)

∏
v∈S

Bψv
πv (fv).

We now go back to a local setting. As we have already mentioned in the introduction, if π is
spherical we evaluate the local Bessel distribution Bψ

π (f) using the local identity of Bessel distri-
butions obtained in [Off]. We first need to compare our normalization of the Bessel distribution for
principal series with the slightly different version of [Off]. For a unitary character ν of T and λ ∈ Cn

we denote by I(ν, λ) the principal series representation induced from the character νe〈λ,H(·)〉 of B
to G. We identify the spaces of I(ν, λ) with the space I(ν) of smooth sections ϕ : G→ C such that

ϕ(bg) = ν(b)e〈ρ,H(b)〉ϕ(g), b ∈ B, g ∈ G.

The identification is through ϕ �→ ϕλ = e〈λ,H(·)〉 · ϕ. The action is given by

I(g, ν, λ)ϕ = (ϕλ(·g))−λ = e〈λ,H(·g)−H(·)〉ϕ(·g).
When ν = 1 (i.e. for unramified principal series) we often suppress ν from the notation. We consider
the standard inner product on I(ν) given by

(ϕ1, ϕ2) =
∫
B\G

ϕ1(g)ϕ2(g) dg =
∫
K
ϕ1(k)ϕ2(k) dk.

327

https://doi.org/10.1112/S0010437X06002612 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002612


E. Lapid and O. Offen

Note that (·, ·) : I(ν, λ) × I(ν,−λ̄) → C is G-invariant. Also we remark that

(ϕ1, ϕ2) =
∏n
i=1 L(i,1F ∗)
L(1,1F ∗)n

d−dimU
F

∫
U
ϕ1(wu)ϕ2(wu) du (4)

(cf. [Lan66]). Here w = wn is the permutation matrix with unit anti-diagonal. We only consider
λ so that |Re(λi)| < 1

2 for all i, in which case I(ν, λ) is irreducible. All unramified unitarizable
representations are of this type. For a principal series representation π = I(ν, λ) it will be convenient
to set Wψ(ν, λ) = Wψ(π). The Jacquet integral

Wψ(ϕ, λ, g) =
∫
U
ϕλ(wug)ψU (u) du

converges for Reλ in the positive Weyl chamber, admits an analytic continuation and defines an
isomorphism ϕ �→Wψ(ϕ, λ) between I(ν, λ) and Wψ(ν, λ). We also set

Wψ(ϕ, λ) = Wψ(ϕ, λ, e).

The local Bessel distribution considered in [Off] was

Bψ
ν (f, λ) = B

Wψ(·,λ),Wψ(·,−λ),(·,·)
I(ν,λ),I(ν,−λ)

(f).

At first sight this depends on λ itself and not only on the equivalence class of the representation
I(ν, λ). However, we shall soon see that this is not the case.

Proposition 1. For λ ∈ ia∗0 we have

(ϕ1, ϕ2) =
[Wψ(ϕ1, λ),Wψ(ϕ2,−λ̄)]

L(1,1F ∗)n
.

Proof. We prove this by induction on n, the case n = 1 being trivial. We can assume of course that
ϕ2 = ϕ1 = ϕ. For the induction step we identify π = I(ν, λ) with IGQ(π′) where Q is the parabolic
of type (1, n − 1) and π′ = IndQB(ν, λ). Explicitly, for ϕ ∈ I(ν, λ) we write

Fϕ(g)(q) = δQ(q)−
1
2ϕ(qg), g ∈ G, q ∈ Q

so that Fϕ(g)(·) ∈ π′. We assume that ϕ has the property that Fϕ is compact supported in QwnU ′

where U ′ is the unipotent radical of the parabolic subgroup of type (n − 1, 1). These sections are
dense in π. Realizing π′ in its Whittaker model using the Jacquet integral (in GLn−1) we also write

Wϕ(g) = WQ(Fϕ(g), λ, ·) ∈ W(π′), g ∈ G

where the superscript signifies that we work in the (Levi subgroup of the) group Q. Thus,

Wϕ(g)(q) = δQ(q)−
1
2

∫
Un−1

ϕλ(j(wn−1u)qg)ψUn−1(u) du

(in the sense of analytic continuation) where we set j(x) =
(

1
x

)
for x ∈ GLn−1. Using Fubini and

the relation (4) we write

(ϕ,ϕ) =
L(n,1F ∗)
L(1,1F ∗)

d1−n
F

∫
U ′

(Fϕ(w′u′), Fϕ(w′u′))π′ du′

where w′ is such that j(wn−1)w′ = wn. By the induction hypothesis we get

L(n,1F ∗)
L(1,1F ∗)n

d1−n
F

∫
U ′

[Wϕ(w′u′),Wϕ(w′u′)]n−1 du
′.

Using Parseval identity (for vector-valued functions) the integral is equal to the L2-norm of the
Fourier transform of Wϕ(w′·). The value of this Fourier transform at the character u′ �→ ψ(pu′p−1)
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of U ′ (p ∈ GLn−1 imbedded as
( p

1

)
in GLn) is∫

U ′
Wϕ(w′u′)ψ(pu′p−1) du′

=
∫
U ′
WQ(Fϕ(w′u′))ψ(pu′p−1) du′

= |det p|−1

∫
U ′
WQ(Fϕ(w′p−1u′p))ψ(u′) du′ = |det p|− 1

2π′(j(p−1))
∫
U ′
WQ(Fϕ(w′u′p))ψ(u′) du′.

Integrating over the characters of U ′ amounts to integrating over p ∈ Pn−1\GLn−1 against |det p|
times the factor dn−2

F /L(n − 1,1F ∗). Therefore, because [·, ·]n−1 is GLn−1-invariant we obtain
1/L(1,1F ∗)n times

L(n,1F ∗)
∫
[
∫
WQ(Fϕ(w′u′p))ψ(u′) du′,

∫
WQ(Fϕ(w′u′p))ψ(u′) du′]n−1 dp

dFL(n− 1,1F ∗)

= d1−n
F L(n,1F ∗)

∫∫ ∣∣∣∣
∫
WQ(Fϕ(w′u′p), j(p′))ψ(u′) du′

∣∣∣∣
2

dp′ dp

= d1−n
F L(n,1F ∗)

∫∫ ∣∣∣∣
∫
WQ(Fϕ(j(p′)w′u′p), e)ψ(u′) du′

∣∣∣∣
2

|det p′| dp′ dp

= d1−n
F L(n,1F ∗)

∫∫ ∣∣∣∣
∫
WQ(Fϕ(w′u′p′p), e)ψ(u′) du′

∣∣∣∣
2

|det p′|−1 dp′ dp

= d1−n
F L(n,1F ∗)

∫∫
|W (ϕ, p′p)|2|det p′|−1 dp′ dp = [W (ϕ),W (ϕ)]

as required. In the last series of equalities p, p′ and u′ are integrated over Pn−1\GLn−1, Un−1\Pn−1

and U ′, respectively. The justification for all of the steps above follows directly from the convergence
of [W (ϕ),W (ϕ)].

The statement of the proposition extends by analytic continuation to all λ ∈ Cn such that
|Re(λi)| < 1

2 (in which case, the inner product [·, ·] converges). We conclude that at least for such λ

Bψ
ν (f, λ) = L(1,1F ∗)n · Bδe,δe,[·,·]

W(π),W(π∗)(f)

where π∗ denotes the conjugate contragredient of π. In particular, if I(ν, λ) is unitary then

Bψ
ν (f, λ) = L(1,1F ∗)nBψ

I(ν,λ)(f). (5)

We also note that in the unramified case

|Wψ(ϕ0,−λ̄, g)Wψ(ϕ0, λ, g)| = L(1,1F ∗)n|Wψ
1 (g)|2 (6)

where Wψ
1 is a spherical Whittaker function of π normalized so that [Wψ

1 ,W
ψ
1 ] = 1 and ϕ0 is

the spherical section normalized so that ϕ0(e) = 1. Indeed, Wψ(ϕ0, λ, ·) and Wψ(ϕ0,−λ, ·) are
both proportional to Wψ

1 . If the proportionality constants are c1 and c2, respectively, then c1c2 =
L(1,1F ∗)n by Proposition 1.

3. Local identities of distributions

For the rest of the paper, we switch the notation from the previous section as follows. We have
a quadratic extension E/F of either local or global fields of characteristic zero. In the global case
we assume that F is totally real and E is totally complex. That is, E is a CM-field and F is
its maximal real subfield. In the local setting we also consider the split case where E = F ⊕ F .
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We denote by Nm(x) = xx̄ the norm map from E∗ to F ∗, by E1 its kernel and by ω the quadratic
character of F ∗ attached to E/F by class field theory.

Let G′ = G′
n denote the group GLn regarded as an algebraic group defined over F and let

G = RE/F (GLn) be the restriction of scalars of GLn from E to F . All of the notation and conventions
of the previous section will apply to G and E, using the character ψ ◦ TrE/F . Notation pertaining
to G′ will be appended by a prime. The measure on E1 is defined by the relation∫

E∗
f(z) dz =

∫
Nm(E∗)⊂F ∗

F (x) dx where F (Nm t) =
∫
E1

f(yt) dy.

Finally, note that H(g) = 2H ′(g), g ∈ G′
A.

Let H = Hα be the unitary group defined by the Hermitian form α. It will be assumed to be
anisotropic at the real places.

3.1 Relative Bessel distributions
We start with the global setting. Let

PH(φ) =
∫
H\HA

φ(h) dh

denote the period over H of a cusp form φ. Let π be a cuspidal automorphic representation of GA.
The relative Bessel distribution is defined for a function f ∈ C∞

c (GA) by

B̃ψ
π (f) =

∑
φ∈ob(π)

PH(π(f)(φ))Wψ(φ).

We turn to the local setting. For simplicity we consider only unramified principal series representa-
tions I(λ) of G because this is the case needed for Theorem 1. For any character ν of T ′ such that
ν ◦ Nm ≡ 1 define the stable intertwining period of ϕ ∈ I(λ) by

Jst,αν (ϕ, λ) =
∑
a∈A

′
(ννω)−1(a)e−〈ρ+λ,H′(t)〉

∫
Hη\H

ϕλ(ηh) dh

(cf. [Off]). Here A = T ′/Nm(T ) 
 (F ∗/Nm(E∗))n, and we sum over a ∈ A which are in the G-orbit
of α. For each such a we choose η such that ηαtη̄ = t ∈ a and set Hη = H ∩ η−1Bη which is
isomorphic to (E1)n (with the measure inherited from that on E1). Finally, νω is the character
(ω, ω2, . . . , ωn) of T ′. The integral extends meromorphically and the expression does not depend
on the choice of η. The functionals Jst,αν constitute a basis of H-invariant functionals on I(λ).
We suppress ν from the notation of J if ν = 1.

In the case where E/F is p-adic, unramified or split and ϕ0 ∈ I(λ) is the K-invariant section with
ϕ0(e) = 1, Jst,α(ϕ0, λ) can be interpreted as Hironaka’s spherical function evaluated at α (see [Off,
Lemma 5]) in the inert case, and the zonal spherical function at α, multiplied by a suitable c-function
in the split case. These values are computed explicitly in [Hir99, Theorem 1] and [Mac95, p. 299],
respectively. On the other hand, in the archimedean case Jst,αν (I(θ, λ)ϕ0, λ) is equal to

ννω(±e)
∫
Hθ−1\H

e〈λ+ρ,H(θ−1hθ)〉 dh = ννω(±e)
∫
He
e\He

e〈λ+ρ,H(h)〉 dh = ννω(±e) vol(He
e\He) (7)

where θtθ̄ = ±α. (Note that He = K = θ−1Hθ in this case.) The upshot is that in both cases
we have

Jst,α(I(θ, λ)ϕ0, λ) = vol(((He
e ) ∩K)\(He ∩K))Pα(λ)

∏
i<j

L(λi − λj, ω)
L(λi − λj + 1,1F ∗)

(8)

where in the p-adic case we set θ = e and where Pα(λ) is defined as follows. If E/F is p-adic,
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unramified or split

Pα(λ) = νω(�m)
∏n
i=1 L(i, ωi)
L(1, ω)n

∑
σ∈W

σ

(
e〈λ−ρ,�α〉

∏
i<j

L(λi − λj,1F ∗)
L(λi − λj + 1, ω)

)

where in the sum σ acts on λ and where�α is the dominant co-weight of α, i.e. it is log q(m1, . . . ,mn)
if there exists k ∈ K such that

kαtk̄ = �m = diag(�m1 , . . . ,�mn)

with m1 � · · · � mn for a uniformizer � of F . Up to a constant depending on α, Pα(λ) is the �αth
Hall–Littlewood polynomial evaluated at qλ and t = ω(�)q. In the case F = R and E = C set
Pα(λ) = νω(±e). Note that in the latter case the quotient of L-functions in (8) is 1 because ω is the
signum character!

The stable local relative Bessel distribution is defined by

B̃st,ψ
ν (f, λ) =

∑
ϕ∈ob(I(λ))

Jst,αν (I(f, λ)ϕ, λ)Wψ(ϕ,−λ̄).

As before we suppress ν from the notation if ν = 1. In the case where E/F is unramified, split or
archimedean, from the previous computation we obtain

B̃st,ψ(fθ, λ) = f̂(λ)Pα(λ)Jst,e(ϕ0, λ)Wψ(ϕ0,−λ̄)

= f̂(λ)Pα(λ)
(∏
i<j

L(λi − λj , ω)
L(λi − λj + 1,1F ∗)

)
Wψ(ϕ0,−λ̄)υ (9)

for any bi-K-invariant f , where we write fθ = f(θ−1·), υ = vol((He
e ∩K)\(He ∩K)) and where f̂

is the spherical transform of f . Note that I(fθ, λ)ϕ = I(θ, λ)I(f, λ)ϕ for ϕ ∈ I(λ).

3.2 Matching functions

We recall the notion of matching of functions on G′ and on G in our setting. Fix α as before.
Locally, we say that f ′ ∈ C∞

c (G′) and f ∈ C∞
c (G) match with respect to ψ and write f ′ ψ↔ f if for

any diagonal matrix a = diag(a1, . . . , an) ∈ T ′ and for δ ∈ {0, 1} as in [Off, Theorem 2]∫
U ′

∫
U ′
f ′(u1wau2)ψU ′(u1u2) du1 du2

=



ω(det a)δνω(a)

∫
U

∫
Hα

f(hηu)ψU (u) dh du if a = tη̄α−1η,

0 if a �∈ {tḡα−1g : g ∈ G}.
Globally, by definition f ′ =

∏
v f

′
v ∈ C∞

c (G′
A) and f =

∏
v fv ∈ C∞

c (GA) match with respect to ψ if

f ′v
ψv↔ fv for all places v of F .

3.3 Local Bessel identities

We recall the main result of [Off]. Set

γ(ν, λ, ψ) =
∏
i<j

γ(νiν−1
j ω, λi − λj , ψ)

where for a character µ of F ∗ and s ∈ C, γ(µ, s, ψ) is the Tate gamma factor

γ(µ, s, ψ) =
L(s, µ)

ε(s, µ, ψ)L(1 − s, µ−1)
.
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Then there exists a root of unity κE/F = κE/F (ψ) which we do not need to pay much attention to,
such that for any pair of matching functions f ′ ψ↔ f we have the following equality of meromorphic
functions

B̃st,ψ
ν (f, λ) = κE/Fγ(ν, λ, ψ)Bψ

ν (f ′, λ).

It follows from (5) that if I ′(ν, λ) is unitary, then

B̃st,ψ
ν (f, λ) = κE/FL(1,1F ∗)nγ(ν, λ, ψ)Bψ

I′(ν,λ)(f
′). (10)

In particular, if ν = 1, E/F is either unramified or archimedean and f ′ ψ↔ fθ with f
bi-K-invariant and θ as in § 3.1 then by (9) and (10)

Bψ
I′(λ)

(f ′) = (κE/F γ(λ,ψ)L(1,1F ∗ )n)−1υf̂(λ)Pα(λ)
( ∏
i<j

L(λi − λj , ω)
L(λi − λj + 1,1F ∗)

)
Wψ(ϕ0,−λ̄)

= κ−1
E/FL(1,1F ∗)−nυf̂(λ)Pα(λ)

( ∏
i<j

L(λj − λi + 1, ω)ε(λi − λj , ω, ψ)
L(λi − λj + 1,1F ∗)

)
Wψ(ϕ0,−λ̄).

(11)

As I ′(λ) is assumed to be unitarizable, I ′(λ) 
 I ′(−λ) and therefore the right-hand side must be
invariant under λ �→ −λ. Thus,

Bψ
I′(λ)(f

′) = κE/FL(1,1F ∗)−nυf̂(λ)Pα(λ)
∏
i>j

L(λj − λi + 1, ω)ε(λi − λj , ω, ψ)
L(λi − λj + 1,1F ∗)

Wψ(ϕ0, λ). (12)

Combining (11), (12) and the equality

ε(s, ω, ψ)ε(−s, ω, ψ) =
(

dF

dE

)2

,

we obtain

|Bψ
I′(λ)(f

′)|2 =
∣∣∣∣f̂(λ)

(
dF

dE

)dimU ′

υPα(λ)
∣∣∣∣
2L(1, π′ × π̃′ × ω)

L(1, π′ × π̃′)
|Wψ(ϕ0,−λ̄)Wψ(ϕ0, λ)|

L(1,1E∗)n
.

Finally, using (6) and the equality

L(s, π × π̃) = L(s, π′ × π̃′)L(s, π′ × π̃′ × ω)

we obtain

|Bψ
I′(λ)(f

′)|2 =
∣∣∣∣f̂(λ)

(
dF

dE

)dimU ′

υPα(λ)
∣∣∣∣
2 L(1, π × π̃)
L(1, π′ × π̃′)2

|Wψ
1 (e)|2

where Wψ
1 is as in § 2.2. We stress that for this equality to hold we do not need to assume that f ′

is bi-K ′-invariant.

Note that if f gθ = f(θ−1 · g), then by a simple change of the orthonormal basis we have

B̃st,ψ
ν (f gθ , λ) =

∑
ϕ∈ob(I(χ,λ))

Jst,α(I(fθ, λ)ϕ, λ)W ψ(ϕ,−λ̄, g).

Therefore, in the unramified case, if f ′ ψ↔ f gθ then by the same reasoning as before

|Bψ
I′(λ)(f

′)|2 =
∣∣∣∣f̂(λ)

(
dF

dE

)dimU ′

υPα(λ)
∣∣∣∣
2 L(1, π × π̃)
L(1, π′ × π̃′)2

|Wψ
1 (g)|2. (13)
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In general, the same line of argument gives

|Bψ
I′(λ,ν)(f

′)|2 =
L(1,1E∗)n

L(1,1F ∗)2n
|f̂(λ)υ|2 |J

st,α
ν (I(λ, θ)ϕ0, λ)Jst,αν (I(λ, θ)ϕ0,−λ̄)|

|γ(ν, λ, ψ)γ(ν,−λ, ψ̄)| |Wψ
1 (g)|2.

Note that

|γ(ν, λ, ψ)γ(ν,−λ, ψ̄)| =
(

dF

dE

)2 dimU ′ ∏
i<j

∣∣∣∣ L(λi − λj , ωνiνj)L(λj − λi, ωνiνj)
L(λi − λj + 1, ωνiνj)L(λj − λi + 1, ωνiνj)

∣∣∣∣
and, therefore, that

L(1,1E∗)n

L(1,1F ∗)2n
1

|γ(ν, λ, ψ)γ(ν,−λ, ψ̄)| =
L(0, ω)n

L(0, π′ × π̃′ ⊗ ω)
L(1, π′ × π̃′ ⊗ ω)

L(1,1F ∗)n

where π′ = I ′(λ, ν). We obtain

|Bψ
I′(λ,ν)(f

′)|2 =
L(0, ω)n

L(0, π′ × π̃′ ⊗ ω)
L(1, π′ × π̃′ ⊗ ω)

L(1,1F ∗)n

×
∣∣∣∣f̂(λ)

(
dF

dE

)dimU ′

υ

∣∣∣∣
2

|Jst,αν (I(λ, θ)ϕ0, λ)Jst,αν (I(λ, θ)ϕ0,−λ)||Wψ
1 (g)|2. (14)

Recall also that, by (7), in the archimedean case we have

|Jst,αν (I(λ, θ)ϕ0, λ)Jst,αν (I(λ, θ)ϕ0,−λ̄)| = vol(He
e\He)2. (15)

We also remark that

υ =




(
dE
dF

)n
E/F is either split or unramified,

(
2
dE
dF

)n
otherwise.

(16)

4. The computation of the period

We now turn to the setting of Theorem 1. We assume that E/F is unramified at all finite places and
consider an irreducible, cuspidal, everywhere unramified automorphic representation π′ of G′

A such
that π′ ⊗ ω �
 π′. Thus, π = bc(π′) = bc(π′ ⊗ ω) is a cuspidal, everywhere unramified automorphic
representation of GA. We write π′v = I ′(λv) for all places v of F . Let φ0 be the K-invariant cusp
form in the space of π which is L2-normalized and let θ ∈ GA be as in Theorem 1. Fix g ∈ GA such
that Wψ(φ0, g) �= 0.

Let S be a finite set of places of F containing all archimedean and even places, and such that
for v �∈ S the character ψv is unramified and gv, αv ∈ Kv. We consider a function f on GA of the
form

f =
∏
v∈S

fv
∏
v 	∈S

1Kv

where fv is a bi-Kv-invariant function for all v ∈ S. Let f gθ (x) = f(θ−1xg), x ∈ GA. For f gθ there is
a matching function f ′ (with respect to ψ) of the form

f ′ =
∏
v∈S

f ′v
∏
v 	∈S

1K ′
v

on G′
A with f ′v supported on ±U ′

vwT
′
v
+U ′

v for v|∞ and f ′v is supported on the set of g′ ∈ G′
v

such that det g′ ∈ det(wα−1
v )Nm(E∗

v ) for v < ∞. Here T ′
v
+ = {diag(a1, . . . , an) : ai > 0}.
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For the non-archimedean places this follows from [Jac03] and [Jac04]. For real places note that f gvθv is
left-Hv-invariant, because Kv = He

v = θ−1
v Hvθv, and that its restriction to B is of compact support.

Therefore, the function

Ω(a) =




vol(Hv)
∫
Uv

f(θ−1
v ηugv)ψUv (u) du if a = tη̄α−1

v η

0 if a �∈ ±T ′
v
+

is smooth and of compact support on ±T ′
v
+. We can now take f ′v(u1wau2) = Ω(a)ϕ(u1)ϕ(u2) where

ϕ ∈ C∞
c (U ′) is chosen such that

∫
U ′ ϕ(u)ψU ′(u) du = 1. From the relative trace formula identity of

Jacquet obtained in [Jac05] it follows that

B̃ψ
π (f gθ ) = Bψ

π′(f ′) +Bψ
π′⊗ω(f ′).

For f ′ as above we have

Bψ
π′(f ′) = Bψ

π′⊗ω(f ′)
because globally ω(det(wα−1)) = 1 and therefore the support of f ′ is contained in the kernel of
ω ◦ det. Thus, we obtain

B̃ψ
π (f gθ ) = 2Bψ

π′(f ′). (17)

By considering an orthonormal basis containing π(g)φ0 and using that f is bi-K-invariant we have

B̃ψ
π (f gθ ) = f̂S(πS)PH(π(θ)φ0)Wψ(φ0, g)

where

f̂S(πS) =
∏
v∈S

f̂v(πv)

is the spherical Fourier transform of f . By (3) we have

|Wψ(φ0, g)|2 =
1

Ress=1 LS(s, π × π̃)

∏
v∈S

|Wψv
1,v (gv)|2.

Thus,

|B̃ψ
π (f gθ )|2 =

|f̂S(πS)PH(π(θ)φ0)|2
Ress=1 LS(s, π × π̃)

∏
v∈S

|Wψv
1,v (gv)|2. (18)

On the other hand, we can write

Bψ
π′(f ′) =

1
Ress=1 LS(s, π′ × π̃′)

∏
v∈S

Bψv
π′
v
(f ′v).

Combining this with (13) we get

|Bψ
π′(f ′)|2 = υ2

∣∣∣∣∆E

∆F

∣∣∣∣
dimU ′( |f̂S(πS)|

Ress=1 L(s, π′ × π̃′)

)2 ∏
v∈S

L(1, πv × π̃v)|Wψv
1,v (gv)Pαv (λv)|2 (19)

where υ = vol(((He
e )A ∩K)\(He

A ∩ K)). Comparing (18) and (19) via (17) and taking into account
the equality

L(s, π × π̃) = L(s, π′ × π̃′)L(s, π′ × π̃′ × ω)

and the fact that vol((He
e )A ∩ K) = 2dn|∆F/∆E |n/2 we get Theorem 1 with

Pα(π) =
∏
v

Pαv (λv). (20)

Recall that Pαv ≡ 1 if v /∈ S.

334

https://doi.org/10.1112/S0010437X06002612 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002612


Compact unitary periods

4.1 General CM-fields
We now drop the assumption that E/F is unramified at all finite places and denote by Sr the set of
finite places where E/F ramifies. The representation π and the cusp form φ0 remain as in Theorem 1
and π′ =

⊗
v π

′
v is a cuspidal representation of G′

A so that π = bc(π′). Thus, for each v, π′v is one of
the 2n (not necessarily unramified) principal series representations of G′

v that base-change to πv.
We choose g as before and let S be a finite set of places that satisfies all of the previous

assumptions and, in addition, contains Sr. Denote S = S∞ � Su � Sr where S∞ is the set of all
infinite places of F and Su is the set of all finite places in S that are either split or unramified.
If v ∈ S∞ � Sr we set π′v = I ′(λv , νv). For all other places v of F we set π′v = I ′(λv). Using (13),
(14), (15), (16) and the same argument used to prove Theorem 1, we obtain the formula

|PHα
(π(θ)φ0)|2 = 4 · 2−2nd · vol(He

A ∩ K)2 ·
∣∣∣∣∆E

∆F

∣∣∣∣
dimB′

L(1, π′ × π̃′ ⊗ ω)
Ress=1 L(s, π′ × π̃′)

∏
v∈Su

|Pαv (πv)|2

·
∏
v∈S∞

L(1, π′v × π̃′v)
L(0, π′v × π̃′v ⊗ ωv)

∏
v∈Sr

(
dE

dF

)2n

· L(0, ωv)n

L(0, π′v × π̃′v ⊗ ωv)
L(1, π′v × π̃′v)
L(1,1F ∗

v
)n

|Jst,αvνv (ϕ0,v, λv)J
st,αv
νv (ϕ0,v ,−λv)|

vol(He
v ∩Kv)2

. (21)

We remind the reader once more that if v ∈ Su and αv ∈ Kv, then Pαv (πv) = 1, and that
if v ∈ S∞ and π′v is unramified, then L(1, π′v × π̃′v)/L(0, π′v × π̃′v ⊗ ω) = 1. As before, we can
interpret Jst,αvνv (ϕ0,v , λv) as Hironaka’s spherical function evaluated at αv at all finite places (cf. [Off,
Lemma 5]). For v /∈ Sr their value is known. Otherwise, this is not the case except for n = 2 where
the spherical function is given by [Hir89, Theorem 1, p. 28] if the residual characteristic is odd.
It follows, for instance, that in the odd ramified case

Jst,eν=(ν1,ν2)
(ϕ0, λ)

vol(He ∩K)
=




0 if ν1 = ν2,

1
2

(
dF

dE

)2 L(λ1 − λ2,1F ∗)
L(λ1 − λ2, (·,−ε)) otherwise,

where (·, ·) is the Hilbert symbol and ε ∈ O∗
F \ (O∗

F )2.
To illustrate the general case (for n = 2), we assume for simplicity that α = e and that Sr �= ∅

consists of odd places. From (21) we obtain the following.

Proposition 2. Under the above assumptions, PH
e
(φ0) = 0 unless ωπ′ω is unramified at all finite

places, in which case

|PHe
(φ0)|2 = 4 · 2−4d−2|Sr | · vol(He

A ∩K)2 ·
∣∣∣∣∆E

∆F

∣∣∣∣
3 L(1, π′ × π̃′ ⊗ ω)
Ress=1 L(s, π′ × π̃′)

·
∏
v∈S∞

L(1, π′v × π̃′v)
L(0, π′v × π̃′v ⊗ ω)

∏
v∈Sr

L(1, π′v × π̃′v)
L(1,1F ∗

v
)2

L(0, ωv(·,−εv))2
L(0, π′v × π̃′v ⊗ ωv(·,−εv)) .

5. Connection to a conjecture of Sarnak

Recall that for a co-compact arithmetic quotient of the upper half plane, one expects to have,
for any ε > 0, an estimate ‖φ‖∞ � λε for any L2-normalized eigenfunction φ of the Laplacian
with eigenvalue λ. (See [IS95] for a discussion of this problem.) The situation is rather differ-
ent in higher dimension. By our assumption φ0 is a cusp form on the locally symmetric space
G\GA/K, which is an arithmetic quotient of several copies (according to the class number of E) of
G(F ⊗ R)/He(F ⊗ R) = (GLn(C)/Un)d where d = [F : Q], a symmetric space of dimension n2d.
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The form φ0 is an eigenfunction of the ring of invariant differential operators (of rank nd), as well
as of the Hecke operators. Sarnak and Venkatesh have proved in a forthcoming paper that for any
L2-normalized form φ which is an eigenfunction of the ring of invariant differential operators, one
has

‖φ‖∞ � λδφ (22)

for δ = 1 where

λφ =
d∏
k=1

∏
i<j

(|λ(k)
i − λ

(k)
j | + 1)

and (λ(k)
1 , . . . , λ

(k)
n )dk=1 parameterize the eigenvalues of φ (i.e. it is the infinitesimal character in

Harish-Chandra’s parameterization of the corresponding representation of GLn(C)d). Moreover,
in many cases Sarnak and Venkatesh showed that it is possible to take δ < 1. (The parameter λφ is
related to Harish-Chandra’s c-function in the general setting of a locally symmetric space.) Assume
for simplicity that α = e, i.e. that H is He. Under the above interpretation of φ0,∫

H\HA
φ0(h) dh = vol(K ∩HA)

∑
i

1
#{xiKx−1

i ∩H}φ0(xi)

where HA =
⋃n
i=1Hxi(K ∩HA). (The xi comprise the genus of the Hermitian form defined by e.

The volume of K∩HA can be evaluated explicitly for the Tamagawa measure, cf. [GHY01].) On the
other hand, one has precise conjectures about the size of the L-functions appearing in the numerator
and in the denominator of the right-hand side of (2). Namely, their finite part, as well as its
inverse, is expected to be majorized by λεφ for any ε > 0. (These are the convexity bounds for these
L-functions. They are known to hold for standard L-functions by Molteni [Mol02].) The archimedean
part of each L-function is easy to analyze by Stirling’s formula and the quotient is roughly of the
size of λφ. Therefore, under the above assumption on the finite part of the L-function, Theorem 1
would give

‖φ‖∞ � λ
1
2
+ε

φ . (23)

Thus, one cannot expect to have δ < 1
2 in (22). In fact, the latter is already a consequence of the

fact that the period is zero for representations which are not base change. Indeed, by the local Weyl
law (which is known to hold at least for compact quotients), for any given finite set of points xi in
the locally symmetric space we have

∑
µφ<R2

∣∣∣∣
∑
i

φ(xi)
∣∣∣∣
2

∼ cR(n2−1)d

where φ ranges over an orthonormal basis of eigenfunctions of Laplace eigenvalue µφ < R2 with
a fixed central character. Out of these (the number of which is roughly R(n2−1)d), the number of
forms which are base change is roughly Rd(n(n+1)/2−1). Therefore, for the xi as above, the weighted
sum

∑′ φ(xi) is of size Rdn(n−1)/4 on average for those φ arising as base change, because it is zero
whenever φ is not a base change. This is compatible with (23). This argument was used in [RS94]
for the case n = 2. However, even in that case, our result is sharper because it holds for any form
which is a base change. (In the case n = 2, the L-functions are described in terms of the standard
L-function of the Gelbart–Jacquet lift [GJ78] and therefore the convexity bounds of [Mol02] apply.)

This example illustrates the connection between large L∞-norm and functoriality. In general,
the conjecture predicts that the exceptional forms (those with large L∞-norm) are rare. In the best
possible scenario they are all accounted for by functoriality from smaller groups and their L∞-norm
is close to a rational power of λφ which depends on the group from which the form originates.
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