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1. The rational case. This note points out a new aspect of the well-known relation-

ship between the subjects mentioned in the title. The following result and its generaliza-

tion in totally real algebraic number fields is central to the discussion. Let I —I denote the
\b/

[a B~\
Legendre symbol for relatively prime numbers a and bel and a substitution of

Ly SJ
the modular subgroup ro(4). Then, if y > 0 and b = 1 mod 2,

with
W(b, B) = Ksign(ft) + l)(sign(B)- 1)-K6 + D(B - 1) (la)

and
A = a a + /3fc, B = ya + 8b. (lb)

According to (1), the Legendre symbol behaves somewhat like a modular function (apart
a a a + b a ~b\

from the known behaviour under —-»—+1 =—;— and — —* — I. (1) follows (see below)
b b b b a I

from the functional equation

(2)
neZ

with

([y s ] ) {{) n (2a)

provided that

7 > 0 and - | < a r g ( y r + S)1/2;g^. (2b)

Here we used and always will use the abbreviation

e(x) = e2™*

and es means the absolutely least residue of 8 mod 4. In the proof, Hecke [4] assumed
Y>0 (see also Shimura [5]).

Since # ( 2 T ) 2 is a modular form of weight 1 on To(4) and character x(d)= (~T)>
 t n e

essential content of (2) is the sign. On the other hand, (1) is closely related to the

Glasgow Math. J. 27 (1985) 19-30.

https://doi.org/10.1017/S0017089500006042 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006042


20 MARTIN EICHLER

quadratic reciprocity law and its first supplement: for positive a, b,

Namely, with y = 4b, 8 = a, we have

A = aa + @b, B = 5ab, 4A = 5 a a - l .

Now an easy calculation shows that

and (1) becomes identical with (3).

The formulas (l)-(3) form a triad of the following nature: given the Gaussian sums

) = |fe|1/2ea(sign(b)-sign(eb))) (4)

with eb the absolutely least residue of b mod 4, (1) and (2) are equivalent, while (2)

follows from (3).
The essential tool in all our considerations is the theta function and its well-known

relation with the Gaussian sums:

x—*o
(5)

It suffices to prove only (3). The derivation of (1) from (2) and conversely is an easy
straightforward calculation upon observation that B = 8b mod 4.

In the following, we will generalize (l)-(3) in totally real algebraic number fields. This
time an analogue of (2) has not been given. We will therefore prove the reciprocity law
and derive from it the two other formulas. In the case of the reciprocity law, we follow the
approach of Kronecker and Hecke. The connection with earlier work on the subject will
be commented on in §6.

2. Preliminaries. We consider a totally real algebraic number field K of degree n
with conjugates Kv. We assume that a and b are numbers in K such that

a and b are congruent to units ea and eb mod 4.

More generally, whenever the symbol eb occurs, this assumption on b is made.
We will use an abbreviated symbol for the sign:

o-(a) = sign(a) = ±1 according as a is positive or negative.

We will make a further convention: if a symbol £„ carries the subscript v, attaching it
to the vth conjugate field Kv, we will write

v = l
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QUADRATIC RECIPROCITY LAW 21

This is the trace if £ is an element of K. But we will also write

S(<r(£))= t "(LI

Similarly we will write products as follows:

= fl L, N(yr + S) = fl (yvTv + 8J.

The different will be denoted by b, and g will be an integral ideal equivalent with b. An
element geK whose ideal is

will be fixed throughout the paper.
We will consider the following subgroup of the Hilbert modular group, where o is the

maximal order of K:

{[" ]a ,0 ,8€D,7e4g,8s e 8 mod4] . (6)

It has finite index in the full modular group.
The quadratic residue symbol is defined for prime ideals p and numbers prime to p by

/ a\ _ f 1 if a is a q
\f/ 1-1 otherwise,

and for the prime decomposition

by

quadratic residue mod p,

bj [pj VpJ
It is connected with the Gaussian sums

p mod b
e(s(g%2))GK(a,fc)= I e(s(g%2)) (7)

in well-known way.

LEMMA 1. Let b be odd. Then

The statement implies that the quotient Gg(a, fc)/Gg(l, b) depends only on the ideal

(b). With this in mind we may write (-) instead of (777).
\bl \{b)l
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Proof. In the sum over p in (7), we put

p = PJ + p 2 + . . . , ft e fcprh| mod bo,

hi meaning the exact power of p( dividing b. Hence the sum becomes a product

Gg(a,b) = n^(a,b),
where

H^a, b) = X e(s(g£ p2)) (p s fcp-h' mod bo)

= Z c(S(gabp2)) (p e Prh' mod o).

The H^ia, b) are further processed as follows (the subscript may be omitted). If h > 1,
we take a prime element p for p and put

Then
Hh(a,b) = 11e(S(gabpl)) + X2e(S(gab(p2

1 + 2ph-

both sums are extended over pt and p2, but, in 1U pj is in p'~h while in S2 it is not. The
second sum is apparently 0. The first can be written (if (p) = qp)

Hh(a, b) = N(g) X e(S(gabp-2(pPl)
2)) (Pl e qp1"" mod q)

= N(g) I e(S(gafcp-2pl)) (p3 e qP
2-h mod q)

= N(g)Hh_2(a, bp"2).

If h = 2, the sum over p3 consists of only one summand, and

H2(a,b) = N(v).

If h = 1 and a is a quadratic residue mod p,

H1(o,ft) = H1(l,6),

and if a is a quadratic non-residue,

H^ l , 6) + H^a, b) = 2 X e(S(gp)) = 0 (p e p"1 mod o)

and so

H1(a,b)=(-)H1(\,b).
\p/

Induction on h and multiplication over all prime ideals gives

where H(b) depends only on b and the prime elements p. Inserting a = 1, we get the
desired formula.
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QUADRATIC RECIPROCITY LAW 23

LEMMA 2. G,(l, b) = e(§S(a(gb)-<r(geb)))^y-) |M>|1/2.

It will be proved in §5. From this follows

(~ M _ G g U , ") _ / _ -| \S(<T(Keh)-cr(Rb))/2 _ / _ 1 \S(cr(b)-cr(eh))/2 /-g\

b 1 G,(l,6) '
The factor cr(g) in the exponent has been omitted without changing its residue mod 2.

LEMMA 3. For ax,a2 prime to b and blt b2 prime to a and each other the following
product rules hold:

( ((
\ b I \bl\b

and

with

x, b2) = iSUaibJ- l)(a(b2)-1)- (a(ebi)- l)(a(eb2)- 1)].

Proof. The first product rule is a consequence of Lemma 1.
In the sum

we put p = 62Pi + biP2
 a nd le t Pi. Pi r u n modulo bu b2. Thus the sum becomes a product

of two sums:

Gs(a, b^b2) = Gs{ab2, b1)G%(abu b2).

Whence, by Lemma 1,

/ a \ = (a\(a\(bA(b^
KbjJ \bj\bj\bj\b G,(l, ftOG.d, b2)

with \bJ\bJ\bJ\b
w'(fci, b2) = ±S[cr(g)(.*{bJ - l)(cr(b2) - 1) - <T(g)(a(eb) - D M s J -1)] .

The summands on the right are all congruent to 0 mod 4 and may therefore be replaced
by their negatives without changing w'(bi, b2) mod 2. So the factor er(g) in the sum may be
dropped.

Our analogue of the simple theta function is

2T)), (9)
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where a> runs over all elements of the maximal order o of K, and TV are complex variables
such that gvTv have positive imaginary parts. Similar to (5), we will prove in §4 that

lim |N(A)|1/2dg(2 £ + i\) = Gg(a, b) |JV(ft)|-1JV(g)-1/2 (10)

with real Av such that all g1/Av,>0.

3. The triad. The analogues of (l)-(3) are

(where only b = eb mod 4 is assumed while a is arbitrary) with

- l ) ) (lla)
if

and 7 v >0 for all v. (lib)

^ ^ M ; f])
with

4: f ] ) © ^ ) ^ ! - " (12a)

<arg(7vTv + S v ) g . (12b)

provided that, for all i>,

Also, we have the reciprocity law

with
w(a,b) = iS((o-(a) - l)(cr(b) - 1)) ~iS((a(ea) - l)(or(eb) - 1)). (3a)

We remind the reader that the use of sa and eb express the assumption that a and b are
congruent to units ea and eb mod 4. (13) differs formally from a known formulation. That
will be discussed in §6.

The equivalence of (11) and (12). At first it must be made clear that (12) holds up to
an unknown root of unity v(y, 8), which has to be shown in §4. Now we verify that (11)
with this unknown factor v(y, 8) follows from (12) with this same factor. This is an easy
calculation in which the following points have to be observed.

(i) We study the behaviour (16) under the group

' 8 ' - f l y = l , a',8',ifl '€o, 7'e2g
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QUADRATIC RECIPROCITY LAW 25

acting on r = 2 -+ ik. It is with € rOe(4g)
b L7 SJL7

a'r + (3' aa

(ii) The assumptions include

sB = e6eb mod 4.

(iii) The last factor in (16) is (according to the condition (12b))

IB N 1 / 2

^ + > A J
the square root of each factor taken in the right half plane. This implies

lim

and N{...) = 1 because we assume g and 7 » 0.
(iv) The formula (10) both for

. , . . . . . and \, . _
b I \ B

translates (12) and (16) into the following relation between Gaussian sums:

Gs(a, b) \NibT1

which is evaluated by means of Lemma 2 and gives (11) with the factor v(y, 8) on the
right.

[a pi
The derivation (13)—»(11). We assume g » 0 and take with the second line

"Ly 5 J
7 = 4c2fo, 8 = a, where c is the smallest rational integer divisible by g. Under this
assumption

4c2A = (4c2+ \)aa - 1.

Using Lemma 3 and (13), we have (because of (8))

/AN _ / aa + pb N /aa\ _ /(4c2+ l)aa - IN _ / - 1 N _ / - I '
\B)~\(4c2+l)a)\b l~ \ (4c2+l)a / V(4c2+l)a/ \ a

(the second factor in the second term is 1 because aa— 4c2(5b = 1). With the supplemen-
tary rule (8), (11) is now

with w(a, b) as in (13a). Because of (13), the factor v(y, 8) is 1.
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Application of (11) with

[« 01 f 1 01

U srUy iJ
yields

(*\ - ( a )
\b) \b+4ya/

under various assumptions on a, b, and y, for instance if these are all totally positive. This is
already a weak form of the reciprocity law.

REMARK 1. The assumptions g»0 , Y » 0 are essential. Without them a further factor
N(a(gy)...) would appear in (11), which would be inconsistent with the reciprocity law.
Also a weaker assumption gY»0 would change (11) and (12).

REMARK 2. The terms 5(eb) etc, in Lemma 2 and (11)-(13) cannot easily be seen to
be invariants of b etc. when eb is replaced by another unit eb=ebmod4. Nevertheless,
Lemma 2 and (11)—(13) contain intrinsic statements and cannot depend on the choice of eb.
For further remarks on this point see §6.

4. The theta function. From now on we drop the assumption g » 0. We have to use
two specializations of the matrix theta function

d(T, x, y) = X e( |T[m-y] + x'm-§x'y), (14)

where T is an n-rowed complex matrix in the Siegel upper half space, and x and y are
complex column vectors; m runs over all vectors with components in Z, and

T[m-y] = (m-y) 'T(m-y) .

Let w" bea basis of the maximal order o of K. With it we form the matrix (l = (co£) in
which n numbers the rows and v the columns, a>* being the i/th conjugate of co*. We put

T = ndiag(gT)ftI, (15)

where diag(gr) means the diagonal matrix with the entries gvv The TV are n variables,
and we assume that the imaginary parts of gvrv are positive.

Let M = be the 2 n -rowed matrix with

A = (I diag(a ')fi~ \ B = Cl diag(g/3 ')fi',

C = O " diag(g~ Y ) f T \ D = Cl" diag(S')fl'
and

a' ,8 '60, P'eg-1, Y'efl.

It belongs to the Siegel modular group Tn, and even to the so-called theta subgroup T^n if
the symmetric matrices

C'A = Cl" diagtgaVXr1, D'B = Cl diag(g0'5')n'
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QUADRATIC RECIPROCITY LAW 27

have even diagonal elements, and this is the case if

(3'8'e28-'.

But we will only demand a',8'eo and /3'e2o, Y'e2g. Under this condition the theta
function satisfied the functional equation [1], [i]

d(T,x, y) = x(M)#((AT + B)(CT + D r \ A x + B y , Cx + Dy)det(CT + D)~112

with a root of unity x(M). When T is specialized as in (15) and x = y = 0 it assumes the
form

#«(T) = Z e(|S(gw2T)) = v(M)#J — *-- W y ' r + 8')~m (16)
8 \7T + S7

which can be written as (12) with another root of unity v(y,8) on the right and

r«
LY 8J L27' 8'Y

In §3 it was proved that v(y,8) = 1 from the reciprocity law.
A further application of the general functional equation is [1]

•fr(T, 0, y) = de t ( - i7T 1 / 2 #( -T- \ y, 0), (17)

where the square root is positive for T = iY if Y is positive definite and analytically
continued in the upper half space. For T as in (15) we have, with the discriminant D of K:

det(-«T)1/2 = |D|1/2N(-igT)1/2 = |D| 1 / 2n (-ifcTj172

with positive real parts. The inverse matrix is

T"1 = O - diag(g-1)diag(gT-1)diag(g-1)fi-1.

Here we have

and dPg 1,..., wng J is a basis of the ideal b lg 1 = g '.
Now (17) assumes the form

(18)

As a first application of (18), we consider the theta function (9) with T = —+iA:

pmodb
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The second factor is as in (18) with T = iA and gb2 instead of g and therefore equals

(20)

As A —> 0, all terms in the sum vanish except that for co = 0, and so we get (10), observing
that|D||N(g)| = |

2a
5. The reciprocity law. We begin with T = ——HA, -n = 0 in (18), using

b

T + i A + O ( A ) , A (
2a xla

and

lim N(-igr)1/2= \N(g)\m | iv (y) | 1 / 2 e ( y S(cr(ga6))).

In this way we get

lim |N(A)|"2 0,(2 ^+ /A) = |D|"1

where p runs over the residues of g~'mod2ao and a> over 0 if g is prime to 2a. The
second sum is similar to that in (19), (20) and yields after multiplication by iV(A')"2 the

Collecting the last results together with (10), we obtain

GM b) \N(b)r/2= e&S(<r(gab))) \N(2a)r<2 |N(g)|-/2 £ e{^ s ( ^ p2)), (21)

where p runs over a system of representatives of g"1 mod 2ao.
It remains to determine the finite sum on the right. For this we put (assuming a odd

and g prime to 2a)

with poeg"1 mod 0, pj€o mod 2o, p2eo mod ao.

Instead of p0 and pt we can write 2ap0 and ap1. So the sum becomes a product

|N(2a)|-1/2 |JV(g)|-1/21 e ( ^ s ( ^ p 2 ] = HQ(ab)H2(ab)G,(-b, a) |Ma)|"1/2

with the abbreviations

> 2 Z 2 ) (22)
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QUADRATIC RECIPROCITY LAW 29

and

H2(ab) = 2-"<2 £ e ( ^ S(gabp2)) (Pl € o mod 2o). (23)
Pl \ ^ /

Comparison with (21) yields the nucleus of the reciprocity law

GH(a, b) \N(b)\'m = e&S{*(gab)))Ha (ab)H2(ab)G^(-b, a) |N(a)|-1/2. (24)

To proceed further we need the following lemma.

LEMMA 4.

It is almost identical to Lemma 1 if there the summation is over p = bpu Pi running over
b~lo mod o.

After this preparation we proceed with the discussion of (24). At first we insert
a = 1, b = e, a unit, and get

l = e(|S(a(ge)))H,(e)H2(e). (25)

Now we divide (24) with a = 1 by (25) with e = eb and use Lemma 4 and H2{b) = H2(eb).
This gives the value of Lemma 2 for the Gaussian sum.

Finally we divide (24) by (25), but with e = eaeb:

g(l, b) \N(b)r/2= eaS(a(gab)-a(geaeb)))(^^-)Gt(-b, a) |N(a)|-1/2.

Knowing the Gaussian sums on both sides and the value (8) for I — I, we obtain now
\ a I

(!)(!)-(-«-"'•

w(a, b) = iS[a{g){cr{a) - l)(tr(ft) - 1) - er(g)(a(eo) - l){cr{eb) -1)].

Since the individual summands are all congruent to 0 mod 4, we may change their signs
and so drop the factor <r(g). This completes the proof of (13).

6. Remarks on the literature. An extensive survey of previous work on the recip-
rocity law has been given by Siegel [6], including an independent proof which also covers
mixed real and imaginary fields. We need not repeat it, but we will only mention that the
first proof in the rational case, using the theta function, has been given by Kronecker.
Hecke [3] extended the proof to real quadratic fields.

Surprisingly there are two versions of the reciprocity law, namely (13) and
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if a = b = 1 mod 2. In the mixed real and imaginary case, we must put cr(av) = <r{bv) = 1 if
Kv is not real. The same formula has been proved by Hasse in the context of class field
theory (see [6]).

Evidently (13) and (26) coincide in case of the rational field Q. For fc^Q the
comparison of (13) and (26) implies

S[(eo - l)(eb -1)] - S[(a(ea) - l)(<r(e6) - 1)] mod 8

for two units ea and eb which are congruent to 1 mod 2. (For the notation see the
convention in §2.)

In the case K = Q(Vd), (27) can be checked independently. It is particularly easy if
N(ea) = N(eb)= 1. If N(ea) = l, N(eb) = - 1 , ea is the square of another unit, and if
N(ea) = N(eb) = - l , their quotient is a square.

The invariance of the expression for Gg(l, b) in Lemma 2 under a change eb -> e'b in
the quadratic case is also evident, because under the assumptions made the quotient of
both units is a square.

Lastly, the case K = Q(\/d) shows that our assumptions on a and b cover partly
different cases than those of Siegel and Hasse, and sometimes even more cases.
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