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Abstract

Tunable microwave devices will play an important role in future wireless systems, in which
high-frequency bands, e.g. millimeter waves, will become promising, due to its huge spectrum
availability. At such frequency bands, liquid crystals (LCs) exhibit low microwave loss, which
is excellent compared with the other tuning elements. In this paper, LC-based microwave
components are fabricated by using low temperature co-fired ceramic technology, allowing
the integration of the LC into microwave structures. The first component, the amplitude
tuner, controls the signal’s amplitude by using the interference concept, which exhibits a tun-
able attenuation range from 11 dB to 30 dB at 30 GHz. The second component is a 3-pole
tunable bandpass filter, which is realized by using a substrate integrated waveguide topology,
enabling a device with comparatively high-quality factors (Q-factors). The measurement
results show Q-factors in the range of 68 to 100 for a frequency tuning of 29.4-30.1 GHz,
i.e. a tuning range of 700 MHz, accompanied by an insertion loss 2 dB to 4 dB.

Introduction

To enhance the functionality of the modern wireless systems, tunable microwave devices are
important to be investigated. For example, in millimeter wave systems, beamforming networks
are highly demanded, and so their elements such as tunable phase shifter and amplitude tuner.
In addition, tunable devices can also save a lot of space and weight, which is important, e.g. in
satellite systems. Hence, for example, a filter bank, which contains several filters with different
center frequencies, can be replaced by a single tunable filter, where its center frequency is
adjustable.

Tuning elements can be included into a fixed microwave component in order to obtain a
tunable device. Liquid crystal (LC), specifically synthesized for microwaves, is one of the prom-
ising tuning elements, which exhibits a low loss at high frequencies, typically above 10 GHz [1].

For an LC-based tunable device, biasing network and proper sealing of LC is needed. A
technical solution for these challenges can be found by using low temperature co-fired ceramic
(LTCC) technology for the fabrication process. This technology employs several layers of sub-
strate, which also supports metallizations (planar and vias), resistive lines, and cavities.
Integration of LC into phase shifters have been successfully demonstrated in [2,3] with the
help of LTCC technology. Moreover, this combination of LC and LTCC is also suitable for
space applications [4], which gives an advantage compared with the other technologies.

An LC-LTCC component, the amplitude tuner, has been proposed in [5]. In this paper, the
work is extended to fabricate tunable substrate integrated waveguide (SIW) filters, which are
proposed for the first time. The components are working at around 30 GHz. Before discussing
both components, a brief introduction to LC is given in the section “Fundamentals of LC for
microwave applications”. The LTCC fabrication process is explained in the section “LTCC
fabrication technology”. The proposed components are discussed in the sections “LC-based
amplitude tuner” and “Electrically tunable LC-based SIW filter”, for amplitude tuner and
tunable filter, respectively.

Fundamentals of LC for microwave applications

LC is a state of matter between a solid crystalline and liquid. Thus, LC inherits the property
from both states of material: it can flow like a liquid but has an orientational order at the same
time. This orientational order comes from the rod-like LC molecules, which tend to point at a
certain direction. At a small volume, this orientation can be described by the director 7, a unit
vector, representing the preferred orientation of the corresponding molecules.

Anisotropy is an important property of LC, which is observable in its relative permittivity
and also loss tangent. When RF electric fields are applied inside the LC, they will see a relative
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Fig. 1. The basic concepts of LC: (a) director, (b) perpendicular, and (c) parallel state
of LC. The RF fields Egr experience different value of permittivity, ranging from €, to
&), for perpendicular and parallel state, respectively. The states can be controlled
continuously by either external electric field £ or magnetic field Hp.

permittivity of &, if those fields are in the same direction as the
LC directors. On the other hand, the relative permittivity would
be €, if those fields are perpendicular to the director. Since
the directors are controllable, the relative permittivity experienced
by those electric fields varies continuously between those extreme
states. As can be seen in Fig. 1, to align the directors into a certain
orientation, biasing is needed, either magnetic or electric biasing.
Usually, electrical biasing is preferred, resulting in a more com-
pact device compared with the magnetic biasing. An example of
a fully electric biasing method is described in Fig. 2 [6], which uti-
lized fixed voltages V;, and tunable voltages +V,,. By varying £V,
both extreme states can be obtained, as well as the intermediate
states.

The LC GT3-23001 from Merck is used and has following
properties at 30 GHz: €,, = 2.47, g, = 3.16, tand,; = 0.0151
and tan &, ; = 0.0033.

LTCC fabrication technology

The proposed components are fabricated by using LTCC technol-
ogy, which provides an easy integration of the LC, as well as the
biasing circuit, into the main components. The detailed fabrica-
tion process is explained in [3], where several layers of
107 um-thick DuPont 9K7 GreenTapes were used as the LTCC
substrate. This material has a relative permittivity of 7.1 and a
loss tangent of 0.0015 at 30 GHz. For the metallizations, gold
pastes are used, which are LL505 for the planar metallization
and LL500 for the via filling. All of the biasing lines are made
of a resistive paste 2061. This paste is almost transparent to the
high-frequency field but it is resistive for the DC or low frequency
biasing signal. All of these materials are qualified for space
applications [4,7].

The LC cavity, which is formed through punching, occupies
only a single layer of LTCC in both of the proposed components.
This cavity is sealed during the fabrication process, however, a
filling hole with a diameter of 0.5 mm is kept open. The LC injec-
tion, which is carried out after finishing the LTCC process, is
performed through this hole in a vacuum chamber to minimize
the amount of air bubbles inside the cavity. At the end, the filling
hole is sealed completely by using two components glue to
prevent any LC leakage.

LC-Based amplitude tuner

Amplitude-tuning devices have wide applications, for example, in
RF signal cancellation circuits and complete beamforming
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Fig. 2. An example of electrical biasing system for LC-based tunable microwave
devices. Here, fixed (V, and —V,) and tunable voltages (V, and —V;) are applied to
the biasing lines to steer the LC director into (a) perpendicular state (when V,, = —V;)
and (b) parallel state (when V,=V,). Intermediate states can be obtained when
— Vo< V<V

networks. To realize such an amplitude tuner, several tuning
elements can be used, for instance, tunable resistors, which can
be implemented by using PIN diodes [8] or field-effect transistors
(FET) [9]. However, these tunable resistors need biasing currents
in order to tune the resistance, leading to a nonzero power
consumption. On the other hand, recent research shows that tun-
able capacitors or varactors can be employed to realize an ampli-
tude tuner [10-12]. Most of those devices are working in a
low-frequency band, typically below 12 GHz. In this section, an
LC-based amplitude tuner is proposed for a frequency at 30 GHz.

Operational principle of the amplitude tuner

To change the amplitude of a signal, the concept of interference in
the signal theory can be employed. Let y; and y, be both time-
varying sinusoidal signals with the same frequency (f), amplitude
of A} and A,, as well as phase of ¢, and ¢.:

=4 cos(Zﬂft + q&l)

(eY)
y2 = Az cos(2mft + ¢,).

When both of the propagating signals are incident at a certain
place, interference occurs. The sum of both signals is still a sinus-
oidal signal with the same frequency but different amplitude

(Atotal) and phase (Protal):
YViotal = V1 +)/2 = Atotal C05(277ft + ¢t0tal)‘ (2)

With the help of the phasor concept and trigonometric identities,
the total amplitude and phase can be expressed as:

Autat = /AT + A3 + 2414, cos( by

d) = tan_1 A Sin(d)l) + 4 Sin(d)Z) (3)
total = Ay cos(¢py) + Az cos(¢py) )’

where ¢y = ¢, — ¢, is the phase difference between y, and y;. By
varying ¢qis the amplitude of the total signal can be controlled.
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Fig. 3. Block diagram and working principle of the amp-
litude tuner. Three main subcomponents are presented: Input signal: Signal at A, B, D: Signal at C: Output signal:
tunable phase shifter/fixed line, power divider/combiner
and DC-blocking structure. The phase difference gt . A ‘U\/ﬁ ,,,,,,,,,,,,,,
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range of 0-A. See the signal at each point for the details.

For example, A Will be maximized (Ao =A4A;+A,) when
¢airr=0°. On the other hand, Ay =0 can be achieved when
destructive interference occurs (A;=A, and ¢gir=180°).
Therefore, continuous tuning of ¢gr between 0° and 180° yields
a continuous amplitude variation between A; + A, and 0.

Consequently, an amplitude tuner with an input signal of
y(t) = Acos (2zft + ¢) can be realized by splitting the input signal
into two branches: a tunable phase shifter and a fixed transmis-
sion line. The tunable phase shifter controls the phase difference
¢aitr between both branches. The signals from both branches are
combined again, yielding an output signal described by Eqn 2
and 3. An equal power divider or combiner can be employed
for this purpose. In addition, DC-blocking structures are also
needed to prevent the flow of the biasing current from the
tunable phase shifter to the VNA. The main block diagram is
shown in Fig. 3.

The overall structure of the amplitude tuner, which is fabri-
cated by using 9 layers of GreenTape, as well as the dimensions
of the structure, are depicted in Fig. 4. The stripline phase shifter
from [3] is used due to its better tunability compared with other
planar LC structures, such as microstrip line. The dimensions are

Hybrid coupler as power combiner,
introduces a —90° phase difference

Output

designed so that the tunable phase shifter exhibits a differential
phase shift of 180°. For the biasing purpose, a fully electric biasing
scheme is used, where voltages of V|, and 0 V control the parallel
state and +V, the perpendicular state. Details of the biasing
scheme are presented in [5]. There, simulation results from CST
Microwave Studio can be seen as well, where the intended phase
shift is achieved with an insertion loss <5.6 dB. For the power div-
ider and combiner, hybrid couplers are used, due to the techno-
logical constraint on the fabrication process. The simulation
results for the hybrid coupler, as well as the DC-blocking structure,
are also presented in [5], which give additional losses of 0.6 dB for
the hybrid coupler and 1 dB for the DC-blocking structure.

Measurement results

The realized device is shown in Fig. 5. In the measurement, the
ports are connected to the PNA-X network analyzer from
Keysight Technologies through the GSGSG probes. Three biasing
pads are also shown in Fig. 5. The maximum voltages are 80 V
and 100 V for V| and V, respectively.

Hybrid coupler as a power divider,

lati
AN introduces a 90° phase difference

additional phase shifts

between path H3-H1 and H2-H1

between path H1-H2 and HI-H3:

: ; Phase difference I b
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Fig. 4. The overall structure of the amplitude tuner with the following subcomponents: tunable LC phase shifter, fixed line, power divider/combiner (hybrid coup-

ler), and DC-blocking structure. Nine layers of LTCC are used with a single layer thickness

of hitcc =107 um. The following dimensions are used: (a) [y, = 38.3 mm,

lgix = 48 mm, Wy, = 180 um, and wg;, = 150 um for the tunable LC phase shifter and fixed line, (b) Wjjne =100 um and Wyranch = 200 um for the hybrid coupler and

(c) wepw =150 um, Wgap =150 um, ly,=1.21 mm, wy,=0.96 mm, and wys =100 um for the
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Fig. 5. Fabricated amplitude tuner. A GSGSG probe is mounted to port 1-4, as well as
port 2-3. The biasing pads are connected to the voltage sources for biasing purpose.

The measurement results are compared with the simulation
results of the whole structure. Both of them are presented in
Fig. 6. The attenuation can be tuned continuously from 11 dB
(9.5 dB in the simulation) to 30 dB with a return loss around
10 dB. The metallization is the main cause of the high insertion
loss. An additional simulation (see Fig. 6¢) proves that the inser-
tion loss can be reduced to 2 dB by replacing the metallization
in the device with a perfect electric conductor (PEC). On
the other hand, the usage of lossless LC (LLC) with the
gold paste as the metallization only reduces the insertion loss
to 8 dB.

The proposed amplitude tuner is compared with other similar
devices, which feature amplitude tuning properties. The compari-
son is summarized in Table 1. Most of them are using tunable
resistors or varactors to tune the amplitude, which works at a
frequency lower than 12 GHz. Although the insertion loss of
this amplitude tuner with 11 dB is much higher than of the
other devices, its operating frequency of 30 GHz is also much
higher. In addition, the proposed component is completely

s —— 1.5
2 s
o —— 1M
2 —=— || .M
= —b— 1.8
g i Il.s
= —— 1M
w —&— ||.M
(b)

= P = 1[——rPECS
‘_-.3; . —=—LLCS
| &
& .
_ (WAl | | _-J

40

Frequency (GHz)
(c)

Fig. 6. Simulation and measurement results of the overall amplitude tuner structure:
(a) reflection S;; and (b) transmission coefficient S;;. Additional simulations using
perfect electric conductor (PEC) and lossless LC (LLC) are also performed and
included in (c). Note: S =simulation, M = measurement.
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Table 1. Comparison of various amplitude tuners

PIN Diode [8] 2.5-5.3 12 2.5-15
HFET [9] 3-3.4 N.A 6-30
Varactor [10] 3-4 N.A. 2.2-17
Varactor [11] 2.3-2.7 10 1.6-36
Varactor [12] 0.93 20 5-36
CMOS [13] 8-12 10 8-35
LC, this work ~30 10 11-30

space qualified, giving a major advantage compared with the
existing technologies.

Electrically tunable LC-based SIW filter

Several LC-based tunable bandpass filters have been reported,
mostly utilizing planar structures such as periodically loaded
line [14], microstrip [15] or parallel-coupled line resonators
[16]. However, the Q-factor of the planar resonators are relatively
low, typically not exceeding a Q of 40 due to system-inherently
high losses of planar structures. On the other hand, waveguide
structures offer tunable filters with higher Q-factors. LC-based
waveguide filters have been reported [4], where Q-factors better
than 170 around 20 GHz are obtained. However, waveguide filters
are usually very bulky.

In recent years, SIW structures have attracted many research-
ers, due to their trade-off properties between conventional planar
and waveguide structures. These structures exhibit low loss prop-
erty and can be fabricated by using planar technologies, such as
LTCC. Tunable SIW filters have also been fabricated using various
tuning elements [17-20].

A magnetically tunable SIW-LC bandpass filter has been
demonstrated in [21], resulting in a device with a Q-factor up
to 105.6 operating around 20 GHz. Since the magnets consume
a lot of space resulting in a bulky device, an electrically tunable

LC cavity
Filling hole
Biasing pads

GCPW-SIW

Upper =
transition

metallization
(partly shown)

Via
Resistive line

LTCC layer

Biasin,
pad 3

Biasing lines LC sw_
metallizations

(layer 3)

Fig. 7. LTCC-LC-based tunable SIW resonator. The following dimensions are used:
Qres=3 MM, les=2.95mm, aiis=13 mm. The metallic via has a diameter of
0.2 mm with a pitch of 0.6 mm.
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Fig. 9. Simulation (S) and measurement (M) results for an LC-SIW resonator.
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Fig. 10. Fabricated tunable SIW devices: (a) resonator and (b) filter. The configuration
of the biasing voltage is also shown.

SIW-LC bandpass filter is proposed in this paper. The filter will
be designed to operate at 30 GHz.

Electrically tunable SIW-LC resonator

Before working on the higher order bandpass filter, a single
resonator is designed first to verify the technology. An SIW cavity
is designed in a 4-layer LTCC technology. The cavity structure,
along with the dimensions, is depicted in Fig. 7. The dimensions
are selected so that the filter will work at frequencies around
30 GHz. Inductive irises are used to couple the resonator with
the SIW transmission line. The transition between the SIW line
and the grounded coplanar waveguide (GCPW) line from [22],
which is connected to the measurement probes, is also presented.
In addition, the whole biasing network and the hole for LC injec-
tion are also shown in Fig. 7. Some vias are removed from the via
array in the GCPW section to connect the biasing line to the
biasing pad or the voltage sources.

Since not all of the directors point in the same direction as
indicated in Fig. 2, the effective value of relative permittivity of
LC &, will be examined first by using a simulation tool
SimLCwg from [23]. A transmission line, which its cross section

https://doi.org/10.1017/51759078718000600 Published online by Cambridge University Press
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Fig. 11. The tuning time measurement of the SIW resonator, which is conducted
through the differential phase shift measurement at 30.5 GHz.

Fig. 12. 3-pole tunable Chebyshev filter using LTCC. The following dimensions are
used: lres, 1= 2.89 mm, lres, 1 = 2.95 mm, a0, = 1.89 mm, g;;,= 1.6 mm, and a=3 mm.
Note that the structure is symmetric.

| ——
) o - T
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S-parameter (dB)

Frequency (GHz)
(b)

Fig. 13. The (a) simulation and (b) measurement results of the 3-pole filter.

is the same as the resonator’s cross section, is utilized. Fig. 8 shows
the relation of the propagation constant S of the aforementioned
structure and the effective relative permittivity of LC. The effective
relative permittivity is obtained for LC GT3-23001 in this SIW
structure: €, | = 2.64 and &, o, = 3.1. These values will be
employed in the simulation of the resonator.

Using CST Microwave Studio, this structure is simulated and
the center frequency varies from 31.4 GHz at perpendicular
state to 30.3 GHz at parallel state (tunability of 4% or
1100 MHz) as can be seen in Fig. 9. The obtained Q-factors are
69 for the perpendicular state and 118 for the parallel state.


https://doi.org/10.1017/S1759078718000600

International Journal of Microwave and Wireless Technologies

679

Table 2. Comparison of tunable resonators and filters with various tuning technology

Topology Tuning Element n fo (GHz) IL (dB) FBW (%) Estimated Q-factor
Periodically loaded line [14] LC 3 18.5-20.5 8-10 4-9 25-31
Microstrip [15] LC 1 2.7-2.9 0.97-1 22-25 37-43
Parallel-coupled line [16] LC 3 31-34 4.4-5.6 5.46-7.25 22-28
Waveguide [4] LC 3 19.7-20.1 5-7 1.1-14 170-484
SIW [17] BST 2 2.95-3.57 33 5.4 up to 66
SIW [18] MEMS 2 1.2-1.6 2.2-4.1 3.2-43 93-132
SIW [19] Varactor 1 2.6-3.1 25-45 0.7-2.5 40-150
SIW [20] Ferrite/Varactor 2 10.8-11.9 1-2 4-4.1 up to 130
SIW, PCB [21] LC, Magnetic 3 21.5-22.06 6 2.81-3.54 102-105.6
This work, SIW, LTCC LC, Electric 3 29.4-30.1 2-4 11.2-11.6 68-100

n, filter order; f,, center frequency; IL, insertion loss; and FBW, fractional bandwidth.

Note that the parallel state always has the better Q-factor due to
its lower loss tangent.

The resonator, which is fabricated at the German Federal
Institute for Materials Research and Testing, is shown in
Fig. 10. After the fabrication process, measurements can be per-
formed. The biasing scheme is the same as in Fig. 2, where vol-
tages of Vo, —Vy, V}, and —V,, are applied to each biasing pad.
The S-parameter measurement results are also depicted in
Fig. 9. The tuning range is reduced to 30.16 GHz to 31 GHz (tun-
ing of 3% or 840 MHz), possibly due to the fabrication tolerance.
The Q-factors are 68-100. To achieve the extreme states, the max-
imum voltage needed is 80 V both for V, and V.

In addition to the S-parameters, the tuning time of this resonator
is also investigated. For this purpose, continuous wave
measurements at a single frequency are performed, which provide
a better recording speed compared with the measurement for
whole frequency range. The phases, which correspond to the LC
state, are measured at 30.5 GHz. The tuning times are measured
between 10 and 90% of the phase shift. The obtained tuning time
is 2s and 1.5s, as shown in Fig. 11, for rise and fall time, respect-
ively. This is a major improvement compared with the LC-based
waveguide filter, which has tuning times in order of minutes [4].

Electrically tunable SIW-LC 3-pole bandpass filter

The SIW-LC resonators can be cascaded to form a higher order
bandpass filter. Designed for the center frequency of 30 GHz, the
structure depicted in Fig. 12 is simulated using CST Microwave
Studio. This filter is a 3-pole Chebyshev filter designed for a
3 GHz ripple bandwidth. As shown in Fig. 13, the simulation yields
a center frequency tuning range of 29.4-30.2 GHz while the meas-
urement gives almost similar results, 29.4-30.1 GHz, i.e. a tuning
range of 700 MHz. The difference can be seen on the return loss,
which is reduced to 6 dB due to imperfect transition at the input/
output ports. The filter has an insertion loss from 2 dB at the par-
alle] state and up to 4 dB at the perpendicular state with a ripple up
to 3 dB. The fractional ripple bandwidth for both states has a small
difference: 11.6% at perpendicular and 11.2% at parallel state.

The comparison of this filter and other proposed filter is
presented in Table 2. It can be seen that the Q-factors of the SIW
filter are higher compared with planar LC-based filters, which
yield Q-factors typically below 40. Although waveguide filters [4]
are expected to have a better Q-factor, its size and weight are
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drawbacks. Compared with the other tuning elements, the operating
frequency of this filter is generally much higher with comparable
Q-factors, which makes this LC filter more promising.

Conclusion

In this paper, two tunable microwave components have been
demonstrated and fabricated by using LTCC technology: amplitude
tuner and tunable filters. The amplitude tuner employs a
tunable-LC phase shifter in stripline topology. Based on the interfer-
ence principle, the output amplitude can be continuously controlled
by changing the biasing voltage at the tunable phase shifter. The
measurement results exhibit an attenuation range of 11-30 dB at
30 GHz, which has a suitable agreement with the simulation.

The second device, which is the tunable filter, is designed in
SIW topology due to its low loss property. First, a resonator has
been fabricated to verify the idea. It has Q-factors in the range
of 68-100 with a tuning range of 840 MHz. This resonator can
be combined to make a higher order filter, for example 3-pole
Chebyshev filter, which works around 30 GHz. This filter has
also been demonstrated with a tuning range of 700 MHz and
ripple bandwidth around 11%.
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