
2

What lies beyond the Standard Model?

The Standard Model is a consistent, renormalizable quantum field theory that ac-

counts for a wide variety of experimental data over an energy range that encom-

passes a fraction of an electron volt to about 100 GeV, a range of over twelve orders

of magnitude.1 Initially, the SM was tested at the tree level, but the remarkable

agreement between SM predictions and the precision measurements at the CERN

LEP collider have tested the SM to at least a part per mille and, more importantly,

have established that radiative corrections as given by the SM are essential for

agreement with these data. Quite aside from this, the SM also qualitatively explains

why baryon and lepton numbers appear to be approximately conserved: with the

particle content of the SM, it is not possible to write renormalizable interactions

that do not conserve baryon and lepton numbers, so that these interactions (if they

exist) must be suppressed by (powers of) some new physics scale.

The SM is nevertheless incomplete. Experimental arguments in support of this

are:

� E1 The solar and atmospheric neutrino data, interpreted as neutrino oscillations,

strongly suggest neutrinos have mass.
� E2 Observations, starting with Zwicky in 1933 and continuing to this day with

studies of the fluctuations in the spectrum of the relic microwave background from

the Big Bang, have established the existence of cold dark matter in the Universe

for which there is no candidate in the SM.2

� E3 Observations of type Ia supernovae at large red shifts as well as the cosmic

microwave background radiation both suggest that the bulk of the energy of

1 This is a rather conservative estimate. For instance, it may be argued from the dipole nature of planetary
magnetic fields that (at least) electrodynamics has been tested out to Solar System distance scales.

2 Gravitational microlensing data disfavor black holes (at least in our galactic halo) as dark matter, while dark
matter in the form of ordinary baryons condensed into brown dwarfs is excluded, both because it would lead
to conflicts with Big Bang nucleosynthesis as well as with the baryon density as determined from the acoustic
peaks in the cosmic microwave background spectrum.
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12 What lies beyond the Standard Model?

the Universe resides in a novel form dubbed “dark energy”. This could be the

cosmological constant first introduced by Einstein, or something more bizarre.
� E4 Gravity exists.

There are also theoretical or aesthetic considerations that suggest that the SM cannot

be the complete story.

� T1 We lack any understanding of particle masses and mixing patterns, which

results in the large number of underlying parameters in the SM.
� T2 The choice of gauge group and particle representations is completely ad hoc.
� T3 Although we can incorporate the spontaneous breakdown of electroweak

symmetry by introducing new scalar fields, we have to do so “by hand” via an

arbitrary scalar potential; i.e. there is no understanding of why the squared mass

parameter for the Higgs field is negative. Indeed, it remains to be seen whether

VEVs of elementary scalar fields are the origin of electroweak symmetry breaking.

While these arguments (especially E1–E3) all point to new physics, without

further assumptions, they do not point decisively to the scale for this new physics.

Fortunately, there is a somewhat different argument that not only suggests that

there should be new physics, but also that the scale of the new physics is close to

the electroweak scale. To understand this, we must first examine the divergence

structure of the radiative corrections in the SM.

2.1 Scalar fields and quadratic divergences

Let us begin by considering radiative corrections to quantum electrodynamics de-

scribed by the Lagrangian (1.1a). The theory describes the interactions of a fermion

with a photon. As discussed in the exercise below, these interactions conserve chi-
rality: a left-handed fermion, when it emits (or absorbs) a photon, remains left

handed, while a right-handed fermion remains right handed. The kinetic energy

term also conserves chirality. Indeed the only term in (1.1a) that does not conserve

chirality is the mass term. This observation has an immediate consequence. Because

the emission or absorption of a photon cannot change the chirality of the fermion,

any radiative correction to the fermion mass (which by the exercise below is an

operator that connects ψL with ψR) must vanish to all orders in perturbation theory

if the fermion mass is zero! In other words,

δm ∝ m.

It is well known that the loop integrals that enter these calculations are divergent.

If we regularize these using a Lorentz invariant cut-off �, by dimensional analysis
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2.1 Scalar fields and quadratic divergences 13

the cut-off dependence has to be given by,

δm ∝ m ln
�

m
.

Naive dimensional analysis would have suggested that δm ∝ �. However, because

of chiral symmetry, the actual divergence is much milder. We say that chiral sym-

metry protects fermion masses from large radiative corrections. This terminol-

ogy may seem strange since the correction diverges when we take the cut-off to

infinity – what we mean by this will be explained below.

We could similarly ask how interactions modify the photon mass. If one naively

introduces the same cut-off to regularize the integrals for vacuum polarization, it is

well known that the corrections to the squared mass of the photon are quadratically

divergent. This would imply that electromagnetic gauge invariance is broken! The

cut-off is, however, not a gauge invariant regulator.3 If instead we use a gauge-

invariant regulator (such as dimensional regularization) the radiative correction to

the photon mass vanishes. We say that gauge invariance protects the photon from

acquiring a mass.4 Indeed in quantum electrodynamics of fermions, the leading

divergence in any quantity is logarithmic, as the reader may readily argue from

dimensional analysis. There are no quadratic or linear divergences.

The divergence structure of field theories with elementary scalars is, however,

quite different. To see this, we will examine the radiative corrections to the scalar

boson mass in the SM. We could equally well have performed the same analysis

for scalar electrodynamics defined by (1.1b) and arrived at the same conclusion.

Examples of one-loop corrections to m H are shown in Fig. 2.1. The first of these

graphs gives a momentum independent energy shift to the single scalar boson state.

Using standard quantum mechanics perturbation theory, this may be evaluated by

computing the diagonal element of the interaction Hamiltonian given by the second

term in (1.18). Since the answer is independent of the momentum of the state, it

corresponds to a mass correction. We find,

δm2
HSM

= 〈HSM|g2m2
HSM

32M2
W

H 4
SM|HSM〉 = 12

g2m2
HSM

32M2
W

∫
d4k

(2π )4

i

k2 − m2
HSM

,

= 12g2m2
HSM

32M2
W

1

16π2

(

�2 − m2
HSM

ln
�2

m2
HSM

+ O(
1

�2
)

)

, (2.1)

3 This is simple to see. Under gauge transformations, Aμ(x) → Aμ(x) − ∂μα(x), or in k-space, Aμ(k) →
Aμ(k) − ikμα(k), for all values of k. We see that even if we cut off the modes with k > � in one gauge,
these do not vanish in a different gauge – i.e. a cut-off on the momentum integrals is a gauge-dependent notion.

4 We are tacitly ignoring the possibility of dynamical gauge symmetry breaking first pointed out by J. Schwinger,
Phys. Rev. 125, 397 (1962).
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14 What lies beyond the Standard Model?

+

Figure 2.1 Examples of quadratically divergent Feynman graphs contributing to
the corrections to the Higgs boson mass in the Standard Model.

where 12 comes from 12 possible field contractions. We see that this correction

is quadratically divergent. Mass corrections are more conventionally computed

by evaluating the correction to the scalar propagator. We will do so in Chapter 3

for scalar fields in a simple supersymmetric model introduced therein, and see

that, once again, there are quadratically divergent contributions to the scalar boson

mass.

Within the SM, there are other quadratically divergent contributions to the scalar

mass from gauge boson loops, as well as from fermion loops. The computation

of the gauge boson loop contribution is very similar to the one that we have just

performed, and will be left as an exercise for the reader. We will not evaluate the

fermion loop contribution at this point since we perform a very similar calculation in

the next chapter. We only note that we expect the top loop contribution to dominate,

and further, that this correction is also quadratically divergent, but with opposite

sign for the �2 term to the Higgs loop contribution. This difference in signs between

contributions from boson and fermion loops is a general feature.

Exercise Define the chiral projections ψL/R ≡ PL/Rψ , where PL = 1−γ5

2
and PR =

1+γ5

2
. For any two Dirac spinors ψ and χ , verify that,

ψ̄γμχ = ψLγμχL + ψRγμχR,

ψ̄χ = ψLχR + ψRχL.

Convince yourself that these identities imply that the kinetic energy term and the
interaction term in (1.1a) preserve chirality, while the mass term does not. Would
chirality be conserved had the interaction been axial vector instead of vector?

2.2 Why is the TeV scale special?

Having established the difference between the divergence structure of quantum

field theories with and without elementary scalar fields, let us examine the sense
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2.2 Why is the TeV scale special? 15

in which this difference may be of relevance. We note at the outset that quadratic

divergences do not imply any logical problem. The SM is a renormalizable quantum

field theory, and we can use it to evaluate radiative corrections to any precision that

we may choose. Indeed, we have already observed that unless these corrections are

included, SM predictions are at variance with precision measurements from LEP

and other colliders. What then is the problem?

To understand this, we write the one-loop corrected physical Higgs boson mass

as,

m2
HSM

(phys) � m2
HSM

+ c

16π2
�2, (2.2)

where m2
HSM

is the Higgs mass squared parameter in the Lagrangian and the second

term denotes the quadratically divergent correction in (2.1); we have dropped the

ln � terms in writing this formula. The coefficient c depends on the various coupling

constants of the SM. In writing (2.2), we only integrate over the energy–momentum

range for which we expect the SM to provide a reasonable description. In other

words, we interpret the cut-off � as the scale at which the SM ceases to be valid.

This may be because new degrees of freedom that are not included in the SM begin to

become important. These new degrees of freedom may be unknown heavy particles

whose effects are negligible at low energy, for instance, new particles associated

with grand unification. It is also possible that the SM breaks down because of new

form factors (whose origin may be some unknown strongly coupled dynamics) that

develop at the scale �. The scale � might be as low as several TeV, but certainly

no higher than the reduced Planck scale MP � 2.4 × 1018 GeV, the scale at which

quantum gravity corrections are expected to become important.

How do we judge what values of � are reasonable? Perturbative unitarity ar-

guments imply that the physical Higgs boson mass m HSM
(phys) that appears on

the left-hand side of (2.2) has to be smaller than a few hundred GeV.5 If we now

require (2.2) to be satisfied without excessive fine tuning between the two terms on

its right-hand side, we would have to deduce that � ≤ O(TeV). Again, we stress

that this conclusion stems not from a logical inconsistency of the SM but from

the additional “no fine-tuning requirement” that we impose on our theory. In the

SM the fine tuning that is required can be truly incredible: if we assume the va-

lidity of the SM as a low energy effective theory below the GUT scale, and take

� = MGUT ∼ 1016 GeV, then the Lagrangian mass parameter m2
HSM

will have to be

fine-tuned to 1 part in 1026 to provide the needed cancellation that will maintain

a physical Higgs mass below its unitarity limit. In contrast, the logarithmic term

in (2.1) contributes a correction which is ∼ m2
HSM

even for � ∼ MP. This is what

5 D. Dicus and V. Mathur, Phys. Rev. D7, 3111 (1973); B. Lee, C. Quigg and H. Thacker, Phys. Rev. D16, 1519
(1977).
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16 What lies beyond the Standard Model?

we meant when we said above that the ln � corrections, which are also present for

fermions, are not large. Put somewhat differently, the large �2 corrections imply

that if we use the high energy theory (from which the SM originates as the effective

low energy theory) to make predictions at TeV energies, these predictions would

be extremely sensitive to the parameters of the high energy theory if � 
 1 TeV.

While this is not logically impossible, this is usually thought to be symptomatic

of a deeper problem. We refer to this as the fine-tuning problem of the SM. If we

take this seriously, we are led to the conclusion that there must be new degrees
of freedom that manifest themselves in high energy collisions at the TeV energy
scale. This is especially exciting because we expect this scale to be directly probed

by experiments at the Large Hadron Collider (LHC) which is expected to begin

operation at CERN in 2007.

2.3 What could the New Physics be?

Although the arguments that we have made point to the existence of new degrees of

freedom at the TeV scale, they do not by themselves provide clues as to what this

new physics might be. Before proceeding further, however, let us carefully examine

if it is possible to evade the conclusion about the existence of new physics at the

TeV energy scale.

1. An obvious out is to accept that nature is fine-tuned, and proceed. We would then

have to give up on deducing the parameters of the low energy theory from high

scale physics, in the manner that we were able to deduce the Fermi coupling

G F in terms of the parameters of electroweak gauge theory. Some authors have

recently suggested such a philosophy. They argue that while there have been

several proposals that allow us to solve the fine-tuning problem of the SM that

we have discussed, it is still necessary to fine-tune the cosmological constant,

and to much greater extent than the scalar mass. They argue that accepting the

greater fine tuning but not the lesser one seems artificial. We will not pursue this

line of reasoning any further here.

2. There are no elementary scalar fields in nature (and hence no associated fine-

tuning issues), but composite states of tightly bound fermions play the role

of the Higgs boson. This is the idea behind the technicolor model, which

posits new technifermions that interact and bind together via an asymptoti-

cally free QCD-like technicolor interaction, that becomes confining at the TeV

scale.6 Technicolor dynamics causes technifermions to condense, leading to a

breakdown of electroweak gauge invariance. This attractive picture runs into

problems when we attempt to use the same idea to give masses to fermions.

6 For reviews, see e.g. E. Fahri and L. Susskind, Phys. Rep. 74, 277 (1981) and K. Lane, hep-ph/0202255.
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2.3 What could the New Physics be? 17

Construction of realistic models with massive fermions requires the introduction

of yet other extended technicolor interactions. The simplest models predict flavor-

changing neutral current processes at unacceptably large rates. More complicated

technicolor theories can be constructed to avoid these problems, but the mod-

els become cumbersome and are often in conflict with data involving precision

electroweak measurements. We remark that the technicolor approach predicts

several pseudo-Goldstone bosons with masses in the several hundred GeV to

TeV range as their signature.

3. The arguments leading to (2.2) are inherently perturbative, and would break

down if interactions of Higgs bosons with themselves or with the gauge or

fermion sector became strong at the scale �. One might then expect that

these strong interactions would result in new resonances, especially in the

Higgs boson and electroweak gauge boson scattering amplitudes, that would

reveal themselves in high energy collisions. Even if there is no resonance, just

an increase in the scattering amplitude may be experimentally observable in

some channels, for instance in W ±W ± scattering, where the background is

small.7

4. A very radical alternative that has received some attention in the last several

years is that gravitational effects become strong at an energy scale close to the

weak scale. The motivation is to explain the evident difference in the size of

gravitational and gauge interactions. Specifically, it is envisioned that there are

additional compact spatial dimensions with a size Mc � MP, and that (unlike

SM gauge interactions) gravitational interactions permeate all these dimensions.

Gravity appears weak at distances 
 M−1
c because most of the flux is “lost”

in these additional dimensions. These extra dimensions are directly probed in

particle collisions at energy scales >∼ Mc where effects of gravitation become

important. In such a scenario, the cut-off � in (2.2) would be ∼ Mc and the fine-

tuning problem disappears if Mc ∼ O(TeV). In this case, we would expect to see

exotic effects from Kaluza–Klein resonances of ordinary particles, production

of black holes of masses a few times Mc, and strong gravity at high energy

colliders.8

5. We have implicitly assumed that if a theory has quadratic divergences, these

will necessarily show up at the lowest order. It is logically possible that the

quadratic divergence only appears at the multi-loop level, but cancels at the

one-loop level. In this case, the second term on the right-hand side of (2.2) will

have additional powers of 16π2 in the denominator, and the scale � will be

correspondingly pushed up. Scenarios where quadratic divergences appear only

at the two-loop level have recently been constructed, and go under the rubric

7 See e.g. J. Bagger et al., Phys. Rev. D49, 1246 (1994) and Phys. Rev. D52, 3878 (1995).
8 For principles and overview, see C. Csaki, hep-ph/0404096; see also J. Hewett and M. Spiropulu, Ann. Rev.

Nucl. Part. Sci. 52, 397 (2002) for a review of the phenomenological implications of extra dimensional models.
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18 What lies beyond the Standard Model?

of Little Higgs models.9 They require new particles to ensure this cancellation.

It appears that the parameter space of the simplest of these models is already

severely constrained by experimental data. Also, it is clear that this approach

only postpones the problem by a couple of orders of magnitude in energy, so that

we will need yet more new physics at the 100 TeV scale.

We see that all but the first of these alternatives to attempt to evade the perturbative

argument that led us to conclude that there would be new degrees of freedom that

could be explored at the TeV scale invoke new strong interactions at this scale, and

so lead to potentially observable signatures in particle scattering at
√

s ∼ O(TeV).

Naively, we would also expect that these strong interactions might not decouple,

and potentially lead to observable effects in precision measurements at LEP.

The alternative is to assume that the arguments that lead to (2.2) are valid, and

that there are new degrees of freedom that are perturbatively coupled to the particles

of the SM. These new degrees of freedom must then serve to cancel the quadratic

divergence that appears because of the presence of elementary scalars. Moreover,

it is desirable to have this cancellation occur to all orders, not just at the one-loop

level. We have already had a glimmer of how such a cancellation may be arranged

when we remarked that the boson and fermion loops led to opposite signs for the

coefficient of the �2 term in (2.2). However, in general, one would not expect this

cancellation to be complete except by accident, and further, even if we somehow

got fermion loops to cancel boson loops at the one-loop level, we would not expect

the cancellation to continue at higher orders, unless the couplings of fermions
and bosons are somehow related. Such relations occur only due to symmetries.10

However, all symmetries that we know (Lorentz symmetry, baryon or lepton U (1)

symmetry, isospin, . . .) relate the properties of bosons (fermions) to those of other

bosons (fermions), but never those of bosons to those of fermions. A symmetry that

relates properties of bosons and fermions is a truly novel symmetry referred to as

a supersymmetry.

We will see that supersymmetry requires that for every boson, a fermion partner

should exist, and vice versa. In other words, every SM boson (fermion) has an as

yet unseen fermionic (bosonic) supersymmetric partner. Moreover, supersymmetry

relates the interactions of SM particles and their supersymmetric partners in the

same way that isospin relates the interactions of protons and neutrons. It is these

9 For a review, see M. Schmaltz, hep-ph/0210415.
10 Relativistic quantum electrodynamics is a well-known precedent for a symmetry changing the divergence

structure of the theory. This theory has charge conjugation invariance, and requires the presence of anti-
particles. In classical theory, it is well known that the self energy of the electron diverges inversely as its size (or
equivalently, linearly as the cut-off �). The existence of the positron is irrelevant for the classical calculation.
The quantum fluctuations include the effects of all particles and thus know about the positron whose existence
serves to cancel the linear divergence, leaving the electron self energy that depends logarithmically on the size
of the electron.

https://doi.org/10.1017/9781009289801.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.003


2.3 What could the New Physics be? 19

supersymmetric particles that serve as the new perturbatively coupled degrees of

freedom that act to cancel the quadratic divergences of the SM.

We should make a clear distinction between the fine-tuning problem, and the issue

of the origin of the very small ratio between the weak and GUT or Planck scales.

Supersymmetry, by itself, does not explain why we have such a small dimensionless

ratio. However, once we introduce this ratio by choosing the parameters of the

Lagrangian accordingly, this ratio is not destabilized by radiative corrections if the

theory is supersymmetric, or if (as we will see in Chapter 3 and again in Chapter 7)

supersymmetry is broken appropriately. In the literature, this is also stated by saying

that supersymmetry solves the technical aspect of the gauge hierarchy problem that

is endemic to theories with elementary scalar fields.

Supersymmetry was discovered in the late 1960s and early 1970s under quite dif-

ferent motivations.11 The first four-dimensional globally supersymmetric quantum

field theory was written down in 1974 by Wess and Zumino, and supergravity was

discovered shortly thereafter (though attempts to construct locally supersymmetric

theories had been made much earlier). While Fayet had already pioneered many

phenomenological studies of supersymmetry, it was only after it was recognized

that supersymmetry provided a solution to the fine-tuning problem of the SM that

there was an explosion of interest in the particle physics community.12 The simplest

viable supersymmetric version of the SM – the Minimal Supersymmetric Standard

Model, or MSSM – was developed in the early 1980s, and has since served as the

starting point for many phenomenological analyses.

Although it is possible that the fine-tuning problem is solved by something no

one has yet thought of, from our vantage point today, the motivations for examining

supersymmetry are numerous, and remain as strong as ever.

� Aesthetics
Two pillars upon which the fundamental laws of physics are formulated are the

theories of relativity and quantum mechanics. These two are successfully merged

within the highly constrained (and hence predictive) framework of relativistic

quantum field theory. Haag, Lopuszanski, and Sohnius generalized earlier work by

O’Raifeartaigh and by Coleman and Mandula, and showed that the most general

symmetries of the S-matrix are a direct product of the super-Poincaré group,

which includes supersymmetry transformations linking bosons with fermions in

addition to translations, rotations and boosts, with the internal symmetry group.

It would be a pity if nature did not make use of this additional mathematical

structure at some level.

11 For an early history, see G. L. Kane and M. Shifman, The Supersymmetric World: The Beginning of the Theory,
World Scientific (2000).

12 E. Witten, Nucl. Phys. B188, 513 (1982); R. Kaul, Phys. Lett. B109, 19 (1982).
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� Ultra-violet behavior and fine tuning
We have already seen that, unlike the case of the Standard Model, the scalar

potential of supersymmetric models is stable under radiative corrections, pro-

vided that supersymmetric particle masses are comparable to the weak scale.

Supersymmetric grand unified models are thus technically natural.
� Connection to gravity

By elevating global supersymmetry transformations to local ones, one is forced

into introducing a spin 2 massless gauge field, the graviton, which mediates grav-

itational interactions (together with its superpartner, the gravitino) in much the

same way as local gauge invariance requires us to introduce gauge bosons. Just as

gauge invariance is sufficient to fix the dynamics, local (super)symmetry dictates

the dynamics of supergravity, which includes Einstein’s general relativity. Like

any four-dimensional theory of gravity, this supergravity theory is not renormal-

izable. Nonetheless, this connection to gravity is very tantalizing.
� Ultra-violet completeness

Except for supersymmetry, all the extensions of the SM that we considered above

to ameliorate the fine-tuning problem are effective theories and require even more

new physics at a scale that is only a couple of orders of magnitude above the TeV

scale.13 While this is not necessarily an argument against such scenarios, the fact

that supersymmetric theories can in principle be extrapolated all the way to the

GUT or Planck scales is especially attractive.
� Connection to superstrings

Supersymmetry is an essential ingredient of superstring theories, thought to be

candidates for a consistent, finite quantum theory of gravitation. In this frame-

work, the problem of non-renormalizability of gravitational theory is bypassed by

moving away from point-like particles to intrinsically finite theories of extended

objects, open or closed loops of a fundamental string. Superstring theories have

enjoyed an important success in the counting of microscopic states of a string

black hole.

In addition to these aesthetic considerations, there are several experimental ar-

guments that also highlight the promise of supersymmetric models.

� Unification of gauge couplings
The values of running gauge couplings measured at LEP do not unify if we evolve

these to high energies using the renormalization group equations of the Standard

Model. If instead, we extrapolate the gauge couplings from Q = MZ to Q =
MGUT using supersymmetric evolution equations, they unify remarkably well

provided superpartner masses are in the range 100 GeV–10 TeV. It is extremely

13 Models with warped extra dimensions may be a possible exception to this.
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suggestive that this scale agrees so well with the scale that we inferred from

fine-tuning arguments. Unless this is a perverse accident, this strongly points

toward supersymmetric Grand Unification. Moreover, the value of MGUT that is

obtained is somewhat higher than in non-supersymmetric GUTs; this reduces the

amplitude for proton decay by GUT boson exchange, bringing this contribution in

accord with lower limits on the proton lifetime. Potentially larger superpotential

contributions to the proton decay amplitude have to be controlled, however.
� Cold dark matter

All supersymmetric models with a conserved R-parity quantum number include

a stable massive particle which is usually electrically and color neutral, and so

makes an excellent candidate for the observed cold dark matter in the Universe.
� Radiative breakdown of electroweak symmetry

In the SM, electroweak symmetry breaking (EWSB) can be accommodated by

appropriate choice of the parameters of the scalar potential, without any expla-

nation for this choice. We will see in Chapter 11 that in many supersymmetric

models, scalars with the same gauge quantum numbers have the same mass param-

eters, renormalized at some high scale. Over a large part of the model parameter

space, renormalization effects drive the Higgs boson squared mass parameters

to negative values, while those for scalars with non-trivial SU (3)C × U (1)em are

left positive, resulting in the observed electroweak symmetry breaking pattern.

Radiative electroweak symmetry breaking, as this mechanism is known, occurs

naturally if mt ∼ 100–200 GeV. While this mechanism is very attractive, it cannot

be regarded as a complete explanation since there are parameter ranges for which

color and electromagnetic gauge invariance may be broken. We should add that

it also requires that the soft SUSY breaking parameters are ∼TeV.
� Decoupling in SUSY theories

Radiative corrections from SUSY particles in loops to electroweak observables

in LEP experiments rapidly decouple with SUSY particle masses, so that SUSY

models can readily replicate the apparent successes of the SM in explaining the

LEP data. This is not to say that all SUSY loops decouple. For instance, SUSY

loop corrections to the couplings of quarks and leptons to Higgs scalars (and

hence to the relation between fermion masses and Yukawa couplings) do not

necessarily decouple.
� Mass of the Higgs boson

The Higgs boson of the SM can have mass of any value between the lower limits

set by LEP and LEP2 experiments (m HSM
> 114.4 GeV), up to ∼ 800 GeV. The

much more constrained Higgs sector of the MSSM requires the lightest Higgs

scalar h to have mass mh
<∼ 135 GeV. Meanwhile, precision measurements of

electroweak parameters which are sensitive to the mass of the Higgs boson point

towards mh ∼ 120 GeV, with mh
<∼ 200 GeV at the 95% CL.
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The wide array of issues that are addressed by the inclusion of supersymmetry in

particle physics has led many physicists to suspect that supersymmetry is realized

in nature, perhaps at or just above the TeV energy scale. The goal of this book

is to show how weak scale supersymmetry can be incorporated into the basic

laws of physics, and detail how to extract the observable consequences of the

supersymmetry hypothesis. The important and exciting conclusion is that the idea

of weak scale supersymmetry can be tested at various collider and non-accelerator

experiments.
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