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Abstract

We give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and
the complement of the graph, which correct and extend the result of Yang [‘Wiener index and traceable
graphs’, Bull. Aust. Math. Soc. 88 (2013), 380–383]. We also present sufficient conditions for a bipartite
graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, we
give sufficient conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its
distance spectral radius.
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1. Introduction

All graphs considered here are finite undirected graphs without loops and multiple
edges. Let G be a graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G).
Let NG(v) denote the neighbour set of v in G. We denote the degree of a vertex
vi by di or d(vi). Let (d1, d2, . . . , dn) be the degree sequence of the graph G, where
d1 ≤ d2 ≤ · · · ≤ dn. Then δ := d1 is called the minimum degree. We denote the distance
between the vertices vi and v j in G by dG(vi, v j). The union of simple graphs G and
H is the graph G ∪ H with vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H). If G
and H are disjoint, we refer to their union as a disjoint union, denoted by G + H. The
disjoint union of k graphs G is denoted by kG. By starting with a disjoint union of
two graphs G and H and adding edges joining every vertex of G to every vertex of H,
we obtain the join of G and H, denoted by G ∨ H. Finally, G denotes the complement
of G.

A path in a graph is called a Hamiltonian path if it visits every vertex precisely
once. A graph containing a Hamiltonian path is said to be traceable. A cycle in a
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graph is called a Hamiltonian cycle if it contains all the vertices of a graph. A graph
containing a Hamiltonian cycle is called a Hamiltonian graph.

The distance matrix D = D(G) of G has (i, j)-entry, di j, equal to dG(vi, v j). The
Wiener index [9], W(G), of a connected graph G is defined by

W(G) =
∑

u,v∈V(G)

dG(u, v).

Let Di(G) and Dv(G) denote the sum of row i of D(G) and the row sum of D(G)
corresponding to vertex v, respectively. Then

W(G) =
1
2

∑
v∈V(G)

Dv(G) =
1
2

n∑
i=1

Di(G).

The distance spectral radius of G is the largest eigenvalue of D(G), denoted by ρ(G).
The problem of deciding whether a given graph is traceable or Hamiltonian is a very

difficult one. Indeed, determining whether a given graph is traceable or Hamiltonian
is NP-complete [3]. Many necessary or sufficient conditions have been given for a
graph to be traceable or Hamiltonian. Recently, some sufficient spectral conditions
involving the Wiener index and distance spectral radius for a graph to be Hamiltonian
and traceable have been given in [4–6, 10].

In Sections 2–3, we give sufficient conditions for a graph to be traceable and
Hamiltonian in terms of the Wiener index and the complement of the graph, which
correct and extend the result of Yang [10]. In Section 4, we present sufficient
conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener
index and quasicomplement. Finally, in Sections 5–6 we give sufficient distance
spectral conditions for a graph or a bipartite graph to be traceable and Hamiltonian
in terms of its distance spectral radius. Our results extend and improve the results in
[4–6, 10].

Notice that δ ≥ 1 and δ ≥ 2 are trivial necessary conditions on the minimum degree
for a graph to be traceable and Hamiltonian, respectively. Hence we take these as
standing assumptions throughout this paper.

2. Corrigendum to [10, Theorem 2.2]

Define the set of exceptional graphs

NP = {K1 ∨ (Kn−3 + 2K1),K1 ∨ (K1,3 + K1),K2,4,K2 ∨ 4K1,

K2 ∨ (3K1 + K2),K1 ∨ K2,5,K3 ∨ 5K1,K2 ∨ (K1,4 + K1),K4 ∨ 6K1}.

A sufficient condition for a graph to be traceable is given in [1].

Lemma 2.1 [1, Exercise 18.3.3]. Let G be a nontrivial graph of order n with degree
sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 4. Suppose that there is no
integer k < 1

2 (n + 1) such that dk ≤ k − 1 and dn−k+1 ≤ n − k − 1. Then G is traceable.
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Yang [10] claimed that if G is a connected graph of order n ≥ 4 and its Wiener index
satisfies W(G) ≤ 1

2 (n + 5)(n − 2), then G is traceable unless

G ∈ {K1 ∨ (Kn−3 + 2K1),K2 ∨ (3K1 + K2),K4 ∨ 6K1}.

However, the list of exceptional graphs is incomplete. The following theorem gives
the correct result.

Theorem 2.2. Let G be a connected graph of order n ≥ 4. If

W(G) ≤
(n + 5)(n − 2)

2
,

then G is traceable unless G ∈ NP.

Proof. Suppose that G is a nontraceable connected graph. By Lemma 2.1, there
exists an integer k < 1

2 (n + 1) such that dk ≤ k − 1 and dn−k+1 ≤ n − k − 1. Since G
is connected and dk ≤ k − 1, we have k ≥ 2. Thus

W(G) =
1
2

n∑
i=1

Di(G) ≥
1
2

n∑
i=1

(di + 2(n − 1 − di)) = n(n − 1) −
1
2

n∑
i=1

di

≥ n(n − 1) −
1
2

(k(k − 1) + (n − 2k + 1)(n − k − 1) + (k − 1)(n − 1))

=
(n + 5)(n − 2)

2
+

(k − 2)(2n − 3k − 5)
2

.

Since W(G) ≤ 1
2 (n + 5)(n − 2), we have 1

2 (k − 2)(2n − 3k − 5) ≤ 0. Also, if m denotes
the number of edges of G, we have W(G) ≥ n(n − 1) − 1

2
∑n

i=1 di = n(n − 1) − m which
implies m ≥ 1

2 (n2 − 5n + 10).

Case 1. 1
2 (k − 2)(2n − 3k − 5) = 0, that is, k = 2 or 2n = 3k + 5, and all inequalities

in the above argument must be equalities. If k = 2, then G is a graph with d1 =

d2 = 1, d3 = d4 = · · · = dn−1 = n − 3 and dn = n − 1, whence G = K1 ∨ (Kn−3 + 2K1).
If 2n = 3k + 5, then n < 13 since k < 1

2 (n + 1). Hence n = 7, k = 3 or n = 10,
k = 5. The corresponding permissible graphic sequences are (2, 2, 2, 3, 3, 6, 6)
and (4, 4, 4, 4, 4, 4, 9, 9, 9, 9), which imply G = K2 ∨ (3K1 + K2) and G = K4 ∨ 6K1,
respectively.

Case 2. 1
2 (k − 2)(2n − 3k − 5) < 0, that is k ≥ 3 and 2n − 3k − 5 < 0. In this case,

the admissible pairs k, n satisfy k ≥ 3, n ≥ 4, n ≥ 2k and 2n − 3k ≤ 4, allowing just two
possibilities: k = 3, n = 6 and k = 4, n = 8.

Suppose k = 4. Then d5 ≤ 3 and 17 ≤ m ≤ 18. From the inequality d6 + d7 + d8 =

2m −
∑

1≤i≤5 di ≥ 19, we obtain d8 = 7. Also note that
∑

di = 2m ≥ 34 and
∑

di is even.
If d6 = d7 = 6 and d8 = 7, then the permissible graphic sequence is (3, 3, 3, 3, 3, 6, 6, 7)
and hence G = K1 ∨ K2,5. If d6 = 5 and d7 = d8 = 7, then the permissible graphic
sequence is (3, 3, 3, 3, 3, 5, 7, 7) and hence G = K2 ∨ (K1,3 + K2). If d6 = 6 and
d7 = d8 = 7, then the permissible graphic sequence is (2, 3, 3, 3, 3, 6, 7, 7) and hence
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G = K2 ∨ (K1,4 + K1). If d6 = d7 = d8 = 7, then the permissible graphic sequence is
(3, 3, 3, 3, 3, 7, 7, 7) and hence G = K3 ∨ 5K1.

Finally, suppose k = 3. Then d4 ≤ 2 and 8 ≤ m ≤ 9. From the inequality d5 + d6 =

2m −
∑

1≤i≤4 di ≥ 8, we obtain 4 ≤ d6 ≤ 5. Also note that
∑

di = 2m ≥ 16 and
∑

di is
even. If d5 = d6 = 4, then the permissible graphic sequence is (2,2,2,2,4,4) and hence
G = K2,4. If d5 = 4 and d6 = 5, then the permissible graphic sequence is (1, 2, 2, 2, 4, 5)
and hence G = K1 ∨ (K1,3 + K1). If d5 = d6 = 5, then the permissible graphic sequence
is (2, 2, 2, 2, 5, 5) and hence G = K2 ∨ 4K1.

Note that K2 ∨ (K1,3 + K2) is traceable and the other obtained graphs contain no
Hamiltonian path. The proof is complete. �

3. Wiener index on traceable and Hamiltonian graphs

The following lemma allows us to give a simpler proof of Theorem 2.2.

Lemma 3.1 [8]. Let G be a graph on n ≥ 4 vertices and m edges with δ ≥ 1. If
m ≥

(
n−2

2

)
+ 2, then G is traceable unless G ∈ NP.

Second proof of Theorem 2.2. Suppose that G is nontraceable. As noted at the
beginning of the proof in Section 2,

m ≥
1
2

(n2 − 5n + 10) =

(
n − 2

2

)
+ 2.

By Lemma 3.1, we obtain that G ∈ NP. By a direct computation, for all G ∈ NP,
W(G) ≤ 1

2 (n + 5)(n − 2). This completes the proof of Theorem 2.2. �

Theorem 3.2. Let G be a connected graph of order n ≥ 4. If

W(G) ≥
n3 − 6n2 + 19n − 20

2
,

then G is traceable unless G ∈ NP.

Proof. Suppose that G is nontraceable. Then

W(G) =
1
2

n∑
i=1

Di(G) ≤
1
2

∑
v∈V(G)

[dG(v) + (n − 1)(n − 1 − dG(v))]

=
1
2

∑
v∈V(G)

[(n − 1)2 + (2 − n)dG(v)]

=
1
2

n(n − 1)2 −
n − 2

2

∑
v∈V(G)

(n − 1 − dG(v))

=
n(n − 1)

2
+ (n − 2)m.
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Since W(G) ≥ 1
2 (n3 − 6n2 + 19n − 20),

m ≥
n3 − 6n2 + 19n − 20 − n(n − 1)

2(n − 2)
=

(
n − 2

2

)
+ 2.

Again, by Lemma 3.1, G ∈ NP. By a direct computation, in all cases with G ∈ NP,
W(G) ≥ 1

2 (n3 − 6n2 + 19n − 20). Hence G is traceable unless G ∈ NP. �

Define the set of exceptional graphs

NC = {K2 ∨ (Kn−4 + 2K1),K3 ∨ 4K1,K2 ∨ (K1,3 + K1),K1 ∨ K2,4,

K3 ∨ (K2 + 3K1),K4 ∨ 5K1,K3 ∨ (K1,4 + K1),K2 ∨ K2,5,K5 ∨ 6K1}.

Lemma 3.3 [8]. Let G be a graph on n ≥ 5 vertices and m edges with δ ≥ 2. If
m ≥

(
n−2

2

)
+ 4, then G contains a Hamiltonian cycle unless G ∈ NC.

Theorem 3.4. Let G be a graph with n ≥ 5 vertices and m edges and with δ ≥ 2. If

W(G) ≤
n2 + 3n − 14

2
,

then G is Hamiltonian unless G ∈ NC.

Proof. Suppose that G is non-Hamiltonian. As in the second proof of Theorem 2.2,

W(G) =
1
2

n∑
i=1

Di(G) ≥ n(n − 1) − m.

Since W(G) ≤ 1
2 (n2 + 3n − 14),

m ≥ n(n − 1) −
n2 + 3n − 14

2
=

(
n − 2

2

)
+ 4.

By Lemma 3.3, we have G ∈ NC. By a direct computation, W(G) ≤ 1
2 (n2 + 3n − 14)

for all G ∈ NC. Hence G is Hamiltonian unless G ∈ NC. �

Theorem 3.5. Let G be a graph with n ≥ 5 vertices and m edges and with δ ≥ 2. If

W(G) ≥
n3 − 6n2 + 23n − 28

2
,

then G is Hamiltonian unless G ∈ NC.

Proof. Suppose that G is non-Hamiltonian. Then

W(G) =
1
2

n∑
i=1

Di(G) ≤
n(n − 1)

2
+ (n − 2)m.

Since W(G) ≥ 1
2 (n3 − 6n2 + 23n − 28),

m ≥
n3 − 6n2 + 23n − 28 − n(n − 1)

2(n − 2)
=

(
n − 2

2

)
+ 4.

By Lemma 3.3, G ∈ NC. By a direct verification, W(G) ≥ 1
2 (n3 − 6n2 + 23n − 28) for

all G ∈ NC. Hence G is Hamiltonian unless G ∈ NC. �
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4. Wiener index on traceable and Hamiltonian bipartite graphs
Let G = G[X, Y] be a bipartite graph where |X| = |Y | = n ≥ 2. The bipartite graph

G∗ = G∗[X, Y], called the quasicomplement of G, is constructed as follows: V(G∗) =

V(G) and xy ∈ E(G∗) if and only if xy < E(G) for x ∈ X, y ∈ Y .
Let G[X,Y] be a traceable bipartite graph. Then |X| = |Y | or |X| = |Y | + 1. These two

types will be discussed separately.

Lemma 4.1 [7]. Let G = G[X, Y] be a bipartite graph with δ ≥ 1 and m edges where
|X| = |Y | = n ≥ 3. If m ≥ n2 − 2n + 3, then G is traceable.

Theorem 4.2. Let G = G[X, Y] be a bipartite graph with δ ≥ 1 and m edges where
|X| = |Y | = n ≥ 3. If

W(G) ≤ 3n2 + 2n − 6,

then G is traceable.

Proof. Let G be a graph satisfying the condition in Theorem 4.2. Then

W(G) =
1
2

2n∑
i=1

Di(G) ≥
1
2

2n∑
i=1

(di + 3(n − di) + 2(n − 1))

= 3n2 −

2n∑
i=1

di + 2n(n − 1) = 3n2 − 2m + 2n(n − 1) = 5n2 − 2n − 2m.

Since W(G) ≤ 3n2 + 2n − 6, we have m ≥ 1
2 (5n2 − 2n − (3n2 + 2n − 6)) = n2 − 2n + 3

and, according to Lemma 4.1, G is traceable. �

Theorem 4.3. Let G = G[X, Y] be a bipartite graph with δ ≥ 1 and m edges, where
|X| = |Y | = n ≥ 3. If

W(G∗) ≥ 4n3 − 9n2 + 12n − 6,

then G is traceable.

Proof. Let G∗ be the quasicomplement of G. Then

W(G∗) =
1
2

2n∑
i=1

Di(G∗) ≤
1
2

∑
v∈V(G)

[dG∗(v) + (2n − 1)(n − dG∗(v)) + (2n − 2)(n − 1)]

=
1
2

∑
v∈V(G)

[n(2n − 1) + (2 − 2n)dG∗(v)] + n(2n − 2)(n − 1)

= n2(2n − 1) − (n − 1)
∑

v∈V(G)

(n − dG(v)) + n(2n − 2)(n − 1)

= n2 + n(2n − 2)(n − 1) + 2(n − 1)m.

Since W(G∗) ≥ 4n3 − 9n2 + 12n − 6, we have

m ≥
2n3 − 6n2 + 10n − 6

2(n − 1)
= n2 − 2n + 3.

By Lemma 4.1, G is traceable. �
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Let p ≥ n − 1. Let Kp,n−2 + 4e be a bipartite graph obtained from Kp,n−2 by adding
two vertices which are adjacent to two common vertices with degree n − 2 in Kp,n−2.

Lemma 4.4 [7]. Let G = G[X, Y] be a bipartite graph with δ ≥ 2 and m edges where
|X| = |Y | = n ≥ 4. If m ≥ n2 − 2n + 4, then G is Hamiltonian unless G = Kn,n−2 + 4e.

Next we consider the other type with |X| = |Y | + 1. Let G[X, Y] be a bipartite graph
where |X| = n + 1 and |Y | = n ≥ 2. Denote by δX and δY the minimum degrees of
vertices in X and Y , respectively. Note that δX ≥ 1 and δY ≥ 2 are the trivial necessary
conditions for G to be traceable. Let G[X, Y + v] be the bipartite graph obtained from
G[X, Y] by adding a vertex v which is adjacent to every vertex in X. It is easy to see
that G[X,Y] is traceable if and only if G[X,Y + v] is Hamiltonian.

Let Kn,n−1 + 2e be a graph obtained from Kn,n−1 by adding two vertices which are
adjacent to a common vertex with degree n − 1.

Theorem 4.5. Let G = G[X, Y] be a bipartite graph with δX ≥ 1 and δY ≥ 2 where
|X| = n + 1 and |Y | = n ≥ 3. If

W(G) ≤ 3n2 + 5n − 4,

then G is traceable unless G ∈ {Kn+1,n−2 + 4e,Kn,n−1 + 2e}.

Proof. Let G be a bipartite graph satisfying the conditions in Theorem 4.5.

W(G) =
1
2

∑
v∈V(G)

Dv(G)

≥
1
2

[n+1∑
i=1

(di + 3(n − di) + 2n) +

n∑
j=1

(d j + 3(n + 1 − d j) + 2(n − 1))
]

=
1
2

[
5n(n + 1) − 2

n+1∑
i=1

di + n(5n + 1) − 2
n∑

j=1

d j

]
= 5n2 + 3n −

∑
v∈V(G)

dG(v) = 5n2 + 3n − 2m.

From W(G) ≤ 3n2 + 5n − 4 we have m ≥ n2 − n + 2. Since d(v) = n + 1 in G[X,Y + v],

m(G[X,Y + v]) = m + (n + 1) ≥ n2 + 3 = (n + 1)2 − 2(n + 1) + 4.

By Lemma 4.4, G[X, Y + v] is Hamiltonian or G[X, Y + v] = Kn+1,n−1 + 4e. Hence
G[X,Y] is traceable or G ∈ {Kn+1,n−2 + 4e,Kn,n−1 + 2e}. �

Theorem 4.6. Let G = G[X, Y] be a bipartite graph with δX ≥ 1 and δY ≥ 2 where
|X| = n + 1 and |Y | = n ≥ 3. If

W(G∗) ≥ 4n3 − 4n2 + 8n − 4,

then G is traceable unless G ∈ {Kn+1,n−2 + 4e,Kn,n−1 + 2e}.
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Proof. Let G∗ be the quasicomplement of G. Then

W(G∗) =
1
2

∑
v∈V(G)

Dv(G∗)

≤
1
2

[n+1∑
i=1

(dG∗(vi) + (2n − 1)(n − dG∗(vi)) + 2n2)

+

n∑
j=1

(dG∗(u j) + (2n − 1)(n + 1 − dG∗(u j)) + (2n − 2)(n − 1))
]

= 4n3 − (n − 1)
n+1∑
i=1

dG∗(vi) − (n − 1)
n∑

j=1

dG∗(u j)

= 2n3 + 2n + 2(n − 1)m

by substituting dG∗(vi) = n − dG(vi) and dG∗(u j) = n + 1 − dG(u j). By hypothesis,
W(G∗) ≥ 4n3 − 4n2 + 8n − 4 so m ≥ n2 − n + 2. Since d(v) = n + 1 in G[X,Y + v],

m(G[X,Y + v]) = m + (n + 1) ≥ n2 + 3 = (n + 1)2 − 2(n + 1) + 4.

By Lemma 4.4, G[X, Y + v] is Hamiltonian or G[X, Y + v] = Kn+1,n−1 + 4e. Hence
G[X,Y] is traceable or G ∈ {Kn+1,n−2 + 4e,Kn,n−1 + 2e}. �

Theorem 4.7. Let G = G[X, Y] be a bipartite graph with δ ≥ 2 and m edges where
|X| = |Y | = n ≥ 4. If

W(G) ≤ 3n2 + 2n − 8,

then G is Hamiltonian unless G = Kn,n−2 + 4e.

Proof. Suppose that G is non-Hamiltonian. As in Theorem 4.2,

W(G) =
1
2

2n∑
i=1

Di(G) ≥ 5n2 − 2n − 2m.

Since W(G) ≤ 3n2 + 2n − 8, we have m ≥ 1
2 (5n2 − 2n − (3n2 + 2n − 8)) = n2 − 2n + 4

and, from Lemma 4.4, G = Kn,n−2 + 4e. �

Theorem 4.8. Let G = G[X, Y] be a bipartite graph with δ ≥ 2 and m edges where
|X| = |Y | = n ≥ 4. If

W(G∗) ≥ 4n3 − 9n2 + 14n − 8,

then G is Hamiltonian unless G = Kn,n−2 + 4e.

Proof. Suppose that G is non-Hamiltonian. As in Theorem 4.3,

W(G∗) =
1
2

∑
v∈V(G)

Dv(G∗) ≤ n2 + n(2n − 2)(n − 1) + 2(n − 1)m.
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Since W(G∗) ≥ 4n3 − 9n2 + 14n − 8,

m ≥
n3 − 3n2 + 6n − 4

n − 1
= n2 − 2n + 4.

By Lemma 4.4, G = Kn,n−2 + 4e. �

5. Distance spectral radius on traceable and Hamiltonian graphs

Lemma 5.1 [2]. Let G be a graph on n vertices. Then

ρ(G) ≥
2W(G)

n
,

and the equality holds if and only if G is distance regular, that is, the row sums of D(G)
are all equal.

Theorem 5.2. Let G be a connected graph of order n ≥ 4. If

ρ(G) ≤ n + 3 −
10
n
,

then G is traceable unless G = K2 ∨ 4K1.

Proof. Assume that G is nontraceable. By Lemma 5.1,

ρ(G) ≥
2W(G)

n
≥

2
n

[n(n − 1) − m] = 2(n − 1) −
2
n

m.

Since ρ(G) ≤ n + 3 − 10/n, we have m ≥
(

n−2
2

)
+ 2 and, by Lemma 3.1, G ∈ NP.

The largest zero root of the equation λ3 − (n − 2)λ2 − (7n − 17)λ + 10 − 4n = 0 is
ρ(K1 ∨ (Kn−3 + 2K1)). Since

f (n) =

(
n + 3 −

10
n

)3
− (n − 2)

(
n + 3 −

10
n

)2
− (7n − 17)

(
n + 3 −

10
n

)
+ 10 − 4n

is a decreasing function of n (n ≥ 5), f (n) ≤ f (5) < 0. Hence ρ(K1 ∨ (Kn−3 + 2K1)) >
n + 3 − 10/n for n ≥ 5. From Table 1, we see that G = K2 ∨ 4K1. �

Theorem 5.3. Let G be a graph on n ≥ 5 vertices and m edges with δ ≥ 2. If

ρ(G) ≤ n + 3 −
14
n
,

then G is Hamiltonian unless G = K3 ∨ 4K1.

Proof. Suppose that G is non-Hamiltonian. By Lemma 5.1, we have

ρ(G) ≥
2W(G)

n
≥

2
n

[n(n − 1) − m] = 2(n − 1) −
2
n

m.
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Table 1. Direct computation of ρ(G) for Theorem 5.2.

G ρ(G) n + 3 − 10/n
K1 ∨ (K1,3 + K1) 7.5673 7.3333

K2,4 7.4641 7.3333
K2 ∨ 4K1 7.2749 7.3333

K2 ∨ (3K1 + K2) 8.8886 8.5714
K1 ∨ K2,5 10.0401 9.75
K3 ∨ 5K1 9.8990 9.75

K2 ∨ (K1,4 + K1) 10.1205 9.75
K4 ∨ 6K1 12.5208 12

K1,3 4.6458 4.5

Table 2. Direct computation of ρ(G) for Theorem 5.3.

G ρ(G) n + 3 − 14/n
K3 ∨ 4K1 8 8

K2 ∨ (K1,3 + K1) 8.2736 8
K1 ∨ K2,4 8.1846 8

K3 ∨ (K2 + 3K1) 9.5947 9.25
K4 ∨ 5K1 10.6235 10.444

K3 ∨ (K1,4 + K1) 10.8341 10.444
K2 ∨ K2,5 10.7624 10.444
K5 ∨ 6K1 13.2450 12.727

Since ρ(G) ≤ n + 3 − 14/n, we have m ≥
(

n−2
2

)
+ 4. By Lemma 3.3, G ∈ NC. The

largest zero root of λ3 − (n − 2)λ2 − (7n − 23)λ − 2n + 6 = 0 is ρ(K2 ∨ (Kn−4 + 2K1)),
and

f (n) =

(
n + 3 −

14
n

)3
− (n − 2)

(
n + 3 −

14
n

)2
− (7n − 23)

(
n + 3 −

14
n

)
− 2n + 6

is a decreasing function on n, so f (n) ≤ f (5) < 0 and we have ρ(K2 ∨ (Kn−4 + 2K1)) >
n + 3 − 14/n. From Table 2, we see that G = K3 ∨ 4K1. �

6. Distance spectral radius on traceable and Hamiltonian bipartite graphs

Theorem 6.1. Let G = G[X, Y] be a bipartite graph with δ ≥ 1 and m edges where
|X| = |Y | = n ≥ 3. If

ρ(G) ≤ 3n + 2 −
6
n
,

then G is traceable.

Proof. According to Lemma 5.1,

ρ(G) ≥
2W(G)

2n
≥

5n2 − 2n − 2m
n

= 5n − 2 −
2m
n
.

Since ρ(G) ≤ 3n + 2 − 6/n, we have m ≥ n2 − 2n + 3 and, by Lemma 4.1, G is
traceable. �
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