
1
Elements of Operator Theory

In this chapter, we collect some material from the theory of self-adjoint op-
erators. While the main focus of this book is on the specific cases of Laplace
and Schrödinger operators, already the definition of these operators and the
formulation of the questions we ask requires language from operator theory. At
the same time, this theory provides the foundations of the spectral analysis of
the operators of interest.

One of our main goals in this chapter is to prove the variational princi-
ple, which will be the essential tool in our proofs of spectral inequalities. It
transforms the problem of counting eigenvalues into an optimization problem
for quadratic forms. In this principle, and therefore in all our presentation,
quadratic forms will play a prominent role, for the most part even more than
the underlying operator.

Operator theory also provides a framework for perturbation theory, which
considers operators given, for instance, as a sum of an ‘unperturbed’ operator,
which is in some sense well understood, and a perturbation, which is in some
sense small. This point of view will be particularly relevant when dealing with
Schrödinger operators.

Let us now give a brief overview of the content of this chapter. We begin
by recalling some basic facts from Hilbert space theory and, in particular, the
notion of the spectrum of an operator and that of self-adjointness of an operator.
Next, in §1.1.6, we state without proof the spectral theorem for self-adjoint
operators and discuss the resulting functional calculus. As a consequence of
the spectral theorem, we prove Weyl’s theorem (Theorem 1.14) on the stability
of the essential spectrum.

The second section is devoted to quadratic forms. In §1.2.1 we present the
fundamental connection between lower semibounded self-adjoint operators and
lower semibounded closed quadratic forms. In our applications to Laplace and
Schrödinger operators, we use this connection to define the relevant operators.
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8 Elements of Operator Theory

In §§1.2.3 and 1.2.5 we formulate the variational principle for eigenvalues and
their sums, which are naturally formulated in the language of quadratic forms
and, as we already mentioned, are fundamental for the developments in the
following chapters.

In §1.2.6 we discuss Riesz means, which will play an important role in the
study of Lieb–Thirring inequalities. As an application of the variational princi-
ple, we prove various continuity results that are frequently used in applications.

Finally, in §§1.2.7 and 1.2.8 we discuss perturbations of operators in terms of
quadratic forms and the Birman–Schwinger principle. The latter translates the
problem of counting negative eigenvalues of unbounded operators to a related
problem for compact operators.

While we try to be rather self-contained concerning the material on the
theory of unbounded operators, it is probably advantageous if the reader has
had some previous exposure to a standard course on functional analysis and
measure theory; see, for instance, Brezis (2011), Friedman (1970), Folland
(1999), Lax (2002), and Rudin (1991). For detailed expositions of operator
theory and spectral analysis, we refer to the references in §1.3.

1.1 Hilbert spaces, self-adjoint operators and the spectral
theorem

In this section we briefly recall the theory of self-adjoint operators in Hilbert
spaces and we use this opportunity to fix our notation.

1.1.1 Bounded operators
LetV be a complex vector space together with an inner product (·, ·); that is, a
complex-valued function onV ×V satisfying

( f ,g) = (g, f ) for all f ,g ∈ V ,
(α1 f1 + α2 f2,g) = α1( f1,g) + α2( f2,g) for all α1, α2 ∈ C , f1, f2,g ∈ V ,
( f , f ) > 0 for all 0 � f ∈ V .
Here and in all the following, our sesquilinear forms are linear in the first and
anti-linear in the second argument.

If (·, ·) is an inner product onV, then

‖ f ‖ :=
√
( f , f )

defines a norm on V. The vector space V, together with its inner product, is
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1.1 Hilbert spaces, self-adjoint operators and the spectral theorem 9

called a Hilbert space if it is complete with respect to the corresponding norm.
It is called separable if it has a countable orthonormal basis.

From now on, letH be a separable Hilbert space.
We say that a sequence ( fn) ⊂ H converges to f ∈ H if ‖ fn − f ‖ → 0 as

n→∞. We say that ( fn) ⊂ H converges weakly to f ∈ H if, for every g ∈ H ,
( fn,g) → ( f ,g) as n → ∞. If we want to emphasize the difference between
convergence (in norm) and weak convergence, we also call the former strong
convergence.

The following facts about weak convergence are standard results from func-
tional analysis. First, if ( fn) ⊂ H is weakly convergent, then (‖ fn‖) is bounded.
Second, the closed unit ball in H is weakly sequentially compact; that is, if
(‖ fn‖) is bounded, then there is a subsequence ( fnm ) that converges weakly to
some f ∈ H .

Another standard result from functional analysis is the Riesz representation
theorem. It states that, if � is a bounded, linear functional onH , then there is a
unique g ∈ H such that �( f ) = ( f ,g) for all f ∈ H . Moreover, ‖g‖ = ‖�‖.

Next, we discuss operators on H . A continuous, linear map T : H → H is
called a bounded (linear) operator. This name comes from the fact that a linear
map T is continuous if and only if

‖T ‖ := sup
‖ f ‖=1

‖T f ‖ < ∞ .

The set of bounded operators is complete with respect to the above norm.
By the Riesz representation theorem, for any bounded operator T onH one

can define a unique bounded operator T∗ on H , called the adjoint of T , such
that

(T∗ f ,g) = ( f ,Tg) for all f ,g ∈ H .

This implies, in particular, that

‖T∗‖ = ‖T ‖

and that, if fn → f weakly inH , then T fn → T f weakly inH .
An operator K on a Hilbert space H is called compact if the image of

the closed unit ball in H is relatively compact; that is, if any sequence ( fn)
with ‖ fn‖ ≤ 1 has a subsequence ( fnm ) such that (K fnm ) converges. Clearly,
compact operators are bounded and the product of a compact operator with a
bounded operator is compact.

The following lemma characterizes compactness in terms of weak conver-
gence.
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10 Elements of Operator Theory

Lemma 1.1 A bounded operator K is compact if and only if it transforms
every weakly convergent sequence into a strongly convergent sequence.

Proof First, assume that K is compact and that fn → 0 weakly. (We
may assume, without loss of generality, that the weak limit is zero.) Then,
as recalled above, K fn → 0 weakly. Moreover, as also mentioned before,
sup ‖ fn‖ < ∞. We choose a subsequence ( fnm ) such that limm→∞ ‖K fnm ‖ =
lim supn→∞ ‖K fn‖ =: a. Since ( fn) is bounded, the compactness of K implies
that (K fnm ) is relatively compact and, therefore, there is a g ∈ H and a further
subsequence ( fnml

) such that K fnml
→ g strongly in H as l → ∞. Since

K fn → 0 weakly, we have g = 0 and therefore ‖K fnml
‖ → 0 as l → ∞. Thus

a = 0 which means that K fn → 0 strongly as n→∞.
To prove the converse implication, let ( fn) be a sequence with ‖ fn‖ ≤ 1. Then,

by the weak sequential compactness of the unit ball, there is a subsequence ( fnm )
that converges weakly. By assumption, (K fnm ) converges strongly. This shows
that the image of the closed unit ball is relatively compact, as claimed. �

Lemma 1.2 Let K be a bounded operator. Then K is compact if and only if
K∗ is compact if and only if K∗K is compact.

Proof The product of a bounded and a compact operator is compact, so if
K is compact, then so is K∗K . Conversely, assume that K∗K is compact. To
show that K is compact, let ( fn) be a sequence converging weakly to zero. By
Lemma 1.1, (K∗K fn) converges strongly to zero, so, since ( fn) is bounded,
‖K fn‖2 = (K∗K fn, fn) ≤ ‖K∗K fn‖‖ fn‖ → 0. By Lemma 1.1 again, this
means that K is compact.

Now assume that K∗ is compact. Then K∗K is compact as a product of a
compact and a bounded operator, and therefore, by what we have just shown, K
is compact. Applying this to K = (K∗)∗, we see that compactness of K implies
that of K∗. �

Let us conclude this subsection by discussing modes of convergence for
operators. Let (Tn) be a sequence of bounded operators on H and let T be a
bounded operator onH . We say that T is the weak limit of (Tn) and write

T = w-limn→∞Tn if lim
n→∞(Tn f ,g) = (T f ,g) for all f ,g ∈ H .

We say that T is the strong limit of (Tn) and write

T = s-limn→∞Tn if lim
n→∞ ‖(Tn − T) f ‖ = 0 for all f ∈ H .

Finally, we say that T is the norm limit of (Tn) and write T = limn→∞Tn if

lim
n→∞ ‖Tn − T ‖ = 0 .
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1.1 Hilbert spaces, self-adjoint operators and the spectral theorem 11

Lemma 1.3 Let (Kn) be a sequence of compact operators and let K be a
bounded operator such that limn→∞ Kn = K . Then K is compact.

Proof Let ( fn) be a sequence that converges weakly to zero. According to
Lemma 1.1, we need to prove that (K fn) tends strongly to zero. For any n,m
we have the bound

‖K fn‖ ≤ ‖Km fn‖ + ‖Km − K ‖‖ fn‖ .
Since Km is compact, we have Km fn → 0 strongly as n→∞. Thus,

lim sup
n→∞

‖K fn‖ ≤ ‖Km − K ‖ sup
n
‖ fn‖ .

The supremum on the right side is finite, as recalled before. Letting m → ∞,
we obtain lim supn→∞ ‖K fn‖ = 0, which proves the claimed convergence. �

Lemma 1.4 Let K be a compact operator, let T and S be bounded operators
and let (Tn), (Sn) be sequences of bounded operators with T = s- limn→∞ Tn

and S = s- limn→∞ Sn. Then limn→∞ TnKS∗n = TKS∗.

Proof Step 1. We first prove the assertion in the case where Sn = S for all n
and we abbreviate L := KS∗. Assume the stated convergence would not hold.
Then there are ε > 0 and, passing to a subsequence if necessary, fn ∈ H such
that ‖ fn‖ = 1 and ‖(Tn−T)L fn‖ ≥ ε. By weak compactness, passing to another
subsequence if necessary, we may assume that fn → f weakly for some f .
Since L is compact as the product of a bounded and a compact operator, we
infer from Lemma 1.1 that L fn → L f strongly. Writing

‖(Tn − T)L fn‖ ≤ ‖(Tn − T)L f ‖ + ‖(Tn − T)L( fn − f )‖
≤ ‖(Tn − T)L f ‖ + (‖Tn‖ + ‖T ‖)‖L fn − L f ‖ ,

we see that the first term on the right side tends to zero by strong convergence
of Tn and the second term tends to zero since ‖Tn‖ remains bounded by the
uniform boundedness principle (see, for instance, Friedman, 1970, Theorem
4.5.1). Thus, ‖(Tn − T)L fn‖ → 0, a contradiction.

Step 2. We now prove the assertion in the case where Tn = T for all n and
we abbreviate M := TK . Since M is compact as the product of a bounded and
a compact operator, we infer from Lemma 1.2 that M∗ is compact. Therefore,
Step 1 implies that SnM∗ → SM∗ in norm. Since the norm of the adjoint equals
the norm of the operator itself, this implies that MS∗n → MS∗ in operator norm,
which proves the assertion in this case.

Step 3. To prove the assertion in the general case, we write

TnKS∗n − TKS∗ = (Tn − T)KS∗n + TK(S∗n − S∗) .
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12 Elements of Operator Theory

The first term on the right side tends to zero in operator norm by Step 1
(applied with S replaced by the identity) and the fact that ‖S∗n‖ = ‖Sn‖ is
uniformly bounded, and the second term tends to zero in operator norm by
Step 2. This concludes the proof of the proposition. �

1.1.2 Unbounded operators
We now extend the notion of a bounded linear operator to that of a not necessar-
ily bounded operator, often called an unbounded operator. In the following, an
operator inH is, for us, a linear map T from its domain domT , a subspace ofH ,
to H . (We emphasize that in this book subspaces are not necessarily assumed
to be closed.) In particular, two operators T and S coincide, by definition, if
dom S = domT and Tu = Su for all u ∈ dom S = domT .

The operator T is called closed if domT is complete with respect to the
norm (‖Tu‖2 + ‖u‖2)1/2. Clearly, every bounded operator defined on a closed
subspace of H is closed. If the kernel, ker T , of a closed operator T is trivial,
then its inverse T−1, defined on its range, ranT , is also closed.

The operator T is called densely defined if domT is dense in H . For such a
T we now define the adjoint T∗ as follows. Its domain is

domT∗ := {v ∈ H : there is a g ∈ H such that
for all u ∈ domT one has (g,u) = (v,Tu)} .

Since T is densely defined, for v ∈ domT∗ the corresponding g is unique and
we define T∗v := g. For bounded T , this coincides with the definition given
above.

One can show that T∗ is always closed. If T is closed, then T∗ is densely
defined and T∗∗ := (T∗)∗ = T . Moreover, one has

ker T∗ = (ranT)⊥ , (1.1)

which, in turn, implies that

(ker T∗)⊥ = ranT . (1.2)

If T is densely defined, has trivial kernel and dense range, then, by (1.1), T∗

has trivial kernel and its inverse is given by

(T∗)−1
=
(
T−1
)∗
. (1.3)

For a closed operator T , the resolvent set ρ(T) is defined by

ρ(T) := {z ∈ C : T − z is a bijection from domT ontoH
with a bounded inverse}
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1.1 Hilbert spaces, self-adjoint operators and the spectral theorem 13

and the operator (T − z)−1 is called the resolvent of T at z ∈ ρ(T). Using the
closed graph theorem, we could deduce the boundedness of the inverse from
the fact that the range of T − z is equal to H , although we will not use this
fact explicitly in this book. We note too that here and in what follows, in the
notation T − z we identify the number z with z times the identity operator onH .

The spectrum σ(T) is defined by

σ(T) := C \ ρ(T)
and the point spectrum is defined by

σp(T) := {z ∈ σ(T) : ker (T − z) � {0}} .
A number z ∈ σp(T) is called an eigenvalue of T and any 0 � u ∈ ker (T − z)
is called a corresponding eigenvector. Moreover, dim ker(T − z) is called the
(geometric) multiplicity of the eigenvalue z of T .

We now discuss the orthogonal sum of operators. Let N be a countable
(possibly finite) index set and assume that, for each n ∈ N, Hn is a separable
Hilbert space with a norm ‖ · ‖Hn

and an inner product (·, ·)Hn
. We recall that

the Hilbert space
H :=

⊕
n∈N
Hn

is the space of all elements f = ( fn)n∈N in the Cartesian product
∏

n∈N Hn

(that is, fn ∈ Hn for all n ∈ N ) such that

‖ f ‖H :=
(∑
n∈N
‖ fn‖2Hn

)1/2
< ∞ .

This is a separable Hilbert space with inner product

( f ,g)H :=
∑
n∈N
( fn,gn)Hn

.

For each n ∈ N , let Tn be an operator in Hn. We define an operator, denoted
by
⊕

n∈N Tn, inH with domain

dom
(⊕
n∈N

Tn

)
:=
{
u ∈ H : un ∈ domTn for all n ∈ N ,

∑
n∈N
‖Tnun‖2Hn

< ∞
}

by (⊕
n∈N

Tnu
)
m

:= Tmum for all m ∈ N , u ∈ dom
(⊕
n∈N

Tn

)
.

If all the Tn are bounded, then���⊕
n∈N

Tn

��� = sup
n∈N
‖Tn‖ , (1.4)
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14 Elements of Operator Theory

where the right side may or may not be finite. In particular,
⊕

n∈N Tn is
bounded if and only if the Tn are uniformly bounded. If all the Tn are closed,
then

⊕
n∈N Tn is closed. If all the Tn are densely defined, then

⊕
n∈N Tn is

densely defined, and in this case one finds for the adjoint(⊕
n∈N

Tn

)∗
=
⊕
n∈N

T∗n .

The relation between the spectrum of
⊕

n∈N Tn and the spectra of the Tn is as
follows.

Lemma 1.5 Assume that the Tn are closed. Then

ρ
(⊕
n∈N

Tn

)
=
{
z ∈
⋂
n∈N
ρ(Tn) : sup

n∈N

��(Tn − z)−1�� < ∞}. (1.5)

Moreover,

σp

(⊕
n∈N

Tn

)
=
⋃
n∈N
σp (Tn)

and, for each z ∈ C,

dim ker
(⊕
n∈N

Tn − z
)
=
∑
n∈N

dim ker(Tn − z) .

Proof Writing T :=
⊕

n∈N Tn, we first note that

ker(T − z) =
⊕
n∈N

ker(Tn − z) .

This immediately implies the assertion about the point spectrum of T and the
multiplicity of eigenvalues. To prove the assertion about the resolvent set, let ρ
denote the set on the right side of (1.5). If z ∈ ρ, then the operator

R(z) :=
⊕
n∈N
(Tn − z)−1

is well defined and bounded by (1.4). Moreover, one easily checks that

(T − z)R(z) = 1 and R(z)(T − z) is the identity on domT .

Thus, z ∈ ρ(T).
Conversely, if z ∈ ρ(T), then (T − z)−1 is well defined and bounded. This

means that z ∈ ρ(Tn) for each n and that (T − z)−1 = R(z). Again by (1.4),
boundedness of R(z) implies supn∈N

��(Tn − z)−1
�� < ∞. Thus z ∈ ρ. �
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1.1 Hilbert spaces, self-adjoint operators and the spectral theorem 15

1.1.3 Self-adjoint operators and their spectra
A densely defined operator A is called symmetric if dom A ⊂ dom A∗ and
A∗u = Au for every u ∈ dom A. Equivalently, A is symmetric if and only if

(Au, v) = (u, Av) for all u, v ∈ dom A .

This, in turn, is equivalent to

(Au,u) ∈ R for all u ∈ dom A .

Note that eigenvalues of a symmetric operator are necessarily real since
Au = zu implies

z‖u‖2 = (Au,u) = (u, Au) = z‖u‖2 .
Moreover, if u and v are eigenvectors of a symmetric operator A corresponding
to distinct eigenvalues z and ζ , then (u, v) = 0. Indeed,

z(u, v) = (Au, v) = (u, Av) = ζ(u, v) = ζ(u, v) .
An operator A is called self-adjoint if it is densely defined, symmetric and

dom A = dom A∗. Clearly, any self-adjoint operator is closed.
A symmetric operator A that is bounded (and defined on all of H ) is self-

adjoint.

Lemma 1.6 Let A be self-adjoint. Then σ(A) ⊂ R. Moreover, z ∈ ρ(A) if and
only if there is an ε > 0 such that

‖(A − z)u‖ ≥ ε‖u‖ for all u ∈ dom A . (1.6)

Note that the second part of this lemma says that z ∈ σ(A) if and only if
there is a sequence (un) ⊂ dom A with ‖un‖ = 1 for all n and ‖(A− z)un‖ → 0
as n→∞.

Proof Indeed, for any symmetric operator A,

‖(A − z)u‖2 = ‖(A − Re z)u‖2 + (Im z)2‖u‖2 ≥ (Im z)2‖u‖2 . (1.7)

Hence, if Im z � 0 the operator A − z is injective and its inverse, defined on
ran(A− z), is bounded. If, in addition, A is closed, the inequality above implies
that ran(A − z) is closed. Hence, if A is self-adjoint, by (1.2) for Im z � 0 we
get

ran(A − z) = ran(A − z) = (ker(A∗ − z))⊥ = (ker(A − z))⊥ = H ,
and therefore z ∈ ρ(A). Thus, we have shown σ(A) ⊂ R, as claimed.

The same argument implies that, for all z ∈ R for which (1.6) holds, one has
z ∈ ρ(A).
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16 Elements of Operator Theory

Conversely, if z ∈ σp(A), then (1.6) clearly fails for eigenvectors u. If z ∈
σ(A)\σp(A) ⊂ R, then A−z is invertible. We show that its inverse is unbounded,
which contradicts (1.6). Indeed, as above, we have ran(A − z) = (ker(A− z))⊥ =
H . Since A is closed, the inverse of A − z is closed as well. For a bounded
inverse of A− z this would mean that its domain ran(A− z) is closed inH and
ran(A − z) = H . But then z ∈ ρ(A), which contradicts z ∈ σ(A). We conclude
that the inverse of A − z is unbounded. �

1.1.4 The spectrum of a multiplication operator
Let X be a set, A a sigma-algebra on X and μ a non-negative measure on
(X,A). The measure space (X,A, μ) is called separable if there is a countable
subset B ⊂ A such that for any E ∈ A with μ(E) < ∞ and any ε > 0 there
is a B ∈ B with μ(BΔE) ≤ ε. In that case, the Hilbert space L2(X,A, μ) is
separable (in the sense of having a countable orthonormal basis).

In this subsection we assume that (X,A, μ) is separable and sigma-finite.
Let ϕ be an A-measurable, complex-valued and μ-a.e. finite function on X ,

and consider the multiplication operator Tϕ in L2(X) defined by

Tϕu := ϕu , domTϕ :=
{
u ∈ L2(X) : ϕu ∈ L2(X)} .

The completeness of L2(X, (1 + |ϕ|2)μ) implies that Tϕ is a closed operator.
Moreover, Tϕ is densely defined because, for any u ∈ L2(X), the functions
χ{ |ϕ | ≤n}u ∈ domTϕ converge to u as n→∞ by dominated convergence, using
the μ-a.e. finiteness of ϕ. The adjoint of Tϕ is given by

T∗ϕ = Tϕ .

In particular, Tϕ is self-adjoint if and only if ϕ is real-valued μ-a.e. The operator
Tϕ is bounded if and only if ϕ is μ-essentially bounded, and in this case

‖Tϕ ‖ = ‖ϕ‖L∞(X ,A,μ) .

Let us characterize the spectrum of the operator Tϕ .

Theorem 1.7 Let ϕ be an A-measurable, complex-valued and μ-a.e. finite
function on X . Then

σ(Tϕ) =
{
z ∈ C : μ(ϕ−1({ζ ∈ C : |ζ − z | ≤ ε})) > 0 for all ε > 0

}
(1.8)

and

σp(Tϕ) =
{
z ∈ C : μ(ϕ−1({z})) > 0

}
, (1.9)

where ϕ−1(E) := {x ∈ X : ϕ(x) ∈ E} denotes the pre-image of E under ϕ.
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1.1 Hilbert spaces, self-adjoint operators and the spectral theorem 17

Proof We begin with proving (1.9). If ϕu = zu μ-a.e. on X for some u � 0,
then ϕ = z μ-a.e. on the set {x ∈ X : u(x) � 0}, which has positive measure.
Conversely, if Y ⊂ ϕ−1({z}) is measurable with 0 < μ(Y ) < ∞ (such a set
exists by sigma-finiteness), then 0 � χY ∈ domTϕ and Tϕ χY = zχY .

We turn to (1.8). By what we have just shown, if z ∈ σp(Tϕ), then z belongs
to the set on the right side of (1.8). If z � σp(Tϕ), then the operator Tϕ − z is
invertible on ranTϕ and the inverse is given by Tψz with

ψz(x) :=
1

ϕ(x) − z
for all x ∈ X .

As we have noticed before, this operator is bounded if and only if ψz is μ-
essentially bounded; that is, if and only if there is an ε > 0 such that for
μ-a.e. x ∈ X one has |ϕ(x) − z | ≥ ε. This means that z does not belong to the
right side in (1.8). �

1.1.5 Functional calculus
A bounded operator Π on a Hilbert spaceH is called an orthogonal projection
if Π = Π∗ = Π2. A projection-valued measure is a map P : ω �→ Pω on the
Borel sigma-algebra on R taking values in the set of orthogonal projections
such that

(a) If (ωn)n∈N , N ⊂ N, is a finite or countable family of disjoint Borel sets,
then

P⋃
n ωn
= s-lim

N→∞

∑
n≤N

Pωn .

(b) PR = 1.

One can deduce from these properties that P∅ = 0 and that

Pω1 Pω2 = Pω1∩ω2 for all Borel sets ω1, ω2 . (1.10)

Notions for scalar measures have natural analogues for projection-valued mea-
sures. The support of P is

supp P :=
{
λ ∈ R : P(λ−ε,λ+ε) � 0 for all ε > 0

}
. (1.11)

A property hold P-a.e. if it holds outside of a Borel set ω with Pω = 0. The
P-essential supremum of a real-valued measurable function ϕ on R is

P-supλϕ(λ) := inf
{
a ∈ R : P{ϕ>a} = 0

}
and a measurable function ϕ is P-bounded if P-supλ |ϕ(λ)| < ∞.

Given a projection-valued measure P and f ,g ∈ H , then ω �→ (Pω f ,g) is
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18 Elements of Operator Theory

a complex Borel measure on R and we denote integration with respect to this
measure by d(Pλ f ,g). If f = g, the measure ω �→ (Pω f , f ) is non-negative
and, since PR = 1, we have ∫

R

d(Pλ f , f ) = ‖ f ‖2 .

The next result provides us with the existence and fundamental properties of
a functional calculus.

Theorem 1.8 Let P be a projection-valued measure.

(a) For every measurable, P-a.e. finite function ϕ on R there is a unique
operator Jϕ inH satisfying

dom Jϕ =
{
u ∈ H :

∫
R

|ϕ(λ)|2 d(Pλu,u) < ∞
}

and

(Jϕu,g) =
∫
R

ϕ(λ) d(Pλu,g) for all u ∈ dom Jϕ , g ∈ H . (1.12)

The operator Jϕ is closed and densely defined.
(b) If ϕ,ψ are measurable, P-a.e. finite functions on R, then

J∗ϕ = Jϕ , (1.13)

J1 = 1 , (1.14)��Jϕu
��2 = ∫

R

|ϕ(λ)|2 d(Pλu,u) for all u ∈ dom Jϕ , (1.15)��Jϕ�� = P- sup
λ
|ϕ(λ)| . (1.16)

If α, β ∈ C and if |ϕ| + |ψ | ≤ C(1 + |αϕ + βψ |) P-a.e. for some C < ∞,
then

αJϕ + βJψ = Jαϕ+βψ , (1.17)

and, if |ϕ| + |ψ | ≤ C(1 + |ϕψ |) P-a.e. for some C < ∞, then

Jϕ Jψ = Jψϕ . (1.18)

(c) If ϕn are measurable, P-bounded functions that converge pointwise P-a.e.
to a P-a.e. finite function ϕ and satisfy |ϕn | ≤ C(1 + |ϕ|) P-a.e. for all n,
then Jϕnu→ Jϕu for all u ∈ dom Jϕ .
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In the following we will sometimes use the notation

Jϕ =:
∫
R

ϕ(λ) dPλ .

We note that the conditions for (1.17) and (1.18) are satisfied, in particular,
if ϕ and ψ are P-bounded. Hence, Theorem 1.8 shows that the map ϕ �→
Jϕ restricts to an isometric isomorphism from the C∗-Banach algebra of all
measurable, P-bounded functions on R (with the norm P-supλ, the constant
function 1 as unit, and the involution ϕ �→ ϕ) onto a commutative subalgebra
of the C∗-Banach algebra of bounded operators onH (with the operator norm,
the identity as unit, and the involution T �→ T∗).

For general, measurable, P-a.e. finite functions ϕ and ψ the identities (1.17)
and (1.18) hold pointwise on the domains of the operator expressions on the
left side and, moreover, these domains are dense in the operator norm of the
right sides.

Proof We only sketch the main steps of the construction and refer for details to,
for instance, Birman and Solomjak (1987, §§5.3 and 5.4) or Teschl (2014, §3.1).
We begin by defining the operator Jϕ for simple functions ϕ =

∑N
n=1 cn χωn

with cn ∈ C and disjoint Borel ωn ⊂ R by

Jϕ :=
∑
n

cnPωn .

Using the properties of a projection-valued measure one easily verifies the
assertions in parts (a) and (b) of the theorem. By the density of simple functions
in the set of measurable, P-bounded functions with respect to the P-essential
supremum, the operator ϕ �→ Jϕ can be uniquely extended to the latter class
of functions ϕ. The assertions in parts (a) and (b) carry over to this extension.
Moreover, the assertion in (c) in the case where the ϕn are uniformly P-bounded
follows easily by dominated convergence.

For general measurable, P-a.e. finite functions ϕ one first verifies that the
set dom Jϕ in part (a) is, indeed, a dense subspace. On the other hand, using
dominated convergence, one sees that, for u ∈ dom Jϕ and for every sequence
(ϕn) as in (c), the elements Jϕnu converge to a limit that is independent of the
choice of the (ϕn). This defines a linear operator Jϕ as in (a), except for the
claimed closedness, which will be established momentarily. The assertion in (c)
holds by construction and the properties in (b) follow by approximation from
the corresponding properties in the bounded cases. Finally, (1.13) implies that
Jϕ = (Jϕ)∗, so Jϕ is closed as an adjoint operator. This completes our sketch of
the proof of Theorem 1.8. �
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1.1.6 The spectral theorem
The content of the spectral theorem for self-adjoint operators is that any such
operator can be obtained via the procedure, in the previous subsection, of inte-
gration against a spectral measure. This theorem generalizes the diagonalization
of a Hermitian matrix and plays a fundamental role in the theory of self-adjoint
operators.

Theorem 1.9 Let A be a self-adjoint operator in H . Then there is a unique
projection-valued measure P onH such that

A =
∫
R

λ dPλ .

Proof Various proofs can be found in the textbooks mentioned in §1.3. Here
we briefly sketch the main lines of the argument in Teschl (2014, §3.1).

Let f ∈ H . Since, by Lemma 1.6, C+ ⊂ ρ(A), we can consider the function
C+ � z �→ ((A − z)−1 f , f ), and, by (1.7), we obtain the bound��((A − z)−1 f , f )

�� ≤ ��(A − z)−1�� ‖ f ‖2 ≤ |Im z |−1‖ f ‖2 .

By a Neumann series expansion we see that the function is analytic with respect
to z. Moreover, using

(A − z)−1 − (A − ζ)−1 = (z − ζ)(A − ζ)−1(A − z)−1, z, ζ ∈ ρ(A) , (1.19)

with ζ = z and, by (1.3), ((A − z)−1)∗ = (A − z)−1, we find

Im
((A − z)−1 f , f

)
= (2i)−1

( ((A − z)−1 f , f
) − ((A − z)−1 f , f

) )
= (2i)−1

( ((A − z)−1 − (A − z)−1) f , f )
= (Im z)((A − z)−1(A − z)−1 f , f

)
= (Im z)

��(A − z)−1 f
��2 . (1.20)

Thus, by the Herglotz representation theorem (see, e.g., Teschl, 2014, Theorem
3.20), there is a non-negative Borel measure μ f on R with μ f (R) ≤ ‖ f ‖2 such
that ((A − z)−1 f , f

)
=

∫
R

dμ f (λ)
λ − z

for all z ∈ C+ .

For f ,g ∈ H we define a complex Borel measure

μ f ,g :=
1
4
(
μ f+g − μ f−g + iμ f+ig − iμ f−ig

)
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and obtain ((A − z)−1 f ,g
)
=

∫
R

dμ f ,g(λ)
λ − z

. (1.21)

The right side is the Stieltjes transform of μ f ,g. By a uniqueness theorem
for this transform (see, e.g., Teschl, 2014, Theorem 3.21), the measure μ f ,g
depends linearly on f and anti-linearly on g. For any Borel ω ⊂ R, f �→ μ f (ω)
is a non-negative quadratic form that is bounded by μ f (ω) ≤ μ f (R) ≤ ‖ f ‖2.
Thus, by the Riesz representation theorem, there is a self-adjoint operator Pω

inH with ‖Pω ‖ ≤ 1 such that

(Pω f ,g) =
∫
ω

dμ f ,g(λ) for all f ,g ∈ H .

We will show that P is a projection-valued measure. The defining property (a)
of such a measure follows, with a weak limit instead of a strong limit, from the
sigma-additivity of the measures μ f ,g. Once we have shown that P is projection-
valued, the weak limit can be replaced by a strong limit. To prove the defining
property (b) of such a measure, let f ∈ ker PR. Then 0 = (PR f , f ) = μ f (R) and
therefore ((A− z)−1 f , f ) = 0 for all z ∈ C+. By (1.20), this implies f = 0. Thus,
ker PR = {0} and, once we have shown that PR is an orthogonal projection, we
deduce that PR = 1, as claimed.

Let us show that P2
ω = Pω . For all z, ζ ∈ C+ with z � ζ , by (1.19),∫

R

dμ f ,g(λ)
(λ − z)(λ − ζ) =

1
z − ζ

(∫
R

dμ f ,g(λ)
λ − z

−
∫
R

dμ f ,g(λ)
λ − ζ

)
=

1
z − ζ

( ((A − z)−1 − (A − ζ)−1) f ,g) = ((A − ζ)−1 f , (A − z)−1g
)

=
((A − z)−1(A − ζ)−1 f ,g

)
=

∫
R

dμ f ,(A−z)−1g(λ)
λ − ζ .

By a uniqueness theorem for the Stieltjes transform, this implies that

dμ f ,g(λ)
λ − z

= dμ f ,(A−z)−1g(λ) .

Using this formula, we find for any Borel ω ⊂ R,∫
ω

dμ f ,g(λ)
λ − z

=

∫
ω

dμ f ,(A−z)−1g(λ) =
(
Pω f , (A − z)−1g

)
=
((A − z)−1Pω f ,g

)
=

∫
R

dμPω f ,g(λ)
λ − z

.

Again by the uniqueness theorem for the Stieltjes transform, this implies that

χω(λ)dμ f ,g(λ) = dμPω f ,g(λ) .
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Multiplying this identity by χω(λ) and integrating, we find

(Pω f ,g) =
∫
ω

dμ f ,g(λ) =
∫
ω

dμPω f ,g(λ) = (P2
ω f ,g) .

Thus, Pω = P2
ω . We have shown that P is a projection-valued measure.

In terms of this measure, (1.21) means that (A − z)−1 =
∫
R
(λ − z)−1dPλ for

z ∈ C+. By the functional calculus (Theorem 1.8), this implies A =
∫
R
λ dPλ,

as claimed. Uniqueness of the projection-valued measure follows from (1.21)
and the uniqueness of the Stieltjes transform. �

In the situation of Theorem 1.9 the projection-valued measure is also called
the spectral measure of A. Its relation to the spectrum is clarified in Corollary
1.10 below.

Given the spectral measure of a self-adjoint operator A one can apply the
construction in the previous subsection and define functions of a self-adjoint
operator. More precisely, if A is a self-adjoint operator, P its spectral measure,
and if ϕ is a measurable, P-a.e. finite function onR, then, according to Theorem
1.8, there is an operator

ϕ(A) :=
∫
R

ϕ(λ) dPλ

with domain

dom ϕ(A) =
{
u ∈ H :

∫
R

|ϕ(λ)|2d(Pλu,u) < ∞
}

(1.22)

satisfying

(ϕ(A)u,g) =
∫
R

ϕ(λ) d(Pλu,g) for all u ∈ dom ϕ(A) , g ∈ H . (1.23)

Note, in particular, that by (1.18), the operator ϕ(A) for ϕ(λ) = λn, n ∈ N,
coincides with the n-fold product of A defined in the sense of operator products.
Moreover, if z ∈ C \ σp(A), then (A − z)−1, defined by the functional calculus,
coincides with the resolvent defined as a possibly unbounded operator. The
spectral projections Pω of Borel sets ω reappear through the characteristic
functions χω , namely, Pω = χω(A).

Recall that the support of a projection-valued measure was defined in (1.11).

Corollary 1.10 We have σ(A) = supp P and, for all z ∈ ρ(A),��(A − z)−1�� = dist(z, σ(A))−1 . (1.24)

Moreover σp(A) = {λ ∈ R : P{λ} � 0} and ker(A − λ) = ran P{λ}, for any
λ ∈ σp(A).

https://doi.org/10.1017/9781009218436.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218436.004


1.1 Hilbert spaces, self-adjoint operators and the spectral theorem 23

Proof The proof is based on the fact that, for u ∈ dom A, z ∈ C, and Borel
ω ⊂ R, we have Pωu ∈ dom A and

‖(A − z)Pωu‖2 =
∫
ω
|μ − z |2d(Pμu,u) . (1.25)

Indeed, by (1.15) and (1.18),

‖(A − z)Pωu‖2 = ‖(A − z)χω(A)u‖2 = ‖((· − z)χω)(A)u‖2

=

∫
ω
|μ − z |2 d(Pμu,u) .

First, assume that z ∈ C\supp P. Then, by (1.25) and the fact that the support
of the measure ω �→ (Pωu,u) is contained in the support of the projection-
valued measure P, for all u ∈ dom A,

‖(A − z)u‖2 =
∫
R

|μ − z |2d(Pμu,u) =
∫

supp P

|μ − z |2d(Pμu,u)

≥ dist(z, supp P)2
∫

supp P

d(Pμu,u) = dist(z, supp P)2‖u‖2 .

Thus, by Lemma 1.6, z ∈ ρ(A) and

‖(A − z)−1‖ ≤ dist(z, supp P)−1 .

This proves, in particular, that σ(A) ⊂ supp P.
Conversely, if λ ∈ supp P, there is a sequence (un) with 0 � un ∈

ran P[λ−1/n,λ+1/n] for all n. Then, by (1.25), for any z ∈ C,

‖(A − z)un‖2 =
∫
[λ−1/n,λ+1/n]

|μ − z |2d(Pμun,un)

≤
( (| Re z − λ | + n−1)2 + (Im z)2

) ∫
[λ−1/n,λ+1/n]

d(Pμun,un)

=
( (| Re z − λ | + n−1)2 + (Im z)2

)
‖ χ[λ−1/n,λ+1/n](A)un‖2

=
( (| Re z − λ | + n−1)2 + (Im z)2

)
‖un‖2 .

In particular, with the choice z = λ we see that the bound (1.6) is violated and
therefore λ ∈ σ(A). Thus, supp P ⊂ σ(A), which completes the proof of the
first assertion.

Applying the above bound for z ∈ ρ(A), we deduce that

‖(A − z)−1‖2 ≥
( (| Re z − λ | + n−1)2 + (Im z)2

)−1
.

Since n is arbitrary, we find

‖(A − z)−1‖2 ≥ ((Re z − λ)2 + (Im z)2)−1
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and, taking the supremum over all λ ∈ supp P, we obtain the bound

‖(A − z)−1‖2 ≥ dist(z, supp P)−2.

This proves the formula for the norm of the resolvent.
Finally, by (1.25) with ω = R, u ∈ ker(A− z) if and only d(Pμu,u) is a point

measure of mass ‖u‖2 at μ = z. The latter is equivalent to u = P{z }u. This
completes the proof. �

For a symmetric operator A we set

mA := inf
0�u∈dom A

(Au,u)
‖u‖2 .

An operator A is called lower semibounded if it is symmetric and mA > −∞.
An operator A is called non-negative if it is symmetric and mA ≥ 0.

Corollary 1.11 Let A be a self-adjoint operator. Then

mA = inf σ(A) .

Assuming that mA > −∞, we have that mA is an eigenvalue of A if and only if
the infimum inf0�u∈dom A(Au,u)/‖u‖2 is a minimum, and the eigenvectors are
precisely those vectors for which the infimum is attained.

Proof We assume that mA > −∞ and omit the minor modifications needed
for mA = −∞. First note that, for λ < mA and u ∈ dom A,

(mA − λ)‖u‖2 ≤ (Au,u) − λ‖u‖2 = ((A − λ)u,u) ≤ ‖(A − λ)u‖‖u‖ ,

and therefore, by Lemma 1.6, λ ∈ ρ(A). Hence, σ(A) ⊂ [mA,+∞) and, in
particular, mA ≤ inf σ(A). Conversely, by the spectral theorem (Theorem 1.9)
and Corollary 1.10,

(Au,u) =
∫
R

λd(Pλu,u) =
∫
σ(A)
λd(Pλu,u) ≥ inf σ(A)‖u‖2 for all u ∈ dom A .

Thus, mA ≥ inf σ(A) which proves the first assertion. Equality in the previous
bound is attained if and only if d(Pλu,u) is a point measure of mass ‖u‖2 at λ =
mA. As in the proof of Corollary 1.10, this is equivalent to u ∈ ker(A−mA). �

According to the spectral mapping theorem, the original spectral measure
P =: P(A) of A and the spectral measure P(ϕ(A)) of ϕ(A), where ϕ is a
measurable, real-valued function, are related by

Pω(ϕ(A)) = Pϕ−1(ω)(A) for all Borel sets ω ⊂ R . (1.26)
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Indeed, the right side defines a projection-valued measure P̃ and for all u ∈ H ,
by a change of variables,∫

R

μ2 d(P̃μu,u) =
∫
R

ϕ(λ)2 d(Pλu,u) .

Moreover, for all u for which this is finite one has, by the same change of
variables,∫

R

μ d(P̃μu,g) =
∫
R

ϕ(λ) d(Pλu,g) = (ϕ(A)u,g) for all g ∈ H .

By the uniqueness assertion in Theorem 1.9, P̃ is the spectral measure of ϕ(A),
as claimed in (1.26). In particular, (1.26) implies that for all functions ϕ that
are also continuous on supp P one has

σ(ϕ(A)) = ϕ(σ(A)).

We now return to the study of orthogonal sums of operators. Let N be a
countable (possibly finite) index set and, for each n ∈ N , assume that Hn is
a separable Hilbert space. Moreover, for each n ∈ N , let An be a self-adjoint
operator inHn. According to our discussion in §1.1.2, we know that

⊕
n∈N An

is self-adjoint in
⊕

n∈N Hn. We denote by P(An) the spectral measure of An

and define a map
⊕

n∈N P(An) from Borel sets in R to operators on
⊕

n∈N Hn

by (⊕
n∈N

P(An)
)
ω

:=
⊕
n∈N

Pω(An) for any Borel setω ⊂ R .

This is clearly a projection-valued measure.

Lemma 1.12 One has

σ
(⊕
n∈N

An

)
=
⋃
n∈N
σ(An)

and
⊕

n∈N P(An) is the spectral measure of
⊕

n∈N An.

Proof According to (1.24), we have ‖(An − z)−1‖ = (dist(z, σ(An)))−1, so by
Lemma 1.5 the first assertion follows from the fact that

sup
n∈N

(
dist(z, σ(An))

)−1
=
(

inf
n∈N

dist(z, σ(An))
)−1
=

(
dist

(
z,
⋃
n∈N
σ(An)

))−1

,

which is valid for all z ∈ ⋂n∈N ρ(An). For the second assertion we first check
that
⊕

n∈N P(An) is a projection-valued measure. We then verify the defining
relations in part (a) of Theorem 1.8. �
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1.1.7 The essential spectrum and Weyl’s theorem
Let A be a self-adjoint operator in a Hilbert spaceH with spectral measure P.
Let us define the essential spectrum σess(A) and the discrete spectrum σdisc(A)
of A by

σess(A) :=
{
λ ∈ R : dim ran P(λ−ε,λ+ε) = ∞ for all ε > 0

}
,

σdisc(A) := σ(A) \ σess(A)
=
{
λ ∈ σ(A) : dim ran P(λ−ε,λ+ε) < ∞ for some ε > 0

}
.

It is easy to prove that λ ∈ σdisc(A) if and only if λ is an isolated point of σ(A)
(i.e., σ(A) ∩ (λ − ε,λ + ε) = {λ} for some ε > 0) and λ is an eigenvalue of
finite multiplicity. Moreover, one can prove that λ ∈ σess(A) if and only if one
or more of the following statements hold: ran(A − λ) is not closed; or λ is an
accumulation point of eigenvalues; or λ is an eigenvalue of infinite multiplicity.

In practice, it is useful to have a criterion of whether a point belongs to
the essential spectrum of A that is not expressed through the spectral measure
of A, but rather through A itself. To state such a criterion, we shall say that
a sequence (un) ⊂ H is a singular sequence for A at a point λ ∈ R if the
following conditions are satisfied:

inf
n
‖un‖ > 0 , (1.27)

un → 0 weakly inH , (1.28)
un ∈ dom A , (1.29)
(A − λ)un → 0 strongly inH . (1.30)

Lemma 1.13 A point λ ∈ R belongs toσess(A) if and only if there is a singular
sequence for A at λ.

Proof First, let λ ∈ σess(A) and let (εn) be a decreasing sequence of positive
numbers tending to zero. Then, by the definition of the essential spectrum, there
is an orthonormal system (un)with un ∈ ran P(λ−εn ,λ+εn) for all n. Then (1.27),
(1.28) and (1.29) are clearly satisfied and (1.30) follows from

‖(A − λ)un‖2 =
∫
(λ−εn ,λ+εn)

(μ − λ)2d(Pμun,un)

≤ ε2
n

∫
(λ−εn ,λ+εn)

d(Pμun,un) = ε2
n → 0 .

Conversely, assume that there is a singular sequence (un) for A at λ. We argue
by contradiction assuming that λ � σess(A). Then dim ran P(λ−ε,λ+ε) < ∞ for
some ε > 0.
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Let vn := un − P(λ−ε,λ+ε)un. Then, by (1.25),

ε‖vn‖ ≤ ‖(A − λ)vn‖ = ‖PR\(λ−ε,λ+ε)(A − λ)un‖ ≤ ‖(A − λ)un‖ .
Using (1.30), we deduce that vn → 0 in H . Since P(λ−ε,λ+ε) has finite rank,
(1.28) implies that P(λ−ε,λ+ε)un → 0 inH . Thus un = vn + P(λ−ε,λ+ε)un → 0
inH . This contradicts (1.27) and completes the proof. �

The following theorem is due to Weyl and states the stability of the essential
spectrum under certain perturbations. This is very useful in practice since it
reduces the computation of the essential spectrum for general operators to that
for certain model operators. It is an example of a perturbation-theoretic result.

Theorem 1.14 Let A1 and A2 be self-adjoint operators and assume that, for
some z ∈ ρ(A1) ∩ ρ(A2),

(A1 − z)−1 − (A2 − z)−1 is compact . (1.31)

Then σess(A1) = σess(A2).
Note that assumption (1.31) holds for bounded A1, A2 with A1− A2 compact,

since

(A1− z)−1−(A2− z)−1 = −(A2− z)−1(A1− A2)(A1− z)−1 , z ∈ ρ(A1)∩ ρ(A2) .
(1.32)

In our applications it is crucial, however, that it suffices that the compactness
holds only for the resolvent difference, rather than the operator difference. A
convenient way to verify this condition in terms of quadratic forms will be
given in Theorem 1.51.

We note that if (1.31) holds for some z ∈ ρ(A1)∩ ρ(A2), then it holds for any
such z. Indeed, D(ζ) := (A1 − ζ)−1 − (A2 − ζ)−1 satisfies

D(z′) = ((A1 − z)(A1 − z′)−1)D(z)((A2 − z)(A2 − z′)−1) .
Since the factors (Aj − z)(Aj − z′)−1 are bounded, compactness of D(z) implies
compactness of D(z′).
Proof Since the assertion is symmetric in the operators A1 and A2, it suffices
to prove that σess(A1) ⊂ σess(A2). Let λ ∈ σess(A1). Then, by Lemma 1.13,
there is a singular sequence (un) for A1 at λ. With z from (1.31), let

vn := (A2 − z)−1(A1 − z)un,
which is well defined because of (1.29). We would like to show that (vn) is
a singular sequence for A2 at λ. Once this is done, the theorem follows again
from Lemma 1.13.
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Obviously, (1.29) is satisfied for vn and A2.
Let us verify (1.27) and (1.28). With K := (A2 − z)−1 − (A1 − z)−1, we have

vn = K(A1 − z)un + un = K(A1 − λ)un + (λ − z)Kun + un .

Because of (1.28) and (1.30) for un and A1, and Lemma 1.1, we have vn−un → 0
strongly inH . Therefore, (1.27) and (1.28) for un imply (1.27) and (1.28) for vn.

Finally, in order to verify (1.30), we compute

(A2 − λ)vn = (A1 − z)un + (z − λ)vn = (A1 − λ)un + (z − λ)(vn − un) .
By (1.30) for un and A1, and by the fact that vn − un → 0 strongly in H , we
obtain (1.30) for vn and A2. This completes the proof. �

Here is a consequence of the spectral theorem for compact operators.

Lemma 1.15 Let K be a bounded, self-adjoint operator inH with dimH =
∞. Then K is compact if and only if σess(K) = {0}. In this case, H has an
orthonormal basis consisting of eigenvectors of K .

Proof First, assume that K is compact. By (1.32), the assumption (1.31) in
Weyl’s theorem holds with A1 = K and A2 = 0. Thus, the theorem implies that
σess(K) = σess(0) = {0}. This means that the spectrum of K away from zero
consists of isolated eigenvalues of finite multiplicities. Thus if (λ±n ) denotes the
positive and negative eigenvalues of K , not repeated according to multiplicities,
then by Corollary 1.10, the spectral measure P of K has support

{λ+n : n} ∪ {λ−n : n} ∪ {0}
and ran Pλ±n are the eigenspaces corresponding to non-zero eigenvalues. The
defining properties of a projection-valued measure give that, in the sense of
strong convergence,

P{0} +
∑
n

P{λ+n } +
∑
n

P{λ−n } = 1 .

This identity implies the completeness of an orthonormal basis obtained by
combining orthonormal bases in the range of each of these projections.

Conversely, assume that σess(K) = {0}. To prove compactness of K , assume
that un → 0 weakly inH . Let τ > 0 and P := χ(−τ,τ)(K). Since σess(K) = {0},
the operator P⊥ := 1 − P has finite rank. Therefore, the weak convergence
un → 0 implies the strong convergence P⊥Kun → 0. On the other hand, by
the spectral theorem, ‖PKun‖ ≤ τ‖un‖. Since, by orthogonality,

‖Kun‖2 = ‖P⊥Kun‖2 + ‖PKun‖2,
we find that lim supn→∞ ‖Kun‖2 ≤ τ2C with C := supn ‖un‖2. Note that C is
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finite by uniform boundedness. Since τ > 0 can be chosen arbitrarily small, we
conclude that Kun → 0 strongly inH . Thus, by Lemma 1.1, K is compact. �

1.2 Semibounded operators and forms, and the variational
principle

1.2.1 Semibounded operators and forms
A sesquilinear form a[·, ·] in H is a map from its domain d[a] × d[a] that is
linear in its first and anti-linear in its second argument, where d[a] is a subspace
ofH . It is called symmetric if

a[u, v] = a[v,u] for all u, v ∈ d[a] ,
and it is called densely defined if d[a] is dense inH .

The quadratic form a[·] associated to a sesquilinear form a[·, ·] is defined by

a[u] := a[u,u] for all u ∈ d[a] .
The sesquilinear form a[·, ·] can be recovered from its quadratic form in view
of the polarization identity

a[u, v] = 1
4
(a[u + v] − a[u − v] + ia[u + iv] − ia[u − iv]) for all u, v ∈ d[a] .

The quadratic form a[·] is real-valued if and only if a[·, ·] is symmetric.
A quadratic form a = a[·] with domain d[a] is called lower semibounded in

a Hilbert spaceH if it is real-valued and

ma := inf
0�u∈d[a]

a[u]
‖u‖2 > −∞ .

In this case, for each m > −ma, the expression

a[u, v] + m(u, v)
defines an inner product on d[a] and for different m > −ma the corresponding
norms are equivalent.

A lower semibounded quadratic form a with domain d[a] is called closed
in a Hilbert space H if, for some (and hence any) m > −ma, the set d[a] is
complete with respect to the norm(

a[u] + m‖u‖2
)1/2
.

A form core is a subspace F ⊂ d[a] that is dense with respect to the norm(
a[u] + m‖u‖2)1/2 in d[a].
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Let us discuss the relation between lower semibounded quadratic forms
and lower semibounded operators. The latter notion was introduced before
Corollary 1.11 and we recall the notation

mA := inf
0�u∈dom A

(Au,u)
‖u‖2 > −∞ .

Theorem 1.16 Let A be a self-adjoint, lower semibounded operator. Then
there is a unique lower semibounded, closed quadratic form a satisfying

dom A ⊂ d[a] , (1.33)
a[u, v] = (Au, v) for all u ∈ dom A , v ∈ d[a] . (1.34)

The form a is densely defined, dom A is a form core of a, and ma = mA.
Moreover, for all m ≥ −mA, one has d[a] = dom(A + m)1/2 and

a[u, v] = ((A + m)1/2u, (A + m)1/2v) − m(u, v) for all u, v ∈ d[a] , (1.35)

and, if P is the spectral measure of A, then

a[u, v] =
∫
R

λ d(Pλu, v) for all u, v ∈ d[a] . (1.36)

In the following, for brevity, we refer to a described in Theorem 1.16 as the
quadratic form corresponding to A.

We begin with a technical lemma.

Lemma 1.17 Let A be a self-adjoint, lower semibounded operator and let a
be a lower semibounded, closed quadratic form satisfying (1.33) and (1.34).
Then a is densely defined, dom A is a form core of a, and ma = mA.

Proof Since A is densely defined, (1.33) implies that a is densely defined. By
(1.33) and (1.34) we have a[u] = (Au,u) for all u ∈ dom A. Thus, by enlarging
the set over which the infimum is taken, we see that mA ≥ ma.

Let us show that dom A is a form core of a. Indeed, if v ∈ d[a] satisfies
a[u, v] + m(u, v) = 0 for all u ∈ dom A and some fixed m > −ma, then,
by (1.34), v ∈ (ran(A + m))⊥ = ker(A + m) = {0}. Here we used (1.1),
the assumption that A is self-adjoint, and the fact that, by Corollary 1.11,
m > −ma ≥ −mA = − inf σ(A).

Since the infimum defining ma remains the same when restricted to a form
core, we conclude from the above facts that mA = ma. �

Proof of Theorem 1.16 We fix m ≥ −mA and use (1.35) to define a symmetric
sesquilinear form a with domain d[a] := dom(A+m)1/2. Note that by Corollary
1.11 we have inf σ(A + m) ≥ 0, and therefore the square root (A + m)1/2 is
well defined as a self-adjoint, non-negative operator by the functional calculus
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(Theorem 1.8). The quadratic form a is closed since the operator (A + m)1/2 is
closed.

Let us show (1.33) and (1.34). The former follows from (1.22) applied to
ϕ(λ) = √λ + m and ϕ(λ) = λ. Before proving (1.34), we note that (1.36) follows
from (1.15) for u = v and then by polarization for general u, v. The identity in
(1.34) follows from (1.36) by the spectral theorem (Theorem 1.9).

The facts that a is densely defined, that dom A is a form core, and that
ma = mA all follow from Lemma 1.17.

To show uniqueness, and, in particular, independence of the parameter m ≥
−mA, let ã be a lower semibounded, closed quadratic form satisfying (1.33)
and (1.34). Then, by these properties for a and ã,

ã[u, v] = (Au, v) = a[u, v] for all u, v ∈ dom A . (1.37)

By Lemma 1.17, dom A is a form core of both a and ã. Therefore, (1.37) and
the closedness of a and ã imply that d[a] = d[ã] and ã[u, v] = a[u, v] for all
u, v from this set. Thus a = ã. �

The usefulness of lower semibounded quadratic forms comes from the fact
that the above construction can be reversed. That is, each densely defined, lower
semibounded, and closed quadratic form gives rise to a unique self-adjoint
operator. The precise statement is the following.

Theorem 1.18 Let a be a densely defined, lower semibounded, and closed
quadratic form. Then there is a unique self-adjoint operator A satisfying (1.33)
and (1.34). Moreover, A is lower semibounded with mA = ma and the domain
of A is given by

dom A = {u ∈ d[a] : there exists f ∈ H such that for all v ∈ d[a] ,
a[u, v] = ( f , v)}.

In the following, we briefly refer to A described in Theorem 1.18 as the
operator corresponding to a.

Proof We fix m > −ma. We have for any g ∈ H and any v ∈ d[a],

|(g, v)| ≤ ‖g‖‖v‖ ≤ (ma + m)−1/2‖g‖
(
a[v] + m‖v‖2

)1/2
. (1.38)

This means that for fixed g ∈ H , v �→ (g, v) is a bounded, anti-linear functional
on d[a] endowed with the norm

(
a[·] + m‖ · ‖2)1/2. Therefore, by the Riesz

representation theorem, there is a unique ug ∈ d[a] such that

(g, v) = a[ug, v] + m(ug, v) for all v ∈ d[a] . (1.39)
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The uniqueness of ug implies that the map g �→ ug is linear. Moreover, taking
v = ug in both (1.38) and (1.39), we obtain

a[ug] + m‖ug‖2 ≤ (ma + m)−1/2‖g‖
(
a[ug] + m‖ug‖2

)1/2
;

that is, a[ug] + m‖ug‖2 ≤ (ma + m)−1‖g‖2. This means that the map g �→ ug
is bounded fromH to d[a]. Since the embedding d[a] → H is continuous, we
can consider the mapping g �→ Bg := ug as a bounded linear operator on H .
Taking v = ug in (1.39) gives

(g,Bg) = a[ug] + m‖ug‖2 ≥ (ma + m)‖ug‖2 ≥ 0 , (1.40)

and therefore B is a self-adjoint operator on H . Its kernel is trivial since, by
(1.39), ug = 0 implies g = 0. Moreover, since, by (1.2), ran B = (ker B)⊥ = H ,
its range is dense inH .

These facts imply that A := B−1 −m can be defined as a possibly unbounded
operator with domain dom A := ran B. By (1.3), A is self-adjoint. By construc-
tion, we have dom A ⊂ d[a] and, for u ∈ dom A and v ∈ d[a], we can apply
(1.39) to g := (A + m)u and get, using Bg = u,

(Au, v) = (g, v) − m(u, v) = a[ug, v] + m(ug, v) − m(u, v)
= a[Bg, v] + m(Bg, v) − m(u, v) = a[u, v] .

This means that a is associated to A in the sense of (1.33) and (1.34).
It follows from (1.33), (1.34), and the lower semiboundedness of a that A

is semibounded, and then from Lemma 1.17 that mA = ma. The formula for
dom A follows easily from this construction. Indeed, the element g in dom A =
{ug : g ∈ H} and the element f in the formula in the theorem are related by
f = g − m ug.

Finally, to show uniqueness, let A1 and A2 be self-adjoint, lower semibounded
operators satisfying (1.33) and (1.34), and let v ∈ dom A1. Then on the one
hand, by (1.34) and the symmetry of a, we have for all u ∈ d[a], (u, A1v) =
a[u, v] and, on the other hand, by Theorem 1.16, we have d[a] = dom(A2+m)1/2
and for all u from this set,

((A2 + m)1/2u, (A2 + m)1/2v) − m(u, v) = a[u, v].
Thus,(

u, (A1 + m)v) = ((A2 + m)1/2u, (A2 + m)1/2v) for all u ∈ dom(A2 + m)1/2 .
By the definition of the adjoint operator, this means that (A2 + m)1/2v ∈
dom
((A2 + m)1/2)∗ and

((A2 + m)1/2)∗(A2 + m)1/2v = (A1 + m)v. Since A2
is self-adjoint, using (1.18) we find v ∈ dom A2 and (A2 + m)v = (A1 + m)v;
that is, A2v = A1v. Interchanging the roles of A1 and A2, we also infer that, if
v ∈ dom A2, then v ∈ dom A1 and A1v = A2v. Thus, A1 = A2, as claimed. �
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It is important in applications to describe spectral properties of A in terms of
the quadratic form a. The following lemma concerns the bottom of the spectrum
of A.

Lemma 1.19 Let A be a self-adjoint, lower semibounded operator with cor-
responding quadratic form a. Then

inf σ(A) = ma .

Moreover, ma is an eigenvalue of A if and only if the infimum

inf
0�u∈d[a]

a[u]/‖u‖2

is a minimum, and eigenvectors are precisely those vectors for which the infimum
is attained.

Proof The equality follows immediately from ma = mA and Corollary 1.11.
Moreover, given the characterization of minimizers there, it remains to show
that, if u0 ∈ d[a] is a minimizer for inf0�u∈d[a] a[u]/‖u‖2, then u0 ∈ dom A.
This follows from (1.36), which implies u0 = P{ma }u0 and, therefore, u0 ∈
dom A. �

Next, we characterize the bottom of the essential spectrum.

Lemma 1.20 Let A be a self-adjoint, lower semibounded operator with cor-
responding quadratic form a. Then

inf σess(A)
= inf

{
lim inf
n→∞ a[un] : (un) ⊂ d[a] , ‖un‖ = 1 , un → 0 weakly inH

}
with the convention that inf ∅ = +∞.

Proof Let us denote the left and right sides by Λ and Λ̃, respectively. For the
proof of Λ ≥ Λ̃ we may assume that Λ < ∞. Then, since σess(A) is closed,
Λ ∈ σess(A) and, by Lemma 1.13, there is a sequence (un) ⊂ dom A ⊂ d[a]
such that ‖un‖ = 1, un → 0 weakly in H , and (A − Λ)un → 0 strongly in H .
Thus a[un] − Λ =

((A − Λ)un,un
) → 0, which implies Λ̃ ≤ Λ.

For the proof of Λ ≤ Λ̃, let (un) ⊂ d[a] with ‖un‖ = 1 and un → 0 weakly
inH . We will use the fact that for any u ∈ d[a] and any Borel ω ⊂ R, one has
Pωu ∈ d[a] and

a[Pωu] =
∫
ω
μ d(Pμu,u) . (1.41)
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Indeed, this follows from (1.15), (1.18) and Theorem 1.16. Let λ ∈ R with
λ < Λ and set P := P(−∞,λ) and P⊥ := 1 − P. Then, by the above fact,

a[un] = a[Pun] +
∫
[λ,∞)

μ d(Pμun,un) ≥ a[Pun] + λ‖P⊥un‖2

=
((PAP)un,un

)
+ λ
(
1 − (Pun,un)

)
.

Since λ < Λ, the operators PAP and P have finite rank and, thus, by the assumed
weak convergence,

((PAP)un,un
) → 0 and (Pun,un) → 0. This proves that

lim infn→∞ a[un] ≥ λ. Since λ < Λ is arbitrary, this proves Λ̃ ≥ Λ. �

We say that the operator A has discrete spectrum if the essential spectrum of
A is empty. This is a slight abuse of terminology and means not only that the
set σ(A) is a discrete subset of R, but also that the corresponding eigenvalue
multiplicities are finite. In other words, the operator A has discrete spectrum if
and only if dim ran Pω < ∞ for any compact interval ω ⊂ R. We say that A has
a discrete spectrum in an interval ω ⊂ R if σess(A) ∩ ω = ∅.

According to Lemma 1.20, A has discrete spectrum if and only if any se-
quence (un) ⊂ d[a], with ‖un‖ = 1 and un → 0 weakly in H , satisfies
a[un] → ∞. The following corollary gives a necessary and sufficient condi-
tion in terms of the embedding operator J : d[a] → H , which maps every
u ∈ d[a] to itself as an element in H . This is a bounded operator when d[a]
is equipped with its norm

√
a[u] + m‖u‖2 for some m > −ma. By definition,

this operator is compact if the closed unit ball in d[a] is relatively compact in
H . As in Lemma 1.1, this compactness is equivalent to the assertion that every
weakly convergent sequence in d[a] converges strongly inH .

Corollary 1.21 Let A be a self-adjoint, lower semibounded operator with
corresponding quadratic form a. Then A has discrete spectrum if and only if
the embedding from d[a] toH is compact.

Proof Assuming that A has discrete spectrum and that (vn) ⊂ d[a] with
vn → 0 weakly in d[a], we need to show that vn → 0 strongly inH . If this was
not the case, then, after passing to a subsequence, we may assume that (‖vn‖)
converges to a positive constant. Then un := vn/‖vn‖ → 0 weakly in d[a]
and, since the embedding from d[a] toH is continuous, also weakly inH . By
Lemma 1.20, we infer that a[un] → ∞, which contradicts the boundedness of
a weakly convergent sequence in d[a].

Conversely, assuming that the embedding from d[a] to H is compact and
that (un) ⊂ d[a] with ‖un‖ = 1 and un → 0 weakly in H , by Lemma 1.20,
we need to show that a[un] → ∞. If this was not the case, then, after passing
to a subsequence, we may assume that (a[un]) converges. In particular, (un)
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is bounded in d[a] and, by the compactness of the embedding, after passing
to a subsequence, we may assume that (un) converges strongly in H . Its limit
coincides necessarily with its weak limit, which is zero, but this contradicts
‖un‖ = 1 for all n. �

As a final topic in this subsection, we discuss orthogonal sums of operators
via quadratic forms. Let N be a countable (possibly finite) index set and, for
each n ∈ N , let Hn be a separable Hilbert space. For each n ∈ N , let an be
a densely defined, lower semibounded and closed quadratic form in Hn with
lower bound man satisfying

M := inf
n∈N

man > −∞ .

Then we define a quadratic form a in
⊕

n∈N Hn with domain

d[a] :=
{
u ∈
⊕
n∈N
Hn : un ∈ d[an] for all n ∈ N ,

∑
n∈N

a[un] < ∞
}

by
a[u] :=

∑
n∈N

a[un] for all u ∈ d[a] .

Note that the sum converges absolutely since M > −∞. It is easy to see
that a is densely defined, lower semibounded with lower bound ma = M , and
closed. Therefore, by Theorem 1.18, it generates a unique self-adjoint and lower
semibounded operator A in

⊕
n∈N Hn. Similarly, for each n ∈ N , an generates

a unique self-adjoint and lower semibounded operator An inHn. By verifying
(1.33) and (1.34), we see that

A =
⊕
n∈N

An . (1.42)

1.2.2 The operators T∗T and TT∗, and the polar decomposition
Let T be a densely defined, closed operator in a Hilbert space H . Consider
the quadratic form a[u] := ‖Tu‖2 with domain d[a] := domT . This form is
densely defined, non-negative and closed. Hence, by Theorem 1.18, it induces
a self-adjoint non-negative operator A with

dom A =
{
u ∈ domT : there exists f ∈ H such that for all v ∈ domT ,

(Tu,Tv) = ( f , v)} .
The f here is unique and one has f = Au. This means Tu ∈ domT∗ and
Au = T∗Tu for all u ∈ dom A, which means that A = T∗T in the sense of
composition of unbounded operators. We write A = T∗T in the following.
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Since T∗T is self-adjoint and non-negative, its square root is defined by the
spectral theorem. The operator

|T | = (T∗T)1/2

is called the absolute value of T . It is the unique self-adjoint, non-negative
operator onH with

‖|T | f ‖ = ‖T f ‖ for any f ∈ domT = dom |T | . (1.43)

Indeed, since by its definition |T |2 = T∗T , the corresponding quadratic forms
‖|T | f ‖2 and ‖T f ‖2 coincide, including equality of their respective domains.
The uniqueness follows from the uniqueness of the positive square root of a
non-negative operator and the uniqueness in Theorem 1.18.

Any complex number z has a polar representation z = eiϕr with r = |z | ≥ 0
and ϕ = arg z ∈ [0,2π). In this subsection we present an analogous representa-
tion of an operator in a Hilbert space.

The operator |T | will correspond to the ‘radial part’ in the polar decomposi-
tion of T . The following theorem describes the ‘angular part’ of this decompo-
sition.

Proposition 1.22 Let T be a densely defined, closed operator. Then there is a
unique bounded operator U such that T = U |T | and

‖U f ‖ = ‖ f ‖ for all f ∈ (ker T)⊥ , (1.44)
ker U = ker T , (1.45)

ran U = ranT . (1.46)

Proof We define U : ran |T | → ranT by U |T | f := T f . According to (1.43),
the operator U is well defined, norm-preserving and maps onto ranT . Thus, U
extends to a unitary operator from ran |T | to ranT and, extending U by zero to
(ran |T |)⊥, we obtain a bounded operator onH satisfying (1.46).

To prove (1.44) and (1.45), it remains to show that ran |T | = (ker T)⊥. Indeed,
using the self-adjointness of |T |, we have ran |T | = (ker |T |)⊥. Again by (1.43),
we have ker |T | = ker T . This proves the existence of U with the claimed
properties.

Uniqueness of U comes from the fact that the extension of U from ran |T | to
ran |T | is unique. �

Because T is densely defined and closed, we have T∗∗ = T , and the same
construction as at the beginning of this subsection leads to the self-adjoint
operator TT∗ defined on {u ∈ domT∗ : T∗u ∈ domT} corresponding to
the quadratic form ‖T∗u‖2 defined on domT∗. Our next result compares the
operators T∗T and TT∗ away from their respective kernels.
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Proposition 1.23 Let T be a densely defined, closed operator. The opera-
tor T∗T restricted to (ker T∗T)⊥ is unitarily equivalent to the operator TT∗

restricted to (ker TT∗)⊥.

Proof Let T = U |T | be the polar decomposition of T . First, we observe that
T∗ = |T |U∗ with domT∗ = { f ∈ H : U∗ f ∈ dom |T |}. Indeed, by the definition
of the adjoint, we have

domT∗ = { f ∈ H : there is a g ∈ H such that
for all h ∈ dom |T | one has (g, h) = (U∗ f , |T |h)}

= { f ∈ H : U∗ f ∈ dom |T |∗} .
Since |T |∗ = |T |, this means dom |T |U∗ = domT∗ and T∗ f = |T |U∗ f for f in
this set.

Note that, because of dom |T | = domT , we also have domT∗ = domTU∗.
By the formula for T∗ and by (1.43), we have

‖T∗u‖ = ‖|T |U∗u‖ = ‖TU∗u‖ for all u ∈ domT∗ = domTU∗ .

This means TT∗ = (TU∗)∗TU∗. The same argument as before implies (UT∗)∗ =
TU∗. Since UT∗ is closed, this gives (TU∗)∗ = UT∗, and therefore

TT∗ = UT∗TU∗ . (1.47)

According to Proposition 1.22, the operator U can be restricted to a unitary
operator V : (ker T)⊥ → ranT . Consequently, we have a unitary operator
V∗ : ranT → (ker T)⊥. Since ker TT∗ = ker T∗ = (ranT)⊥ and ker T∗T = ker T ,
we can restrict (1.47) to

TT∗ |(kerTT ∗)⊥ = V
(
T∗T |(kerT ∗T )⊥

)
V∗ .

This provides the claimed unitary equivalence. �

Corollary 1.24 Let T be a densely defined, closed operator and λ � 0. Then

dim ker(T∗T − λ) = dim ker(TT∗ − λ) .
The above proof shows that, if u is an eigenvector for T∗T corresponding to an

eigenvalue λ � 0, then Tu is non-zero and an eigenvector for TT∗ corresponding
to the eigenvalue λ.

1.2.3 The variational principle
The goal of this subsection is to prove the variational principle. It translates the
problem of counting eigenvalues below the bottom of the essential spectrum of
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a self-adjoint, lower semibounded operator into a problem for the corresponding
quadratic form.

Let A be a self-adjoint, lower semibounded operator. Then the spectrum of
A below inf σess(A) ∈ (−∞,∞] is discrete. If it is not empty, this portion of the
spectrum consists of eigenvalues of finite multiplicities that may accumulate
only at the value inf σess(A). Therefore, these eigenvalues can be enumerated
in non-decreasing order

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) ≤ · · · ,
where each eigenvalue is repeated according to its multiplicity.

Instead of the eigenvalues it is sometimes more convenient to consider their
counting function. For a self-adjoint operator A with spectral measure P and
for μ ∈ R, let

N(μ, A) := dim ran P(−∞,μ) ,

which can be a natural number or infinite. The function μ �→ N(μ, A) is clearly
non-decreasing. It is referred to as the spectral counting function. For a given
μ ∈ R, one has N(μ, A) < ∞ if and only if the spectrum of A in (−∞, μ) consists
of finitely many eigenvalues with finite multiplicities, and in this case, N(μ, A)
is equal to the total multiplicity of these eigenvalues. Consequently, one has
σess(A) � ∅ if and only if there is a μ ∈ R with N(μ, A) = ∞, and in this case
one has inf σess(A) = inf{μ : N(μ, A) = ∞}. We write

NA :=

{
N(inf σess(A), A) if σess(A) � ∅ ,
dimH if σess(A) = ∅ .

We begin with a version of the variational principle that is sometimes called
Glazman’s lemma.

Theorem 1.25 Let A be a self-adjoint, lower semibounded operator with
corresponding quadratic form a. Then for any μ ∈ R,

N(μ, A) = sup
{

dim F : F ⊂ d[a] is a subspace such that
for all 0 � u ∈ F one has a[u] < μ‖u‖2} (1.48)

and

N(μ, A) + dim ker(A − μ)
= sup

{
dim F : F ⊂ d[a] is a subspace such that for all u ∈ F

one has a[u] ≤ μ‖u‖2}. (1.49)

If F is a form core of a, then in (1.48) it suffices to take the supremum only
over F ⊂ F .
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In particular, if the right side in (1.48) is finite, then it coincides with the
number of eigenvalues of A that are strictly less than μ (counting multiplicities).

Proof Let F := ran P(−∞,μ) and note that this is contained in d[a]. Moreover,
by Theorem 1.16 (see also (1.41)), for any 0 � u ∈ F,

a[u] =
∫
(−∞,μ)

λ d(Pλu,u) < μ
∫
(−∞,μ)

d(Pλu,u) = μ‖u‖2 ,

which proves ≤ in (1.48).
To prove the reverse inequality, we consider an arbitrary subspace F ⊂ d[a]

with dim F > N(μ, A). Since dim ran P(−∞,μ) = N(μ, A), there is a 0 � u0 ∈
F ∩ (ran P(−∞,μ)

)⊥. Then, again by Theorem 1.16 (see also (1.41)), we have

a[u0] =
∫
[μ,∞)

λ d(Pλu0,u0) ≥ μ
∫
[μ,∞)

d(Pλu0,u0) = μ‖u0‖2 .

Therefore, this subspace F is not admissible in the right side of (1.48).
An analogous argument proves the second identity (1.49).
The proof when F is restricted to lie in a dense subspace F of d[a] follows

from approximating, in the form norm, a finite linear system from ran P(−∞,μ)
by elements from F . This preserves the strict inequality a[u] < μ‖u‖2, u � 0,
on the span of these elements and completes the proof. �

Here is another useful form of the variational principle, also called Glazman’s
lemma.

Theorem 1.26 Let A be a self-adjoint, lower semibounded operator with
corresponding quadratic form a. Then for any μ ∈ R,

N(μ, A) = inf
{

dim F : F ⊂ H is a subspace such that
for all u ∈ F⊥ ∩ d[a], a[u] ≥ μ‖u‖2} (1.50)

and

N(μ, A) + dim ker(A − μ)
= inf

{
dim F : F ⊂ H is a subspace such that for all 0 � u ∈ F⊥ ∩ d[a],

a[u] > μ‖u‖2} . (1.51)

Proof We first show that N ≥ inf, and then N ≤ inf in (1.50). For F :=
ran P(−∞,μ), we have N(μ, A) = dim F and, by Theorem 1.16 (see also (1.41)),
a[u] ≥ μ‖u‖2 for all u ∈ F⊥ ∩ d[a]. This proves ≥ in (1.50).

We now consider some arbitrary subspace F ⊂ H with N(μ, A) > dim F.
Then there exists some u0 � 0 with u0 ∈ ran P(−∞,μ) ⊂ d[a] and u0 ∈ F⊥. But
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for this u0, the opposite inequality a[u0] < μ‖u0‖2 holds. Hence, this subspace
is not admissible in the right side of (1.50), and we are done.

An analogous argument proves the second identity (1.51). �

As well as the variational principles for the counting function in Theorems
1.25 and 1.26, there are closely related variational principles for individual
eigenvalues that play a very important role in applications. While we will not
use them in this book, it is worth stating them and sketching their proof.

The following theorem is sometimes referred to as the Courant–Fischer–
Weyl min–max principle. We recall the definition of the λn(A) and of NA at the
beginning of this subsection.

Theorem 1.27 Let A be a self-adjoint, lower semibounded operator with
corresponding quadratic form a. Then, for all n ∈ N,

sup
u1 ,...,un−1∈H

inf
0�u∈d[a]∩{u1 ,...,un−1 }⊥

a[u]
‖u‖2 =

{
λn(A) if n ≤ NA ,

inf σess(A) if n > NA .

If n ≤ NA, the supremum is attained if u1, . . . ,un−1 are orthonormal eigenvec-
tors corresponding to the eigenvalues λ1(A), . . . , λn−1(A) and, in this case, the
infimum is attained if u is an eigenvector corresponding to λn(A).

If dimH < ∞, then both sides of the equality in Theorem 1.27 are interpreted
as +∞ for n > NA = dimH .

Proof For each n ∈ N we denote by μn the left side of the assertion and,
fixing orthonormal eigenvectors em corresponding to the λm(A), we define, for
n ≤ NA,

μ̃n := inf
0�u∈d[a]∩{e1 ,...,en−1 }⊥

a[u]
‖u‖2 .

We prove that

μn = μ̃n = λn(A) for all n ≤ NA . (1.52)

Clearly, μn ≥ μ̃n for n ≤ NA. Let P be the spectral measure of A. Since
{e1, . . . , en−1}⊥ ⊂ ran P[λn(A),∞), we have, as in the proof of Theorem 1.25,
that a[u] ≥ λn(A)‖u‖2 for every u ∈ d[a] ∩ {e1, . . . , en−1}⊥. Note that equality
holds if u = en. Thus, we have μ̃n ≥ λn(A). On the other hand, for any
u1, . . . ,un−1 ∈ H , there is a 0 � v ∈ span{e1, . . . , en} ∩ {u1, . . . ,un−1}⊥. Since
v ∈ span{e1, . . . , en}, we have v ∈ d[a] and, again as in the proof of Theorem
1.25, a[v] ≤ λn(A)‖v‖2. Hence,

inf
0�u∈d[a]∩{u1 ,...,un−1 }⊥

a[u]
‖u‖2 ≤

a[v]
‖v‖2 ≤ λn(A) .

https://doi.org/10.1017/9781009218436.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218436.004


1.2 Semibounded operators and forms, and the variational principle 41

Thus, since u1, . . . ,un−1 are arbitrary, we have μn ≤ λn(A). This completes the
proof of (1.52), and thereby of all conclusions in the theorem for n ≤ NA.

To prove the remaining conclusions, we may assume that dimH = ∞,
κ := inf σess(A) < ∞, and NA < ∞. Then dim ran P(−∞,κ+ε) = ∞ for any ε > 0
and therefore, for any given ε > 0, we can extend the finite orthonormal system
(en)NA

n=1 to an infinite orthonormal system (en)∞n=1 ⊂ ran P(−∞,κ+ε). Defining μ̃n
for n > nA by the same formula as before, we still have μn ≥ μ̃n. Moreover,
by repeating the above reasoning, we get μ̃n ≥ κ and μn ≤ κ + ε for n > nA.
Since ε > 0 is arbitrary, this proves that μn = κ, as claimed. This completes
the proof. �

There is another version where the inf and the sup are interchanged.

Theorem 1.28 Let A be a self-adjoint, lower semibounded operator with
corresponding quadratic form a. Then, for all n ∈ N,

inf
u1 ,...,un ∈d[a]
lin. independent

sup
0�u∈span{u1 ,...,un }

a[u]
‖u‖2 =

{
λn(A) if n ≤ NA ,

inf σess(A) if n > NA .

If n ≤ NA, the infimum is attained if u1, . . . ,un are orthonormal eigenvectors
corresponding to the eigenvalues λ1(A), . . . , λn(A) and, in this case, the supre-
mum is attained if u is an eigenvector corresponding to λn(A).

The proof of this theorem is similar to those of the others in this subsection
and is omitted; see, e.g., Davies (1995, Theorems 4.5.1 and 4.5.2).

1.2.4 Applications of the variational principle
We begin by introducing the important notion of comparison of two operators.
Let A and B be self-adjoint, lower semibounded operators and let a and b be the
corresponding quadratic forms with form domains d[a] and d[b], respectively.
We say that A is greater or equal than B, in symbols

A ≥ B , or B ≤ A , (1.53)

if the following two conditions are satisfied

d[a] ⊂ d[b] , (1.54)
a[u] ≥ b[u] for all u ∈ d[a] . (1.55)

Note that the case d[a] = d[b] in (1.54) may occur, for instance, if both
operators A and B are bounded. Furthermore, the definition is meaningful if we
have the special case a[u] = b[u] for all u ∈ d[a] in (1.55). In applications this
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occurs, for instance, for differential operators where a strict inclusion in (1.54)
corresponds to different choices of boundary conditions for A and B.

Trivially, it holds that A ≥ A. Note further that A ≥ B and B ≥ C implies
A ≥ C. Finally, if A ≥ B and B ≥ A, then A = B. Therefore, this comparison
defines a partial order relation.

The following is a consequence of the variational principle (Theorem 1.25).

Proposition 1.29 Let A and B be self-adjoint, lower semibounded operators
satisfying A ≥ B. Then

N(μ, A) ≤ N(μ,B) for all μ ∈ R .
In particular, inf σess(A) ≥ inf σess(B) and

λn(A) ≥ λn(B) for all n ≤ min{NA,NB} .
The second application of the variational principle concerns eigenvalues of

sums of operators defined in the form sense.
Consider two self-adjoint, lower semibounded operators A and B with corre-

sponding quadratic forms a and b. Assume that d[a] ∩ d[b] is dense inH , and
let c be the quadratic form c[u] := a[u]+ b[u]with domain d[c] := d[a]∩ d[b].
This form is lower semibounded and closed. It induces a corresponding self-
adjoint operator C, which we formally write as A + B. The identification of C
with A+ B has to be understood in the form sense, not in the sense of a sum of
operators.

Corollary 1.30 Let A and B be self-adjoint, lower semibounded operators
and assume that d[a] ∩ d[b] is dense inH . Then

N(0, A + B) ≤ N(0, A) + N(0,B) .
Proof Let P(A) and P(B) denote the spectral measures for A and B, respec-
tively, and let L := ran P(−∞,0)(A) and M := ran P(−∞,0)(B). By the spectral
theorem,

a[u] ≥ 0 for all u ∈ d[a] ∩ L⊥ and b[v] ≥ 0 for all v ∈ d[b] ∩ M⊥ .

Thus,

c[w] = a[w] + b[w] ≥ 0 for all w ∈ d[a] ∩ d[b] ∩ (L + M)⊥ .
By Theorem 1.26, we deduce

N(0,C) ≤ dim(L + M) ≤ dim L + dim M = N(0, A) + N(0,B) ,
as claimed. �
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We conclude this subsection with two somewhat technical applications of
the variational principle that will be needed later on.

Let A be a self-adjoint, lower semibounded operator and let a be the
corresponding quadratic form. Consider a bounded operator T such that
{u ∈ H : Tu ∈ d[a]} is dense inH , and define

aT [u] := a[Tu] for u ∈ d[aT ] := {v ∈ H : Tv ∈ d[a]} .
This form is lower semibounded and closed. It induces a self-adjoint operator,
which we write formally as T∗AT . We emphasize that this notation is not
understood in the sense of a product of operators.

Corollary 1.31 If A is self-adjoint and lower semibounded and if T is bounded
with {u ∈ H : Tu ∈ d[a]} dense inH , then N(0,T∗AT) ≤ N(0, A).
Proof Let P be the spectral measure of A and set L := ran P(−∞,0). Then, for
all u ∈ (T∗L)⊥ ∩ d[aT ], one has Tu ∈ L⊥ ∩ d[a]. Thus, by the spectral theorem,
we have aT [u] = a[Tu] ≥ 0. By the variational principle (Theorem 1.26), this
implies

N(0,T∗AT) ≤ dimT∗L ≤ dim L = N(0, A) ,
as claimed. �

We shall also need another version of this corollary. Let P be an orthogonal
projection and, as before, let A be a self-adjoint, lower semibounded operator
with quadratic form a. Assuming that d[a] ∩ ran P is dense in ran P, the set
{u ∈ H : Pu ∈ d[a]} is dense inH , and then PAP is defined as above. Let ÃP

be the restriction of PAP to the Hilbert space ran P. The following corollary
compares the spectrum of A onH with that of ÃP on ran P.

Corollary 1.32 If A is self-adjoint and lower semibounded and if P is an
orthogonal projection with d[a]∩ran P dense in ran P, then N(λ, ÃP) ≤ N(λ, A)
for all λ ∈ R.

Proof Let B := A − λ in H . Then, by Corollary 1.31, we have N(λ, A) =
N(0,B) ≥ N(0,PBP). Since N(0,PBP) counts the strictly negative eigenvalues
and since PBP = B̃P ⊕ 0 on H = ran P ⊕ (ran P)⊥, we get N(0,PBP) =
N(0, B̃P). On ran P we have B̃P = ÃP − λ, and thus N(0, B̃P) = N(λ, ÃP). �

1.2.5 Variational principle for sums of eigenvalues and the trace
In the previous two subsections, we have discussed a variational principle for the
eigenvalues of a self-adjoint, lower semibounded operator. In this subsection,
we prove a corresponding principle for sums of eigenvalues and, along the way,
introduce the trace of a self-adjoint, non-negative operator.
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We recall that, for a self-adjoint, lower semibounded operator A, we denote
by λj(A) the eigenvalues below the bottom of its essential spectrum, in non-
decreasing order and repeated according to multiplicities. This list contains NA

elements and may be empty, finite or infinite.
Here is a variational characterization for partial sums of these eigenvalues.

Proposition 1.33 Let A be a self-adjoint, lower semibounded operator with
corresponding quadratic form a. Then, for any finite number N ≤ NA,
N∑
j=1
λj(A)

= inf

{
N∑
n=1

a[un] : (un)Nn=1 ⊂ d[a] and (un,um) = δn,m for all 1 ≤ n,m ≤ N

}
.

If F is a form core of a, then in the infimum on the right side it suffices to
consider (un)Nn=1 ⊂ F .

Proof We first prove that the left side ≥ the right side. In fact this follows
immediately by choosing un to be orthonormal eigenvectors corresponding to
λn(A).

Let us prove the opposite bound. For a given finite number N ≤ NA and given
u1, . . . ,uN ∈ d[a] with (un,um) = δn,m, we define the orthogonal projection
P :=

∑N
n=1(·,un)un. Then, according to Corollary 1.32,

λj(A) ≤ λj(ÃP) for all 1 ≤ j ≤ N .

Thus,
N∑
j=1
λj(A) ≤

N∑
j=1
λj
(
ÃP

)
=

N∑
n=1

a[un] ,

where we used the fact from linear algebra that the sum of all eigenvalues of a
matrix in a finite-dimensional space can be evaluated by the sum of the diagonal
entries.

The statement concerning a form core follows by a simple approximation
argument in the form norm. This proves the proposition. �

Proposition 1.33 implies the following somewhat technical result, which will
be of importance in §§5.3 and 8.2. Let Ξ be a probability space. We denote
integration with respect to the underlying probability measure by dξ. Let Ξ �
ξ �→ U(ξ) be a measurable function taking values in the unitary operators on
H , where measurability is understood in the form sense. Let A be a self-adjoint,
lower semibounded operator with corresponding quadratic form a. We assume
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that ran U(ξ) ⊂ d[a] for a.e. ξ ∈ Ξ and that {u ∈ H :
∫
Ξ

a[U(ξ)u] dξ < ∞} is
dense inH . Then the quadratic form

aU [u] :=
∫
Ξ

a[U(ξ)u] dξ for u ∈ d[aU ] :=
{
v ∈ H :

∫
Ξ

a[U(ξ)v] dξ < ∞
}

is lower semibounded and closed. It defines a self-adjoint, lower semibounded
operator, which we denote by AU and sometimes also by

∫
Ξ

U(ξ)∗AU(ξ) dξ.

Corollary 1.34 Let A be a self-adjoint, lower semibounded operator and let
U be as above. Then for any finite number N ≤ min{NA,NAU },

N∑
j=1
λj(AU ) ≥

N∑
j=1
λj(A) .

Proof Let (un)Nn=1 be a orthonormal system of eigenvectors of AU correspond-
ing to the eigenvalues λ1(AU ), . . . , λN (AU ). Then

N∑
j=1
λj(AU ) =

N∑
n=1

aU [un] =
N∑
n=1

∫
Ξ

a[U(ξ)un] dξ =
∫
Ξ

N∑
n=1

a[U(ξ)u j] dξ .

Since for a.e. ξ ∈ Ξ the system (U(ξ)un)Nn=1 belongs to d[a] and is orthonormal,
the variational principle from Proposition 1.33 implies

N∑
n=1

a[U(ξ)un] ≥
N∑
j=1
λj(A) .

Since dξ is a probability measure, it remains to integrate both sides in this
inequality to obtain the desired conclusion. �

The next result is a version of Proposition 1.33 where N is not fixed. For this
purpose, the following notion of the trace of a non-negative bounded operator
T will be useful. If the essential spectrum of T is empty or consists only of the
point 0, the negative spectrum of −T is discrete and consists of the eigenvalues
λj(−T), which are enumerated counting multiplicities as explained above. We
set

Tr T :=

{
+∞ if supσess(T) > 0 ,
−∑j λj(−T) otherwise .

Even in the second case, this value can be infinite. On the other hand, if Tr T is
finite, then Lemma 1.15 implies that T is compact.

In the statement of the following corollary, the operator A− is defined by the
functional calculus as ϕ(A) with ϕ(λ) = λ− = max{−λ,0}. Clearly, A− ≥ 0.

https://doi.org/10.1017/9781009218436.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218436.004


46 Elements of Operator Theory

Corollary 1.35 Let A be a self-adjoint, lower semibounded operator. Then

−Tr A− = inf
{ N∑
n=1

a[un] : N ∈ N , (un)Nn=1 ⊂ d[a]

and (un,um) = δn,m for all 1 ≤ n,m ≤ N
}
.

If F is a form core of a, then in the infimum on the right side it suffices to
consider (un)Nn=1 ⊂ F .

Proof If σess(A) = ∅ or if inf σess(A) ≥ 0, then

−Tr A− =
∑
j

λj(−A−) = −
∑
j

(λj(A))− = inf
N ∈N

N∑
j=1
λj(A) ,

and therefore the corollary follows from Proposition 1.33. By contrast, if κ :=
inf σess(A) < 0, then Tr A− = ∞ and, with the spectral measure P of A,
dim ran P(−∞,κ+ε) = ∞ for any ε > 0. In particular, if κ + ε < 0, there is an
infinite sequence of orthonormal (un) with a[un] ≤ κ + ε, which can also be
assumed to lie in a form core. Thus, the right side in the corollary is also equal
to −∞. �

As a consequence of Corollary 1.35, we now prove a fundamental property
of the trace. Note that we do not assume that Tr T is finite or even that T is
compact.

Lemma 1.36 Let T be a bounded and non-negative operator. Then for any
complete orthonormal system (un),

Tr T =
∑
n

(Tun,un) .

Proof We first assume that Tr T < ∞ and we choose a complete orthonormal
system (vj) such that Tvj = −λj(−T)vj . Then

Tr T = −
∑
j

λj(−T) =
∑
j

‖T1/2vj ‖2 =
∑
j

∑
n

|(T1/2vj,un)|2

=
∑
n

∑
j

|(vj,T1/2un)|2 =
∑
n

‖T1/2un‖2 =
∑
n

(Tun,un) ,

as claimed. (The interchange of summations here is justified since all terms are
non-negative.) On the other hand, when Tr T = ∞, by Corollary 1.35 applied to
A = −T , for any M > 0 there is an N ∈ N and an orthonormal system (vj)Nj=1
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such that
∑N

j=1 ‖T1/2vj ‖2 ≥ M . Similar to before, we have

N∑
j=1
‖T1/2vj ‖2 =

N∑
j=1

∑
n

|(T1/2vj,un)|2 =
∑
n

N∑
j=1
|(vj,T1/2un)|2

≤
∑
n

‖T1/2un‖2 =
∑
n

(Tun,un) .

Since M is arbitrary this means that
∑

n(Tun,un) = ∞. �

The next corollary is the analogue of Corollary 1.30 for sums of eigenvalues.

Corollary 1.37 Let A and B be self-adjoint, lower semibounded operators
with corresponding quadratic forms a and b. Assume that d[a] ∩ d[b] is dense
inH and let A + B be defined in the form sense. Then

Tr(A + B)− ≤ Tr A− + Tr B− .

Proof Let N ∈ N and let (un)Nn=1 ⊂ d[a] ∩ d[b] be orthonormal functions.
Then, by Corollary 1.35 for the operators A and B,

N∑
n=1
(a + b)[un] =

N∑
n=1

a[un] +
N∑
n=1

b[un] ≥ −Tr A− − Tr B− .

Taking the infimum over all N and (un)Nn=1 as above and, using again Corollary
1.35, we obtain the claimed inequality. �

As a brief digression, we will use Corollary 1.35 to compute the trace of a
certain class of operators that appear frequently in applications. We recall the
notion of a separable measure space from §1.1.4 needed in the following result.

Lemma 1.38 Let X,Y be separable, sigma-finite measure spaces and let
N,M ∈ N. Let K be a measurable function on X × Y taking values in the
complex N × M matrices such that∬

X×Y
TrCM ((K(x, y))∗K(x, y)) dx dy < ∞ .

Then the operator K from L2(Y,CM ) to L2(X,CN ), defined by

(Kv)(x) :=
∫
Y

K(x, y)v(y) dy for a.e. x ∈ X , v ∈ L2(Y,CM ) ,

is compact and satisfies

Tr K∗K =
∬

X×Y
TrCM ((K(x, y))∗K(x, y)) dx dy .
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Proof For the sake of simplicity, we begin with the case N = M = 1. For any
u ∈ L2(X), v ∈ L2(Y ), we have, by the Cauchy–Schwarz inequality,

|(Kv,u)| =
����∬

X×Y
K(x, y)v(y)u(x) dx dy

����
≤
(∬

X×Y
|K(x, y)|2 dx dy

)1/2 (∬
X×Y
|v(y)u(x)|2 dx dy

)1/2
= ‖K ‖L2(X×Y) ‖v‖‖u‖ .

This implies that K is a bounded operator from L2(Y ) to L2(X).
Let (vn)Nn=1 be an orthonormal system in L2(Y ) and let (u j) be a complete

orthonormal system in L2(X). Then

N∑
n=1
‖Kvn‖2 =

N∑
n=1

∑
j

��(Kvn,u j)
��2 = N∑

n=1

∑
j

��(K,u j ⊗ vn)
��2 ,

where the inner product on the right side is in L2(X ×Y ) and where the function
u j ⊗ vn is defined by(

u j ⊗ vn
) (x, y) = u j(x)vn(y) for all (x, y) ∈ X × Y .

Since the u j ⊗ vn are orthonormal in L2(X ×Y ), we find, by Bessel’s inequality,
that

N∑
n=1

∑
j

��(K,u j ⊗ vn)
��2 ≤ ‖K ‖2

L2(X×Y) .

By the variational principle in Corollary 1.35 (with A = −K∗K) we conclude
that

Tr K∗K ≤ ‖K ‖2
L2(X×Y) .

In particular, finiteness of the trace implies that K∗K is compact, so, by Lemma
1.2, K is compact. Repeating the argument with a complete orthonormal system
(vn) and using Parseval’s identity instead of Bessel’s inequality we find that, in
fact, Tr K∗K = ‖K ‖2

L2(X×Y). The proves the lemma for N = M = 1.
The case of arbitrary N and M can be reduced to the previous case by

identifying L2(X,CN ) with L2(X × {1, . . . ,N}) and L2(Y,CM ) with L2(Y ×
{1, . . . ,M}). Indeed, fixing a basis (en)Nn=1 in CN , the operator U, defined by
(Uu)(x,n) := (u(x), en)CN from L2(X,CN ) to L2(X × {1, . . . ,N},C), is unitary.
Using a similar unitary operator V from L2(Y,CM ) to L2(Y × {1, . . . ,M},C)
and applying the scalar result to the operator VKU∗, we obtain the lemma for
arbitrary N and M . �
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1.2.6 Riesz means
In this subsection, we study Riesz means of order γ > 0 of a self-adjoint, lower
semibounded operator A; that is, the quantities

Tr Aγ
− .

If this quantity is finite, then the negative spectrum of A consists of eigenvalues
of finite multiplicities and, if λ1(A) ≤ λ2(A) ≤ · · · is an enumeration of those,
we have

Tr Aγ
− =
∑
j

(
λj(A)

)γ
− .

A very useful identity connects the Riesz means to the spectral counting
function.

Lemma 1.39 Let A be a self-adjoint, lower semibounded operator and let
γ > 0. Then

Tr Aγ
− = γ

∫ ∞
0

N(−τ, A) τγ−1 dτ .

Proof Since

aγ− = γ
∫ ∞

0
χ{a<−τ }τγ−1 dτ for a ∈ R ,

the identity follows from Lemma 1.36. �

One of the consequences of this formula is a generalization of Corollary 1.30
to the case of Riesz means.

Proposition 1.40 Let A and B be self-adjoint, lower semibounded operators
with corresponding quadratic forms a and b, assume that d[a] ∩ d[b] is dense
inH , and let A + B be defined in the form sense. If γ > 0 then(

Tr(A + B)γ−
) 1
γ+1 ≤ (Tr Aγ

−
) 1
γ+1 +

(
Tr Bγ

−
) 1
γ+1

and, for all 0 < θ < 1,

Tr(A + B)γ− ≤ θ−γ Tr Aγ
− + (1 − θ)−γ Tr Bγ

− .

Proof According to Corollary 1.30, for any τ > 0 and for any 0 < θ < 1 we
have

N(−τ, A + B) = N(0, (A + θτ) + (B + (1 − θ)τ))
≤ N(0, A + θτ) + N(0,B + (1 − θ)τ)
= N(−θτ, A) + N(−(1 − θ)τ,B) .
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Therefore, by Lemma 1.39,

Tr(A + B)γ− = γ
∫ ∞

0
N(−τ, A + B)τγ−1 dτ

≤ γ
∫ ∞

0
N(−θτ, A)τγ−1 dτ + γ

∫ ∞
0

N(−(1 − θ)τ,B)τγ−1 dτ

= θ−γ Tr Aγ
− + (1 − θ)−γ Tr Bγ

− ,

as claimed. The other assertion follows by optimizing over θ. �

The remainder of this subsection contains improvements of the constants
appearing in the bound in Proposition 1.40. These are not necessary for the
applications in this book and can be omitted in a first reading.

The fact that for γ = 1 an improvement is possible can be seen from Corollary
1.37, which contains a bound like that in Proposition 1.40, but without the
prefactors θ−γ and (1 − θ)−γ.

The first improvements concern the case γ > 1. In this case, we start from
the following variant of Lemma 1.39.

Lemma 1.41 Let A be a self-adjoint, lower semibounded operator and let
γ > 1. Then

Tr Aγ
− = γ(γ − 1)

∫ ∞
0

Tr(A + τ)− τγ−2 dτ .

Proof Since

aγ− = γ(γ − 1)
∫ ∞

0
(a + τ)−τγ−2 dτ for a ∈ R ,

the identity follows from Lemma 1.36. �

Using this lemma, we obtain the following bound.

Proposition 1.42 Let A and B be self-adjoint, lower semibounded operators
with corresponding quadratic forms a and b. Assume that d[a] ∩ d[b] is dense
inH and let A + B be defined in the form sense. If γ > 1 then(

Tr(A + B)γ−
) 1
γ ≤ (Tr Aγ

−
) 1
γ +
(
Tr Bγ

−
) 1
γ

and, for all 0 < θ < 1,

Tr(A + B)γ− ≤ θ−γ+1 Tr Aγ
− + (1 − θ)−γ+1 Tr Bγ

− .

Proof According to Corollary 1.37, for any τ > 0 and for any 0 < θ < 1 we
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have

Tr(A + B + τ)− = Tr ((A + θτ) + (B + (1 − θ)τ))−
≤ Tr(A + θτ)− + Tr(B + (1 − θ)τ)− .

Therefore, by Lemma 1.41,

Tr(A + B)γ− = γ(γ − 1)
∫ ∞

0
Tr(A + B + τ)−τγ−2 dτ

≤ γ(γ − 1)
∫ ∞

0
Tr(A + θτ)−τγ−2 dτ

+ γ(γ − 1)
∫ ∞

0
Tr(B + (1 − θ)τ)−τγ−2 dτ

= θ−γ+1 Tr Aγ
− + (1 − θ)−γ+1 Tr Bγ

− ,

as claimed. The other assertion follows by optimizing over θ. �

Even for numbers a, b ∈ R the constants θ−γ+1 and (1−θ)−γ+1 in the inequality

(a + b)γ− ≤ θ−γ+1aγ− + (1 − θ)−γ+1bγ−

cannot be improved for γ > 1. On the other hand, for 0 < γ < 1, the inequality
for numbers holds without the factors of θ−γ+1 and (1 − θ)−γ+1. This motivates
the next result, which is an improvement of Proposition 1.40 in the case 0 <
γ < 1. It is a special case of a theorem by Rotfel’d (1967, 1968).

Proposition 1.43 Let A and B be self-adjoint, lower semibounded operators
with corresponding quadratic forms a and b. Assume that d[a] ∩ d[b] is dense
inH and let A + B be defined in the form sense. If 0 < γ < 1, then

Tr(A + B)γ− ≤ Tr Aγ
− + Tr Bγ

− .

For the proof of this proposition, we need several preliminary results. The
first one is an extension of Corollary 1.31 to Riesz means. We refer to the
discussion before that corollary for the precise definition of the operator T∗AT .

Lemma 1.44 If A is self-adjoint and lower semibounded and if T is bounded
with {u ∈ H : Tu ∈ d[a]} dense inH , then for any γ > 0,

Tr (T∗AT)γ− ≤ ‖T ‖2γ Tr Aγ
− .

Proof According to Lemma 1.39, we have

Tr (T∗AT)γ− = γ
∫ ∞

0
N(−τ,T∗AT)τγ−1 dτ .
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For any τ > 0, we have T∗AT + τ ≥ T∗(A + ‖T ‖−2τ)T , and therefore

N(−τ,T∗AT) = N(0,T∗AT + τ) ≤ N(0,T∗(A + ‖T ‖−2τ)T) .
We now apply Corollary 1.31, which implies that

N(0,T∗(A + ‖T ‖−2τ)T) ≤ N(0, A + ‖T ‖−2τ) = N(−‖T ‖−2τ, A) ,
and therefore

Tr (T∗AT)γ− ≤ γ
∫ ∞

0
N(−‖T ‖−2τ, A)τγ−1 dτ = ‖T ‖2γ Tr Aγ

− ,

as claimed. �

We now bound the change in eigenvalues under a rank-one perturbation.

Lemma 1.45 Let A be a self-adjoint, lower semibounded operator and let B
be a self-adjoint, non-positive rank-one operator. Then

λ1(A + B) ≤ λ1(A) ≤ λ2(A + B) ≤ λ2(A) ≤ · · · ,
where λn(A) and λn(A+B) denote the eigenvalues of A and A+B, respectively,
below inf σess(A) = inf σess(A + B), in non-decreasing order and counting
multiplicities.

Proof The equality inf σess(A) = inf σess(A+B) follows from Weyl’s theorem
(Theorem 1.14). From the variational principle (Proposition 1.29) we obtain
λn(A + B) ≤ λn(A) for all n. We will show the remaining inequality λn(A) ≤
λn+1(A + B) by proving that, for any μ < inf σess(A),

N(μ, A + B) ≤ N(μ, A) + 1 . (1.56)

Choosing here μ = λn(A), so that N(μ, A) ≤ n − 1, we deduce the claimed
inequality.

We prove (1.56) by contradiction, assuming N(μ, A + B) > N(μ, A) + 1. Let
P(A) and P(A + B) denote the spectral measures of A and A + B. Since the
space ran P(−∞,μ)(A+ B) ∩ ker B has dimension at least N(μ, A+ B) − 1, which,
by assumption, is larger than the dimension of the space ran P(−∞,μ)(A), there
is a 0 � u ∈ ran P(−∞,μ)(A + B) ∩ ker B ∩ (ran P(−∞,μ)(A))⊥. The conditions
0 � u ∈ ran P(−∞,μ)(A + B) and u ∈ (ran P(−∞,μ)(A))⊥ imply, respectively,

a[u] + b[u] < μ‖u‖2 and a[u] ≥ μ‖u‖2 .
Since u ∈ ker B implies b[u] = 0, this is a contradiction. �

The final ingredient in the proof of Proposition 1.43 is the following re-
arrangement inequality.

https://doi.org/10.1017/9781009218436.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218436.004


1.2 Semibounded operators and forms, and the variational principle 53

Lemma 1.46 Let 0 < γ < 1. Then for any set E ⊂ [0,∞) of finite measure∫
E

tγ−1 dt ≤
∫ |E |

0
tγ−1 dt .

Proof Since

tγ−1 = (1 − γ)
∫ ∞
t

sγ−2 ds = (1 − γ)
∫ ∞

0
sγ−2 χ(0,s)(t) ds ,

we have ∫
E

tγ−1 dt = (1 − γ)
∫ ∞

0

(∫ ∞
0
χE (t)χ(0,s)(t) dt

)
sγ−2 ds

= (1 − γ)
∫ ∞

0
|E ∩ (0, s)|sγ−2 ds .

Obviously, |E ∩ (0, s)| ≤ min{|E |, s}. Note that equality holds here if E =
(0, |E |). Inserting this into the above identity, we obtain∫
E

tγ−1 dt ≤ (1 − γ)
(∫ |E |

0
sγ−1 ds + |E |

∫ ∞
|E |

sγ−2 ds
)
=
|E |γ
γ
=

∫ |E |
0

tγ−1 dt ,

as claimed. �

Proof of Proposition 1.43 We may assume that Tr Aγ
−+Tr Bγ

− < ∞. We begin
with the case where B− is rank-one and denote its positive eigenvalue by β.
Moreover, we write the negative eigenvalues of A and A+B as−α1 ≤ −α2 ≤ · · ·
and −λ1 ≤ −λ2 ≤ · · · , respectively. According to Lemma 1.45, we have

−λn ≤ −αn ≤ −λn+1 ≤ −αn+1 ≤ · · · for all n . (1.57)

Then

Tr(A + B)γ− =
∑
n

λ
γ
n = γ

∑
n

∫ λn

0
tγ−1 dt

= γ
∑
n

∫ αn

0
tγ−1 dt + γ

∑
n

∫ λn

αn

tγ−1 dt

= Tr Aγ
− + γ

∫
E

tγ−1 dt , (1.58)

where E :=
⋃

n(αn, λn) and where we used the fact that, by (1.57), these
intervals are disjoint. Furthermore, again by the disjointness,

|E | =
∑
n

λn −
∑
n

αn = Tr(A + B)− − Tr A− ≤ Tr B− = β ,
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where the inequality comes from Corollary 1.37. Note that the assumed finite-
ness of Tr Aγ

− implies the finiteness of Tr A−, and therefore there is no cancel-
lation of infinities in the above computation. Now Lemma 1.46 implies that

γ

∫
E

tγ−1 dt ≤ γ
∫ |E |

0
tγ−1 dt ≤ γ

∫ β

0
tγ−1 dt = βγ = Tr Bγ

− .

Inserting this into (1.58) yields the claimed inequality in the case where B− is
rank-one.

The case where B− is of finite rank follows by iterating the inequality in the
rank-one case.

We finally deal with the case of an arbitrary operator B with Tr Bγ
− < ∞. For

ε > 0 we write Pε := χ(−∞,−ε)(A + B). According to Lemma 1.44, we have

Tr (Pε APε)γ− ≤ Tr Aγ
− < ∞ and Tr (PεBPε)γ− ≤ Tr Bγ

− < ∞ .

We know from the non-sharp bound of Proposition 1.40 that under the assump-
tion Tr Aγ

− + Tr Bγ
− < ∞ we have Tr(A + B)γ− < ∞, and therefore, in particular,

Pε has finite rank. Thus, PεBPε has finite rank as well and, by what we have
shown so far, we know

Tr (Pε APε + PεBPε)γ− ≤ Tr (Pε APε)γ− + Tr (PεBPε)γ− ≤ Tr Aγ
− + Tr Bγ

− .

On the other hand,

Tr (Pε APε + PεBPε)γ− = Tr (Pε(A + B)Pε)γ− =
∑

|λn(A+B) |>ε
|λn(A + B)|γ

and, by monotone convergence, this converges to
∑

n |λn(A+B)|γ = Tr(A+B)γ−
as ε → 0. This proves the claimed inequality. �

1.2.7 Perturbations of quadratic forms
In this subsection, we take on a perturbation-theoretic point of view. That is,
there will be a quadratic form a that is densely defined, lower semibounded and
closed, and corresponds to an operator A, and we will study self-adjointness of
A + B, where B is, in a sense to be made precise, small with respect to A. We
formulate this smallness in the sense of quadratic forms.

The following simple lemma is sometimes useful for verifying that a per-
turbation of a lower semibounded, closed quadratic form is also lower semi-
bounded and closed.

Lemma 1.47 Assume that a is a lower semibounded, closed quadratic form
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with domain d[a] and assume that b is a real-valued quadratic form on d[a]
such that for some θ ∈ [0,1) and some C ∈ R,

|b[u]| ≤ θ a[u] + C ‖u‖2 for all u ∈ d[a] . (1.59)

Then the quadratic form a + b with domain d[a] is lower semibounded and
closed. Moreover, any form core of a is also a form core of a + b.

Proof By assumption, we have the inequalities

(1 − θ)a[u] − C‖u‖2 ≤ a[u] + b[u] ≤ (1 + θ)a[u] + C‖u‖2 .

The inequality on the left shows the lower semiboundedness of a + b, and the
proof of closedness, as well as the form core property, follows easily from this
two-sided bound. �

As a consequence of Lemma 1.47 and Theorem 1.18, when d[a] is dense,
the quadratic form a + b with domain d[a] generates a self-adjoint operator
in H . Often we shall denote this operator by A + B, but we emphasize that
this is an abuse of notation since, in general, there need not be a well-defined,
self-adjoint operator B given by the difference of A + B and A.

Next, we will discuss a version of the resolvent identity for operators A + B
defined via quadratic forms. To motivate the formula we are seeking, we recall
that, if the real quadratic form b corresponds to a bounded self-adjoint operator
B, then, according to (1.32),

(A + B − z)−1 − (A − z)−1 = − (A − z)−1 B (A + B − z)−1 .

We can write the right side as

−
[
(A + m)1/2 (A − z)−1

] [
(A + m)−1/2 B (A + m)−1/2

]
×
[
(A + m)1/2 (A + B − z)−1

]
for some m > −ma. As we will show, the analogue of each of the three factors
in square brackets is well defined under assumption (1.59), and therefore will
lead to a version of the resolvent formula when A + B is defined via quadratic
forms.

It follows from (1.59) that for any m > −ma there is a constant C ′ < ∞ such
that

|b[u]| ≤ C ′
(
a[u] + m‖u‖2

)
for all u ∈ d[a] .

Let us fix an m > −ma and a corresponding norm
(
a[u] + m‖u‖2)1/2 on d[a].
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By the Riesz representation theorem, there is a bounded operator Ba on d[a]
such that

b[u, v] = a[Bau, v] + m(Bau, v) for all u, v ∈ d[a] . (1.60)

Clearly, the operatorU : H → d[a], f �→ (A + m)−1/2 f is unitary. Thus,

B̂a := U∗BaU

is a bounded operator on H . Note that in the case where b comes from a
bounded operator B inH , we have

B̂a = (A + m)−1/2B(A + m)−1/2 .

This operator appears in the formula for the resolvent difference.

Proposition 1.48 Let a be a densely defined, lower semibounded and closed
quadratic form and let b be a real quadratic form satisfying (1.59) for some
θ ∈ [0,1) and C ∈ R. Then, for all z ∈ ρ(A) ∩ ρ(A + B),

(A + B − z)−1 − (A − z)−1

= −
[
(A + m)1/2 (A − z)−1

]
B̂a

[
(A + m)1/2 (A + B − z)−1

]
.

Each one of the three factors on the right side is a bounded operator.

Proof Step 1. We begin by showing the last assertion, namely, that each one of
the three factors on the right side is a bounded operator. For the first factor this
is clear from the spectral theorem, and for the second factor this was discussed
before the proposition. For any M > −ma we write the third factor as

(A + m)1/2 (A + B − z)−1

=
[
(A + m)1/2 (A + M)−1/2

] [
(A + M)1/2 (A + B + M)−1/2

]
×
[
(A + B + M)1/2 (A + B − z)−1

]
.

Here the first and the third factors are bounded by the same arguments as before.
In the remainder of this step we will show that for any M > C/θ the operator
(A + M)1/2(A + B + M)−1/2 is bounded with���(A + M)1/2(A + B + M)−1/2

��� ≤ (1 − θ)−1/2 . (1.61)

This proves the boundedness of the third factor in the proposition.
To prove (1.61), we first note that, since the left side of (1.59) is non-negative,
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we have a[u] + (C/θ)‖u‖2 ≥ 0 for all u ∈ d[a], and therefore C/θ ≥ −ma.
Again by (1.59), for any M > C/θ and any u ∈ d[a] we have

a[u]+b[u]+M ‖u‖2 ≥ (1−θ)
(
a[u] + M − C

1 − θ ‖u‖
2
)
≥ (1−θ)

(
a[u] + M ‖u‖2

)
.

Since M > C/θ ≥ −ma, the right side is not smaller than a positive constant
times ‖u‖2. This proves that the operator (A+B+M)−1/2 exists and is bounded.
Setting u = (A + B + M)−1/2 f with f ∈ H , the previous inequality becomes

‖ f ‖2 ≥ (1 − θ)‖(A + M)1/2(A + B + M)−1/2 f ‖2 .
This implies (1.61).

Step 2. We show that for any f ,g ∈ H ,((
(A + B − z)−1 − (A − z)−1

)
f ,g
)

= −
( [
(A + m)1/2 (A − z)−1

]
B̂a

[
(A + m)1/2 (A + B − z)−1

]
f ,g
)
.

This proves the formula in the proposition. Since z ∈ ρ(A) ∩ ρ(A + B), we can
define

u := (A + B − z)−1 f , v := (A − z)−1 g .

Then u ∈ dom(A + B) and v ∈ dom A and, in particular, u, v ∈ d[a]. Thus, by
the definition of an operator corresponding to a quadratic form, the left side
above is( ((A + B − z)−1 − (A − z)−1) f ,g) = (u, (A − z) v) − ((A + B − z) u, v)

= a[u, v] − (a[u, v] + b[u, v]) = −b[u, v] .
For the right side above, using((A + m)1/2(A − z)−1)∗ = (A + m)1/2(A − z)−1,

we have( [(A + m)1/2(A − z)−1]B̂a

[(A + m)1/2(A + B − z)−1] f ,g
)

=
(B̂a (A + m)1/2 u, (A + m)1/2 v) = (U∗BaU(A + m)1/2u, (A + m)1/2 v)
= (U∗Bau,U∗v) = a[Bau, v] + m(Bau, v) = b[u, v] .

Thus, both sides of the identity coincide, which completes the proof. �

We now introduce a relative compactness condition that is important in
applications. Let G be a Hilbert space with norm ‖ · ‖∗ and let b be a real-
valued quadratic form with d[b] = G. Then b is said to be compact in G if
there is a constant C such that |b[u]| ≤ C‖u‖2∗ for all u ∈ G and if the bounded

https://doi.org/10.1017/9781009218436.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009218436.004


58 Elements of Operator Theory

operator in G induced by the form b is compact. Here we apply the Riesz
representation theorem.

Lemma 1.49 Let G be a Hilbert space with norm ‖ · ‖∗ and let b be a real-
valued quadratic form with d[b] = G such that, for a constant C, one has
|b[u]| ≤ C‖u‖2∗ for all u ∈ G. If b is compact in G, then, for any sequence
(un) ⊂ G that converges weakly in G to zero, we have b[un] → 0. Conversely,
if b[u] ≥ 0 for all u ∈ G and if, for any sequence (un) ⊂ G that converges
weakly in G to zero, we have b[un] → 0, then b is compact in G.

Proof Let (un) ⊂ G be a sequence converging weakly to zero in G. Denote
by B the compact operator in G induced by the form b. Then, by Lemma 1.1,
(Bun) converges strongly to zero in G, and therefore b[u] = (Bun,un)∗ → 0,
as claimed.

To prove the converse, assume that b[u] ≥ 0 for all u ∈ G. By assumption,
if (un) ⊂ G converges weakly to zero in G, then ‖B1/2un‖2∗ = b[un] → 0; that
is, B1/2un tends strongly to zero in G. By Lemma 1.1, this implies that B1/2 is
compact in G. Thus B = (B1/2)2 is compact, as claimed. �

The most frequent use of this relative compactness notion is when G = d[a],
endowed with the norm (a[u] + m‖u‖2)1/2 for some m > −ma.

Lemma 1.50 Let a be a lower semibounded, closed quadratic form and
assume that b is a real-valued quadratic form that is compact in d[a] with the
norm (a[u] + m‖u‖2)1/2 for some m > −ma. Then for any θ > 0 there is a C
such that (1.59) holds.

Proof We argue by contradiction. If the assertion of the lemma was false,
there would be a sequence (un) ⊂ d[a] with a[un] + m‖un‖2 = 1 (for some
m > −ma) and

|b[un]| ≥ θ + n‖un‖2 . (1.62)

By weak compactness of the unit ball in d[a], there is a subsequence (unm )
that converges weakly in d[a] to some u. Since b is compact in d[a], we have,
by Lemma 1.1, Baunm → Bau strongly in d[a] and therefore b[unm ] → b[u].
Thus, (1.62) implies that nm‖unm ‖2 is bounded, and hence unm → 0 in H .
Since d[a] is continuously embedded into H , we deduce that u = 0, and then
(1.62) leads to a contradiction since θ > 0. �

We end this subsection with a variant of Weyl’s theorem (Theorem 1.14) for
operators defined via quadratic forms.

Theorem 1.51 Let a be a densely defined, lower semibounded and closed
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quadratic form and let b be a real-valued quadratic form that is compact in
d[a]. Then the operators A and A + B corresponding to a and a + b satisfy
σess(A) = σess(A + B).
Proof We want to apply Theorem 1.14 and therefore have to show that

(A + B − z)−1 − (A − z)−1

is compact. This follows immediately from the resolvent identity in Proposition
1.48 since the middle factor B̂a is compact by assumption and the outer factors
are bounded. This completes the proof. �

1.2.8 The Birman–Schwinger principle
In this subsection, we work under the following assumptions, depending on a
number α > 0.

(Hα) Let a be a densely defined, non-negative, closed quadratic form in a
Hilbert spaceH with domain d[a] satisfying

a[u] > 0 for all 0 � u ∈ d[a] . (1.63)

Let b be a real-valued quadratic form satisfying, for some M < ∞,

d[b] ⊃ d[a] and |b[u]| ≤ M a[u] for all u ∈ d[a] . (1.64)

Assume that the quadratic form a − αb is lower semibounded and closed
inH , and denote by A − αB the corresponding self-adjoint operator.

Assumption (1.63) implies that
√

a[·] is a norm in d[a]. Let Ha be the
completion of d[a] with respect to this norm and let â be the extension of a by
continuity toHa.

If (1.63) is replaced by the stronger assumption that there is an ε > 0 with

a[u] ≥ ε‖u‖2 for all u ∈ d[a] , (1.65)

thenHa coincides with d[a] (with equivalent norms). In general, this need not
be the case andHa may not be a subset ofH .

For practical purposes it is useful to note that, if F ⊂ d[a] is dense in
d[a] (with respect to the norm

√
a[·] + m‖ · ‖2 for some m > −ma), then Ha

coincides with the completion of F with respect to
√

a[·].
Assumption (1.64) implies that b can be extended by continuity to a quadratic

form b̂ on Ha. This extended quadratic form defines a bounded, self-adjoint
operator Ba on Ha. We emphasize that the operator Ba is related to, but
different from, the operator Ba appearing in (1.60). Indeed, the operator in
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(1.60) is defined on d[a] with norm
√

a[·] + m‖ · ‖2, where m > −ma. Now
we allow for m = −ma, which is why we have to introduce the possibly larger
spaceHa.

The parameter α > 0 in assumption (Hα) is not really necessary, since (Hα)
holds if and only if (H1) holds with b replaced by αb. Nevertheless, in appli-
cations it is sometimes convenient to have this parameter present. Conditions
that guarantee that a − αb is lower semibounded and closed inH are given in
Lemmas 1.47 and 1.50. The notation A−αB is, in general, an abuse of notation
since there need not be a well-defined, self-adjoint operator αB given by the
difference of A and A − αB.

We denote the spectral measures of A−αB and Ba by P(A−αB) and P(Ba),
respectively.

The following result is called the Birman–Schwinger principle.

Theorem 1.52 Assume (Hα) for some α > 0. Then

dim P(−∞,0)(A − αB)H = dim P(α−1 ,∞)(Ba)Ha . (1.66)

If, in addition, (1.65) holds, then

dim P(−∞,0](A − αB)H = dim P[α−1 ,∞)(Ba)Ha (1.67)

and
dim ker(A − αB) = dim ker(Ba − α−1) . (1.68)

Proof It follows from Glazman’s lemma (Theorem 1.25) applied to the oper-
ator −Ba in the Hilbert spaceHa that, for any λ ∈ R,

dim P(λ,∞)(Ba)Ha

= sup {dim F : F ⊂ d[a] and b[u] > λa[u] for all 0 � u ∈ F} .
Here we used the fact that d[a] is dense in Ha. On the other hand, applying
Theorem 1.25 to the operator A − αB in the Hilbert spaceH , we find that

dim P(−∞,0)(A − αB)H
= sup

{
dim F : F ⊂ d[a] and b[u] > α−1a[u] for all 0 � u ∈ F

}
.

Choosing λ = α−1, we obtain (1.66).
Now, assuming (1.65), let us prove (1.68). Note that, once this is proved,

(1.67) follows by adding (1.66) and (1.68).
To show (1.68), we show that ker(A−αB) = ker(Ba −α−1). Note that, under

(1.65), Ha can be considered as a subset of H . We have u ∈ ker(A − αB) if
and only if

b[u, v] = α−1a[u, v] for all v ∈ d[a] .
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By the definition of Ba, this means

(Bau, v)Ha
= α−1(u, v)Ha

for all v ∈ Ha ,

which is equivalent to u ∈ ker(Ba − α−1), as claimed.
As an aside, we mention that (1.67) can be proved using the second identity

in Theorem 1.25. Here it is important that under assumption (1.65), d[a] is not
only dense in Ha, but actually equal to Ha. If dim P(−∞,0)(A − αB)H < ∞,
then (1.68) follows by subtracting (1.66) from (1.67). �

We emphasize that (1.67) and (1.68) may fail if assumption (1.65) does not
hold. Elements of ker(Ba − α−1) may belong to Ha without belonging to H ;
see the reference in §1.3.

The reason why Theorem 1.52 is useful is that it relates the number of nega-
tive eigenvalues of a lower semibounded operator to the number of eigenvalues
of a bounded (and typically compact) operator. For example, by Lemma 1.15,
an immediate consequence of Theorem 1.52 is the following.

Corollary 1.53 Assume (Hα) for every α > 0. Then

dim P(−∞,0)(A − αB)H < ∞ for all α > 0

if and only if (Ba)+ is compact inHa. For this, it is sufficient that b̂ is compact
inHa. If b ≥ 0, the compactness of b̂ inHa is also necessary.

For applications it is useful to reformulate Theorem 1.52 in terms of oper-
ators acting on the original Hilbert space H rather than on Ha. We note that
assumption (1.63) guarantees that A−1/2 is a densely defined operator inH .

Lemma 1.54 Assume (1.63) and (1.64). Then the quadratic form

b[A−1/2 f ] , f ∈ dom A−1/2 ,

is real-valued, densely defined and bounded inH . The corresponding bounded
self-adjoint operator inH is unitarily equivalent to the operator Ba inHa.

In the formulation and proof of the lemma we use the fact that a real-valued,
densely defined and bounded quadratic form generates a bounded, self-adjoint
operator. This is a consequence of the Riesz representation theorem.

Proof We consider the operator A−1/2, defined on dom A−1/2, as a mapping
from a dense subset ofH into d[a] = dom A1/2 equipped with the norm

√
a[·].

This mapping is isometric since a[A−1/2 f ] = ‖ f ‖2 for all f ∈ dom A−1/2.
Moreover, ran A−1/2 = d[a]. Since Ha is the completion of d[a] with respect
to
√

a[·], the above mapping extends to a unitary operator U : H → Ha.
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By definition of Ba, we have (recall â, b̂ from the discussion of (Hα))
â[Baϕ, ϕ] = b̂[ϕ] for all ϕ ∈ Ha .

We apply this identity to ϕ = U f with f ∈ dom A−1/2. Then, since U f =
A−1/2 f ∈ d[a] ⊂ d[b] for f ∈ dom A−1/2, we have b̂[ϕ] = b[A−1/2 f ], and
therefore

â[BaU f ,U f ] = b[A−1/2 f ] for all f ∈ dom A−1/2 .

Since U : H → Ha is unitary, the previous identity implies that

(U∗BaU f , f ) = b[A−1/2 f ] for all f ∈ dom A−1/2 .

By (1.64), the operatorBa is bounded onHa, and therefore U∗BaU is bounded
onH . This implies the assertions of the lemma. �

We shall denote the operator in Lemma 1.54 by A−1/2BA−1/2 and its spectral
measure by P(A−1/2BA−1/2).

Writing A−1/2BA−1/2 is an abuse of notation, which, however, is motivated
by the following. Under assumption (1.65), the operator A−1/2 is bounded and,
under the additional assumption that the quadratic form b is bounded in H , it
generates a bounded operator B inH . In this case, the quadratic form b[A−1/2 f ],
f ∈ dom A−1/2 = H , is closed and the corresponding operator is simply the
product of the three bounded operators A−1/2BA−1/2.

In view of Lemma 1.54, Theorem 1.52 can be reformulated as follows.

Theorem 1.55 Assume (Hα) for some α > 0. Then

dim P(−∞,0)(A − αB)H = dim P(α−1 ,∞)(A−1/2BA−1/2)H .
If, in addition, (1.65) holds, then

dim P(−∞,0](A − αB)H = dim P[α−1 ,∞)(A−1/2BA−1/2)H
and

dim ker(A − αB) = dim ker(A−1/2BA−1/2 − α−1) .
Finally, we discuss the case where b is non-negative and where there is an

operator Q inH such that

dom Q ⊃ dom A−1/2 and b[A−1/2 f ] = ‖Q f ‖2 for all f ∈ dom A−1/2 .
(1.69)

Assuming (1.63) and (1.64), it follows from Lemma 1.54 that any operator Q
satisfying (1.69) is densely defined and bounded. In particular, it has a unique
extension to a bounded operator defined on all ofH . Therefore, we may assume
without loss of generality that Q is closed and defined on all ofH .
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By (1.69), the operator A−1/2BA−1/2 is equal to Q∗Q. We denote the oper-
ator QQ∗ by B1/2 A−1B1/2 and its spectral measure by P(B1/2 AB1/2). Writing
B1/2 A−1B1/2 is an abuse of notation that can be motivated as in the discussion
preceding Theorem 1.55. The operator B1/2 A−1B1/2 is called the Birman–
Schwinger operator.

By Proposition 1.23 and Corollary 1.24, Theorem 1.55 yields the following.

Theorem 1.56 Assume (Hα) for some α > 0 and (1.69). Then

dim P(−∞,0)(A − αB)H = dim P(α−1 ,∞)(B1/2 A−1B1/2)H . (1.70)

If, in addition, (1.65) holds, then

dim P(−∞,0](A − αB)H = dim P[α−1 ,∞)(B1/2 A−1B1/2)H (1.71)

and

dim ker(A − αB) = dim ker(B1/2 A−1B1/2 − α−1) . (1.72)

Corollary 1.57 Assume (Hα) for some α > 0, (1.69) and that the negative
spectrum of A − αB is discrete. Let (−En) be its negative eigenvalues, in non-
decreasing order and repeated according to multiplicities. For fixed n, let (μm)
be the eigenvalues of B1/2(A + En)B1/2 greater than or equal to α−1 in non-
increasing order and repeated according to multiplicities. Then μn = α−1.

Note that, by (1.71) with A + En instead of A, the total spectral multiplicity
of B1/2(A + En)B1/2 in [α−1,∞) is finite. Therefore, the μm in the corollary
are well defined. Here we use the fact that for A+ En, assumption (1.65) holds
(with ε = En).

Proof Let K be the multiplicity of the eigenvalue −En of A − αB and let
k be such that En = Ek = · · · = Ek+K−1. That is, k = n if −En is simple,
and otherwise k is the minimal index for which Ek = En. Note also that
k ≤ n ≤ k + K − 1.

By (1.72) (applied with A+En instead of A), the operator B1/2(A+En)−1B1/2

has an eigenvalue α−1 and its multiplicity is K . Thus, there is an � such that
α−1 = μ
 = · · · = μ
+K−1 and, if � ≥ 2, μ
−1 > α

−1.
We observe that � = k since by (1.70) (applied with A + En instead of A),

k−1 = dim P(−∞,−En)(A−αB)H = dim P(α−1 ,∞)(B1/2(A+En)B1/2)H = �−1 .

Since k ≤ n ≤ k +K −1, this shows � ≤ n ≤ �+K −1, and thus μn = α−1. �
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1.3 Comments

We have not given a full account of spectral theory in this chapter, but rather
selected material that is needed for our applications to Laplace or Schrödinger
operators. Further material can be found in such textbooks as Akhiezer and
Glazman (1963), Birman and Solomjak (1987), Davies (1995), Helffer (2013),
Reed and Simon (1972, 1975, 1978, 1979), and Teschl (2014), as well as in the
monograph of Kato (1980).

Section 1.1: Hilbert spaces, self-adjoint operators, and the spectral theorem
For the history of the development of the notion of unbounded operators we refer
to Simon (2015c, §7.1). A first version of the spectral theorem for bounded self-
adjoint operators goes back to Hilbert (1906). For further references on early
developments, see Simon (2015c, §5.1). The spectral theorem in the unbounded
case is due to von Neumann (1930). The above-mentioned references give
several different proofs of this theorem. We also refer to the above-mentioned
textbooks for the notion of a normal operator and for the corresponding spectral
theorem.

There is a proof of the formula (1.24) for the norm of the resolvent that does
not use the spectral theorem, but instead the fact that for a bounded, normal
operator, the spectral radius is equal to the norm (Simon, 2015c, Theorems
2.2.10 and 2.2.11); see also Kato (1980, (V.3.16)) and Edmunds and Evans
(2018, Lemma 3.4.3).

Theorem 1.14 on the stability of the essential spectrum is from Weyl (1909).
The quadratic form version in Theorem 1.51 appears in Birman (1959).

Section 1.2: Semibounded operators and forms and the variational princi-
ple
The proof of Theorem 1.16 that we presented uses the square root of a non-
negative self-adjoint operator, which we defined using the spectral theorem and
the functional calculus. For an alternative construction of the square root, see
Kato (1980, §V.3.11).

Theorem 1.18, which associates to each lower semibounded, closed quadratic
form a self-adjoint operator, is due to Friedrichs (1934a). Applications to
second-order differential operators are given in Friedrichs (1934b). For a proof
that does not require self-adjointness, see Kato (1980, §VI.2).

Lemma 1.20 is well known to specialists, but hard to locate in the literature;
see Lewin (2022, Théorème 5.14). One half of Corollary 1.21, namely that
compactness of an embedding implies discreteness of the spectrum, appears in
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Friedrichs (1934a, Zusatz 18) abstracting the arguments in Rellich (1930). An
operator-domain version of the lemma appears in Rellich (1942).

Different versions of the variational principle go back to Rayleigh (1877),
Fischer (1905), Ritz (1908), Weyl (1912a,b) and Courant (1920). An operator
version of Glazman’s lemma (Theorem 1.25) appears in Glazman (1966, §3,
Theorem 9bis). The version for quadratic forms is mentioned, for instance, in
Birman (1961).

Proposition 1.33 (at least in finite dimension) is due to Fan (1949). Propo-
sition 1.33 and Corollary 1.35 remain valid when the orthogonality condition
(un,um) = δnm is replaced by the sub-orthogonality condition that the eigenval-
ues of the matrix (un,um) are between 0 and 1; see, for instance, Simon (2011,
Proposition 15.13). This is sometimes useful in applications and appears im-
plicitly in §7.4.

Proposition 1.43 is from Rotfel’d (1967, 1968).
The Birman–Schwinger principle, discussed in various forms in §1.2.8, ap-

pears in Birman (1961) and Schwinger (1961); for a detailed presentation, see
also Birman and Solomyak (1992). This abstract principle will be spelled out
for Schrödinger operators in §4.3.3. In §4.9 we give references for concrete
applications of this principle.

Let us already here give a typical example of the setting of §1.2.8, using
freely the notation in the next chapter. In the Hilbert space H = L2(Rd),
d ≥ 1, and with a parameter τ ≥ 0 we consider the quadratic form
a[u] :=

∫
Rd

(|∇u|2 + τ |u|2) dx with form domain d[a] := H1(Rd). Then (1.63)
is satisfied, and (1.65) is satisfied if and only if τ > 0. For τ > 0, one
has Ha = H1(Rd) (with equivalent norms). For τ = 0 and d ≥ 3, one has
Ha = �H1(Rd), the homogeneous Sobolev space, while for τ = 0 and d = 1,2,
the space Ha is not a space of (a.e. equivalence classes of) functions and
is typically avoided; see §2.7.2. In applications to Schrödinger operators with
sufficiently regular V ≥ 0, one chooses b[u] :=

∫
Rd

V |u|2 dx. Then the Birman–
Schwinger principle, for instance in its form in Theorem 1.56, relates the number
of eigenvalues less than −τ < 0 of −Δ−V to the number of eigenvalues greater
than 1 of the Birman–Schwinger operator V1/2(−Δ + τ)−1V1/2. As mentioned
after Theorem 1.52, the equalities (1.68) (or, equivalently, (1.72)) need not be
true if (1.65) fails. In the concrete case of Schrödinger operators in dimensions
d ≥ 3, this occurs if there is a solution 0 � u ∈ �H1(Rd) of −Δu − Vu = 0
that does not belong to L2(Rd). Such solutions are counted in the right side of
(1.72), but not in the left side. One speaks of a ‘zero energy resonance’ or a
‘virtual level’; see, for instance, Jensen and Kato (1979), Jensen (1980, 1984)
and Klaus and Simon (1980) for more on this phenomenon.
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