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The dynamics of thin volatile droplets comprising of binary mixtures deposited on a
heated substrate are investigated. Using lubrication theory, we develop a novel one-sided
model to predict the spreading and retraction of an evaporating sessile axisymmetric
droplet formed of a volatile binary mixture on a substrate with high wettability. A thin
droplet with a moving contact line is considered, taking into account the variation of
liquid properties with concentration as well as the effects of inertia. The parameter space
is explored and the resultant effects on wetting and evaporation are evaluated. Increasing
solutal Marangoni stress enhances spreading rates in all cases, approaching those of
superspreading liquids. To validate our model, experiments are conducted with binary
ethanol–water droplets spreading on hydrophilic glass slides heated from below. The
spreading rate is quantified, revealing that preferential evaporation of the more volatile
component (ethanol) at the contact line drives superspreading, leading in some cases to
a contact line instability. Good qualitative agreement is found between our model and
experiments, with quantitative agreement being achieved in terms of spreading rate.

Key words: Marangoni convection, drops, thermocapillarity

1. Introduction

A sessile droplet evaporating from a solid substrate is central to a wide variety of
processes. Examples range from spray cooling of microelectronics (Bar-Cohen, Arik &
Ohadi 2006; Kim 2007; Deng & Gomez 2011) to inkjet printing (Calvert 2001; Singh et al.
2010), pesticide deposition (Yu et al. 2009; Damak et al. 2016) and even disease diagnosis
(Sefiane 2010; Brutin et al. 2011; Chen et al. 2016). An evaporating sessile droplet is rarely

† Email address for correspondence: prashant.valluri@.ed.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

84
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3486-7484
https://orcid.org/0000-0002-0530-8317
https://orcid.org/0000-0003-4917-8283
mailto:prashant.valluri@.ed.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.840&domain=pdf
https://doi.org/10.1017/jfm.2020.840


907 A22-2 A. G. Williams and others

at true equilibrium with the limiting mechanism in non-volatile liquids tending to be the
diffusion of vapour away from the interface (Bourges-Monnier & Shanahan 1995; Hu &
Larson 2002). More volatile droplets, however, can be modelled using kinetic theory and
interface non-equilibrium effects (Anderson & Davis 1995; Ajaev 2005).

Depending on wettability, droplets can either spread completely over the substrate,
forming a pancake with a zero contact angle, or they can become pinned at the triple
contact line (where solid, liquid and gas meet), settling at an equilibrium contact angle.
In both cases, once spreading is finished, evaporation soon takes over and the droplet
profile changes, making the non-equilibrium nature of the problem clear. Wettability of a
droplet over a substrate can be explained by (1.1) – the well-known Young’s equation,

σSV − σSL − σLV cos θeq = 0, (1.1)

where σ denotes free energy per unit length (or surface tension) and subscripts S, L,
V , refer to the solid, liquid and vapour, respectively. For a partial wetting droplet with
a non-zero equilibrium contact angle, the cohesive forces of σSL and σLV are larger than
the adhesive force of σSV , i.e. σSV < σSL + σLV . Therefore, the surface energy is minimised
by inward motion of the droplet and results in a finite contact angle. For a completely
wetting droplet with zero contact angle (θeq = 0), a special case arises from the fact
that cos θeq = 1, yielding σSV = σSL + σLV , and so the cohesive and adhesive forces are
perfectly balanced.

Further complexity arises due to the larger number of factors governing sessile droplet
dynamics. Behaviour is heavily influenced by properties of the solid substrate, including
substrate roughness (Cazabat & Cohen Stuart 1986; Nakae et al. 1998; Chen et al. 2005)
and conductivity (Ristenpart et al. 2007; Dunn et al. 2009); the liquid, including surface
tension and volatility (Sefiane et al. 2008b; Starov & Sefiane 2009); and the surrounding
gas, including atmospheric pressure (Sefiane et al. 2009), humidity (Fukatani et al. 2016)
and vapour properties (Shahidzadeh-Bonn et al. 2006). In addition, the dynamics are
strongly dependent on the temperature of each phase (Girard & Antoni 2008; Sobac &
Brutin 2012; Parsa et al. 2015), droplet shape (Sáenz et al. 2015), and gravity becomes
important as volume increases (Extrand & Moon 2010; Srinivasan, Mckinley & Cohen
2011).

Introduction of miscible and/or immiscible liquids (Christy, Hamamoto & Sefiane 2011;
Bennacer & Sefiane 2014; Tan et al. 2016) complicates matters even further. For droplets
close to or below the capillary length (Lc = √

σ/ρg), the well-known Marangoni effect has
a strong influence on the flow field, dictating much of their behaviour (Deegan et al. 1997,
2000). Correctly identified by Italian physicist Carlo Marangoni, such flows arise due to
surface tension gradients owing to both variations in temperature and liquid composition
(Scriven & Sternling 1960) – known as thermal and solutal Marangoni flow, respectively.

The solutal Marangoni effect causes droplets comprising of binary mixtures to
display distinctly different behaviours from the single component equivalent. Early
work by Sefiane, Tadrist & Douglas (2003) found that pinned binary droplets of
ethanol–water mixtures displayed non-monotonous behaviour, heavily influenced by the
initial concentration. This was unlike pure droplets which displayed a monotonous
evolution of evaporation rate and interface profile in time (Picknett & Bexton 1977).
The internal flow field of ethanol–water droplets has been shown to be inherently more
complex and chaotic (Christy, Sefiane & Munro 2010; Christy et al. 2011) due to surface
tension differences arising from the uneven concentration as a result of preferential ethanol
evaporation. With these early studies confined to axisymmetric droplets, Sáenz et al.
(2017) investigated well-defined non-spherical geometries and found that controlling the
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interface curvature would cause segregation of the two components. With evaporation
proceeding slowest at areas of minimum curvature, ethanol would linger in these areas for
the longest times.

An important study on wetting binary droplets by Guéna, Poulard & Cazabat (2007)
found the remarkable behaviour that binary alkane mixtures tended to spread and
evaporate faster than either of their pure constituents – as studied by Cachile, Be & Cazabat
(2002a) and Cachile et al. (2002b). Guéna et al. (2007) noted that spreading would deviate
from Tanner’s law, with the spreading exponent rising to n = 0.3 (r ∝ tn). This behaviour
was owing to the solutal Marangoni effect. Mixtures were carefully selected so that the
less volatile component (LVC) of the mixture had a higher surface tension than the more
volatile component (MVC). The preferential evaporation of MVC at the contact line would
leave a higher concentration of LVC and, hence, a higher surface tension compared to the
bulk. The surface tension gradient would induce Marangoni flows towards the contact
line, enhancing the capillary force and, as a result, the spreading rate. Droplets would
spread to minimum thickness more quickly than their single components counterparts and
reach dry-out faster, even when only LVC remained, due to the thinner droplet profile
and increased interfacial surface area enhancing evaporation. Depending on the initial
concentration, interesting drying profiles were observed, such as the droplet centre drying
out before the contact line, leaving a torus shaped ring.

The first complete model to simulate the evaporation of a multicomponent droplet was
provided by Diddens et al. (2017) who extended the mathematical model of Siregar,
Kuerten & Van Der Geld (2013), based on the lubrication approximation and solved
using the finite volume method. They considered partially wetting binary droplets of
ethanol–water and water–glycerol evaporating from an isothermal substrate at contact
angles 6.6◦–40◦ using a Navier-slip condition at the contact line. For ethanol–water
droplets, Diddens et al. (2017) observed that at long times ethanol had almost entirely
evaporated but a strong thermal Marangoni flow was still present – validating the
hypothesis of Christy et al. (2011). They noted that when the droplet becomes flat, the
surface tension gradient leads to shape deformation with a depression in the droplet
centre – similar to the observations of Guéna et al. (2007). Entrapped residual ethanol,
previously predicted (Liu, Bonaccurso & Butt 2008; Sefiane, David & Shanahan
2008a), could not be noticed, which the authors argue was due to strong convective
mixing resulting from the fast Marangoni flow. However, residual amounts of water
in glycerol–water droplets (where diffusive transport is slower) were found to remain
in the later stages. By then extending the model to non-isothermal heated substrates,
Diddens et al. (2017) was able to reproduce the flow regimes and transitions reported
experimentally by Zhong & Duan (2016). Diddens (2017) also approached the problem
using a finite element model to tackle larger contact angles above 90◦, no longer invoking
the lubrication approximation. Thermal convection was also included, accounting for the
effects of substrate thickness and evaporative cooling. Here the results showed that the
evaporation of the MVC can drastically decrease the interface temperature, causing the
ambient vapour of the LVC to condense onto the droplet. The approach used by Diddens
(2017) was compared with the previous lubrication-based model (Diddens et al. 2017).
While the volume evolutions agreed well, even at low contact angles, the lubrication
approach overpredicted the regular Marangoni velocities and underpredicted the chaotic
velocities in the case of an instability.

The evaporation of a ternary mixture droplet was investigated for the first time by
Tan et al. (2016). Specifically, partially wetting droplets of the alcoholic beverage,
Ouzo – a mixture of water, ethanol and anise oil. The addition of anise oil adds a
further complication of mutual solubility, with the oil being miscible in ethanol but
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immiscible in water. The evaporation phenomena was revealed to be extremely rich,
with evaporation-induced phase separation being observed. Li et al. (2018) also recently
observed component segregation in binary droplets due to evaporation from the contact
line rim being faster than the induced Marangoni flow, resulting in the convection usually
caused by Marangoni flows too weak to maintain perfect mixing.

From the short review above, while some aspects of evaporating binary mixture droplets
have been reported, the underlying physics of spreading (and retraction) dynamics is still
in question. This is particularly important for many applications including cooling and
development of self-cleaning solvent mixtures that rely on the volatilities. In this paper we
present comprehensive lubrication modelling supported by experiments considering ideal
ethanol–water mixtures, far away from azeotropic concentrations. We particularly focus
on flat droplets formed due to an underlying hydrophilic substrate. This allows us to not
only validate our lubrication model but also to identify spreading regimes whilst at the
same time revealing the governing physics. Our simulations elucidate the role of thermal
and solutal Marangoni stresses and capillary forces at various stages of the evaporating
process. In line with our experimental observations reported herein, it is demonstrated that
for a sufficiently high concentration of ethanol, solutal Marangoni stresses drive very fast
spreading of the droplet at early stages of evaporation, with spreading exponents that may
exceed the value of 1. The enhanced spreading may also be accompanied by the formation
of a ridge near the contact line. This behaviour is clearly reminiscent of superspreading
reported in surfactant-laden flows (Rafaï et al. 2002; Karapetsas, Craster & Matar 2011).
As it will be shown below, enhanced spreading of binary mixture droplets is due to the
presence of strong Marangoni stresses near the contact line, arising due to the preferential
evaporation of ethanol in that region. In contrast to the surfactant-laden flows however, the
concentration gradients here arise as a natural consequence of the evaporation process. At
later stages, it is shown that the dynamics of the evaporation and droplet shape is dictated
by the interplay of thermal and solutal Marangoni stresses and capillary forces.

2. Problem statement and model formulation

2.1. Description of the problem
We study the behaviour of a small and thin sessile droplet consisting of a mixture of two
volatile, miscible liquids A and B as shown in figure 1. Liquid A is the more volatile
component (MVC) in the mixture and liquid B the less volatile component (LVC). The
mixture is assumed to be ideal and the droplet is considered Newtonian with density
ρ̂, specific heat capacity ĉp, thermal conductivity k̂ and viscosity μ̂. For simplicity, and
because liquids with similar densities will be chosen for components A and B, we assume
the liquid mixture to be incompressible and the density of both components equal, such
that ρ̂A = ρ̂B = ρ̂. With the exception of density, the remaining properties vary locally
with concentration. We account for this using the following rule of mixtures, shown for
generic variable ζ̂ as

ζ̂ = χAζ̂A + (1 − χA)ζ̂B, (2.1)

where χA is the mass fraction of component A in the mixture (hence, χB = 1 − χA), while
ζ̂A and ζ̂B denote property values of pure component A and B, respectively. Within the
liquid mixture, we consider only Fick’s law, with the effects of thermodiffusion arising
from the Soret effect neglected. At the interface, the surface tension, σ̂ , of the binary
mixture has a linear dependence on both the local concentration of each component and
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Ĥ0

T̂w

T̂g

R̂0

ẑ

r̂
θ̂

Liquid A + B

Gas

n

t

(ρ̂, μ̂, k̂, ĉp, D̂)

FIGURE 1. Droplet geometry of initial height Ĥ0 and radius R̂0 in the cylindrical coordinate
frame. The droplet consisting of miscible components A and B and resides on a heated substrate
at temperature T̂w. The droplet is sufficiently thin such that the aspect ratio is much less than
unity, Ĥ0/R̂0 � 1. Gas temperature is kept constant at T̂g. Here n and t denote the outward unit
vectors acting in normal and tangential directions to the interface, respectively.

the local temperature, T̂ , taking the form

σ̂ = χA(σ̂A,r + γ̂T,A(T̂ − T̂r)) + (1 − χA)(σ̂B,r + γ̂T,B(T̂ − T̂r)), (2.2)

where γ̂T,i = ∂σ̂T,i/∂T̂ is the temperature coefficient of surface tension of component i
(i = A, B). Here σ̂i,r is the surface tension of component i at reference temperature T̂r. We
assume this to be the temperature of the vapour phase, T̂r = T̂g.

The droplet resides on a heated horizontal solid substrate kept at a constant temperature
T̂w and is released into a thin precursor film consisting solely of the LVC. Evaporation in
the film is stabilised by the disjoining pressure which accounts for the attractive van der
Waals interactions. The inclusion of the precursor film removes the stress singularity that
can arise at the moving contact line. Rather than a purely artificial tool, the precursor film
is also a physical effect with experimental verification (de Gennes 1985). The precursor
film is always formed on the solid surface if the droplet is surrounded by its vapour, from
which it is adsorbed. The precursor film is sufficiently thin that the liquid molecules are
attracted to the substrate by van der Waals interactions, stabilising the film and suppressing
evaporation (Ajaev 2005; Berthier 2013).

The droplet is in contact with the gas phase which has a bulk temperature of T̂g. The
velocity of the gas and vapour particles is assumed sufficiently low so as to be negligible.
The gas phase has density ρ̂v, viscosity μ̂v and thermal conductivity k̂v. These gas-phase
properties are assumed to be significantly smaller than their liquid counterparts, such
that, ρ̂g � ρ̂, μ̂v � μ̂, k̂v � k̂ (Burelbach, Bankoff & Davis 1988). The same is assumed
for the vapour properties. In addition, we assume that the total gas-phase pressure is
sufficiently large that it remains constant with evaporation and changing vapour pressure.

Given these assumptions, we adopt the so called ‘one-sided’ model and focus solely
on the liquid phase in this study. The draw of such an approach is the considerably
reduced complexity by discounting the vapour phase while including the physics of
the liquid phase. A clear limitation is that we are forced to assume evaporation is not
vapour-diffusion limited and instead controlled by the transfer of molecules across the
liquid–vapour interface. Physically, we are assuming that vapour diffuses rapidly away
from the liquid–vapour interface and, therefore, the model is expected to be valid in the
regime where there is a well mixed environment and so the phase-transition process is the
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rate limiting step. Phase transition is modelled using the non-equilibrium Hertz–Knudsen
relation from kinetic theory (Plesset & Prosperetti 1976; Moosman & Homsy 1980),
written in dimensional form for each i component as

Ĵi = p̂v,iM̂i

R̂gT̂|h

(
R̂gT̂|h
2πM̂i

)1/2 (
αv,i

p̂v,e,i

p̂v,i
− βv,i

)
, (2.3)

where p̂v,i is the partial pressure of component i, p̂v,e,i is its equilibrium vapour pressure
and M̂i its molecular weight. Here T̂|h denotes the interfacial temperature of the liquid
and R̂g is the universal gas constant; αv,i and βv,i are accommodation coefficients for
evaporation and condensation, respectively, giving the probability that a molecule of
component i impinging on the interface will cross over to the other phase (Knudsen
1950). As reviewed in Murisic & Kondic (2011), the value of accommodation coefficients
used in the literature varies over several orders of magnitude from O(10−6) to O(1), with
lower values providing a greater barrier to phase change by reducing the probability of a
molecule crossing the interface. For simplicity, and in line with other works (Moosman
& Homsy 1980; Ajaev 2005; Sultan, Boudaoud & Ben Amar 2005), we assume in this
study that the accommodation coefficients are constant and nearly equal to each other,
such that αv,i = βv,i = 1. Physically this means there is no barrier to phase change and
every molecule of vapour or liquid striking the interface transitions to the opposite phase
(Persad & Ward 2016).

Another modelling approach not considered here is the ‘1.5 sided’ or ‘lens’ model;
generally used when evaporation is firmly in the vapour-diffusion limited regime. When
using this method, the liquid phase is fully resolved with the gas phase being solved for
diffusion only and boundary conditions applied along the liquid–vapour interface for the
liberation of the liquid to vapour. Murisic & Kondic (2011) have explored when one
evaporation model is more appropriate than the other for pure droplets of either water
or isopropanol with moving contact line on non-heated surfaces. They concluded that a
NEOS model with a small accommodation coefficient, αv, of O(10−4) better reflected the
experimental results for pure water droplets while the lens model was more accurate for
the isopropanol droplets.

By using accommodation coefficients close to unity, we expect our model to overpredict
the evaporation rates compared to experiment, where the vapour diffusion from the
interface to a far-field value is typically several orders of magnitude slower than the
liberation of liquid molecules to the vapour phase. In practice, this means while our model
will qualitatively simulate evaporation, a quantitative comparison with evaporation fluxes
against diffusion-limited experiments is impossible. To achieve a quantitative comparison,
a modified accommodation coefficient or more complex models such as those of Sultan
et al. (2005) or Sáenz et al. (2015) should be explored. Despite this, one-sided models
similar to the one considered here have proved powerful in the prediction of qualitative
behaviour for evaporating droplets in the past, for example, the prediction of hydrothermal
waves in evaporating pure component droplets (Karapetsas et al. 2012).

Initially, we assume that the droplet has maximal thickness Ĥ0 and radius R̂0, in a polar
coordinate system (r̂, ẑ, θ̂ ) representing the radial, axial and azimuthal axes. We consider
the droplet to be axisymmetric and very thin. Therefore, R̂0 � Ĥ0, so that the droplet
aspect ratio, ε = Ĥ0/R̂0 � 1. This assumption permits the use of lubrication theory, which
we will employ to derive the evolution equations. Additionally, we assume the droplet
is sufficiently small as to neglect gravitational effects. This means a Bond number of
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Ethanol Water

ρ̂ (kg m−3) 8.00 × 102 9.99 × 102

μ̂ (Pa s) 1.198 × 10−3 6.513 × 10−4

k̂ (W m−1 K−1) 1.83 × 10−1 6.02 × 10−1

ĉp (kJ kg−1 K−1) 2.40 4.182
L̂v (kJ kg−1) 1.030 × 103 2.454 × 103

σ̂R (N m−1) 2.28 × 10−2 7.29 × 10−2

γ̂T (N m−1 K−1) 8.32 × 10−5 1.51 × 10−4

M̂ (kg mol−1) 4.61 × 10−2 1.80 × 10−2

p̂o (N m−2) 5.80 × 103 7.37 × 103

D̂A (m2 s−1) 1.23 × 10−9

TABLE 1. Physical properties of ethanol (MVC) and water (LVC) at 20◦ and 1 atm.

much less than one, requiring the radius of the droplet to be below the capillary length
of both liquids in the mixture. A working mixture of ethanol and water is considered.
Both liquids are sufficiently volatile on a heated substrate, ethanol being the MVC and
possessing a lower surface tension than water. The selection of an ethanol–water mixture
also avoids any ‘self-rewetting’ properties (Abe, Iwasaki & Tanaka 2004) present in other
alcohol–water mixtures at certain concentrations, for example, butanol–water. The pure
component properties of each fluid in the mixture are given in table 1.

2.2. Governing equations and boundary conditions

2.2.1. Scaling
All of the aforementioned variables have taken dimensional form – a hat (ˆ) signifying

the dimensional symbol. We scale the system using the properties of the more volatile
component (MVC), A, and the thermocapillary velocity, defined as Û = εγ̂lΔT̂/μ̂l. As
such, we now introduce the following scalings:

r̂ = R̂0r, ẑ = Ĥ0z, t̂ = R̂0

Û
t, û = (û, ŵ) =

(
Ûu,

Ĥ0

R̂0

Ûw

)
;

p̂ = p̂ig + μ̂AÛR̂0

Ĥ2
0

p, T̂ = T̂0 + TΔT̂, Ĵi = k̂AΔT̂

Ĥ0L̂v,A

Ji;
σ̂i = σ̂A,0σi, μ̂ = μ̂Aμ, k̂ = k̂Ak, ĉp = ĉp,Acp.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

Here, t̂ is time, p̂ is pressure and û is the velocity vector field with components û and ŵ in
the radial and axial directions, respectively. Also, L̂v is the latent heat of vapourisation, Ĵi

is the evaporative flux of component i and ΔT̂ = T̂w − T̂g. The principal dimensionless
numbers arising from the scaling are the Marangoni number, Ma = γ̂AΔT̂/σ̂A,r, the
Reynolds number, Re = ρ̂AÛĤ0/εμ̂A, the Prandtl number, Pr = μ̂AĈp,A/k̂A, the Péclet
number, Pe = ÛR̂0/D̂A, evaporation number, E = k̂AΔT̂R̂0/Ĥ2

0 L̂v,AÛρ̂, and the Knudsen
number, K = k̂A(2πR̂3

gT̂5
g )

1/2/Ĥ0L̂2
v,Ap̂s,AM̂3/2

A . Here K measures the importance of kinetic
effects at the interface and can be thought of as being analogous to the inverse of the Biot
number, controlling the heat loss across the interface (Karapetsas et al. 2012). In addition,
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several property ratios unique to the binary mixture also arise from the scaling,

σR = σ̂B,r

σ̂A,r
, γR = γ̂T,B

γ̂T,A
, α = p̂s,B

p̂s,A
, kR = k̂B

k̂A

;

μR = μ̂B

μ̂A
, cpR = ĉp,B

ĉp,A
, MR = M̂B

M̂A

, Λ = L̂v,B

L̂v,A

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

where σR is the ratio of surface tensions, γR is the ratio of surface tension temperature
coefficients, α is the relative volatility (not to be confused with αv in (2.2)), kR is the ratio
of thermal conductivities, μR is the viscosity ratio, cpR is the ratio of specific heats, MR is
the molar weight ratio and Λ is the ratio of latent heats.

2.2.2. Dimensionless governing equations
Flow within the droplet is incompressible and governed by the following mass,

momentum, energy and concentration equations:

∇ · u = 0, (2.6)

εRe
(

∂u
∂t

+ u · ∇u
)

+ ∇p − ∇2u = 0, (2.7)

εRePr
(

∂(cpT)

∂t
+ u · ∇(cpT)

)
− ∇k(∇T) = 0, (2.8)

Pe
(

∂χA

∂t
+ ∇ · uχA

)
− ∇2χA = 0. (2.9)

The concentration equation (2.9) is simplified by applying the limit of weak diffusion and
assuming Pe ≈ O(ε−2), as derived by Matar (2002). Therefore, redefining Pe = Pe′ε−2

and substitution into (2.9) yields the amended conservation equation for χA:

∂χA

∂t
+ ∇ · uχA − ε2

r
∂

∂r

(
r
∂χA

∂r

)
− 1

Pe′

(
∂2χA

∂z2

)
= 0. (2.10)

Note that contrary to the standard approach of lubrication theory, we do not remove the
third term on the left-hand side, despite ε2 � 1. Retaining this weak diffusive force along r
ensures that the concentration profile remains numerically stable as the solution proceeds.
We also explored the limit of rapid vertical diffusion and found no qualitative differences
with the simulation presented in this manuscript.

Evaporative effects are modelled using a constitutive equation based on the
Hertz–Knudsen expression given by (2.2), written here in dimensionless form as

KJ = χA (δp + T|h) + (1 − χA)αM3/2
R (δp + ΛT|h) , (2.11)

where T|h is the temperature of the interface and δ = μ̂AÛR̂0T̂g/ρ̂lĤ2
0 L̂v,AΔT̂ accounts

for the effects of changes in liquid pressure on the local phase change temperature at the
interface (Ajaev 2005). We partition (2.11) into two separate expressions, yielding the
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evaporative fluxes of components A and B, respectively,

JA = χA

K
(δp + T|h) , (2.12)

JB = (1 − χA)αM3/2
R

K
(δp + ΛT|h) . (2.13)

2.2.3. Interfacial boundary conditions
Turning our attention to the remaining interfacial boundary conditions at z = h(r, t), the

evaporative flux boundary condition at the interface takes the form

EJ = −(u − us)
∂h
∂r

+ (w − ws), (2.14)

where us and ws are interface velocities of the liquid and J is the total evaporative flux
comprising JA + JB. The associated energy balance is given as

JA + JBΛ + k
∂T
∂z

= 0. (2.15)

Let us now consider briefly the gas phase, consisting of inert gas and the vapour of both
components A and B. Under Dalton’s law, the total gas pressure is written as the sum of
the partial pressures of each component,

p̂g = p̂ig + p̂v,A + p̂v,B. (2.16)

Here, p̂ig, p̂v,A and p̂v,B indicate the partial pressures of inert gas, component A and
component B, respectively. We assume that the surrounding gas phase consists mainly
of inert gas rather than vapour, meaning p̂ig � p̂v,A and p̂ig � p̂v,B. This leads to the
simplification that the total gas-phase pressure is approximately equal to the pressure of
the inert gas,

p̂ig ≈ p̂g. (2.17)

Additionally, since the droplet is considered to be small, we also ignore the effects of
vapour recoil from the gas phase (Larson 2014) since this will be relatively weak when
compared to the dominating surface tension force. Given these assumptions, the normal
stress boundary condition at the interface is defined as

p̂ − p̂g + ε2σ

Ma
2κ + A

h3
= 0, (2.18)

where 2κ is the mean curvature of the interface and A = Â/6πμ̂AÛR̂0Ĥ0 is the
Hamaker constant, made dimensionless in the disjoining pressure term and accounting
for intermolecular interactions near the contact line. The interface height, h, is handled via
the kinematic boundary condition imposed as

∂h
∂t

+ u · ∇h + EJ = 0. (2.19)

We now consider the concentration boundary condition along the interface by applying
the limit of weak diffusion introduced in (2.10) above. As outlined in Matar (2002), we
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derive an expression independent of z by employing an approximate Galerkin expansion
for χA, seeking solutions of the form

χA(r, z, t) = χA0(r, t) + χA1(r, t)
(

z2

h2
− 1

3

)
, (2.20)

where χA0 corresponds to the mean concentration and χA1 is a non-zero mean quadratic
fluctuating component. The concentration balance over the interface is given as[

∂χA

∂z

]
h

= E(χAJ − JA). (2.21)

Differentiation of (2.20) with respect to z and evaluation at the interface (z = h) gives an
alternative expression for [∂χA/∂z]h in terms of χA1,[

∂χA

∂z

]
h

= 2χA1

h
. (2.22)

Substitution of (2.21) into (2.22) hence constructs an expression for χA in terms of χA1,

χA = 2χA1

EJh
+ JA

J
. (2.23)

By evaluating (2.20) at z = h and substituting in (2.23), we obtain the following expression
for χA1 independent of χA:

χA1 = (JA − JχA0)

2
(

J
3

− 1
Pe′Eh

) . (2.24)

We arrive at the final form of the concentration balance over the interface in the limit of
weak diffusion by substituting (2.24) into (2.22),[

∂χA

∂z

]
h

= (JA − JχA0)

h
(

J
3

− 1
Pe′Eh

) . (2.25)

2.3. Solution method and initial conditions

2.3.1. Kármán–Pohlhausen approximation
We now apply the Kármán–Pohlhausen integral approximation whereby we integrate

(2.6), (2.7), (2.8) and (2.10) over z from 0 to h. Doing this removes any multiple variable
differentials while retaining the inertia and advection terms in the momentum and energy
balance equations. First, let us define the integrated forms of f and Θ as

f =
∫ h

0
u dz, Θ =

∫ h

0
T dz. (2.26a,b)

In order to be able to evaluate (2.26a,b), we now need to prescribe the forms of u, and
T as a function of the vertical coordinate. To this end, we assume that each variable
can be approximated by a polynomial of the form c1 + c2z + c3z2. By substituting
the corresponding polynomials in (2.26a,b) and applying the appropriate boundary
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conditions, it is possible to evaluate the polynomial constants and eventually derive the
following expressions for u and T ,

u =
(

3f
h2

− ∂σ

∂r
1

2μMa

)
z −

(
3f
2h3

− ∂σ

∂r
3

4hμMa

)
z2, (2.27)

T = Tw +
(

(JA + ΛJB)

2k
+ 3Θ

h2
− 3Tw

h

)
z +

(
−3(JA + ΛJB)

4hk
− 3Θ

2h3
+ 3Tw

2h2

)
z2.

(2.28)

Integration of the governing equations along with application of the boundary conditions
defined in § 2.2.3 yields the following integrated forms of the mass, r-momentum, energy
and concentration equation in the limit of weak diffusion:

∂h
∂t

= −EJ − 1
r

∂(rf )
∂r

− f
r
, (2.29)

εRe
(

∂f
∂t

+ 1
r

∂

∂r

(
r
∫ h

0
u2 dz

)
+ u|hEJ

)
= −h

∂p
∂r

+
[
μ

∂u
∂z

]h

0
, (2.30)

εRePrcp

(
∂Θ

∂t
+ 1

r
∂

∂r

(
r
∫ h

0
uT dz

)
+ T|hEJ

)
=
[

k
∂T
∂z

]h

0
, (2.31)

∂χA0

∂t
+ f

h
∂χA0

∂r
= (JA − JχA0)

Pe′h2

(
J
3

− 1
Pe′Eh

) . (2.32)

Note that in the above expressions, all terms containing u and T are evaluated using (2.27)
and (2.28) and, therefore, we end up with expressions containing the unknown variables
f and Θ instead of u and T .

2.3.2. Precursor film and resulting boundary conditions
As previously mentioned, we assume that the droplet is surrounded by a thin precursor

film covering the heated substrate upon which it resides. In this region, the fluid is flat with
zero mean curvature and sufficiently thin such that evaporation is suppressed by attractive
van der Waals forces. We assume the mixture in the precursor region is at equilibrium
concentration, χA,∞ = 0, meaning that it consists solely of the LVC. Simplifying (2.18)
subject to these conditions when h = h∞ yields the expression for the precursor layer
height:

h∞ =
( Aδ

ΛT|h

)1/3

. (2.33)

We now turn our attention to the boundary conditions at the bottom wall where the liquid
meets the solid substrate (z = 0). Here, we impose conditions of no-penetration, no-slip
and constant temperature, such that

∂χA

∂z
= 0, u = 0, T = 1. (2.34a–c)

Finally, we apply the following boundary conditions to the radial extremes of the domain
(r = 0 and r = r∞):
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∂h
∂r

(0, t) = 0, f (0, t) = 0,
∂Θ

∂r
(0, t) = 0,

∂χA

∂r
(0, t) = 0;

h(r∞, t) = h∞,
∂h
∂r

(r∞, t) = 0, f (r∞, t) = 0, Θ(r∞, 0) = h∞,

χA(r∞, t) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.35)

2.3.3. Penalty function
Due to our modelling approach, the droplet is deposited onto a thin precursor film. This

film is sufficiently thin so that van der Waals interactions in the liquid phase become
the dominating force and, hence, suppress further evaporation in this precursor region.
It is then logical to assume that the precursor layer consists solely of the LVC since any
MVC will have evaporated before the film forms. When testing the model, we noticed that
artificial behaviour can occur in the precursor film resulting from the added complexity of
a second component. Diffusion of the MVC from the bulk droplet into the precursor film is
possible, as is condensation of MVC from the gas phase into the film region. To circumvent
this problem, we incorporate a forcing-type penalty function (P) with which we can
control the composition of the precursor film. This ensures that the inert precursor region
does not interfere with the evaporation of the droplet or induce any artificial behaviour.

The penalty function itself is applied to the advection–diffusion (concentration)
equation and forces the precursor film to solely consist of the LVC, preventing any
evaporation or condensation from occurring. It takes the form

P = MχA0

(
1 − tanh

[
B
(

h
h∞

− 1
)])

= 0, (2.36)

where M = 103 is its magnitude and B = 5. When h > h∞, as is the case in the bulk
droplet, P is zero regardless of the value of concentration and so has no effect on
the solution. The penalty function begins to influence the solution when droplet height
approaches that of the precursor. If h = h∞, P tends towards M. When applied to the
conservation equation for concentration, χA is forced to zero, minimising M and ensuring
P is equal to zero once more. The physical effects of this restriction are twofold. First,
it is ensured that there is no artificial condensation of the MVC into the precursor layer.
Second, any diffusion of MVC from the bulk droplet to the precursor layer is arrested.

2.3.4. Initial conditions
Within the droplet profile (0 ≤ r ≤ 1), the initial conditions are imposed such that

h(r, 0) = h∞ + 1 − r2, f (r, 0) = 0, Θ(r, 0) = h(r, 0)T0, 0 ≤ χA0,i ≤ 1.
(2.37a–c)

Here, χA0,i = χA(r, 0) is the initial uniform concentration within the droplet. Outside of
the droplet in the precursor layer region (r > 1), we apply the following:

h(r, 0) = h∞, f (r, 0) = 0, Θ(r, 0) = h∞, χA0,i = 0. (2.38a–d)

2.3.5. Overview of solution procedure
From our definitions above, we have seven unknown variables; h, p, f , Θ , JA, JB and χA0

along with seven independent equations. As a broad overview of the solution procedure,
we begin with simplifying these equations by applying the Galerkin method of weighted
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Drop

Precursor layer

0 1R = 1

H
 =

 1

H
 =

 h
∞

2 3

FIGURE 2. Illustration of the height, h, variable under initial conditions in a domain where
r∞ = 3. The one-dimensional domain consists of equally spaced Nr nodes, here, the vertical
dotted lines represent every tenth node where the total number of nodes Nr,tot = 300. The value
of height is stored at every node point and is reconstructed to form the drop profile over the
domain. The drop is initialised as a quarter circle in dimensionless space for 0 ≤ r ≤ 1, with
the precursor layer height, h∞, imposed for r > 1. Similar profiles along r are used as initial
conditions for the other variables – see § 2.3.4.

residuals to obtain weak forms for each equation. Derivation and final forms of the weak
equations are given in Williams (2018). The domain is discretised from 0 to r∞ into a
uniform mesh of Nr,tot nodes (see figure 2) using the finite element method. Solutions
are then obtained using a Newton–Raphson scheme with the simulation evolved forward
in time using implicit Euler and an adaptive time step, dt. The time step is increased
or decreased based on the largest residual error of the governing equations from the
previous time step. Initial solutions are provided (via the initial conditions in § 2.3.4) and
progressively more accurate values iterated to over each time step. The iterative program
is written in Fortran, making use of the linear algebra package LAPACK.

3. Experimental methodology

3.1. Apparatus and experimental procedure
A diagram of the experimental apparatus is shown in figure 3 which centres around
a flexible silicone heating pad (Omega SRFR-4/5-P-230V) providing a heat flux of
0.775 W cm−2. This sits atop an aluminium mechanical scissor lift platform and is held in
place with heavy duty white duct (Gorilla) tape. The temperature of the heater is controlled
with a PID controller in a feedback loop; the controller maintains the desired set point
measured by a thermocouple attached to the heating pad. The CMOS camera is held
in place above the scissor lift platform using a laboratory stand and clamp with liberal
amounts of duct tape securing it to the desk. The CMOS camera used is a Point Grey
Research Flea3 (FL3-U3-13E4M) with a 18–108 mm/2.5–16 Navigator Zoom 7000 zoom
lens. The camera is connected to a PC via USB3 and is controlled through FlyCapture2
software. Optical recording is conducted at 60 fps. The droplet is illuminated from the
side using a touch mounted on a large three prong clamp as the light source. To ensure
a clear image is captured by the camera, Diall PVC repairing tape, possessing a smooth
white surface, is layered on top of the duct tape.
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LED light

Drop

Aluminium

platform
PID controller

Silicone heating pad

Thermocouple (Tw)

Glass slide

CMOS camera

+ lens

FIGURE 3. Schematic diagram of the experimental apparatus.

Borosilicate glass microscope slides (75 mm × 25 mm, 1 mm thick) manufactured by
RC Components are used as the substrate. These are simply placed on top of the tape
holding down the heating pad with the friction between the two materials sufficient to
prevent movement. The glass slides consistently demonstrated a low equilibrium contact
angle for all fluids tested. High wettability was verified by treating the slides with ‘piranha’
solution – a volatile mixture of sulfuric acid and hydrogen peroxide. Piranha solution
is a strong oxidiser and so removes organic matter whilst additionally hydroxylating the
surface. The droplets are deposited on the substrate manually using a microliter syringe
(Hamilton 701N 10 μl) with reading increments of 0.2 μl.

We consider ethanol–water mixture droplets of initial volume (1.0 ± 0.2) μl. Mixtures
ranging from 11 wt.% to 50 wt.% initial ethanol concentration are considered at three
substrate temperatures (Tw); 30 ◦C, 50 ◦C and 70 ◦C. Solutions are prepared in 25 ml
volumes and stored in 2 mm diameter jars. Separate syringes of volume (2.50 ± 0.05) ml
were used to collect samples of each pure component for mixing. The mixing volumes of
each fluid as well as the initial ethanol concentrations investigated are given in table 2.
Once the solutions are prepared, evaporation of the mixtures was kept to a minimum
by covering the mouth of the jar with a plastic paraffin film (Parafilm); this allowed the
seal to be retained with the lid removed. A sample was taken by piercing the film with
the microsyringe, leaving only a small hole and suppressing unwanted evaporation as
much as possible. The lid was returned after obtaining each sample. For each mixture
concentration deposited on each substrate temperature, a minimum of five experimental
runs were conducted to ensure the results are replicable.

The results are processed by tracking the droplets radius over time, both the initial
spreading followed by contact line recession as evaporation takes over. The radius is
tracked frame-by-frame using an in-house algorithm written in python, making use of
NumPy and OpenCV libraries. The basic overview is to convert each frame to a high
contrast image using in-built OpenCV image processing tools and then detect the circular
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Ethanol (ml) Water (ml) Initial ethanol vol.% Initial ethanol wt.%

0.00 25.00 ± 0.50 0.0 0.0
3.50 ± 0.10 21.50 ± 0.45 14.0 ± 0.7 11.4 ± 0.6
7.50 ± 0.15 17.50 ± 0.35 30.0 ± 1.2 25.3 ± 1.0

14.00 ± 0.30 11.00 ± 0.25 56.0 ± 3.0 50.0 ± 2.7

TABLE 2. Mixing volumes of ethanol and water used to prepare the mixtures and the
corresponding initial volume and weight percentages of ethanol.

(a) (b) (c)

FIGURE 4. Top-down view snapshots of a 1 ml ethanol–water droplet comprising 25 wt.%
initial ethanol deposited on a 70 ◦C substrate at t = 0.6 s. Panel (a) shows the original greyscale
image captured by the camera, (b) shows the binary image after passing through imaging filters,
and (c) shows the best-fit circle (green) to the contact line (black) along with the corresponding
centre point (orange) overlaid on (a).

shape of the droplet using the OpenCV Hough Circles Transform. Image processing
begins by removing noise from the greyscale images captured by the camera by passing
through the GuassianBlur and medianBlur filters. After this, the sharp edges of the
image corresponding to the contact line are detected using the adaptive threshold filter
and converted to a binary black and white image using the binary threshold filter – see
figure 4(b). The Hough Circles Transform is applied to this image, which then determines
the best fit circle to the circular-shaped droplet outline and calculates the corresponding
centre point and radius – shown in figure 4(c). To set the scale, a circular black sticker
of diameter 0.8 mm is affixed to a sample glass slide. With the scale set, the expanding
and contracting radius of the droplet as it spreads and recedes is measured directly. A
clear limitation of this method is that the droplet must be close to circular to obtain
meaningful results. In our case, this is already a requirement since we are comparing to a
one-dimensional axisymmetric model where the droplet is perfectly circular. Contact line
radius against time for each droplet can then be plotted. The spreading and retraction rates
are obtained by analysing the radius-time graphs in the common logarithmic domain using
R statistical software (R Core Team 2013) made available under the GNU General Public
License (GPL). This method allows linear fits along with breakpoints to be determined in
a statistically significant and consistent manner.

3.2. Errors and uncertainty
We briefly discuss the sources of error in the experiment, some more difficult to quantify
than others. Table 2 gives the error in measuring the volumes of ethanol and water when
preparing the binary mixtures for storage. These are typically low and based on the reading
error of the syringes used to prepare the mixtures. The final volume of droplet deposited on
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the substrate is subject to larger error. Each 1 μl droplet is deposited using a microsyringe
with reading increments of 0.2 μl. Assuming a reading error of ±0.1 μl yields a 10 %
relative error in the deposited volume. In addition to this, we noticed that there was often a
small amount of liquid residue left on the tip of the syringe after deposition. As such, the
relative error in the deposited volume is likely to be larger than 10 %, with a 20 % relative
error in the volume deposited being a worst case prediction. The uncertainly from the PID
feedback loop can be assumed as ±1 K. However, with the heater and thermocouple buried
beneath an insulating plastic tape along with inherently low thermal conductivity of the
glass substrate, it is likely that the surface the droplet is deposited onto will be slightly
cooler than the displayed value by the controller.

Considering imaging errors, a clear droplet image is captured by the angled light source
casting a shadow around the contact line. This causes the contact line to appear thicker
than in reality. In addition, the formation of a ridge at the contact line in droplets with
higher initial ethanol concentration causes this region to appear thicker still. Contact
line instabilities also arise in ethanol rich droplets, making accurate resolution even
more difficult. Measuring the pixel width of the droplet at its thickest point in the
final images provides a reasonable estimate of this error. Our radius detection method
relies on the idealistic assumption that droplets are always perfectly circular throughout
spreading and recession. In the absence of perfectly consistent curvature around the whole
circumference, the algorithm will fit a circle that best fits the largest portion of the droplet
circumference. This results in fluctuation of the radius measurement as the algorithm
searches for the optimum curvature. The best estimation of this uncertainty comes from
the standard error of the linear fit determined by R.

To minimise this error for each run, we took several measures to maximise even
spreading of the droplets. These include ensuring a completely level surface, the selection
of small droplet volumes, and the gentle deposition of the droplets from the microsyringe.
Another limitation worth mentioning is that, particularly for higher concentrations of
ethanol, droplets do not dry out in a circular shape meaning the exact point of dry-out
cannot be measured by our algorithm. Rather, we rely on the visual disappearance of the
droplet from the original video footage for this.

4. Experimental findings

4.1. Typical evaporation process
As previously mentioned, we consider only droplets of pure water and water–ethanol
mixtures consisting of 11 wt.%, 25 wt.% and 50 wt.% initial ethanol at substrate
temperatures of 30 ◦C, 50 ◦C and 70 ◦C. In order to maximise the evaporation rate
for comparison with our simulations, we restrict our investigations into the effect of
concentration variation for a substrate at temperature Tw = 70 ◦C only, while effects of
temperature variation are restricted to the most volatile binary mixture – 50 wt.% initial
ethanol. Higher ethanol concentrations, extending to pure ethanol are not included due to
difficulties in capturing a sharp contact line using our imaging method.

After a droplet is deposited carefully with the microsyringe, the typical evaporation
process for all concentrations and temperatures can be split into two main stages: a rapid
spreading stage followed by a slower retraction stage. These stages are to be expected with
wetting droplets and has been observed extensively in the literature (Semenov et al. 2014).
The length of each stage depends on the droplet composition and substrate temperature.
Additionally, for lower volatility cases, a third stationary phase can appear between
spreading and retraction whereby the droplet remains at maximum radius for a time before
retraction begins. Such behaviour is also expected for lower volatility liquids (Cachile
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χA0,i

0.00 0.11 0.25 0.50

n1 0.36 ± 0.07 0.74 ± 0.16 1.61 ± 0.11 3.66 ± 0.33
b1(s) 0.65 ± 0.17 0.63 ± 0.20 0.87 ± 0.14 0.24 ± 0.01
n2 0.23 ± 0.03 0.54 ± 0.13 1.15 ± 0.45 1.36 ± 0.15
b2(s) 1.29 ± 0.10 1.30 ± 0.17 1.20 ± 0.12 0.65 ± 0.03
n3 0.09 ± 0.04 0.30 ± 0.11 0.45 ± 0.37 0.59 ± 0.06
b3(s) 2.14 ± 0.14 2.13 ± 0.14 1.63 ± 0.09 1.68 ± 0.04
n4 0.00 0.02 ± 0.04 −0.34 ± 0.12 −0.03 ± 0.06
b4(s) 7.49 ± 0.59 4.87 ± 0.08 2.73 ± 0.04 —
n5 −0.23 ± 0.02 −0.71 ± 0.27 −2.06 ± 0.24 —
b5(s) 21.87 ± 0.03 5.87 ± 0.04 3.69 ± 0.04 —
n6 −0.78 ± 0.04 −2.31 ± 0.32 0.07 ± 0.30 —
b6(s) 33.16 ± 0.01 5.77 ± 0.03 4.47 ± 0.06 —
n7 −2.74 ± 0.16 −0.37 ± 0.03 −1.34 ± 0.14 —
b7(s) — 14.87 ± 0.09 6.81 ± 0.19 —
n8 — −0.93 ± 0.09 −0.86 ± 0.06 —
b8(s) — 20.33 ± 0.05 14.42 ± 0.07 —
n9 — −2.14 ± 0.16 −1.98 ± 0.14 —
rmax (mm) 2.33 ± 0.11 3.01 ± 0.14 4.47 ± 0.12 5.35 ± 0.30

TABLE 3. Experimentally measured spreading exponents, n, corresponding breakpoints in
time, b, and maximum radii, rmax , for ethanol–water sessile droplets for increasing initial
concentrations of ethanol, χA0,i, at substrate temperature Tw = 70 ◦C.

et al. 2002a) and is observed in our modelling results for low evaporation numbers – see,
for example, figure 21.

Immediately after depositions, the droplets spread to their maximum radius. The very
initial stages are dominated by inertial spreading, similar to pure and other binary mixture
droplets (Winkels et al. 2012; Mamalis, Koutsos & Sefiane 2018). Table 3 gives the
spreading coefficients, n (where R ∝ tn), for each linear regime and their corresponding
breakpoints in time, b, to the next linear regime. The maximum radius achieved by each
drop is given by rmax . A visual representation of table 3 is shown in figure 5. Here, the
experimentally measured radii are plotted against time on a log-log scale with the best
fit lines (n) for each regime and transition breakpoints (b) between regimes also drawn.
In the case of pure water (first column of table 3 and figure 5a), the inertial spreading
exponent, n1, is 0.36 ± 0.07. When ethanol is added to the mixture, n1 increases, as seen
in the remaining three columns of table 3 and figure 5(b–d), meaning inertial spreading
proceeds at a faster rate for higher initial ethanol concentration. After the inertial phase, the
spreading rate then decreases to a viscous regime, characterised by spreading exponents
close to Tanner’s law in the case of pure water and higher for binary ethanol–water
compositions. After maximum radius is reached, droplets possessing lower volatilities
and those on cooler substrates remain stationary for a period of time before retraction.
In the case of binary droplets, retraction tends to happen in two stages: an initial rapid
retraction followed by a slower contact line recession at later times. We now examine
these processes in more detail for a 25 wt.% and 50 wt.% ethanol–water droplet on a 70 ◦C
substrate.
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FIGURE 5. Experimentally measured droplet radii against time for droplets deposited on a
substrate at Tw = 70 ◦C. Droplet radius r is normalised by the first recorded radius after
deposition, ri, and plotted in the logarithmic space along with time after deposition. Spreading
rates, n, for each regime are shown as best fit lines and the breakpoints, b, signifying transition
to the next linear regime drawn as vertical dashed lines. Initial ethanol concentration (χA0,i) for
each plot is as follows: (a) χA0,i = 0.00 (pure water); (b) χA0,i = 0.11; (c) χA0,i = 0.25; and
(d) χA0,i = 0.50. See table 3 for the corresponding numeric values of n and b for each χA0,i.
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4.2. 25 wt.% ethanol–water droplet
Figure 6 presents snapshots taken with the CMOS camera over the lifetime of a 25
wt.% ethanol–water droplet on a 70 ◦C substrate. The third column of table 3 gives
the spreading exponents and their transition points in time for this concentration with a
visual representation given in figure 5(c). After deposition at t = 0 s, the droplet begins
to spread rapidly with n1 = 1.61 ± 0.11 up until t = 0.87 ± 0.14 s, considered to be
firmly within the inertial regime. Faint interface ripples appear near the contact line at
t = 0.4 s, subsequently dying down by t = 0.8 s as the spreading rate slows slightly to
n2 = 1.15 ± 0.45. The lighter rim near the droplet edge indicates a thicker area of liquid
near the contact line, presumably formed from strong currents pulling the fluid outwards.
The droplet continues to spread until t ≈ 2.0 s while at the same time the light rim
decreases in thickness. A maximum droplet radius of r = 4.47 ± 0.12 mm is reached.
The droplet then proceeds to recede in two main regimes. A period of rapid recession
comes first with an exponent, n5 = −2.06 ± 0.24, terminating at t = 3.69 ± 0.04 s. The
second regime is slower and characterised by an exponent of n8 = −0.86 ± 0.06. Our
simulations indicate that the first rapid recession is owing to the sudden reversal of surface
tension gradient as ethanol becomes sufficiently depleted within the droplet. The droplet
then continues to evaporate and recede until dry-out at t ≈ 25.0 s.

4.3. 50 wt.% ethanol–water droplet
Upon increasing the initial concentration of ethanol from 25 wt.% to 50 wt.%, a radically
different behaviour emerges. Figure 7 shows camera stills taken over the droplet lifetime
and the corresponding spreading exponents are given in the fourth column of table 3
and shown visually by figure 5(d). It is immediately clear when comparing with the
lower concentration droplet in figure 6 that the initial spreading rate when χA,i = 0.50 is
noticeably faster. Beginning at n1 = 3.66 ± 0.33 until t1 = 0.24 ± 0.01 s and continuing
at the slightly reduced rate of n2 = 1.36 ± 0.15 until t2 = 0.65 ± 0.03 s. Spreading then
proceeds at a rate of n3 = 0.59 ± 0.06 until the maximum radius of 5.35 ± 0.30 mm is
reached at t3 = 1.68 ± 0.04 s. From t = 0.2 s in figure 7, two distinct instabilities can be
seen forming in the droplet. The first is a contact line instability whereby the contact line
breaks up into fingers that grow with time. The second instability appears to occur over
the interface, equidistant between the droplet centre and contact line. It takes the form of
spoke-like patterns arranged radially around the droplet centre, similar to those observed
by Semenov et al. (2014).

The fingering instability at the contact line resembles the ‘octopi’ instability observed
by Mouat et al. (2020) and Gotkis et al. (2006) and is similar to the droplet ejection
phenomena seen by Keiser et al. (2017) in ethanol–water droplets and Mouat et al. (2020)
in isopropanol–water droplets. Since the emergence of both instabilities only occurs at
high initial ethanol concentrations, the clear indication is that they arise due to solutal
Marangoni stresses. As the droplet is initially deposited as a spherical cap, evaporation
will be particularly strongest at the contact line – as we have predicted with our model.
Preferential evaporation of ethanol at the contact line results in high ethanol concentration
within the droplet, causing a large surface tension gradient between the apex and contact
line and therefore driving rapid spreading. It is this rapid spreading that causes the
fingering contact line instability. The spoke-line patterns on the interface appear to be
resulting from the strong outward flow within the droplet towards the contact line.

As time proceeds from t = 0.2 s to t = 1.8 s, figure 7 clearly shows the contact line
fingers growing in volume while the number stays constant at 21–24 fingers. The thicker
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5 mm 0.2 s

1.0 s

0.4 s 0.6 s

0.8 s 1.2 s 1.4 s

1.8 s1.6 s 2.0 s 3.0 s

5.0 s4.0 s 6.0 s 7.0 s

9.0 s8.0 s 10.0 s 13.0 s

19.0 s16.0 s 22.0 s 25.0 s

FIGURE 6. Top-down view snapshots of a 1 μl ethanol–water droplet comprising 25 wt.%
initial ethanol deposited on a 70 ◦C substrate.
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5 mm 0.2 s 0.4 s 0.6 s

1.4 s1.2 s1.0 s0.8 s

2.2 s2.0 s1.8 s1.6 s

3.0 s2.8 s2.6 s2.4 s

3.8 s3.6 s3.4 s3.2 s

5.5 s5.0 s4.5 s4.0 s

FIGURE 7. Top-down view snapshots of a 1 μl ethanol–water droplet comprising 50 wt.%
initial ethanol deposited on a 70 ◦C substrate.
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FIGURE 8. Droplet radius versus time for (a) constant substrate temperature of 70 ◦C for initial
ethanol concentrations of 0.00 wt.%–0.50 wt.%, and (b) initial ethanol concentration of 50 wt.%
for substrate temperatures of 30, 50 and 70 ◦C. The error in the measurement of radius are ±0.41
mm (at 30 ◦C), ±0.24 mm (at 50 ◦C) and ±0.30 mm (at 70 ◦C).

fingers appear white to the camera compared to the thinner droplet interior. Our theoretical
model seems to predict this phenomena in one dimension by the formation of a thicker
ridge of liquid ahead of the contact line – see figure 18(a). By t = 2.0 s, finger growth
ceases and the radial interface patterns decay to leave a smooth interface. The droplet
then begins to retract, although this could not be recorded by our detection algorithm
due to the contact line not being sharp enough after passing through imaging filters. This
sudden retraction, resulting from the reversal of the surface tension gradient as ethanol is
depleted, causes the fingering patters to also decay as the contact line is drawn inwards. At
this point, the droplet is likely to be constituted entirely of water. At around t = 3.2 s, the
droplet centre appears to dry out as it recedes, resulting in the formation of a second, inner
contact line. We are now essentially left with a ring of liquid similar to that observed by
Guéna et al. (2007). This is also confirmed by our numerical model that predicts dry-out of
the interior before the contact line ridge. With the formation of the inner contact line comes
a third instability, emerging as inward facing fingers forming along the circumference of
the inner contact line.

4.4. Variation in concentration
Figure 8(a) plots the droplet radii measured by our detection algorithm for χA,i = 0.00,
0.11, 0.25 and 0.50 versus time for Tw = 70 ◦C. This clearly illustrates the increased
spreading (both rate and maximum radius) exhibited as the initial ethanol concentration is
increased. As expected, droplet lifetime decreases with increasing ethanol concentration,
owing in part to increased mixture volatility and partly to a larger effective area for
evaporation as spreading increases. Table 3 also gives the maximum radii, rmax , achieved
by the droplets in these plots. Compared to the 1 μl pure water droplet, where rmax =
2.33 ± 0.11 mm, the maximum radius is increased by 29 % for a χA,i = 0.11 droplet of
the same volume and then by 92 % and 130 % for droplets of χA,i = 0.25 and χA,i =
0.50,respectively. The rapid recession regimes are also seen clearly for χA,i = 0.11 and
χA,i = 0.25 in figure 8(a), whereas recession is slow and steady for pure water.

4.5. Variation in temperature
We consider briefly the effects of varying the substrate temperature, Tw, restricting
ourselves to only the most volatile ethanol–water mixture, χA0,i = 0.50. Figure 8(b) plots
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Tw

30 ◦C 50 ◦C 70 ◦C

n1 1.29 ± 0.10 2.01 ± 0.15 3.66 ± 0.33
b1(s) 0.96 ± 0.01 0.50 ± 0.01 0.24 ± 0.01
n2 0.64 ± 0.06 0.82 ± 0.06 1.36 ± 0.15
b2(s) 2.15 ± 0.04 1.53 ± 0.03 0.65 ± 0.03
n3 0.39 ± 0.04 0.4 ± 0.4 0.59 ± 0.06
b3(s) 4.51 ± 0.14 3.06 ± 0.03 1.68 ± 0.04
n4 −0.01 ± 0.01 −0.13 ± 0.05 −0.03 ± 0.06
rmax (mm) 5.85 ± 0.41 5.4 ± 2.4 5.35 ± 0.30

TABLE 4. Spreading coefficients, n, corresponding breakpoints in time, b, and maximum radii,
rmax , at initial ethanol concentration of χA0,i = 0.50 for increasing substrate temperatures at
30 ◦C, 50 ◦C and 70 ◦C.

radius over time for Tw = 30 ◦C, 50 ◦C and 70 ◦C. As we would expect, lower Tw results in
prolonged droplet lifetimes with the mixture volatility decreasing with temperature. Lower
temperature droplets are therefore able to spread for longer times, achieving a larger rmax .
It is also clear from figure 8(b) that although droplets spread further overall, the rate of
spreading is reduced as the substrate temperature is lowered. The spreading exponents
for each regime along with maximum radii are given in table 4. As substrate temperature
is increased, the spreading exponent for each regime increases while the corresponding
breakpoint in time signifying transition to the next regime occurs earlier. This is likely due
to the more rapid development of a concentration gradient when the droplet touches the
substrate as ethanol evaporates more vigorously at the higher temperatures. Mamalis et al.
(2018) also saw an increase in the spreading exponents with substrate temperature in their
experiments with self-rewetting droplets. Additionally, when the temperature is increased,
the number of fingers produced at the contact line (see figure 7 and § 4.3 for a detailed
discussion of this instability) also increases, with approximately 18 seen at Tw = 30 ◦C,
20 at Tw = 50 ◦C and 21–24 seen at Tw = 70 ◦C. The finger length, which we define as
the distance from the apparent contact line of the bulk droplet to the apex of the extended
finger, also increases with substrate temperature as a higher evaporation rate drives the
instability. A similar trend was seen by Sefiane, Steinchen & Moffat (2010), where the
wavenumber of interfacial HTWs increased with increasing substrate temperature for
FC-72 droplets, albeit driven by a different phenomenon viz. thermocapillary instabilities
in a pure fluid.

5. Numerical results

5.1. The pure fluid limit

5.1.1. Validation
Returning now to our one-sided model defined in § 2, we first validate our model against

the pure fluid model by Karapetsas et al. (2010) on which ours is based. To approximate a
single component mixture, all property ratios are set to unity and the initial mass fraction
χA0,i to 0.5. This effectively mimics a pure fluid – an equal mixture of two identical
components. A domain length of r∞ = 2 is used with the total number of elements
Nr,tot = 200. Grid convergence is demonstrated in figure 9 where the total number of nodes
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FIGURE 9. Snapshots of (a) interface profile, h, (b) total evaporative flux, J, of a droplet with
χA0,i = 0.5 with the remaining dimensionless properties given in table 5. All property ratios set
to unity, resembling a pure mixture. The domain length, r∞, is 2 and the number of nodes (Nr,tot)
is increased from 200 to 400 to 2000, demonstrating grid independence of the solution.
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FIGURE 10. Comparison of the current model (dashed lines) with the pure fluid model of
Karapetsas et al. (2010) (shown by symbols) for K = 10−3 and 0.1, (a) shows the position of
the contact line over time and (b) the height of the droplet apex over time; χA0,i = 0.5 with all
property ratios set to unity, resembling a pure mixture. The remaining dimensionless properties
are ε = 0.2, Re = 5, Pr = 10, Ma = 10−2, Pe = 25, E = 10−3, δ = 10−5 and A = 10−4.

is refined to Nr,tot = 400 and Nr,tot = 2000, with the same independent solutions obtained
using all meshes.

Figure 10 shows the contact line position, rc, and apex height, h(0, t), for two values
of the Knudsen number; K = 10−3 and K = 0.1. As expected, the results from our
pseudo-single component model agree well with the solutions of Karapetsas et al. (2010)
(symbols overlaying the dashed lines). Oscillations at the apex are observed at early times
when t < 10−1 due to inertia at Re = 5. Calculated from dimensional properties, K ≈
10−3, however, the evaporation rate can be controlled by increasing K which effectively
decreases the heat transfer rate and evaporation across the interface. Figure 10 shows
that increasing K to 0.1 prolongs the droplet lifetime resulting in a longer spreading time
and maximum droplet radius before evaporation takes over and the contact line begins to
recede.
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ε 0.2 δ 1 × 10−5 kR 1.00
Re 0 A 1 × 10−4 μR 0.84
Pr 16.1 Pe 5 cp,R 1.74
Ma 1.64 × 10−1 σR 3.20 MR 0.39
E 2.66 × 10−4 γR 1.81 Λ 1.00
K 8.85 × 10−4 α 0.40 χA0,i 0–0.75

TABLE 5. Typical dimensionless base parameters for an ethanol–water mixture.

5.1.2. Pure water droplet
We now introduce the parameters used in modelling an ethanol–water droplet. We begin

by assuming a temperature difference between the substrate and air, ΔT̂ , of 45 ◦C. All
droplets have an initial volume of 1 μl and an initial aspect ratio of 0.2. Dimensionless
numbers and property ratios are calculated from the physical properties of each component
given in table 1, and listed in table 5. The droplets we consider are assumed to be small
and very thin, meaning, surface tension is the dominating force. Thus, we focus on the
Stokes flow limit and we also set Pe = 5 such that ε2Pe ≈ 1, as required by our theory.
This will also help suppression of the interfacial oscillations seen in figure 10 for most
cases. The Péclet number indicates the rate of mass diffusion in the droplet; high numbers
indicate slow diffusive component transport. Mass transport is intimately tied to the rate of
evaporation, something that is relatively fast in our one-sided model due to the assumption
of a phase-transition limited evaporation over a diffusion limited approach.

The parameters A and δ are set to 10−4 and 10−5, respectively, and we assume both
components have equal latent heats (Λ = 1). This sets the precursor thickness (h∞) to
10−3, corresponding to 1/1000th of the initial apex height of the droplet. The precursor
layer in our model will be thicker than in experiments which are wildly regarded to be in
the submicron range around 100 Å (de Gennes 1985; Bonn et al. 2009). If we assume
the 1 μl droplets from our experiment are initially deposited (however momentarily)
as a perfect spherical cap, the initial apex height will be approximately 3/4 mm. A
precursor thickness of 100 Å will therefore be around 1/75 000th of the initial apex
height, making the precursor layer in our model almost two orders of magnitude larger.
We are forced into the compromise of h∞ = 10−3 because an overly thin precursor layer
results in a very large disjoining pressure in our model, causing the problem to become
numerically stiff and convergence hard to achieve. Decreasing either A or δ individually
by an order of magnitude (resulting in h∞ ≈ 5 × 10−4) has a very minor effect on the
solution. Lastly, for simplicity, we also assume a uniform thermal conductivity throughout
the droplet, meaning kR = 1. The remaining dimensionless number and property ratios
are left as the directly calculated quantities from the liquid component properties given
in table 1.

Before considering a binary ethanol–water droplet, we first study the spreading and
evaporation behaviour of a pure water droplet to serve as a reference case. A pure water
droplet corresponds to the dimensionless properties in table 5, with χA0,i = 0. Figure 11
details the evolution of the interface profile, surface tension and total evaporative flux
along r via snapshots in time as the droplet evaporates. The interface begins with a
scaled dimensionless height and radius of 1. At early times, the droplet spreads outwards
as the forces at the contact line come into balance. By t = 5, evaporation takes over
and the contact line slowly recedes with the droplet retaining a spherical cap shape
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FIGURE 11. Snapshots of (a) interface profile, h, (b) surface tension, σ , and (c) total evaporative
flux, J, of a pure water droplet over its lifetime. Dimensionless parameters are those given in
table 5 with χA0,i = 0.

over the remaining lifetime until dry-out at t ≈ 50. The heated substrate causes the
droplet to always be warmest at the contact line due to the reduced thickness of the
liquid. It is evident that throughout the droplet lifetime, maximum evaporation occurs
at the warm contact line – see figure 11(c), where the vapour pressure is highest. The
minimum liquid temperature is always located at the droplet apex. In the absence of solutal
Marangoni effects, this is also the location of highest surface tension. Figure 11(b) shows
that a positive surface tension gradient between the contact line and apex is maintained
throughout the droplet lifetime. Thermal Marangoni stresses therefore drive the liquid
from the contact line towards the apex, limiting spreading in the early stages and causing
the spherical cap to be retained as evaporation takes over and the contact line recedes. This
behaviour is in line with the findings in other similar theoretical and experimental works
(Ehrhard & Davis 1991; Ehrhard 1993), and with the mechanisms described by Deegan
et al. (2000) and Hu & Larson (2006).

5.2. Binary mixture droplet behaviour
We now gradually increase the initial mass fraction of ethanol (χA0,i) in the droplet
and examine the effects this has on the spreading behaviour and total lifetime.
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FIGURE 12. Profiles of (a) contact line position, (b) apex height, (c) apex mass flux and
(d) apex mass fraction throughout droplet lifetime for varying initial mass fraction of MVC,
χA0,i. Dimensionless parameters are given in table 5 with only χA0,i altered in each dataset.

The parameters used are again those in table 5. Specifically, we look at five cases:
χA0,i = 0.00, 0.10, 0.25, 0.50, 0.75. Figure 12 shows the position of the contact line,
apex height along with the total evaporative flux and mass fraction of ethanol at the apex
versus time. Beginning by again considering a pure water droplet, figure 12(a) shows that
pure water sees a modest initial spreading followed by a steady recession. After the initial
stages, the height also decreases steadily – see figure 12(b) – and evaporation from the
apex is modest until the final stages before dry-out – figure 12(c). Introducing ethanol into
the droplet, we see that increasing χA0,i enhances the droplet spreading and increases the
maximum position of the contact line. In all cases, the enhanced spreading is accompanied
with a rapid droplet in apex height. Droplet lifetime is reduced as χA0,i increases owing
both to the increased volatility of the mixture and the decreased droplet thickness due to
enhanced spreading.

For χA0,i = 0.10, we see that once a maximum radius is reached, the droplet begins to
retract, accompanied by a regain in apex height to a position similar to the pure water
droplet. Closer inspection of figure 12(d) reveals that contact line retraction coincides
with depletion of χA0 at the apex and, hence, in the rest of the droplet. A similar
behaviour is displayed by χA0,i = 0.25, with a greater initial spreading and maximum
radius followed by a smaller retracted radius due to the larger proportion of evaporated
ethanol leaving less droplet mass once depleted. Beyond this, with droplets constituting
mainly water, evaporation then proceeds in the same way as the pure water droplet until
dry-out.
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5.2.1. Mechanisms governing contact line motion
In both of these cases, enhanced spreading is driven by the preferential evaporation

of ethanol from the contact line. This leaves an ethanol depleted (water rich) region at
the contact line with higher surface tension than the bulk droplet. Induced by solutal
Marangoni stresses, liquid flows towards the freely moving contact line, causing it to
spread further outwards. Spreading continues until ethanol is depleted at which point
solutal Marangoni stresses are eliminated. With the absence of ethanol, there is no longer
any solutal Marangoni stress and the surface tension gradient is reversed with only thermal
Marangoni stress present in the pure liquid. Surface tension now becomes highest in the
coldest region of the droplet. On our heated substrate this corresponds to the thickest area
of liquid, in these cases the apex. Flow is now directed away from the contact line towards
the apex, driven now by thermal Marangoni stresses. The further the droplet has spread
and deformed from its equilibrium shape, the further it must contract to regain this profile.
With greater spreading at higher initial ethanol concentrations, this explains the rapid
recession of the contact line and increase in height for χA0,i = 0.25 over χA0,i = 0.10 (see
figure 11a). It is clear that thermal and solutal Marangoni stresses are in competition with
solutal effects dominating the initial stages and thermal effects the latter. We will look at
these in more detail to follow.

In the concentrations discussed previously, a significant amount of water remains after
ethanol depletion, causing retraction and return to a spherical cap shape. With higher
initial ethanol, this is not the case and droplets remain in a flattened shape throughout
their lifetime. Contact line recession in these binary mixtures is caused by both the inward
driven Marangoni flow and mass loss from the droplet as it evaporates. Increasing initial
ethanol from χA0,i = 0.50 to χA0,i = 0.75, the droplet spreads by a greater amount –
reaching a larger maximum radius. This is explained by the increased maximum surface
tension gradient between the apex and the contact line for larger χA0,i. Figure 13 shows
the change of surface tension along r at the early time of t = 0.25 for the full range
of concentrations considered. A positive surface tension gradient between the apex and
contact line is clearly seen to increase with χA0,i. A greater maximum spreading radius also
results in a thinner droplet which is subject to higher temperatures and, hence, more rapid
evaporation rate. Figure 12(c) shows that there is always higher evaporative flux from the
apex for higher initial ethanol concentration. This is due in part to the increased proportion
of volatile ethanol but also to the decreased thickness causing a warmer interface and
greater evaporation rate for any given mixture as well as the larger radius leading to an
increased effective interfacial area for evaporation.

Taking a closer look at the influence of initial ethanol concentration on the spreading
rate, figure 14 plots radius growth versus time on a logarithmic scale for the data shown in
figure 12. As we know, the spreading behaviour of wetting droplets tends to obey a power
law growth of radius in time, r ∝ tn , where n is the spreading exponent. Therefore, the
gradient of the radii plotted in figure 14 will give the spreading exponents for each χA0,i.
Note that similar values of n can be found for the retraction rate. We can see from figure 12
that as we increase the initial ethanol concentration, the line growth gradients and hence
spreading exponents approach values of unity, moving into the realms of superspreading
liquids such as droplets laden with trisiloxane surfactants (Rafaï et al. 2002; Karapetsas
et al. 2011; Theodorakis et al. 2015).

Table 6 gives the precise values for the linear fit. As with the experimental values (see
table 3), n1 gives the first spreading coefficient until the first breakpoint in time, b1, where
the gradient shifts to n2 until time b2 and so on until dry-out. We see that for pure water,
χA0,i = 0.00, there is an initial contact line adjustment with rapid spreading at early times
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FIGURE 13. Rate of change of surface tension along r for all initial ethanol concentrations
considered at t = 0.25. Unless otherwise stated, dimensionless parameters are those given in
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FIGURE 14. Contact line position versus time on a logarithmic scale for increasing initial
ethanol concentrations. Corresponding spreading coefficients and breakpoints in time are shown
in table 6. Dimensionless parameters are those given in table 5.

where n1 = 0.6. This value is close to the reported value by Winkels et al. (2012) n = 0.55
and within the range of the experimental error. The spreading exponent soon slows and
settles at n2 = 0.11, close to Tanner’s law as expected for pure liquids (Cazabat & Cohen
Stuart 1986; Chen 1988; Chen & Wada 1989). After time b3 = 0.78, an exponent close
to zero, n3 = 0.02, shows a region where forces at the contact line are largely balanced
and is effectively stationary before evaporation taking over and the droplet receding at
increasing rates from n4 to n8. The majority of the retraction time, t = 20.83–34.24, is
conducted at exponent n6 = −0.50. This is similar to retraction rates reported by Cachile
et al. (2002a,b) as well as Poulard, Bénichou & Cazabat (2003). The increasing retraction
rate is explained by the shrinkage in droplet height from mass loss as it evaporates.
As previously discussed, the reduced droplet thickness gives rise to greater evaporation
rates since the droplet is heated more by the substrate.

To reveal more information about the flow field, we decompose the averaged velocity at
the interface, u, into three distinct components:

u = utg + ucg + uca. (5.1)
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χA0,i

0 0.10 0.25 0.50 0.75

n1 0.6 0.45 0.5 1.12 1.47
b1 0.11 0.26 0.54 0.15 0.12
n2 0.11 0.15 0.19 0.67 0.89
b2 0.78 1.03 1.90 0.51 0.35
n3 0.02 0.05 −0.02 0.36 0.51
b3 2.54 2.18 3.66 1.21 0.80
n4 −0.05 −0.12 −0.23 0.16 0.27
b4 8.75 13.93 5.68 2.31 1.64
n5 −0.17 −0.24 −0.39 0.00 0.11
b5 20.83 21.86 8.12 3.44 2.72
n6 −0.50 −0.46 −0.65 −0.15 −0.07
b6 34.24 30.62 10.12 4.61 3.85
n7 −1.39 −0.93 −0.30 −0.31 −0.30
b7 43.88 38.99 26.48 6.11 5.11
n8 −4.18 −2.14 −1.22 −0.45 −0.60

TABLE 6. Predicted spreading exponents, n, and corresponding breakpoints in time, b, for
increasing initial concentrations of ethanol, χA0,i.

These are the three mechanisms that can drive movement and spreading of the contact
line: utg is the thermocapillary velocity, where surface tension gradients arising from
temperature variations drive the fluid motion; ucg is the solutocapillary velocity, where
flow is driven by a surface tension gradient sustained by an uneven mixture concentration;
and uca is the capillary velocity, sustained by the capillary pressure over the interface. By
decomposing the bulk velocity into these three contributions, we can gain insight into the
driving forces governing the spreading behaviour. It can be shown that for the limiting
case of Re = 0, the decomposed velocities at the interface are expressed as

uca = − h2

2μ

∂p
∂r

, (5.2)

ucg =
[
∂χA0

∂r
− σR

∂χA0

∂r
− MaTs

∂χA0

∂r
(1 − γR)

]
h

μMa
, (5.3)

utg =
[
−∂Ts

∂r
χA0 − ∂Ts

∂r
γR(1 − χA0)

]
h
μ

. (5.4)

The roles of these components will be discussed in detail for various cases in the following
sections.

5.2.2. Low initial ethanol concentration
Figure 15 shows the evolution of interface position, surface tension and ethanol mass

fraction along r for an ethanol–water droplet with χA0,i = 0.10. The interface profile,
figure 15(a), indicates that the droplet spreads significantly between t = 0.05 and t = 0.35
with a significant droplet in apex height of 0.3. From table 6 we can see that n2 rises to
0.15 with the increased spreading rate lasting for longer times until b2 = 1.03. It must be
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noted that for χA0,i = 0.25, n2 = 0.19 until b2 = 1.90. This trend was also seen by Guéna
et al. (2007) when increasing concentration of the more volatile alkane. Figure 15(b)
reveals that the surface tension gradient between the apex and contact line increases during
this period with figure 15(c) showing increased depletion of ethanol closer to the contact
line. Spreading continues until t = 1 and by t = 3, the droplet begins to recede as thermal
Marangoni effects start to dominate. The apex height increases from t = 1 as thermal
Marangoni stress pulls liquid towards the centre. Inspection of figure 15(c) shows that
ethanol is still present within the droplet in small amounts (χA0 < 0.02). If we compare the
breakpoint time b2 signifying the end of the spreading regime with figure 12(d) showing
apex ethanol mass fraction, we see that ethanol is not totally depleted within the droplet
until t = 10 in both cases. This suggests that a residual amount of ethanol remains in the
droplet well into the recession regime. By the next snapshot, at t = 20, ethanol is totally
depleted in the droplet and evaporation now proceeds relatively slowly with the interface
retaining a spherical cap shape. We can see in figure 15(b) that surface tension at later
times is always higher at the apex, however, the magnitude of the surface tension gradient
is significantly smaller than the reverse gradient present at early times due to concentration
effects.

We now examine the decomposed interface velocities of these time snapshots in
figure 16. A positive value indicates velocity directed towards the contact line while a
negative value shows velocity directed towards the centre. Capillary velocity, uca, resulting
from interface curvature is predictably large and positive at the contact line as the droplet
profile transitions into the precursor layer while becoming negative towards the centre due
to reverse curvature. Figure 16(a) shows the movement of uca over time with the spreading
and recession of the contact line. The solutocapillary velocity, ucg, in figure 16(b) displays
a clear trend. It is positive at all times, driving liquid towards the contact line and decays
over time; ucg is largest at the earliest time of t = 0.05 when the concentration gradient
between the apex and contact line is also at its greatest. The strength of the outward
solutocapillary velocity gradually decreases as χA0 evaporates until beyond t = 3.00 where
it decays completely – coinciding with total depletion of χA0. Figure 16(c) tracks the
development of the theromocapillary velocity, utg, which is negative at all times. Again,
this is in line with the work of Ajaev (2005) and Ehrhard & Davis (1991) by demonstrating
that thermocapillary force is partly responsible (aside from evaporative cooling and heat
transfer from the substrate) for forcing the fluid inwards towards the droplet centre. The
largest magnitude of utg is always located at the contact line, becoming more negative the
thinner the film becomes, corresponding to a warmer region.

Examining further the balance between thermal and solutal Marangoni stresses, we turn
our attention to figure 17 which illustrates the combined Marangoni velocity profiles at
times t = 1, t = 3 and t = 20, along with the interface profile. The droplet radius is largest
at t = 1 before beginning to recede at t = 3. Figure 17(a) shows a net negative (inward)
Marangoni velocity in the vicinity of the contact line with a net positive (outward) velocity
in the droplet interior. As time proceeds, ucg diminishes in strength and so this action
combined with the constant inward flow of utg halts the movement of the contact line. By
t = 3, χA0 is sufficiently depleted that there is only a weak outward combined Marangoni
velocity in the bulk droplet with the overwhelming velocity directed inwards from the
contact line. By t = 20, the combined Marangoni velocity throughout the whole droplet
profile is negative and directed inwards with the absence of any solutal effects.

5.2.3. High initial ethanol concentration
When the initial ethanol concentration is increased to χA0,i = 0.50, the evolution of

the droplet profile becomes more complex. In figure 18 we again examine the evolution
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FIGURE 15. Snapshots of (a) interface profile, (b) surface tension and (c) concentration of
component A for an ethanol–water droplet with χA0,i = 0.10. Dimensionless parameters are
those given in table 5.

of the interface position, surface tension and mass fraction of ethanol. With figures 19
and 20 we explore the decomposed velocities in more detail. It is clear from figure 18(a)
that evolution of the interface is different from χA0,i = 0.10 in figure 15. From t = 0.05 to
t = 3.00, the droplet spreads rapidly to a pancake shape with the formation of a ridge of
liquid preceding the contact line. This is similar to the ridge formed in the spreading
of trisiloxane-laden surfactant droplets (Rafaï et al. 2002; Karapetsas et al. 2011) and
results from the rapid rate of spreading. Table 6 shows that the first spreading exponent
n2 is now significantly higher at 0.67 with the rate progressively decreasing to n3 = 0.36
and n4 = 0.16 (closer to Tanner’s law) before the contact line retracts. This is due to the
decreasing concentration gradient between the contact line and apex as ethanol evaporates
and solutal Marangoni stresses weaken. Figure 18 reveals that before t = 3, surface tension
is always largest towards the contact line, specifically at the apex of the ridge. The contact
line can be seen retracting from t = 5 onwards while the flat plane in the droplet interior
trapped by the ridge gradually decreases in height. Notice that at t = 9, the droplet centre
has reached dry-out, however, the ridge at the contact line still remains. Extrapolated in
the azimuthal plane to three dimensions, film dry-out leaves a torus shaped ring of liquid.
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FIGURE 16. Snapshots of decomposed surface velocities for an ethanol–water droplet
with χA0,i = 0.10 over its lifetime. (a) Capillary velocity, (b) solutocapillary velocity, (c)
thermocapillary velocity. Dimensionless parameters are those given in table 5.

This is analogous to the ring observed in the experiments conducted by Guéna et al.
(2007) on droplets of alkane mixtures evaporating from isothermal substrates. Figure 18(c)
confirms that all ethanol (component A) is depleted from the droplet by t = 7.00 and
so it can be concluded that the ridge consists entirely of water (component B). Similar
behaviour is also seen at χA0,i = 0.75 (not shown), however, with a greater initial rate of
n2 = 0.89 and the emergence of three further distinct linear spreading regimes: n3 = 0.51,
n4 = 0.27 and n5 = 0.11. Overall retraction exponents decrease with increasing χA0,i.
As will be explained later, this is owing to the increased solutal Marangoni outward force
acting against inward thermal Marangoni stresses.

In figure 19(a) we see that uca is larger than the χA0,i = 0.10 case at early times. Here
uca is largest at the contact line at all times, even during ridge formation. A similar trend is
displayed in solutocapillary velocity as before, the key difference being that the magnitude
of ucg is around four times larger when χA0,i = 0.50 over χA0,i = 0.10. This is expected
due to the higher concentration gradient between the apex and contact line. It also appears
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FIGURE 17. Interface profile and corresponding combined Marangoni velocity (solutal and
thermal) for an ethanol–water droplet with χA0,i = 0.10. Other dimensionless parameters are
those given in table 5. (a) t = 1.00, (b) t = 3.00, (c) t = 20.00.

from figure 19(b) that outward flow from ucg is negligible at t = 3.00 and this is the time
at which retraction begins. The thermocapillary velocities in figure 19 show an altogether
more interesting trend. Before ridge formation, utg is of the same direction and magnitude
as the χA0,i = 0.10 case – around 0.5 directed inwards toward the droplet centre. However,
as the droplet flattens and the ridge forms, a positive utg begins to emerge on the left-hand
side of the ridge. This velocity pushes fluid from the bulk droplet outwards toward the ridge
while there is simultaneously a negative utg on the right-hand side of the ridge pushing
fluid inward. Physically, this means that liquid from both sides is flowing towards the
ridge, sustaining its formation. As liquid flows from the thin plane on the left-hand side to
feed the ridge, the removal of liquid from the thin layer causes a dimple in the interface
profile to form adjacent to the ridge. This can be seen by examining h in figure 18(a)
from t = 5.00 to t = 7.00 to t = 9.00 where the ridge is shown steadily receding while
the interior dries out. The reduced thickness of the interface in this region causes the
liquid to be heated to a greater temperature and, hence, produces a larger surface tension
gradient between the bottom of the dimple and the apex of the ridge. This then results in a
stronger thermocapillary velocity from the dimple to the ridge which can be seen clearly
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FIGURE 18. Snapshots of (a) interface profile, (b) surface tension and (c) concentration of
component A along the interface for an ethanol–water droplet with χA0,i = 0.50. Dimensionless
parameters are those given in table 5.

in figure 19(c). Therefore, it appears that the initial ridge is formed due to solutocapillarity
inducing very rapid spreading of the contact line. Once formed, the ridge is sustained by
thermocapillarity providing a steady flow of fluid to the apex.

Finally, let us consider the combined actions of the solutal and thermal Marangoni
velocities at key points in the χA0,i = 0.50 droplet lifetime. Figure 20(a) shows the
interface profile and combined Marangoni velocity at t = 1 while the droplet is still firmly
in the spreading regime. Figure 20(b) considers t = 3.00 when the maximum radius is
reached and (c) shows the droplet well into the recession regime at t = 7.00, with the liquid
film on the left-hand side of the ridge still present but close to dry-out. At t = 1, velocity
is overwhelmingly directed towards the contact line with a small inward velocity at the
contact line itself where liquid is warmest. Inward velocity at the contact line grows by
t = 3 while outward velocity declines as ethanol evaporates. By t = 7.00, there is a clear
inward Marangoni velocity from the right-hand side of the ridge as the droplet contact line
recedes. The dimple in the interface profile on the left-hand side of the ridge is also visible.
At the minimum point of the dimple, there is a positive and negative velocity on either
side (the right- and left-hand side, respectively). This means that fluid from the dimple is
driven both outwards towards the ridge at the contact line and inward towards the centre.
The mechanism sustains ridge formation even after spreading has finished and only water
remains in the droplet. The simultaneously decreasing dimple depth increases the strength
of the Marangoni flow while intimately leading to dry-out in the interior before the contact
line ridge completely evaporates.
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FIGURE 19. Snapshots of decomposed surface velocities for an ethanol–water droplet
with χA0,i = 0.50 over its lifetime. (a) Capillary velocity, (b) solutocapillary velocity, (c)
thermocapillary velocity. Dimensionless parameters are those given in table 5.

6. Parametric analysis

As reported by Guéna et al. (2007), the spreading of small binary mixture sessile
droplets is a complex process governed by a delicate interplay between evaporation,
surface tension gradients, mass diffusion, hydrodynamic flow and capillary forces.
An explicit advantage of our model over experiments is the ability to alter specific
dimensionless numbers while keeping other properties constant, allowing us to assess the
impact of each mechanism individually. We now briefly examine the effect of changing
the magnitude of E, K, Ma, σR, Pe and Re on the solution for χA0,i = 0.50.

6.1. Evaporation number
Increasing evaporation number, E, increases the volatility of both components in the
mixture and is hence analogous to increasing the substrate temperature in an experimental
scenario. In figure 21 we examine the effect of increasing and then decreasing E by
one order of magnitude over the base case value of E = 2.66 × 10−4 given in table 5.
Increasing E to 2.66 × 10−3 simultaneously reduces spreading extent and droplet lifetime
as evaporation rate of both liquids becomes larger. Decreasing E to 2.66 × 10−5 (analogous
to lowering the substrate temperature) has the opposite effect. With evaporation now
weaker, the droplet spreads to a larger maximum radius where it remains stationary for a
period before retraction. These trends are similarly reflected in the profiles of evaporative
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FIGURE 20. Interface profile and corresponding combined Marangoni velocity (solutal and
thermal) for an ethanol–water droplet with χA0,i = 0.50. Other dimensionless parameters are
those given in table 5. (a) t = 1.00, (b) t = 3.00, (c) t = 7.00.

flux and ethanol mass fraction as the droplet apex shown in figures 21(c) and 21(d),
respectively. We see a similar trend here as we do in our experimental findings when
substrate temperature is varied – see § 4.5.

6.2. Knudsen number
The Knudsen number, K, measures the degree of non-equilibrium at the evaporating
interface. Increasing K decreases the heat transfer rate across the interface, causing the
mixture to evaporate more slowly, hence having the opposite effect to increasing E. This
is shown in figure 22 where we double and half the base case value of K = 8.55 × 10−4

from table 5. Figure 22(c) clearly illustrates that as K is increased, the total evaporative
flux at the drop apex decreases, slowing contact line retraction and extending the lifetime
of the droplet.

6.3. Marangoni number
The Marangoni number controls the strength of thermal Marangoni forces and, hence,
the thermocapillary velocity, utg. We progressively decrease the base case value of
Ma = 1.64 × 10−1 to 9.12 × 10−2 and then 1.84 × 10−2, gradually weakening the thermal
Marangoni stress. We see from figure 23 that reducing Ma increases the spreading rate
and maximum droplet radius. This can be explained by the reduction of inward velocity
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FIGURE 21. Profiles of (a) contact line position, (b) apex height, (c) apex mass flux and
(d) apex mass fraction throughout the lifetime of a χA0,i = 0.50 droplet with varying evaporation
number, E. Unless otherwise stated, dimensionless parameters are those given in table 5.

utg which provides opposition to spreading. Droplets that spread further are thinner films
leading to greater evaporative flux – see figures 23(b) and 23(c). This ultimately leads to a
shorter droplet lifetime at lower Ma.

6.4. Surface tension ratio
By increasing the surface tension ratio, σR, we can strengthen solutal Marangoni forces
in the droplet. Larger σR means the surface tension of the LVC is increased relative to
the MVC. When χA0,i = 0.50, as in figure 24, the concentration induced surface tension
gradient becomes larger as σR increases. The larger surface tension gradient will amplify
the outward solutocapillary velocity, ucg, with liquid being more strongly drawn toward the
contact line. Similar to cases with lowered Marangoni numbers, the increased spreading
results in a thinner droplet subject to higher evaporative fluxes, hence resulting in shorter
lifetimes.

6.5. Péclet number
The mass diffusion is controlled by the Péclet number, with smaller values signifying
more rapid diffusion of the MVC, ethanol in our case. By default, the base value in table 5
is set to Pe = 5. In figure 25 we increase and decrease this by an order of magnitude.
Decreasing to Pe = 0.5 causes ethanol to rapidly diffuse out of the droplet, being depleted
by t = 2, see figure 25(d). Contact line spreading is abruptly halted as solutal Marangoni
stresses cease and the droplet begins to retract. With limited spreading, the droplet remains
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FIGURE 22. Profiles of (a) contact line position, (b) apex height, (c) apex mass flux and
(d) apex mass fraction throughout the lifetime of a χA0,i = 0.50 droplet with varying Knudsen
number, K. Unless otherwise stated, dimensionless parameters are those given in table 5.

relatively thick with a spherical cap profile. Only water is present after t = 2 and so
evaporation is predictably slow compared to superspreading cases. Increasing Pe to 50
means ethanol is retained in the droplet for longer times. In this case it has the effect of
maintaining the surface tension gradient from apex to contact line as well as the volatility
of the mixture. We can see from figure 25(d) that ethanol is present in large concentrations
at the apex until dry-out, suggesting it is also present in large concentration throughout the
rest of the droplet. It is the retention of ethanol that results in higher evaporation rates over
the interface and ultimately leads to faster evaporation and a shorter lifetime than the base
case of Pe = 5.

6.6. Reynolds number
Finally, we consider the effect of hydrodynamic flow by introducing inertia via the
Reynolds number. As we have already shown in figure 10, a non-zero Re introduces
oscillations in the interface profile near the apex at early times. The effect is found to
be more dramatic in the binary ethanol–water droplet. In figure 26 the Reynolds number
is increased from Re = 0 to Re = 3. Figure 26(a) indicates that this has little effect on
the position of the contact line, however, the stronger hydrodynamic flow increases both
the amplitude and frequency of the apex interface oscillations seen in figure 26(b). Closer
inspection of the evaporative flux and mass fraction in figure 26(c) and 26(d), respectively,
reveal similar oscillations in these fields, also increasing in amplitude and frequency
with Re.
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FIGURE 23. Profiles of (a) contact line position, (b) apex height, (c) apex mass flux and
(d) apex mass fraction throughout the lifetime of a χA0,i = 0.50 droplet with varying Marangoni
number, Ma. Unless otherwise stated, dimensionless parameters are those given in table 5.
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FIGURE 24. Profiles of (a) contact line position, (b) apex height, (c) apex mass flux and
(d) apex mass fraction throughout the lifetime of a χA0,i = 0.50 droplet with varying surface
tension ratio, σR. Unless otherwise stated, dimensionless parameters are those given in table 5.
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FIGURE 25. Profiles of (a) contact line position, (b) apex height, (c) apex mass flux and
(d) apex mass fraction throughout the lifetime of a χA0,i = 0.50 droplet with varying Pélet
number, Pe. Unless otherwise stated, dimensionless parameters are those given in table 5.

6.7. Comparison with experiments
Given the nature of our one-sided model defined in § 2, we do not attempt a direct
comparison to our experimental results presented in § 4. The lifetimes of experimental
droplets are several orders of magnitude longer than our one-sided model predicts once
a re-dimensionalisation is performed, although we could mitigate this somewhat by
controlling E and K, as shown in §§ 6.1 and 6.2. Evaporation could also be suppressed
in our model by selecting a smaller accommodation coefficient in the Hertz–Knudsen
expression, although this is not considered in the present study. The discrepancy between
droplet lifetimes is not unexpected considering we use an accommodation coefficient of
unity in our model while the experiments are performed under atmospheric air where, even
at high substrate temperatures, diffusion of the vapour will play some role in evaporation.
There are also additional effects of evaporative cooling and poor conductivity from the
glass substrate in our experiments not accounted for in the model. Regardless, in their
respective time frames, similar spreading rates (the same order of magnitude or closer)
are predicted between the model and experiments, indicating that our one-sided model
is sufficient to capture the main flow phenomena. The formation of a contact line ridge
by our model at χA0 = 0.50 is very likely indicative of the beginning of the ‘octopi’
patterns observed in the experiments at the same initial ethanol concentration. An obvious
extension of this work would be to examine the effects of introducing significantly smaller
accommodation coefficients to the evaporation model, likely providing a more favourable
comparison to our experiments.
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(d) apex mass fraction throughout the lifetime of a χA0,i = 0.50 droplet with varying Reynolds
number, Re. Unless otherwise stated, dimensionless parameters are those given in table 5.

7. Conclusions

In surface tension dominated flows, whether they be planar layers of sessile droplets,
the addition of a second miscible component introduces solutal Marangoni stress which
can compete with or enhance the already present thermal Marangoni stress. With liquids
comprising of binary mixtures being a promising candidate for many modern micro
cooling systems, it is essential these influences are understood. We have developed
a one-sided model under the lubrication approximation to study the spreading and
subsequent evaporation of volatile binary droplets consisting of an ethanol–water type
mixtures deposited on a heated substrate. We considered specifically flat (low contact
angle) droplets, assumed to be very thin such that their radius is much larger than their
height. Droplets are released into a precursor film, resulting in a freely moving effective
contact line. Additionally, we conducted an experimental investigation into ethanol–water
droplets deposited on heated borosilicate glass substrates with a hydrophilic coating to
encourage spreading, similar to the conditions in our numerical model. An apparatus
was designed to capture the droplets from above in an aerial viewpoint and a detection
algorithm written to measure the position of the contact line during spreading and
recession.

Experimentally, we investigated 1 μl volumes of ethanol–water droplets comprising 11
wt.%, 25 wt.% and 50 wt.% initial ethanol concentration. The effect of increasing substrate
temperature for 30 ◦C to 50 ◦C to 70 ◦C on droplets comprising 50 wt.% initial ethanol was
also considered. We found that in all cases increasing the initial ethanol concentration, and,
hence, the magnitude of solutal Marangoni stresses, enhanced droplet spreading. This led
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to faster spreading rates while reducing the length of the spreading phase, resulting in a
slightly reduced maximum droplet radius and shorter overall droplet lifetime. When initial
ethanol concentration reached 50 wt.%, a contact line instability emerges in the form of
advancing fingers in an ‘octopi’ arrangement accompanied by a second instability showing
spoke-like patterns arranged radially over the interface. Instabilities persist at all substrate
temperatures for an initial ethanol concentration of 50 wt.%. The enhanced spreading rates
cause the droplet interior to dry out before the contact line, leaving a ring where the contact
line instability was previously present. The measured spreading rates closely match those
predicted by our one-sided model in their respective time frames. The formation of the
contact line ridge we observed in 50 wt.% initial ethanol droplets preceding instability is
also predicted by our model at the same concentration.

From a theoretical point of view, we have developed a numerical model and examined
in detail the effect of increasing the initial ethanol mass fraction in a binary ethanol–water
droplet. We demonstrated the delicate interplay between solutal effects driving the droplet
outwards and the competing thermal Marangoni stress encouraging the contact line to
contract inward. With increasing strength of solutal Marangoni stress spreading rates, in
some cases, were found to be compatible to those of superspreading surfactants such as
trisiloxanes. In these cases, a ridge in the interface profile is formed ahead of the contact
line, causing a thicker rim of liquid at the droplet edge rich in the less volatile component.
This results in the droplet interior drying out before the edge, leaving the ridge to remain
in the final stages of evaporation. This behaviour is similar to that seen in the alkane
mixtures studied by Guéna et al. (2007). We observed the same qualitative behaviour from
our experiments. We then went on to conduct a parametric study, investigating the effects
of other important parameters significantly affecting droplet behaviour. These included
the evaporation rate (via E and K), thermal Marangoni stress (via Ma), solutal Marangoni
stress (via σR), mass diffusion (via Pe) and inertial effects (via Re). Although we do not
attempt a direct experimental comparison due to the one-sided nature of our model, similar
spreading rates are shared between the model and experimental result, suggesting that our
one-sided model is sufficient to capture the main flow phenomena.
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