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The Bifurcation Diagram of Cubic
Polynomial Vector Fields on CP1

C. Rousseau

Abstract. In this paper we give the bifurcation diagram of the family of cubic vector ûelds ż =
z3 + є1z + є0 for z ∈ CP1 , depending on the values of є1 , є0 ∈ C. _e bifurcation diagram is in R4 ,
but its conic structure allows describing it for parameter values in S3 . _ere are two open simply
connected regions of structurally stable vector ûelds separated by surfaces corresponding to bifurca-
tions of homoclinic connections between two separatrices of the pole at inûnity. _ese branch from
the codimension 2 curve of double singular points. We also explain the bifurcation of homoclinic
connection in terms of the description of Douady and Sentenac of polynomial vector ûelds.

1 Introduction

_e study of polynomial vector ûelds

(1.1) ż = zk+1
+

k−1

∑
j=0

є jz j , z ∈ CP1 ,

on CP1 was initiated by Douady and Sentenac in [2]. _e point at inûnity is a pole of
order k − 1 with 2k separatrices. In their long paper, Douady and Sentenac describe
how the phase portrait can be obtained from the position of the separatrices of ∞.
_is allows them to describe at length the geometry of the generic vector ûelds in this
family, which are those for which there are no homoclinic connections between any
two separatrices of∞. _ey also show that there are exactly C(k) = (

2k
k )/(k + 1) con-

nected components of generic vector ûelds in the parameter space є = (єk−1 , . . . , є0),
and that these are simply connected. (C(k) is the k-th Catalan number.) _eir proof
is extremely ingenious and uses that any generic polynomial vector ûeld (1.1) is com-
pletely determined (possibly up to some symmetry by a rotation of order k) by the
following:
● A topological invariant describing how the separatrices of inûnity end generically
at ûnite singular points, thus dividing CP1 in k connected components. _e union
of the separatrices is called the connecting graph.

● An analytic invariant given by k numbers τ1 , . . . , τk ∈ H, whereH ⊂ C is the upper
half-plane, and essentially equivalent to the collection of eigenvalues at each singu-
lar point. _ese numbers correspond to “complex travel times” along curves joining
sectors to sectors at∞, without cutting the connecting graph (see details below).
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_e results of Douady and Sentenac were further generalized to nongeneric vector
ûelds by Branner andDias [1], who introduced invariants for nongeneric vector ûelds,
but the paper [1] does not describe the bifurcation diagram.

One of the goals ofDouady and Sentenacwas to develop tools for analyzing the un-
foldings of parabolic points of germs of diòeomorphisms on (C, 0) (i.e., ûxed points
with multiplier equal to 1). One of the ûrst attempts to understand the unfolding of
a codimension 1 parabolic point goes back to Martinet [5], where he considered un-
foldings for parameter values for which the unfolded ûxed points are hyperbolic. He
could show that the comparison of the two linearizing charts at each ûxed point con-
verges to the Ecalle–Voronin modulus of the parabolic point: indeed the domains of
linearization tend to the sectors used in the deûnition of the Ecalle–Voronin modu-
lus. But, until the thesis of Lavaurs [4], no method would allow study of the sector
of parameter values containing the values for which the unfolded ûxed points have
multipliers on the unit circle. _ere, a new idea was introduced, namely to unfold the
sectors allowing us to deûne the Ecalle–Voronin modulus into sectors with vertices
at the two singular points on which almost unique changes of coordinates to the nor-
mal form exist. Lavaurs’ thesis covered a sector of parameter values complementary
to the one studied by Martinet. By generalizing the method of Lavaurs, the article
[6] ûnally gave a complete modulus for the unfolding of a germ of codimension 1
diòeomorphism.

_e further generalization to codimension k > 1 requires precisely the study of the
polynomial vector ûelds on CP1 initiated by Douady and Sentenac, and this was the
motivation for their study. Awork in progress byColinChristopher and the author on
the realization for the parabolic point of codimension 2 is using exactly the bifurcation
diagram for cubic vector ûelds presented in this paper.

It is striking that the geometry of the family of polynomial vector ûelds (1.1) is rel-
evant for a large class of bifurcation problems, namely the bifurcations in the unfold-
ings of several resonant singularities of codimension k, which all have the property
that the change of coordinates to normal form is divergent but k-summable. Such sin-
gularities include the codimension k parabolic ûxed point of a 1-dimensional complex
diòeomorphism (studied in [7]), the resonant saddle point inC2 (and hence the Hopf
bifurcation), the saddle-node (studied in [8]), and the nonresonant irregular singular
point of Poincaré rank k (studied in [3]). _eworks [8] and [3] give analyticmoduli of
classiûcation for the analytic unfoldings of the codimension k singularities, but none
of them present the bifurcation diagram.

_e bifurcation diagram of cubic vector ûelds presented here is also interesting
in itself. _e phase portraits are organized by the pole at inûnity. In its neighbor-
hood, the trajectories are organized as for a saddle with two attracting and two re-
pelling separatrices. _e only (real) codimension 1 bifurcations are bifurcations of
homoclinic connections between the separatrices of∞. _e higher codimension bi-
furcations are bifurcations of multiple singular points and simultaneous bifurcations
of lower codimension. _e parameter space is 4-dimensional and the bifurcation di-
agram has a conic structure, allowing us to describe it for parameter values in S3. _e
main diõculty of the study is understanding the nontrivial spatial organization of the

https://doi.org/10.4153/CMB-2016-095-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-095-3


_e Bifurcation Diagram of Cubic Polynomial Vector Fields 383

(a) A neighborhood of∞ (b) A disk in the ûnite plane for є = 0

Figure 1: To give the phase portrait onCP1 , it suõces to give it on two disks: one around∞ and
one around 0. (a) gives the phase portrait near∞ for all є, and (b) near the origin for є = 0.
Note that these phase portraits naturally deûne four quadrants in CP1 .

bifurcation surfaces in parameter space. _e highest codimension bifurcations are the
organizing centers of the bifurcation diagram.

It is also natural to consider (1.1) as an ODE with complex time. If z1 , . . . , zk+1 are
the singular points, then Ω = CP1 ∖ {z1 , . . . , zk+1} is the orbit of a single point. But
one has to pay attention that the time is ramiûed when k > 1. For generic vector ûelds,
Douady and Sentenac exploited this idea by covering Ω with sectors corresponding
to strips in the time variable t ∈ C. In the case k = 2, we show how to generalize their
description when the vector ûeld has a homoclinic connection.

2 The Study of Cubic Polynomial Vector Fields

In this section, we study the diòerent bifurcations of the real trajectories of the vector
ûeld

(2.1) ż = dz
dt = Pє(z) = z3

+ є1z + є0 , z ∈ CP1 , є = (є1 , є0) ∈ C2 .

_is vector ûeld has three singular points counted withmultiplicity in the ûnite plane.

2.1 Preliminaries on Polynomial Vector Fields in C

_eorem 2.1 ([2])
(i) A polynomial vector ûeld (1.1) has a pole at inûnity of order k − 1 and 2k separa-

trices (see Figure 1(a))
(ii) A simple singular point in the ûnite plane is a strong focus, a center, or a radial

node. A suõcient condition for a singular point z j to be a center is that its eigenvalue
belongs to iR∗. In that case, the center is isochronous and its period (given by the residue
theorem) is 1

2π∣iP′є(z j)∣
.

(iii) A polynomial vector ûeld (1.1) has no limit cycle.

https://doi.org/10.4153/CMB-2016-095-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-095-3


384 C. Rousseau

(iv) A homoclinic loop between two separatrices of∞ splits the singular points into
two groups {z j ∶ j ∈ I1} and {z j ∶ j ∈ I2}, such that ∑ j∈I1 1/P

′
є(z j) ∈ iR∗ (and hence

∑ j∈I2 1/p
′
є(z j) ∈ iR∗, since ∑k+1

j=1 1/p′є(z j) = 0 on CP1). In the particular case #Iℓ = 1,
then, the corresponding singular point is a center.

(v) A separatrix of ∞ either ends in a ûnite singular point or makes a homoclinic
loop by merging with a second separatrix of∞.

2.2 The Vector Field at ∞

When є = 0, the vector ûeld (2.1) has a triple singular point at the origin and a pole
of order 1 at inûnity. _e pole has two attracting and two repelling separatrices con-
verging to the origin (see Figure 1).
For any є, the pole at inûnity and its separatrices organize the phase space as noted

by Douady and Sentenac in [2].
_e full phase portrait on CP1 is obtained by gluing the phase portrait near ∞

given in Figure 1(a) with the phase portrait on a disk in the ûnite plane.

2.3 The Conic Structure

_e change (z, t) ↦ (Z , T) = (δz, t
δ2 ) transforms (2.1) into dZ

dT = Z3 + є1δ2Z + є0δ3.
_is induces an equivalence relation over the parameter space

є ≃ є′ ⇐⇒ ∃δ > 0 ∶ (є′1 , є′0) = (δ2є1 , δ3є0).

Hence, it is suõcient to describe the intersection of the bifurcation diagram with a
3-dimensional real sphere S3 = {є ∶ ∥є∥ = Cst}, or use charts of the form ∣є j ∣ = Cst.
All strata will be cones on this bifurcation diagram and will be adherent to є = 0. In
particular, we can always suppose that є /= 0. Of course any Cst can be taken. Depend-
ing on the context, we can choose diòerent values so as to simplify the computations.

Note that S3 is toplogically equivalent to the completion of R3 with a point at in-
ûnity, which we will denote R3.

2.4 Bifurcations of Real Codimension 1

Because of the special form of the system, all bifurcations of multiple singular points
are of complex codimension 1 or 2, hence of real codimension 2 or 4.

_erefore, the only bifurcations of real codimension 1 are the bifurcations of ho-
moclinic loop when two separatrices of the pole at inûnity coalesce. _ere are four
types of connections depending on the quadrant where they occur: we denote them
(H j), j = 1, . . . , 4; see Figures 1(a) and 2.
Each time a homoclinic loop occurs, it surrounds a singular point with a pure

imaginary eigenvalue. Each connection corresponds to a bifurcation of real codi-
mension 1. Because there are four separatrices, there can be up to two simultaneous
homoclinic loops forming a ûgure-eight loop; this will be a bifurcation of real codi-
mension 2. Considering that the system is invariant under

(2.2) (z, є1 , є0 , t) z→ (iz,−є1 ,−iє0 ,−t),
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(a) (H1) (b) (H2) (c) (H3) (d) (H4)

Figure 2: _e four homoclinic loops in the four quadrants in CP1 inside a disk around∞.

the study of one bifurcation surface (H j) allows us to determine the others. _ese
bifurcations are represented by surfaces in S3. _e equation of the bifurcation locus is
implicit, and hence not easy to visualize. It is of the form P′є(z j) ∈ iR∗, with boundary
points when P′є(z j) = 0.

2.5 Bifurcation of Parabolic Points

_is occurs when two singular points coalesce in a double singular point (parabolic
point), namely when the discriminant ∆ vanishes, where

∆ = −4є31 − 27є20 .

Note that this local bifurcation is of complex codimension 1, hence real codimension
2, but it is represented by a curve on S3 because of the conic structure. A generic
bifurcation of double singular point occurs when the third singular point is not a
center, i.e., its eigenvalue is not on the imaginary axis.

Proposition 2.2 (i) In S3, ∆ = 0 can be represented as a 2 ∶3 torus knot on the
torus 4∣є1∣3 = 27∣є0∣2 (i.e., a closed curve turning twice (resp. thrice) around 0 in є0
(resp. є1)). Four points of this knot are not generic, i.e., correspond to higher order bifur-
cations. _ese four points divide ∆ = 0 in four arcs of regular (generic) points.

(ii) _e bifurcation diagram at a regular point of ∆ = 0 (when the third singular
point is not a center) is given in Figure 4. In particular, two surfaces of homoclinic
bifurcations in adjacent quadrants end along the regular arcs of ∆ = 0 (see Figure 3(a)).

Proof When ∆ = 0, then ∣є0∣ =
√

(4∣є1∣3)/27. Hence, instead of cutting the bifurca-
tion diagram by a sphere ∥є∥ = Cst, we prefer to use a chart ∣є1∣ = 1 (i.e., є1 ∈ S1). At a
point of ∆ = 0 corresponding to a particular є′, Pє′(z) can be written as

Pє′(z) = (z − a)2
(z + 2a),

and a general unfolding for є close to є′ has the form

Pє(z) = ((z − a − η1)
2
− η2)( z + 2(a + η1)) .
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(a) Codimension 2 (b) Codimension 3

Figure 3: _e two situations for parabolic point: (a) corresponds to a regular point of ∆ = 0,
with two heteroclinic connections through the parabolic point (here (H1) and (H2)), and (b)
to a point of codimension 3 with one heteroclinic connection through the parabolic point (here
(H1)), and an additional homoclinic connection (here (H3)).

6����

(H
j
)

(H
j+1
)

Figure 4: Bifurcation diagram near a generic point of ∆ = 0.

It is easily checked that the change (є1 , є0) ↦ (η1 , η2) is an analytic diòeomorphism in
the neighborhood of є′ when a /= 0. Note that P′є′(−2a) = 9a2. Hence, P′є′(−2a) ∈ iR
if and only if a ∈ (1 ± i)R. Since є1 = −3a2, when we suppose ∣є1∣ = 1, this yields
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four points on the torus knot: a = ±(1 ± i)/
√

6, symmetric to each other under (2.2).
_ese four points in parameter space have codimension 3, since the third singular
point is a center surrounded by a homoclinic loop. _ey cut ∆ = 0 into four regions,
which are sent one to the other under (2.2). At points of ∆ = 0, the homoclinic con-
nections become heteroclinic connections through the parabolic point in phase space
(Figure 3). At a regular point of ∆, there are two homoclinic connections in adjacent
sectors (Figure 3(a)). Near such a point, two half-surfaces (H j) and (H j+1)merge on
∆ = 0 (indices are (mod 4)). _ese half-surfaces are tangent on ∆ = 0. Indeed, they
correspond to

P′є(a + η1 ±
√η2) = ±2

√η2(3(a + η1) ±
√η2) ∈ iR.

Let us put√η2 = x+ iy and let 3(a+η1) = α+ iβ. Since, by hypothesis, P′є(−2a) ∉ iR
for η1 = η2 = 0, then α±β /= 0 for small η1 , η2. We have that Re(P′є(a+η1±

√η2)) = 0 if
and only if±(x2−y2)+αx−βy = 0. Because α /= ±β, these two hyperbolas are distinct
and have a quadratic tangency at the origin in the (x , y)-space, i.e., in the√η2-space.
_en the corresponding curves in η2-space are also tangent. A ûner analysis would
show that the tangency is of order 3

2 .

2.6 The Other Bifurcations

Apart from the codimension 4 bifurcation at є = 0, there remains two bifurcations,
one of codimension 2, and one of codimension 3. _e codimension 2 bifurcation is
the ûgure-eight loop, i.e., the intersection of (H j) and (H j+2). It occurs when two
(and hence three) eigenvalues are pure imaginary, i.e., all singular points are centers.

Proposition 2.3 _e intersection of the codimension 2 bifurcation (H j) ∩ (H j+2)

(denoted (H j, j+2)) with ∣є1∣ = 1, occurs along the two line segments

J± = {(є1 , є0) ∶ є1 = ±i , є0 ∈ (1 ± i)[−
√

2
27 ,

√
2
27 ]} ,

with endpoints on ∆ = 0. _e bifurcation diagram is given in Figure 5.

Proof We can suppose that for some є′,
Pє′(z) = (z − a)(z + b)(z + a − b).

Hence,

P′є′(a) = (a+b)(2a−b), P′є′(−b) = −(a+b)(a−2b), P′є′(b−a) = (b−2a)(2b−a).
Since the sum of the inverses of these derivatives vanishes, as soon as two of them
belong to iR, the third belongs to iR. Moreover,

4P′є′(a) + P′є′(−b) + P′є′(b − a) = 9a2
∈ iR,

P′є′(a) + 4P′є′(−b) + P′є′(b − a) = 9b2
∈ iR,

yielding a, b ∈ (1 ± i)R. Using the symmetry (2.2), we can suppose a = α(1 + i),
b = β(1 + i), α, β > 0. It is easily checked that when the singular points are distinct,
the unfolding for є near є′ has the form

Pє(z) = (z − a − η1)(z + b + η2)(z + a − b + η1 − η2).
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(H1)

(H1)

(H2)

(H3)

(H3)

(H4)

W1

W1

W1

W2

W2

W2

Figure 5: Transversal cut of the bifurcation diagram for the ûgure eight loop. _e point of saddle
type is the pole at∞. _e phase portraits represent the sphere minus a ûnite point. _e two
open setsW1 andW2 of generic values of parameters are highlighted: from this, it is not obvious
to see that each Wj is simply connected!

Indeed, the change (η1 , η2) ↦ (є1 , є0) is invertible when (2a−b)(a−2b)(a+b) /= 0.
_ere are surfaces of homoclinic loop bifurcations corresponding to the three con-

ditions

● P′є(a + η1) ∈ iR;
● P′є(−b − η2) ∈ iR;
● P′є(b − a − η1 + η2) ∈ iR.

We want to show that these surfaces are transversal when the singular points are dis-
tinct. For this, we let

η1 = δ1(1 + i) + ν1(1 − i), η2 = δ2(1 + i) + ν2(1 − i).
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_en

Re(P′є(a + η1)) = 2[ν1(4α + β) + ν2(α − 2β)] + O( ∣(η1 , η2)∣
2) ,

Re(P′є(−b − η2)) = 2[ν1(−2α + β) + ν2(α + 4β)] + O( ∣(η1 , η2)∣
2) ,

Re(P′є(−a + b − η1 + η2)) = 2[ν1(4α − 5β) + ν2(−5α + 4β)] + O( ∣(η1 , η2)∣
2) ,

Two of these surfaces are transversal if the corresponding 2× 2 Jacobian with respect
to (ν1 , ν2) does not vanish. _e three surfaces are two by two transversal when

(2.3) (2a − b)(a − 2b)(a + b) /= 0.

_e last bifurcation occurs for nonregular points of ∆ = 0. At these points, the
system has a parabolic point and a center; see Figure 3(b).

Proposition 2.4 _e bifurcation diagram for a codimension 3 point as in Figure 3(b)
is given in Figure 6.

Proof _is situation corresponds to a nonregular point of ∆ = 0, which is an end-
point of a segment of double homoclinic curve (ûgure-eight loop), since it can be
unfolded into an (H j, j+2). _e only bifurcation surfaces are the four homoclinic
loop surfaces which all merge along the two bifurcations (H j, j+2), j = 1, 2. In the
limit, some become tangent because the transversality condition (2.3) is violated at
the limit.

(H1)

(H2)
(H3)

(H4)
(H3)

Figure 6: Bifurcation diagram for a codimension 3 point.
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8
Figure 7: _e two loops based at inûnity (in bold line) providing the two times τ i , j and τ i′ , j′ .
_e ûgure is on CP1 minus a point.

3 The Global Bifurcation Diagram

3.1 The Two Open Sets W1 and W2 of Generic Values

Before putting together the bifurcation diagram, we must describe the generic situa-
tion, which was studied in great detail by Douady and Sentenac [2]. When є is not a
bifurcation value, the separatrices of∞ land at singular points. _ere are two generic
ways in which this can occur:

● the two repelling separatrices land at the same attracting singular point, and the
two other separatrices each land at a diòerent repelling point (see Figure 7); let us
call W1 the open set of these parameter values;

● the two attracting separatrices land at the same repelling singular point, and the
two other separatrices each land at a diòerent attracting point; let us call W2 this
open set.

W1 andW2 are simply connected sets in C2. _is is a highly nontrivial result, which
would be very diõcult to prove by “classical” methods, including visualizing the two
domains in S3. Indeed, these domains are limited by the four surfaces (H i) of homo-
clinic connections, and the boundary of these surfaces is the union of the curve ∆ = 0
with the two segments (H i , i+2)where double homoclinic connections occur (see Fig-
ure 10(a)). _is means that these surfaces are folded in S3. Fortunately, Douady and
Sentenac produced a very clever argument allowing to show that W1 andW2 are sim-
ply connected. Indeed, for each є ∈Wj , we can compute the “complex time” to go from
∞ to∞ along a loop not cutting the connecting graph (i.e., the union of the separatri-
ces). Up to homotopy, there are exactly two such loops, providing two nonreal times,
and we can orient the loops so that the complex times both belong to the upper half-
plane H (see Figure 7). _ese complex times are given (up to sign depending on the
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orientation of the loop) by

2πi Res( 1
Pє

)(z j) =
2πi

P′є(z j)
,

where z j is the singular point inside the loop. In particular, the complex times depend
only on the homotopy class of the loop. Let us call 1, 2, 3, 4, the four quadrants when
turning in the positive direction. Each loop joins two adjacent quadrants i , j. Let
τ i , j be the travel time from quadrant i to quadrant j along a curve from∞ to∞ not
intersecting the connecting graph. We have two times, τ i , j and τ i′ , j′ , corresponding
to the two nonhomotopic loops. _e very subtle theorem of Douady and Sentenac
follows.

_eorem 3.1 ([2]) _emap F∶Wj → H2, given by F(є) = (τ i , j , τ i′ , j′), is a holomor-
phic diòeomorphism.

_e tuple (τ i , j , τ i′ , j′) is theDouady–Sentenac analytic invariant announced in the
introduction. We will come back to the idea of the proof in Section 4.

Corollary 3.2 W1 and W2 are simply connected open sets inC2. Because of the conic
structure of the bifurcation diagram, their intersection with S3 is also simply connected.

3.2 The Bifurcation Diagram for є ∈ S3

We now have all the ingredients to give the global bifurcation diagram for parameter
values inside the sphere S3. Let us ûrst introduce the following notation.

Notation 3.3 ● (H i j), with j = i + 2, denotes the transversal intersection of (H i)
with (H j), whose bifurcation diagram appears in Figure 5 (see Proposition 2.3).

● If we look at the double homoclinic loop bifurcation (H1,3) appearing in Figure 5,
we see six sectorial regions attached to the middle point corresponding to the dou-
ble homoclinic loop bifurcation. Each sectorial region is bounded by two surfaces
H j and H j′ . Hence it is natural to call the vertex of the sectorial region H j, j′ . Look-
ing for instance atW1, it then has corners at the intersection of the closures of (H1)

and (H2), (H1) and (H3), and (H3) and (H4), whichwe denote respectively (H12),
(H13), and (H34). Similarly, W2 has corners at the intersection of the closures of
(H1) and (H3), (H1) and (H4), and (H2) and (H3); we denote these corners by
(H13), (H14), and (H23), respectively.

● (H0
i j) with j = i + 1 corresponds to a regular point of ∆ = 0 (as in Figure 3(a)), for

which there are heteroclinic loops (H i) and (H j) through the parabolic point, and
with bifurcation diagram as in Figure 4.

● (H0
i ) corresponds to a codimension 3 bifurcation of a homoclinic loopH i around a

center simultaneouslywith a parabolic point and a heteroclinic loop (H i+2) through
it (as in Figure 3(b)), and with bifurcation diagram as in Figure 6.

_eorem 3.4 Each of the two connected components Wj of generic vector ûelds ûlls
an open set of S3. _e bifurcation locus, which is the common boundary of each Wi , is
a quotient of a topological 2-dimensional sphere S2. _is sphere S2 is the union of the
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0L

b
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Figure 8: _e four surfaces of homoclinic loops and their pentagonal boundaries to be glued
according to the letters marked. Notation 3.3 is used. _e meaning of the small letters (a- j) is
the following: a: (H13); b: (H24); c: (H12); d: (H0

12); e: (H14); f : (H0
14); g: (H0

34); h: (H0
23); i:

(H23); j: (H34).

closure of the four homoclinic surfaces (H j), j = 1, . . . , 4: the homoclinic surfaces are
glued along curves of codimension 2 bifurcations with vertices at codimension 3 bifur-
cation points. _e gluing of the (H j) for building S2 is described in Figures 8 and 9. _e
quotient of S2 is obtained by further gluing along the (H j, j′) attached to a given double
homoclinic loop (H i , i+1).

Proof Each Wj is conformally equivalent to H2. _e codimension 1 part of the
boundary is included in the two pieces R ×H and H ×R. But {0} ×H and H × {0}
are excluded, since these would correspond to a singular point merging with inûn-
ity, which is forbidden in our normalized family. Hence the boundary has four open
pieces of the form R± ×H and H × R±, corresponding to (H j) for j = 1, . . . , 4; note
that these pieces are simply connected, and so will be their intersection with a sphere.
Looking at the intersection of the parameter space with S3, which is homeomorphic
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g
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Figure 9: _e four surfaces of homoclinic loops and their boundaries to be glued according to
the letters marked.

to the completion of R3 with one point, then each Wj is homeomorphic to an open
ball of dimension 3. _e two are separated by the bifurcation diagram that is topo-
logically like a 2-dimensional sphere S2 (but with gluing some curves on it), which
we call the “bifurcation sphere”. _e bifurcation sphere is a patchwork of four open
pieces corresponding to the (H j) for j = 1, . . . , 4. _ese four pieces, as well as the
recipe to glue them for constructing S2 appear in Figures 8 and 9; the gluing is similar
to the type of gluing used when constructing abstract Riemann surfaces. In practice
however, these pieces are quite twisted in the 3-dimensional sphere. Figure 10(a) rep-
resents the codimension 2 bifurcations, namely the torus knot ∆ = 0 and the two
segments of double homoclinic bifurcations; the endpoints of these segments, called
(H0

j ) divide the torus knot into the four pieces (H0
j, j+1).

_e key to understanding Figure 8 is Figure 11 gluing the bifurcation diagrams of
the two codimension 3 bifurcations (H0

1 ) and (H0
3) which are both of the type of

Figure 6. _e two segments (H13) and their corresponding bifurcation diagram of
Figure 5 must be glued face to face. But the angle between the surfaces varies along
transversal cuts to (H13): see Figure 12.
Figure 11 is obtained by linking together two copies of Figure 6 along (H13). How-

ever the vertical surface of one copy becomes a horizontal tangent surface at the other
copy, something which is not easy to represent on the drawing. Also, in Figure 11, we
have “free” surfaces (H1) and (H3). _eirmissing boundary can only be along (H24).
In this ûgure we have that (H0

34) and (H0
41) have to merge at (H0

2), while (H0
23) and

(H0
12) have to merge at (H0

4).
_e “polyhedron” of Figure 8 has eight vertices, ten edges, and four faces. Four

of the vertices are attached to three edges and four of them are artiûcial ones, since
attached to only two edges. Hence, the topological sphere S2 is homeomorphic to a
tetrahedron, with four of its edges cut in two parts as in Figure 9.
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(a) (b) (H2)

Figure 10: In (a), the torus knot representing ∆ = 0 and the two segments of double homo-
clinic bifurcations. _e four endpoints of the two segments divide the torus knot into four
pieces. (Note that the torus is not part of the bifurcation diagram.) In (b) the boundary of (H1)
containing two pieces of the torus knot separated by one segment on the right. At the le� end,
the second segment is traveled twice, once in each direction: this back and forth movement is
natural if we remember that we are following the boundary of (H1) along (H13) in Figure 6.
_e boundaries of the other (H j) are obtained through rotations of one fourth of a turn.

(H1)

(H3)

(H2)

(H4)

(H23)
0(H34)

0

(H41)
0

(H12)
0

(H13)

(H1    )
0

(H3    )
0

(H2    )
0

Figure 11: Gluing together two bifurcation diagrams for codimension 3 points given in Figure 6.
_e two “cusps” are facing each other. _e two surfaces (H1) and (H3) intersect along (H13).
Near (H0

1 ), (H3) (resp. (H1)) is tangent (resp. transversal) to the horizontal direction, while it
is transversal (resp. tangent) to the horizontal direction near (H0

3).

https://doi.org/10.4153/CMB-2016-095-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-095-3


_e Bifurcation Diagram of Cubic Polynomial Vector Fields 395

(H )4

(H )3

(H )3

(H )2

(H )1

(H )1

(a) Near (H0
1 )

(H )1

(H )4 (H )2

(H )1
(H )3

(H )3

(b) In the middle

(H )1

(H )4

(H )2

(H )1

(H )3

(H )3

(c) Near (H0
3)

Figure 12: Transversal cuts to (H13).

4 Description of the Homoclinic Bifurcations in the Framework of
Douady and Sentenac

4.1 The Construction of Douady and Sentenac

Let us consider a generic vector ûeld for є ∈ W1 or є ∈ W2. _e idea of Douady and
Sentenac is that, when the time is extended to the complex domain, then all points of
the phase space, except the singularities, belong to the “complex trajectory” of a single
point. Hence, it is natural to reparameterize the phase space by the time t, where

t(z) = ∫
z

∞

dζ
pє(ζ)

,

but we have to pay attention, since the function t(z) is multivalued. _e phase plane
minus the separatrices is the union of two open simply connected regions (see Fig-
ure 7). Each of these regions is the image of a strip in the t-coordinate. _e boundary
of these strips are simply the inverse images of the separatrices (see Figure 13), and
the singular points have disappeared at inûnity. Note that when a singular point is
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attached to a unique separatrix, then this separatrix is covered twice when sending
the strip to the phase plane. _e inverse image of∞ is given by 4 points, one on each
boundary line of a strip (a pole can be reached in ûnite time). _e widths of the strips

z2
z

z1

0

(a) _e two sectors

a

a
c

cb

d
d

b
z1

z2

z0

z0

(b) _e corresponding strips in t-space

Figure 13: _e two (inûnite) strips for (a) (corresponding to (V) in Figure 14). _e square dots
represent the point at inûnity and the strips need to be glued by pairing the identical letters to
get a Riemann surface.

(between two images of∞) are precisely given by the “complex times” to go from∞

to ∞ without cutting the separatrices (see Figures 7, 13 and the description in Sec-
tion 3.1). (Note that the residue theorem ensures that the time from∞ to∞ along a
loop depends only on the homotopy class of the loop in CP1 ∖ {z1 , z2 , z3}.)

_e construction ofDouady and Sentenac is then the following: they glue the strips
according to the letters appearing in Figure 13. _is provides a Riemann surface that is
exactly CP1 minus three points. If we put on the strips the constant vector ûeld ṫ = 1,
then this endows CP1 with a cubic vector ûeld with singular points at the three holes
and a pole at inûnity. _is vector ûeld is unique up to aõne changes of coordinates on
the sphere, and hence has a unique presentation as ż = z3+є1z+є0, up to (z, є1 , є0) ↦
(−z,−є1 , є0). _is is the spirit of the proof of _eorem 3.1.

https://doi.org/10.4153/CMB-2016-095-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-095-3


_e Bifurcation Diagram of Cubic Polynomial Vector Fields 397

(H  )4

(H  )3

(H  )2

(H  )1

(V)

(IV)

(III)

(II)

(I)

z2

z

z0

0

z

z

z1

z

z1

z1

z1

z2

z2

z2

1

0

0

z

0

z2

Figure 14: In each case we highlight the images of the two strips inside a disk containing the
singular points. _e paths for the computations of the τ i , j (see Notation 4.1) have been drawn.
_ey link quadrants 1 and 2 on one side, and 3 and 4 on the other side in (V), while they link
quadrants 2 and 3, and 1 and 4 in (I)–(IV). _e changes from (τ1,2 , τ3,4) in (V) to (τ1,4 , τ2,3) in
(I)–(IV) are summarized in Table 4.2.

4.2 Extending the Construction of Douady and Sentenac to a Bifurcation of
Homoclinic Connection

Douady and Sentenac only described the generic case. We now complete their con-
struction for the case of homoclinic connections, and explain the passage from W1
to W2 through a homoclinic connection. Figure 14 represents schematically the four
possible homoclinic bifurcations. (Note that the four homoclinic bifurcations do not
occur for the same values of the parameters, so the singular pointsmight have changed
position at the time of the bifurcation: the ûgures should then be interpreted topo-
logically.)
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Let us concentrate on the bifurcation (H1): it can be approached from W2 (corre-
sponding to (V)) or from W1 (corresponding to (I)). Figures 15 and 16 represent, for
the approach on each Wj , the two regions in phase space limited by the separatrices
and their representation by strips in t-space.

z0
z1

z2

(a) _e two regions for (H1)

c

c

d

a

d = b

z0

z1

z2

a

(b) Point of view ofW2 , i.e., (V)

Figure 15: _e homoclinic loop (H1) in (a), and the two strips representations seen from the
point of view ofW2 .

z0
z1

z2

(a) _e two regions for (H1)

c

c

d

a

d = b

z0

z1

z2

a

(b) Point of view ofW1 , i.e., (I)

Figure 16: _e homoclinic loop (H1) in (a), and the two strips representations seen fromW1 in
parameter space.

We see that we do not use the same τ’s for both points of view. Hence, we introduce
the following notation.

Notation 4.1 Let τ i , j be the travel time from quadrant i to quadrant j along curves
from∞ to∞ as drawn in Figure 14 and corresponding to the segment transversal to a
strip in Figure 13. Hence, we have τ1,2 and τ3,4 for є ∈W2, and τ2,3 and τ1,4 for є ∈W1.
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(a) Starting from (V) in W2
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z0

a

b

(b) Approaching (H1) in W2

c

c

d

a

d = b
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z1

z2

a

(c) Homoclinic loop (H1) viewed from W2

c

c

d

a

d = b

z0

z1

z2

a

(d) Homoclinic loop (H1) viewed from W1

c

c
d

a

d

z2

z1

z0

a

b

(e) Leaving the homoclinic loop in W1

c

a

d

b z2

z1

z0

a
c

d

(f) Ending in (I) in W1

Figure 17: _e diòerent steps for passing from (V) to (I) through (H1).

A strip presentation of the passage through the homoclinic bifurcation (H1) ap-
pears in Figure 15. _e homoclinic loop surrounds a center. Suppose that the homo-
clinic bifurcation (H1) occurs for є = є̃ ∈ W1 ∩W2. All orbits inside the homoclinic
loop (H1) have the same period, which we call τ1 and which is the limit of τ1,2 and
−τ1,4, when є → є̃:

(4.1) τ1 = lim
є→є̃
є∈W2

τ1,2 = − lim
є→є̃
є∈W1

τ1,4 .

Hence, the set of closed orbits is represented by a vertical strip as in Figure 15(b) or
(c). Using that the τ’s can be obtained from the residue theorem, it is clear that

(4.2) τ2,3 = τ3,4 + τ1 .
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(V) (I) (II) (III) (IV)
τ1,2 τ′1,4 = −τ1,2 τ′1,4 = τ1,2 + τ3,4 τ′1,4 = τ1,2 + τ3,4 τ′1,4 = −τ3,4
τ3,4 τ′2,3 = τ1,2 + τ3,4 τ′2,3 = −τ1,2 τ′2,3 = −τ3,4 τ′2,3 = τ1,2 + τ3,4

Table 1: Passing from (τ1,2 , τ3,4) in (V) to (τ′1,4 , τ′2,3) in (I)–(IV).

c

cd

a
d

b
z2

z1

z0

a

(a) Approaching (H1)

a

c

c

z1

0

a

b

z2
z d

b

(b) Approaching (H2)

c
a

a

z2

0

c

d

z1
z b

d

(c) Approaching (H3)

a

a

b

c

c
b

d
z1

z2

z0

(d) Approaching (H4)

Figure 18: _e four ways of seeing the gluings of the two strips for (V) to approach the four
bifurcations of Figure 14.

Figure 17 now presents the diòerent steps of the passage from (V) (inW2) to (I) (in
W1) through (H1). _e imaginary part of τ1,2 decreases in (b) until it vanishes. So the
le� (horizontal) part of the pale strip becomes thinner and thinnerwith a zerowidth at
the limit in (c). At the same time the slope of the right part increases until it becomes
vertical at (H1). When passing from (c) to (d), we only change from (τ1,2 , τ3,4) to
(τ1,4 , τ2,3) through (4.1) and (4.2). On the other side of (H1), in (e), the slope of the
vertical part decreases (in absolute value) and bends to the le�, while a thin half strip
appears on the right.

_ere are four possible homoclinic bifurcations (H i) occurring in the i-th quad-
rant to pass from (V) to the corresponding cases (I)–(IV). When passing from (V)
to (I) (resp. (II)), then τ1,2 becomes real positive (resp. negative) while, when passing
from (V) to (III) (resp. (IV)), then τ3,4 becomes real negative (resp. positive). Note
that the strips do not need to be horizontal in Figure 13. _ey could be partly slanted
as long as the width is given by the τ i , j (see Figure 18).
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