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INTEGRALLY CLOSED CONDENSED DOMAINS ARE BÉZOUT 

BY 

DAVID F. ANDERSON, JIMMY T. ARNOLD AND DAVID E. DOBBS 

ABSTRACT. It is proved that an integral domain R is a Bézout domain 
if (and only if) R is integrally closed and IJ = {ij\i E IJ E J} for all ideals 
/ and J of R; that is, if (and only if) R is an integrally closed condensed 
domain. The article then introduces a weakening of the "condensed" con­
cept which, in the context of the k + M construction, is equivalent to a 
certain field-theoretic condition. Finally, the field extensions satisfying this 
condition are classified. 

1. Introduction. Condensed (commutative integral) domains were introduced by 
Anderson and Dobbs in [1]. Recall that a domain R is condensed if IJ — {ij\i E /, 
j 6 i } for all ideals / and J of R. Bézout domains provide the most obvious class of 
condensed domains, but as ([1], Example 2.3) illustrates, a condensed domain need not 
be a Bézout domain. This article is motivated by the results in [1] that characterize 
condensed domains within certain larger classes of domains. Specifically, a GCD-
domain is condensed if and only if it is a Bézout domain ([1], Proposition 2.12); a 
Priifer domain is condensed if and only if it is a Bézout domain ([1], Corollary 2.6); 
and a Krull domain is condensed if and only if it is a PID ([1], Proposition 2.13). Since 
GCD-domains, Priifer domains, and Krull domains are integrally closed, these results 
are immediate consequences of our 

MAIN THEOREM. An integral domain is a Bézout domain if (and only if) it is 
integrally closed and condensed. 

Seeking to sharpen the above characterization of Bézout domains, we introduce in 
Section 3 the notion of a quasicondensed domain. The precise definition of this weak­
ening of the "condensed" concept (given below) is motivated by the nature of the proofs 
and examples in [1] and Section 2. It will be shown that there exists an integrally closed 
quasicondensed domain which is not a Bézout domain. More generally, the question 
of which D + M constructions lead to quasicondensed domains is reduced in 
Theorem 4 to the problem of characterizing a certain type of field extension. The 
underlying field theory is then treated in Theorem 5. 

Throughout, R denotes a domain. Any unexplained terminology is standard, as in [2] 
and [5]. 
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2. Proof of the main theorem. We need only prove that any integrally closed 
condensed domain R is a Bézout domain. By ([1], Corollary 2.6), it suffices to show 
that R is a Priifer domain. We do this by showing that RM is a valuation domain for each 
maximal ideal M of R ([5], Theorem 64). By ([1], Proposition 2.4), each overring of 
a condensed domain is again a condensed domain. Thus each RM is a condensed 
domain, and we have reduced to showing that any integrally closed quasilocal con­
densed domain is a valuation domain. 

Let R be such an integral domain, and let z be a nonzero element in the quotient field 
of/?. We must show that either z or z_1 is in R. Write z = xy~l where x, y E /?, and 
then set / = (JC2, y2) and J — (JC, v). Since JC3 + y3 E IJ and /? is condensed, there exist 
a, b, c, d in R such that 

JC3 + v3 = (ax2 + by2)(cjc + dy) = acx3 + ad.r2y 4- bcxy2 + frdy3. 

Collecting terms and dividing by y3 yields 

(1 - ac)z3 - adz2 - bcz + (1 - bd) = 0. 

Since R is quasilocal, it is readily seen that at least one of the coefficients of this 
polynomial is a unit. Thus by the w, u~]-Lemma ([5], Theorem 67), either z EL R or 
zl<ER. • 

3. Quasicondensed domains. We shall say that an integral domain R is quasi-
condensed if/" = {i\ . . . in\ij E / for 1 < j < AÏ} for each positive integer n and each 
two-generated ideal / = (a, b) of R. It is clear that each condensed domain is quasi-
condensed. However, an integrally closed quasicondensed domain need not be con­
densed. According to the Main Theorem, this last statement means that an integrally 
closed quasicondensed domain need not be a Bézout domain. An example which 
illustrates this is R = C + XC(Y)[[X]]. A major portion of this section will be devoted 
to establishing (a generalization of) this assertion. First, we find consequences of 
"quasicondensed" in two classical settings. 

PROPOSITION 1. If R is a Noetherian quasicondensed domain, then depth (R) < 1. 

PROOF. This follows from the proof of ([1], Theorem 3.3) using the easily proved fact 
that any localization of a quasicondensed domain is again quasicondensed. • 

PROPOSITION 2. Let (R, M) be an integrally closed quasilocal quasicondensed 
domain, with residue field k (=R/M). Then either R is a valuation domain, or k is 
algebraically closed. 

PROOF. Suppose that R is not a valuation domain. Choose a, b E R such that / = 
(a, b) is not principal. For d E R, let d denote its image in k. We shall show that any 
/ E k[X] of degree n > 1 has a root in k. Write/(X) = 2 ; = 0 âjXj E k[X], for suitable 
a, E R. As 2 j = 0 OLjajb"~j E /", the fact that R is quasicondensed allows us to write 
S;= 0 ajajbn-j = ( M + Pia)(S;:0

1 yjajbn-]-J) for suitable ft, 7, E R. After multi­
plying and collecting terms, and then dividing by b'\ we find S"=0 bj(ab~l)j = 0, 
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where 80 = a0 - po7o, 8„ = an - (3i7„-i, and 8, = a,- - (3,7,-, - PoT/» for 1 ^ 7 ^ 
n — 1. Since neither ab~x nor &a-1 is in R, it follows from the w, «'-Lemma ([5], 
Theorem 67) that 8;- E M for each7. Thus applying (~) yields â0 = Po7o, a/ = Pi 7,-1 
+ p07y for 1 < 7 < w — 1, and ct„ = 0i7„-i. Accordingly, one has the factorization 

/(X) = (P,X + 0o)(7„-iX"~' + . . • 70) in k[X], and the result follows. • 
We next assemble material that will lead to a partial converse of Proposition 2. 

PROPOSITION 3. Let K/k be a field extension. Let T = K + M be a quasi-local 
domain with maximal ideal M. Let R denote the (quasilocal) domain k + M. Let I = 
(a, b) be a proper ideal of R, with ba~] — a + m E T (a E K, m E M). Set W — 
k + ka, viewed as a k-subspace of K. Then: 

(a) ln - W"a" + Ma" for all n > 1. 
(b) For n > 1, /" = {i\ . . . i„\ each i} E 1} if and only if^Lo ka' = Ft-L 1 (k + ka). 

PROOF. The proof of (a) is straightforward (cf. [3], Lemma 3.2). 
(b) (=£>): One inclusion holds in general. Conversely, let P E 2-L0 ka1. By (a), 

Pa" E /", and so the hypothesized description of/" yields P*?'7 = (Pi# + mja) . . . 
(P„<3 + m;/fl) for some P, E k + ka = W and some m, E M. Since W"a" D Ma" — 
0, p = P, .. . P, EÎIU (k + ka). 

«=): Let x E 7"\{0}. By (a), write x = $a" + ma", for some P E W'\ m E M. We 
may assume that P ^ 0. Since p = Pi . . . p„ for some nonzero elements p, E W, 
x = (Pifl) . . . (P„-itf)(P„tf + y ma), where 7 = (P, . . . P,,-])"1. In particular, x E 
{/, . . . /„| each /,- E /} . • 

In view of Proposition 3, the next definition seems timely. An extension K/k of 
fields is said to satisfy property (*) if 2"= 0 ka1 = 11"= 1 (k + ka) for each a E K and 
« > 1. 

THEOREM 4. L r̂ V &e a valuation domain of the form K + M, where K is afield and 
M (=É 0) is the maximal ideal ofV. Let k be a subfield of K, and set R = k + M. Then 
R is quasicondensed if and only if K/k satisfies (*). 

PROOF. This follows easily from Proposition 3(b) in view of the following two 
observations. First, for nonzero a, b E R, either ab~] or ba~x is in V since V is 
a valuation domain. Secondly, since M is nonzero, each nonzero a E K may be 
written as a = ba'x for some nonzero a, b EM. (Choose 0 ^ m E M;\et a = m and 
b = am.) • 

Thus, we have reduced the question of which k + M's are quasicondensed to the 
question of which field extensions K/k satisfy (*). Here is the answer to the latter 
question. 

THEOREM 5. An extension K/k of fields satisfies (*) if and only if either 
(a) k is algebraically closed, or 
(b) K/k is algebraic and for each a E K, each nonconstant f E k[X] with degf< 

[k(a): k] splits over k. 
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PROOF. If K = k, then (*) and (b) hold, so we may assume that K =£ k. Choose 
a E K\k. First, suppose that {a) holds. Then any S7-

?
=0 0,-X' E fc[X] factors as b H"=] 

(X — c^ for some Z?, c, E &. Hence 2"=0 a ;a' = bH"=\(oi — ci). Next, suppose that 
(b) holds. Let m = deg (a). As above, we then have 2-= 0 ka' = 11"=, (fc + &a) for 
each n< m. For n>m, just note that 2"=0 fca' = 2jl~0 &a' and II-L, (k + ka) D IIJT,1 

(/: + &a) since deg (a) = m. 

Conversely, suppose that K/k satisfies (*). If K/k is not algebraic, select a E K 
transcendental over k\ interpreting (*) in k[X] (=k[a]), we see that k is algebraically 
closed. Thus we may assume that K/k is algebraic. Let a E K\k, with g the minimal 
polynomial of a over k; set n = deg g. Let/(X) = a0 + a,X + . . . + a,„Xm E fc[X], 
with 1 < m < «. Since AT//c satisfies (*), 

a0 + a\OL + . . . + amam = (b\ + c,a) . . . (&/w + c,„a) 

for some èf-, c* E it. Let /z(X) = (/?, + c,X) .. . (bm + cwX). Then/(X) - h(X) has 
a as a root, and so is divisible by g. Since m < n, necessarily/(X) — h(X) — 0, so 
f = h splits over k. • 

Combining Theorems 4 and 5 (with the Fundamental Theorem of Algebra), we see 
that/? = C + XC(y)[[X]] is quasicondensed. It is well known that/? is quasilocal and 
integrally closed, but not a Bézout domain (cf. [2], Exercise 11, page 202 and Exercise 
13, page 286). While each localization of a quasicondensed domain is quasicondensed, 
an overring of quasicondensed domain need not be quasicondensed. (Contrast with the 
"condensed" case [1], Proposition 2.4.) Indeed, by Theorems 4 and 5, the overring 
C(y3) + XC(K)[[X]] is not quasicondensed. 

If K/k is a field extension such that each a E K has [k(a) : k] < 2, then clearly K/k 
satisfies (*). In particular, if [K:k] = 2, then K/k satisfies (*). The next remark 
investigates (*) in greater detail. 

REMARK 6. (a) If an algebraic field extension K/k satisfies (*), then K/k is either 
separable or purely inseparable. To show this, we may assume that char (k) = p > 0. 
If a E K is not purely inseparable over k, then k(ap") = k(a) for each n > 1 since K/k 
satisfies (*). Hence each element of K is either separable or purely inseparable over k 
([4], Exercise 9, page 288). By [4], Exercise 4, page 288, the field extension K/k is 
either separable or purely inseparable. 

(b) Suppose that k is not algebraically closed and that K/k is separable and satisfies 
(*). Then K/k is finite. For if K/k is infinite, then K has elements of arbitrarily high 
degree ([6], Lemma 1, page 194), contradicting (*). If K/k is a proper finite Galois 
field extension which satisfies (*), then [K : k] is a prime. This follows easily from the 
Fundamental Theorem of Galois Theory and the Primitive Element Theorem. 

Let K/k be a purely inseparable field extension with char (k) = p which satisfies (*). 
Then [k(a):k] = p for each a E K\k. However, unlike the separable case, such a 
purely inseparable field extension can be infinite dimensional. For example, let k = 
Z/2Z({X^}"=I) and K = Z/2Z({X„}"=I). Then K/k is an infinite purely inseparable 
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field extension which satisfies ( * ) since each a E K\k has degree two over k. 
(c) We show that for each prime p there is a Galois field extension K/k of degree 

p which satisfies (*). Our example is modeled after Artin's proof (cf. [6], Theorem 1, 
page 169) of the existence of algebraic closures. Let k0 = Q. For each n > 0, we define 
inductively a field extension kn. If k„ has been defined, then kn+ \ is the field generated 
over kn by all elements of C which have degree strictly less than p over kn. Then let 
k — UII=I k„ and K = k(2Vp). Since the degree over Q of each a G k is not divisible 
by /?, [K:k] = p. By construction k contains all pth roots of unity; thus K is a splitting 
field for Xp — 2 over k and hence is Galois. Finally we show that K/k satisfies (*). 
Let / E k[X] have 1 < deg/< p. Then/E fc„[X] for some n, and hence by construction 
/splits over kn+] C &. 

By ([1], Proposition 2.5), each condensed domain has trivial Picard group, i.e., each 
invertible ideal is principal. As a closing question, we ask if, analogously, each 
quasicondensed domain also has trivial Picard group. If this were true, then by Propo­
sition 1, an integrally closed quasicondensed Noetherian domain would be a PID. In 
closing, we do have the following partial result. 

PROPOSITION 7. Let I be an ideal of a domain R with /" = xRfor some n > 1 and 
x E R. If I" = {/] . . . in\ each if E / } , then I is principal. 

PROOF. By hypothesis, x = ix . . . /„ for some elements ij E /. Since each (/,-) C / 
and /" = xR = (/,) . . . (/„) C /", it readily follows that / = (/,) for each 1 < 
j<n. • 
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