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INTEGRALLY CLOSED CONDENSED DOMAINS ARE BEZOUT

BY
DAVID F. ANDERSON, JIMMY T. ARNOLD AND DAVID E. DOBBS

ABSTRACT. It is proved that an integral domain R is a Bézout domain
if (and only if) R is integrally closed and I J = {ij|i €I, j € J } for all ideals
I and J of R; that is, if (and only if) R is an integrally closed condensed
domain. The article then introduces a weakening of the “condensed” con-
cept which, in the context of the kK + M construction, is equivalent to a
certain field-theoretic condition. Finally, the field extensions satisfying this
condition are classified.

1. Introduction. Condensed (commutative integral) domains were introduced by
Anderson and Dobbs in [1]. Recall that a domain R is condensed if 1J = {ij|i € I,
J € J} for all ideals I and J of R. Bézout domains provide the most obvious class of
condensed domains, but as ([ 1], Example 2.3) illustrates, a condensed domain need not
be a Bézout domain. This article is motivated by the results in [1] that characterize
condensed domains within certain larger classes of domains. Specifically, a GCD-
domain is condensed if and only if it is a Bézout domain ([1], Proposition 2.12); a
Priifer domain is condensed if and only if it is a Bézout domain ([1], Corollary 2.6);
and a Krull domain is condensed if and only if it is a PID ([ 1], Proposition 2.13). Since
GCD-domains, Priifer domains, and Krull domains are integrally closed, these results
are immediate consequences of our

MAIN THEOREM. An integral domain is a Bézout domain if (and only if) it is
integrally closed and condensed.

Seeking to sharpen the above characterization of Bézout domains, we introduce in
Section 3 the notion of a quasicondensed domain. The precise definition of this weak-
ening of the “condensed” concept (given below) is motivated by the nature of the proofs
and examples in [1] and Section 2. It will be shown that there exists an integrally closed
quasicondensed domain which is not a Bézout domain. More generally, the question
of which D + M constructions lead to quasicondensed domains is reduced in
Theorem 4 to the problem of characterizing a certain type of field extension. The
underlying field theory is then treated in Theorem 5.

Throughout, R denotes a domain. Any unexplained terminology is standard, as in [2]
and [5].
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2. Proof of the main theorem. We need only prove that any integrally closed
condensed domain R is a Bézout domain. By ([1], Corollary 2.6), it suffices to show
that R is a Priifer domain. We do this by showing that Ry, is a valuation domain for each
maximal ideal M of R ([5], Theorem 64). By ([1], Proposition 2.4), each overring of
a condensed domain is again a condensed domain. Thus each Ry is a condensed
domain, and we have reduced to showing that any integrally closed quasilocal con-
densed domain is a valuation domain.

Let R be such an integral domain, and let z be a nonzero element in the quotient field
of R. We must show that either z or z~' is in R. Write z = xy ' where x, y € R, and
then set/ = (x?, y*) andJ = (x, y). Since x* + y* € IJ and R is condensed, there exist
a, b, ¢, d in R such that

x4y = (ax* + by*)(cx + dy) = acx® + adx’y + bcxy? + bdy’.
Collecting terms and dividing by y’ yields
(1 —ac)z’ — adz* = bez + (1 — bd) = 0.

Since R is quasilocal, it is readily seen that at least one of the coefficients of this
polynomial is a unit. Thus by the u, u~'-Lemma ([5], Theorem 67), either z € R or
z7"ER. O

3. Quasicondensed domains. We shall say that an integral domain R is quasi-
condensed if I" = {i, ... i,|i; € I for | = j < n} for each positive integer n and each
two-generated ideal / = (a, b) of R. It is clear that each condensed domain is quasi-
condensed. However, an integrally closed quasicondensed domain need not be con-
densed. According to the Main Theorem, this last statement means that an integrally
closed quasicondensed domain need not be a Bézout domain. An example which
illustrates this is R = C + XC(Y)[[X]]. A major portion of this section will be devoted
to establishing (a generalization of) this assertion. First, we find consequences of
“quasicondensed” in two classical settings.

PROPOSITION 1. If R is a Noetherian quasicondensed domain, then depth (R) < 1.

PRrOOF. This follows from the proof of ([1], Theorem 3.3) using the easily proved fact
that any localization of a quasicondensed domain is again quasicondensed. O

PROPOSITION 2. Let (R, M) be an integrally closed quasilocal quasicondensed
domain, with residue field k (=R/M). Then either R is a valuation domain, or k is
algebraically closed.

PROOF. Suppose that R is not a valuation domain. Choose a, b € R such that ] =
(a, b) is not principal. For d € R, let d denote its image in k. We shall show that any
f € k[X] of degree n = 1 has a root in k. Write f (X) = 27_, & X’ € k[X], for suitable
o; E R. As 2]_) o;a’b"™/ € I", the fact that R is quasicondensed allows us to write

1o 0;a’b" = (Bob + Bia)(Z], ya’b"' ) for suitable B;, y; € R. After multi-
plying and collecting terms, and then dividing by ", we find 2/_, §;(ab™")’ = 0,
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where 8, = oy — BoYo, O = &y — BiVYu-1, and §; = o, — Biy—) — Boyj, for Il = j =
n — 1. Since neither ab™' nor ba ' is in R, it follows from the u, u'-Lemma ([5],
Theorem 67) that §; € M for each j. Thus applying () yields & = Bo¥o, & = B,
+ B(,ﬁf forl =j=n—1,and & = B9, 1. Accordingly, one has the factorization
f(X) = (B/X + Bo)(F, 1 X"+ ... 7, in k[X], and the result follows. O
We next assemble material that will lead to a partial converse of Proposition 2.

PROPOSITION 3. Let K/k be a field extension. Let T = K + M be a quasi-local
domain with maximal ideal M. Let R denote the (quasilocal) domain k + M. Let | =
(a, b) be a proper ideal of R, with ba'=a+mET(aEK, mEM). Set W=
k + ka, viewed as a k-subspace of K. Then:

(a)I"=W'a" + Ma" foralln = 1.

(b)Forn=1,1"={i,...i,|eachi; € 1} ifand only if Z!_, ko' = II]_, (k + ka).

PrROOF. The proof of (a) is straightforward (cf. [3], Lemma 3.2).

(b) (=): One inclusion holds in general. Conversely, let 8 € 2! ka'. By (a),
Ba" € I", and so the hypothesized description of /" yields Ba" = (Bja + ma) ...
(B,a + m,a) for some B, € k + kao = W and some m; € M. Since W"a" N Ma" =
0,B="pR ... B €I, (k+ ka).

(&): Let x € I"'\{0}. By (a), write x = Ba”" + ma", for some 3 € W', m € M. We

may assume that B # 0. Since 3 = 3, ... B, for some nonzero elements B; € W,
x=(Bia) ... (By-1a@)(Bsa + yma), where y = (B, ... B,-1)"". In particular, x €
{i, ... i, each i, € I}. [

In view of Proposition 3, the next definition seems timely. An extension K/k of
fields is said to satisfy property (*) if 2/, ka' = II!_, (k + k) for each a« € K and
n=1.

THEOREM 4. Let V be a valuation domain of the form K + M, where K is a field and
M (# 0) is the maximal ideal of V. Let k be a subfield of K, and set R = k + M. Then
R is quasicondensed if and only if K /k satisfies (*).

PROOF. This follows easily from Proposition 3(b) in view of the following two
observations. First, for nonzero a, b € R, either ab ™' or ba ' is in V since V is
a valuation domain. Secondly, since M is nonzero, each nonzero o« € K may be
written as & = ba "' for some nonzero a, b € M. (Choose 0 + m € M; let a = m and
b= am.) O

Thus, we have reduced the question of which £ + M’s are quasicondensed to the
question of which field extensions K/k satisfy (*). Here is the answer to the latter
question.

THEOREM 5. An extension K/ k of fields satisfies (*) if and only if either

(a) k is algebraically closed, or

(b) K/k is algebraic and for each a € K, each nonconstant f € k[ X] with deg f <
[k(a): k] splits over k.
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ProOF. If K = k, then (*) and (b) hold, so we may assume that K # k. Choose
o € K\k. First, suppose that (a) holds. Then any 2/, a,X' € k[X] factors as b I/,
(X — ¢,) for some b, ¢; € k. Hence 2/, a;a’ = b II_ ,(a = ¢;). Next, suppose that
(b) holds. Let m = deg (). As above, we then have 2! ka' = II!_, (k + ka) for
each n < m. For n = m, just note that 2/ ka' = 2" ka'and I1/_, (k + ka) D II/'
(k + ko) since deg (o) = m.

Conversely, suppose that K /k satisfies (*). If K/k is not algebraic, select a € K
transcendental over &; interpreting (*) in k[X] (=k[a]), we see that k is algebraically
closed. Thus we may assume that K /k is algebraic. Let « € K\k, with g the minimal
polynomial of a over k; set n = deg g. Let f(X) =ay + /X + ... + a,X" € k[X],
with 1 = m < n. Since K/k satisfies (*),

at+aa+ ... +a,a" = +ca)...(b,+ c,a)

for some b;, ¢; € k. Let h(X) = (b, + ,X) ... (b, + ¢,X). Then f(X) — h(X) has
a as a root, and so is divisible by g. Since m < n, necessarily f(X) — h(X) = 0, so
f = h splits over k. 0

Combining Theorems 4 and 5 (with the Fundamental Theorem of Algebra), we see
that R = C + XC(Y)[[X]] is quasicondensed. It is well known that R is quasilocal and
integrally closed, but not a Bézout domain (cf. [2], Exercise 11, page 202 and Exercise
13, page 286). While each localization of a quasicondensed domain is quasicondensed,
an overring of quasicondensed domain need not be quasicondensed. (Contrast with the
“condensed” case [1], Proposition 2.4.) Indeed, by Theorems 4 and 5, the overring
C(r* + XC(Y)[[X]] is not quasicondensed.

If K/ k is a field extension such that each a € K has [k(a): k] =< 2, then clearly K/ k
satisfies (*). In particular, if [K:k] = 2, then K/k satisfies (*). The next remark
investigates (*) in greater detail.

REMARK 6. (a) If an algebraic field extension K/ k satisfies (*), then K/ k is either
separable or purely inseparable. To show this, we may assume that char (k) = p > 0.
If @ € K is not purely inseparable over k, then k(a”") = k(a) for each n = 1 since K /k
satisfies (*). Hence each element of K is either separable or purely inseparable over k
([4], Exercise 9, page 288). By [4], Exercise 4, page 288, the field extension K/k is
either separable or purely inseparable.

(b) Suppose that k is not algebraically closed and that K/ k is separable and satisfies
(*). Then K /k is finite. For if K/k is infinite, then K has elements of arbitrarily high
degree ([6], Lemma 1, page 194), contradicting (*). If K/k is a proper finite Galois
field extension which satisfies (*), then [K : k] is a prime. This follows easily from the
Fundamental Theorem of Galois Theory and the Primitive Element Theorem.

Let K/ k be a purely inseparable field extension with char (k) = p which satisfies (*).
Then [k(a):k] = p for each a € K\k. However, unlike the separable case, such a
purely inseparable field extension can be infinite dimensional. For example, let k =
Z2/2Z(¢X:y;_)and K = Z/2Z({X,},-,). Then K/k is an infinite purely inseparable
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field extension which satisfies (*) since each « € K\k has degree two over k.

(¢) We show that for each prime p there is a Galois field extension K /k of degree
p which satisfies (*). Our example is modeled after Artin’s proof (cf. [6], Theorem 1,
page 169) of the existence of algebraic closures. Let kK, = Q. For each n = 0, we define
inductively a field extension k,. If k, has been defined, then £, is the field generated
over k, by all elements of C which have degree strictly less than p over k,. Then let
k=\U__, k,and K = k(2"7). Since the degree over Q of each a € k is not divisible
by p, [K: k] = p. By construction k contains all pth roots of unity; thus K is a splitting
field for X” — 2 over k and hence is Galois. Finally we show that K/ k satisfies (*).
Let fE€ k[X]have | =degf<p. Thenf€E k,[X] for some n, and hence by construction
f splits over k,,, C k.

By ([ 1], Proposition 2.5), each condensed domain has trivial Picard group, i.e., each
invertible ideal is principal. As a closing question, we ask if, analogously, each
quasicondensed domain also has trivial Picard group. If this were true, then by Propo-
sition 1, an integrally closed quasicondensed Noetherian domain would be a PID. In
closing, we do have the following partial result.

PROPOSITION 7. Let I be an ideal of a domain R with I" = xR for some n = 1 and
x ER.IFI"={i, ... i,| each i; € I}, then I is principal.

Proor. By hypothesis, x = i, ... i, for some elements i; € I. Since each (i;) C
and I" = xR = (i) ... (i,) CI", it readily follows that I = (i;) for each 1 =
j=n. 0
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