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Subconvective wall-pressure fluctuations in
low-Mach-number turbulent channel flow

Yi Liu1, Kan Wang1,‡ and Meng Wang1,†
1Department of Aerospace and Mechanical Engineering, Institute for Flow Physics and Control,
University of Notre Dame, Notre Dame, IN 46556, USA

(Received 12 September 2023; revised 15 December 2023; accepted 18 January 2024)

Compressible direct numerical simulations are employed to elucidate the low-wavenumber
behaviour of wall-pressure fluctuations in turbulent channel flow and the effect of
flow Mach number in the nearly incompressible regime. Simulations are conducted at
bulk Mach numbers 0.4, 0.2 and 0.1, and friction Reynolds number 180. In addition
to the convective ridge that is virtually Mach-number-independent, acoustic ridges,
whose magnitudes are orders of magnitude lower, are identified in the two-dimensional
wavenumber–frequency spectrum. At lower frequencies, the acoustic ridges represent
propagating longitudinal and oblique waves that match the theoretical predictions of
two-dimensional duct modes with a uniform mean flow. They decay with decreasing Mach
number but remain distinctly identifiable even at Mach 0.1. At high frequencies, in contrast,
no propagating waves are found, and the spectral level in the supersonic wavenumber range
is broadly elevated and increases with decreasing Mach number.
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1. Introduction

Fluctuations in wall pressure induced by turbulent wall-bounded flows can cause structural
vibrations and acoustic radiation. Their prediction and an understanding of their fluid
dynamic sources are crucial to the reduction of aircraft cabin noise, automobile interior
noise, underwater vehicle noise, and noise and vibrations in various other flow systems.

Wall-pressure fluctuations can be split into two components caused by hydrodynamic
motions and acoustics (or more generally, compressibility effects). Their wavenumber–
frequency spectrum Φpp(k, ω) is considered to have a shape illustrated schematically
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Figure 1. Schematic of the wavenumber–frequency spectrum of wall-pressure fluctuations versus the
streamwise wavenumber at a fixed frequency and the zeroth spanwise wavenumber.

in figure 1 as a function of the streamwise wavenumber k1 at a fixed frequency ω and
the zeroth spanwise wavenumber, k3 = 0 (Blake 2017). The hydrodynamic component is
peaked at the convective wavenumber kc = ω/Uc, where Uc is the convection velocity.
The acoustic component is peaked conceptually at the acoustic wavenumber k0 = ω/c0,
where c0 is the ambient speed of sound, in the limit of diminishing Mach number.
The low-wavenumber region before the start of the convective ridge is known as the
subconvective wavenumber range that includes the sonic and supersonic wavenumber
range, |k| ≤ k0. The latter is responsible for direct sound radiation.

In low-Mach-number flows, there is a large length-scale (wavenumber) separation
between the convective and acoustic peaks, and the acoustic energy is very weak compared
to the hydrodynamic energy, making investigation of the low-wavenumber spectrum a
significant challenge both numerically and experimentally. Pressure fluctuations in the
subconvective wavenumber range are important practically despite their small magnitude
because longer waves are more easily coupled to structural modes to excite vibrations.
There is an acute lack of knowledge of their spectral behaviour, particularly with regard
to the existence and strength of acoustic peaks and their dependence on the flow Mach
number. Acoustic peaks have rarely been measured in experiments, and existing theoretical
models predict qualitatively different behaviour at low wavenumbers (see, for example, the
review article by Graham 1997).

The hydrodynamic component of wall-pressure fluctuations has been studied
extensively using incompressible direct numerical simulations (DNS) and large-eddy
simulations (LES) (e.g. Kim 1989; Choi & Moin 1990; Singer 1996; Hu, Morfey &
Sandham 2006; Yang & Yang 2022). However, incompressible simulations are incapable
of capturing the acoustic contributions. The acoustic component has received only
recent attention due to computational difficulties. Commonly used hybrid approaches for
aeroacoustics based on acoustic analogy (Wang, Freund & Lele 2006) are impractical due
to lack of separation between source and propagation effects. High-fidelity compressible
simulations with high accuracy, high resolution and low dissipation are necessary to
capture the weak acoustic signals in wall-pressure fluctuations. Gloerfelt & Berland (2013)
and Cohen & Gloerfelt (2018) conducted the only studies to date of the acoustic component
of wall-pressure fluctuations in subsonic turbulent boundary layers. Through carefully
performed LES of flat-plate boundary layers at free-stream Mach number 0.5, they
identified acoustic peaks corresponding to upstream and downstream propagating waves
in the wall-pressure wavenumber–frequency spectra, and investigated their dependence on
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Wall-pressure fluctuations in low-Mach-number channel flow

Case Mb L1 × L2 × L3 N1 × N2 × N3 �x+
1 �x+

2 �x+
3

1 0.4 16πδ × 2δ × 4πδ/3 1024 × 192 × 256 9 0.5–3.3 3
2 0.2 16πδ × 2δ × 4πδ/3 1024 × 192 × 256 9 0.5–3.3 3
3 0.1 16πδ × 2δ × 4πδ/3 1024 × 192 × 256 9 0.5–3.3 3
4 0.4 4πδ × 2δ × 4πδ/3 256 × 192 × 256 9 0.5–3.3 3
5 0.4 4πδ × 2δ × 4πδ/3 384 × 288 × 384 6 0.33–2.2 2

Table 1. Simulation Mach numbers, domain and grid sizes, and grid spacings in wall units.

the mean pressure gradient. However, as they noted, their results were not entirely free of
spurious sound from computational boundaries. Artificial noise from numerical boundary
conditions is a major obstacle to the study of boundary-layer acoustics, and the problem
becomes increasingly severe with decreasing Mach number. Note that at Mach 0.5, the
separation between convective and acoustic wavenumbers is limited to a factor of two in
Gloerfelt & Berland (2013) and Cohen & Gloerfelt (2018).

In the present study, wall-pressure fluctuations are investigated in a plane channel using
compressible DNS. With periodic boundary conditions, channel flow provides a clean
configuration free of artificial boundary noise, thus facilitating direct computation of
flow-generated acoustics at low Mach numbers. This is, to the authors’ knowledge, the
first set of DNS that quantifies the acoustic contributions to wall-pressure fluctuations in
subsonic channel flow and their Mach number dependence. Simulations are performed at
friction Reynolds number 180 for bulk Mach numbers 0.4, 0.2 and 0.1, which provide
increasingly larger scale separations between the convective and acoustic ridges up to
an unprecedented factor of ten. In addition to longitudinal acoustic waves, the present
channel-flow simulations also allow an investigation of the obliquely propagating acoustic
waves corresponding to various duct modes, and demonstrate the ability of DNS to capture
them.

2. Numerical procedure

Turbulent flows in a plane channel are computed using an in-house-developed DNS code
that solves the three-dimensional, compressible Navier–Stokes equations in conservative
form along with the continuity equation and the equation of state for a calorically perfect
gas. The spatial discretization of the inviscid fluxes is based on the locally conservative,
non-dissipative finite-difference scheme of Pirozzoli (2010) to ensure numerical stability
without introducing artificial dissipation. The viscous fluxes are discretized based on the
scheme of Sun et al. (2011) to avoid odd–even decoupling. Sixth-order central differencing
is employed except for the wall-normal derivatives at the wall and the first and second
off-wall points, where fourth-order one-sided, one-side-biased and central differences are
used, respectively. The standard fourth-order Runge–Kutta method is adopted for time
integration.

A total of five simulations are carried out as summarized in table 1 in terms of the bulk
Mach number Mb, computational domain size, number of grid points, and grid spacings
in wall units. The main simulations for Mb = 0.4, 0.2 and 0.1 (cases 1–3) are conducted
in a computational domain of size 16πδ × 2δ × 4πδ/3, where δ is the half-channel width,
using 1024 × 192 × 256 grid points. The grid resolution, with �x+

1 = 9, �x+
3 = 3 and

�x+
2 ranging from 0.5 at the wall to 3.3 at the channel centre (�x2/η from 0.5 to

0.8 in terms of the local Kolmogorov length η), compares favourably with resolutions
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Figure 2. Comparisons of (a) mean velocity profiles and (b) root mean square (rms) of velocity fluctuations at
the three Mach numbers with previous DNS results: blue dotted line, Mb = 0.4; green dashed line, Mb = 0.2;
red solid line, Mb = 0.1; black dash-dotted line, Kim, Moin & Moser (1987); orange dash-dot-dot line, Modesti
& Pirozzoli (2016).

in the literature. For Mb = 0.4, two additional simulations are conducted in a shorter
domain with L1 = 4πδ (cases 4 and 5) and with a 50 % grid refinement in each direction
(case 5) to examine the domain-length and grid resolution effects. While L1 = 4πδ is
commonly used in earlier channel-flow simulations, it is rather restrictive for the long
acoustic waves, thus the longer domain with L1 = 16πδ is used as the baseline. The
results discussed below are from cases 1–3 unless stated otherwise. In all cases, the
friction Reynolds number is Reτ = 180 and the Prandtl number is Pr = 0.72. No-slip
and isothermal boundary conditions are imposed on the walls, and periodic boundary
conditions are imposed in the streamwise and spanwise directions. The initial field consists
of a parabolic streamwise-velocity profile with random perturbations and uniform density
and temperature. Simulations are conducted with �t = 0.005δ/c, where c is the speed of
sound at the wall temperature, corresponding to a CFL limit of 1.8. Statistics are computed
based on sampling period 250 δ/Ub, or approximately five flow-through times for the long
domain, after the flow has become fully developed, which takes approximately twenty
flow-through times starting from the initial field.

The accuracy of the velocity statistics is demonstrated in figure 2 in comparison with
those from the incompressible DNS of Kim et al. (1987) using a spectral method, and
the DNS of Modesti & Pirozzoli (2016) at Mb = 0.1 using a numerical scheme similar
to the present one. The two reference simulations were performed in shorter domains,
with a focus on flow but not acoustic quantities. Both the mean velocity and turbulence
intensity profiles, normalized by the friction velocity uτ , agree well with the previous
incompressible and nearly incompressible results because the compressibility effect is
small even at the largest Mach number, 0.4, and the agreement is notably better as the
bulk Mach number decreases. When the mean velocity is van Driest transformed (not
shown), the curves become hardly discernible from one another. The flow is found to be
nearly isothermal, with mean-temperature (sound-speed) variations across the channel not
exceeding 2.8 % (1.4 %) relative to the wall value for Mb = 0.4, and much smaller for
Mb = 0.2 and 0.1.

To analyse the spectral features of wall-pressure fluctuations, the time series of the
fluctuating wall pressure, p(x1, x3, t), is first discrete-Fourier-transformed into p̂(k1, k3, ω),
and the two-dimensional (2-D) wavenumber–frequency spectrum is calculated as
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Figure 3. Streamwise wavenumber–frequency spectrum of wall-pressure fluctuations. (a) Isocontours of
φpp(k1, ω)/(ρ2

b U3
bδ2) for Mb = 0.4. (b) Plot of φpp(k1, ω) versus k1 at selected frequencies for three Mach

numbers: dotted lines, Mb = 0.4; dashed lines, Mb = 0.2; solid lines, Mb = 0.1.

Φpp(k1, k3, ω) = 〈p̂(k1, k3, ω) p̂∗(k1, k3, ω)〉/(L1L3T), where T is the sample period, and
〈 · 〉 denotes averaging over temporal samples. To obtain statistically converged spectra,
the data time series is divided into multiple temporal samples with a 50 % overlap, each
corresponding to one flow-through time. A Hanning window is applied to each time
segment, and the Fourier-transformed data are then multiplied by

√
8/3 to compensate

for the energy loss caused by windowing.
From the 2-D wavenumber–frequency spectrum, the one-dimensional (1-D) streamwise

wavenumber–frequency spectrum can be calculated as φpp(k1, ω) = ∫
Φpp(k1, k3, ω) dk3.

Both the 2-D and 1-D wavenumber–frequency spectra are examined in this paper. In
particular, the 2-D spectrum at the zeroth spanwise wavenumber, Φpp(k1, k3 = 0, ω), is of
fundamental importance. The frequency spectrum and streamwise wavenumber spectrum
can be calculated by integrating φpp(k1, ω) over k1 and ω, respectively.

3. Results and discussion

3.1. One-dimensional wavenumber–frequency spectra
Isocontours of the streamwise wavenumber–frequency spectrum, φpp(k1, ω)/(ρ2

bU3
bδ2),

where ρb is the bulk density, and Ub the bulk velocity, are shown in figure 3(a) for
Mb = 0.4. The corresponding contours for the Mb = 0.2 and 0.1 cases are visually the
same. The spectral contours are dominated by the right-tilting convective ridge while no
acoustic ridges can be found, indicating that the acoustic contribution is too weak to be
delineated in the 1-D spectrum. The dashed line in the figure represents the approximate
location of the peak of the convective ridge given by ω/k1 = Uc, where Uc is the overall
convection velocity defined as the value of u that maximizes

∫
φpp(k1, uk1) dk1 (Choi &

Moin 1990). In the present case, Uc ≈ 0.88Ub. Note that more precisely, the convection
velocity depends on k1 and ω, thus the precise spectral peak may deviate slightly from the
straight line in figure 3(a).

To provide a more quantitative view of the spectrum, its values at six selected
frequencies are shown in figure 3(b) as a function of k1 for all three Mach numbers. The
effect of Mach number is very small, and there are no acoustic peaks except at the very
low frequency of ωδ/Ub = 1, suggesting that the acoustic energy is generally weaker than
the hydrodynamic energy even at sonic and supersonic wavenumbers. As expected, the
hydrodynamic energy is not much affected by the flow Mach number.
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Figure 4. Spectral comparisons with the incompressible results of Choi & Moin (1990). (a) Streamwise
wavenumber spectrum, (b) streamwise wavenumber–frequency spectrum at ωδ/uτ = 262, for: blue dotted line,
Mb = 0.4; green dashed line, Mb = 0.2; red solid line, Mb = 0.1; black dash-dotted line, Choi & Moin (1990);
purple dash-dot-dot line, −1 slope; orange dash-dot-dot line, −5 slope.

To validate the simulation method and evaluate the compressibility effect on the
wall-pressure spectra, the present results are compared with the incompressible DNS
results of Choi & Moin (1990). Figure 4(a) shows a comparison of the dimensionless
streamwise wavenumber spectra φpp(k1)/(ρ

2
bu4

τ δ). The compressible DNS results match
well the incompressible spectrum. The latter was computed in a shorter domain, L1 = 4πδ,
and was therefore unable to capture the lowest two wavenumbers in the present study.
Similar agreement is observed between the compressible and incompressible frequency
spectra, which closely resemble the streamwise wavenumber spectra because the two are
known to satisfy Taylor’s hypothesis (Choi & Moin 1990).

Figure 4(b) compares the streamwise wavenumber–frequency spectra
φpp(k1, ω)/(ρ2

bu3
τ δ

2) with the result of Choi & Moin (1990) at frequency ωδ/uτ = 262
(ωδ/Ub = 16.5). The compressibility effect is small although discernible, and no acoustic
peaks are present. The convective peaks from all cases are in general agreement, and
with decreasing Mach number, they approach the incompressible result of Choi & Moin
(1990). However, their spectral curve exhibits a secondary peak at the low-wavenumber
end, which they termed ‘artificial acoustics’ since the incompressible simulation could
not possibly capture real acoustics. Similar low-wavenumber peaks were also observed in
other incompressible studies (e.g. Singer 1996; Yang & Yang 2022). The spectra from the
present compressible DNS are free of such a secondary peak, suggesting that the ones
observed in the literature are indeed numerical artefacts. Additionally, the spectra from
compressible simulations decay rapidly with wavenumber at subconvective wavenumbers,
whereas the incompressible spectrum flattens out at a significant level, which is likely also
a numerical artefact.

3.2. Two-dimensional wavenumber–frequency spectra
Of all wavenumbers, the zeroth spanwise wavenumber of the 2-D wavenumber–frequency
spectrum of wall-pressure fluctuations is of particular importance as it corresponds to
disturbances travelling along the channel. Isocontours of Φpp(k1, k3 = 0, ω)/(ρ2

bU3
bδ3) for

the three Mach numbers are shown in figure 5, where figures 5(d– f ) are close-up views of
figures 5(a–c) at lower wavenumbers and frequencies. In addition to the convective ridge as
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Figure 5. Contours of Φpp(k1, k3 = 0, ω)/(ρ2
b U3

bδ3) for three different Mach numbers: (a,d) Mb = 0.4,
(b,e) Mb = 0.2, (c, f ) Mb = 0.1. Here, (d– f ) are close-up views of (a–c) in lower wavenumber–frequency
ranges. The dotted lines represent the nth duct acoustic modes predicted by theory, and the dash-dotted line
represents the locus of cut-on frequencies for the duct modes.

in the 1-D spectrum in figure 3(a), distinct acoustic ridges corresponding to various duct
modes in the plane-channel flow (Wang & Kassoy 1992; Rienstra & Hirschberg 2004)
are identified, as can be seen most clearly in figures 5(d– f ). For sound propagation in a
2-D duct with a uniform flow of Mach number Mb, the duct modes satisfy (Rienstra &
Hirschberg 2004)

k1

ka
= −Mb ± √

1 − β2q2
n

β2 , (3.1)

where ka = ω/c is the acoustic wavenumber in the absence of flow, β =
√

1 − M2
b is

the Prandtl–Glauert parameter, and qn = nπc/(2ωδ). The theoretical predictions of the
duct modes for different mode numbers n are depicted in figures 5(d– f ) as dotted lines.
They coincide with the thin ridges outside of the convective ridge, confirming the acoustic
nature of these ridges. A closer inspection of the acoustic ridges reveals that energy is
concentrated at discrete wavenumbers because the periodic boundary condition imposed
over the finite domain length can accommodate k1δ = 2πmδ/L1 (= m/8 for the long
domain) only for m from −N1/2 to N1/2.

At n = 0, the theoretical phase speeds from (3.1) reduce to ω/k1 = Ub ± c. They are
represented by the two straight dotted-lines in figures 5(a– f ) and define the supersonic
wavenumber range in between. The acoustic ridges along these two lines correspond
to the longitudinal waves propagating in the downstream (rightward) and upstream
(leftward) directions. The length-scale (wavenumber) separation between the acoustic and
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Figure 6. Wall-pressure spectrum Φpp(k1, k3 = 0, ω) versus streamwise wavenumber k1 at six selected
frequencies for three different Mach numbers: dotted lines, Mb = 0.4; dashed lines, Mb = 0.2; solid lines,
Mb = 0.1. The symbols indicate the theoretical longitudinal acoustic wavenumbers: �, Mb = 0.4; ◦, Mb = 0.2;
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convective ridges grows with decreasing Mach number, resulting in an increasingly smaller
supersonic region. The wall-pressure spectral peaks associated with the downstream
propagating waves are stronger than those associated with upstream propagating waves,
especially at higher Mach numbers. The same trend was observed in the boundary-layer
studies of Gloerfelt & Berland (2013) and Cohen & Gloerfelt (2018). This is likely due
to refraction by the mean-velocity gradient, which channels acoustic energy towards the
wall for downstream propagating waves, and away from the wall for upstream propagating
waves (Wang & Kassoy 1992). Theory predicts that the refraction effect increases with
frequency and mean flow Mach number. Both trends are exhibited in the numerical results.

The n > 0 modes, corresponding to the curved acoustic ridges in the supersonic
wavenumber range, represent the oblique acoustic waves that are reflected repeatedly from
the channel walls as they propagate upstream or downstream. The number of oblique
modes increases with frequency, and at a given frequency, with the flow Mach number. The
cut-on frequency for the nth mode is the bottom of the curved ridge. Its value, obtained
by setting the radical in (3.1) to zero, is ωδ/Ub = (nπ/2)(1/M2

b − 1)1/2. The locus of
cut-on frequencies for the various duct modes is indicated in the figure by the dash-dotted
lines, which separate the upstream and downstream propagating oblique waves. As the flow
Mach number decreases, the acoustic ridges at low frequencies become less pronounced
but remain identifiable even at Mb = 0.1. At high frequencies (ωδ/Ub � 20), propagating
acoustic waves can no longer be identified, but there is a broader rise in spectral level
around the sonic lines, particularly the downstream propagating one, forming broader
ridges as illustrated in figures 5(a–c). Interestingly, these ridges are more prominent at
lower Mach numbers.

In figure 6, Φpp(k1, k3 = 0, ω) is plotted against k1 at six distinct frequencies for the
three Mach numbers. The symbols on the spectral curves correspond to the expected
wavenumbers of the upstream and downstream propagating longitudinal waves, k1 =
ω/(Ub ± c). They are in close agreement with the computed peak wavenumbers of
the longitudinal waves. Additional peaks corresponding to oblique waves can be seen
between the two longitudinal-wave peaks at higher Mach numbers and frequencies,
when the frequency exceeds their cut-on frequencies. This figure also demonstrates
quantitatively that the wall-pressure spectrum outside the supersonic wavenumber range
is virtually independent of the flow Mach number. The pressure spectra in the positive
k1 range are replotted in figure 7(a) on a log-log scale to allow a closer examination
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Figure 7. Wall-pressure spectrum Φpp(k1, k3 = 0, ω) versus positive streamwise wavenumber k1 at six
selected frequencies with two different normalizations: (a) same as in figure 6; (b) normalization based on
frequency spectrum φpp(ω) and convective wavenumber kc(ω). The different lines represent: dotted lines,
Mb = 0.4; dashed lines, Mb = 0.2; solid lines, Mb = 0.1. The symbol on each curve corresponds to the
theoretical acoustic wavenumber of the downstream propagating longitudinal wave.
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Figure 8. Contours of Φpp(k1, k3, ω)/(ρ2
b U3

bδ3) at the first three non-zero spanwise wavenumbers for the
Mb = 0.4 case: (a) k3δ = 1.5, (b) k3δ = 3, (c) k3δ = 4.5.

of their low-wavenumber behaviour. It shows that the spectral level of the longitudinal
acoustic peak decreases with flow Mach number, and the difference becomes smaller
with increasing frequency. At high frequencies, no discernible acoustic peaks exist, and
the broadband spectral level in the subconvective range becomes higher at lower Mach
numbers, as seen previously in the spectral contours in figure 5. In figure 7(b), the
same spectral curves are rescaled such that the spectral level is normalized based on
the frequency spectrum φpp(ω), and k1 is normalized by the convective wavenumber
kc(ω), defined as the peak wavenumber of φpp(k1, ω). This scaling is seen to collapse
the convective peaks for ωδ/Ub ≥ 10, and align the longitudinal acoustic wavenumbers
at various frequencies for a given Mach number. The increasing length-scale separation
between the hydrodynamic and acoustic motions with decreasing Mach number is
highlighted by the decreasing k1/kc value of the acoustic peaks.

In addition to the zeroth spanwise wavenumber, isocontours of Φpp(k1, k3, ω) at the
first three non-zero spanwise wavenumbers, k3δ = 1.5, 3 and 4.5, are shown in figure 8
in the low streamwise wavenumber range for the Mb = 0.4 case. Distinct acoustic ridges
are observed clearly. They are associated with propagating waves that are oblique relative
to both wall-normal and spanwise directions, with higher cut-on frequencies and slower
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Figure 9. Contours of Φpp(k1, k3, ω)/(ρ2
b U3

bδ3) at three selected frequencies for the Mb = 0.4 case:
(a) ωδ/Ub = 5, (b) ωδ/Ub = 10, (c) ωδ/Ub = 15. The dotted ellipse represents the theoretical boundary of
the supersonic wavenumber region.

propagation speeds in the streamwise direction compared to the corresponding zeroth
spanwise modes (cf. figure 5d). The acoustic energy decays with increasing spanwise
wavenumber. It is worth noting that the convective ridge is relatively unchanged within
the spanwise wavenumber range plotted. The Mb = 0.2 and 0.1 cases exhibit the same
qualitative behaviour for Φpp(k1, k3, ω) but with fewer acoustic ridges (1/2 and 1/4 of the
Mb = 0.4 value), and are omitted here for brevity.

Figure 9 shows contours of Φpp(k1, k3, ω) in the k1–k3 plane at three frequencies,
ωδ/Ub = 5, 10 and 15, for the Mb = 0.4 case. The convective ridge is elongated and
slow-varying with respect to the spanwise wavenumber, which explains its relative
invariance exhibited in figure 8. The dotted ellipse in each plot indicates the theoretical
boundary of the supersonic wavenumber region defined by (Gloerfelt & Berland 2013):

(k1 + Mbka/β
2)2

(ka/β2)2 + k2
3

(ka/β)2 = 1. (3.2)

As can be observed, the supersonic region is very small and hardly separated from the
convective ridge at low frequencies. It grows in area and becomes more distant from the
convective ridge as frequency increases, and multiple acoustic modes appear within the
supersonic region. The modes along the ellipse represent waves propagating parallel to
the wall, whereas those inside the ellipse represent waves oblique to the wall. Note that
the low-wavenumber resolution of the numerical simulation is significantly lower in the
spanwise direction relative to the streamwise direction because L3 is much smaller than
L1. Ideally, an equally large L3 would be used to provide equal wavenumber resolution
in both directions and thereby a better description of the acoustic cone. Nonetheless, the
present results provide a meaningful estimate of the significance of the acoustic region in
the subconvective wall-pressure spectra, particularly for the zeroth spanwise wavenumber
component.

As a measure of the energy contained within the acoustic region, the wavenumber–
frequency spectra of the fluctuating wall-pressure for the three Mach number cases are
integrated over the supersonic wavenumbers and compared in figure 10. Figure 10(a)
depicts the integrated 2-D spectra, φpp,sup(ω) = ∫

supersonic Φpp(k1, k3, ω) dk1 dk3, which
are related to acoustic waves in all directions. Figure 10(b) shows the spectra for
the zeroth spanwise wavenumber integrated over supersonic streamwise wavenumbers,
φpp,sup(ω, k3 = 0) = ∫

supersonic Φpp(k1, k3 = 0, ω) dk1, pertaining to waves propagating in
the x1–x2 directions only. For each Mach number, the vertical dash-dotted line of the same
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Figure 10. Wall-pressure spectra integrated over the supersonic wavenumber range for (a) fully 2-D spectrum,
and (b) 2-D spectrum at zeroth spanwise wavenumber, for the three Mach numbers: blue dotted line, Mb = 0.4;
green dashed line, Mb = 0.2; red solid line, Mb = 0.1. The vertical dash-dotted lines represent the theoretical
cut-on frequencies of the first oblique mode for the three Mach numbers.

colour denotes the theoretical cut-on frequency of the first oblique mode. It is observed that
the onset of the first oblique duct mode drastically amplifies the energy level, whereas the
onset of subsequent oblique modes is hardly noticeable. The oscillations with frequency
exhibited by the curves stem from the discrete acoustic wavelengths accommodated by the
finite computational domain, as discussed previously. Despite the oscillations, which are
most prominent prior to the onset of oblique modes, and somewhat obfuscate the relative
magnitudes among the curves, it can be recognized that at lower frequencies, the energy in
the acoustic region decreases with flow Mach number, and the difference is magnified by
the earlier onset of oblique waves at higher Mach numbers. However, this trend reverses at
higher frequencies (ωδ/Ub � 22 for φpp,sup(ω), and ωδ/Ub � 19 for φpp,sup(ω, k3 = 0)),
as also observed earlier in figures 5–7. Relative to the total energy in figure 10(a),
the energy associated with k3 = 0 waves exhibits weaker Mach number dependence at
lower frequencies and a more pronounced trend reversal at higher frequencies. When
the spectra in figures 10(a,b) are normalized by their respective spectra integrated over
all wavenumbers, the results show that the energy in the supersonic wavenumber range
as a fraction of the total energy (dominated by hydrodynamics) is smallest in the
mid-frequency range and rises at higher frequencies, as the convective ridge weakens faster
with frequency than the acoustic ridges. It should be noted that the pressure fluctuations
in the supersonic wavenumber range are not purely acoustic; the hydrodynamic motions
of the fluid also make broadband contributions to these wavenumbers. Since the entire
channel is both the acoustic source field and the medium of propagation, a separation of
acoustic waves from their source processes is a challenge that warrants future investigation.

3.3. Grid and domain-size effects
The grid resolution employed in the present DNS is comparable to those of various
previous DNS studies in the literature. Nevertheless, since the earlier studies were focused
on hydrodynamics only, a grid-convergence study is conducted to assess the accuracy
of the acoustic component of wall-pressure fluctuations. Two additional simulations
are carried out for Mb = 0.4 in a shorter domain on the original and refined grids,
cases 4 and 5 respectively, in table 1, and the results are compared in figure 11(a) in
terms of Φpp(k1, k3 = 0, ω) at selected frequencies. Although small discrepancies are
seen at high wavenumbers, both convective and acoustic peaks are grid-converged at
dimensionless spectral levels above 10−17, for over an eleven-decade range. The shorter
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Figure 11. Wall-pressure spectrum Φpp(k1, k3 = 0, ω) versus streamwise wavenumber k1 at selected
frequencies for Mb = 0.4. (a) Grid-refinement comparison: solid line, original grid; dashed line, refined grid.
(b) Domain-length comparison: solid line, L1 = 16πδ; dashed line, L1 = 4πδ.

domain simulation on the original grid also allows an evaluation of the domain-size effect
by comparing Φpp(k1, k3 = 0, ω) obtained from the two domains, cases 1 and 4 in table 1.
The results, shown in figure 11(b), indicate that even with a factor of 4 difference in domain
length, the acoustic peaks are consistent except at near-zero wavenumbers, where they are
better resolved by the long domain, as expected.

Statistical convergence of the wall-pressure spectra is verified through comparisons of
results with different sampling times. To double-check independence of the spectra on
initial disturbances, which is particularly important given the non-dissipative numerical
scheme employed, the Mb = 0.2 simulation (case 2) is repeated with two different initial
fields: a fully-developed Mb = 0.4 field, and a fully-developed Mb = 0.1 field. The results
are virtually identical and agree with that produced by the simulation with random initial
disturbances.

4. Conclusion

Wall-pressure fluctuations induced by turbulent channel flow are investigated using
compressible DNS at three bulk Mach numbers, Mb = 0.4, 0.2 and 0.1, and friction
Reynolds number 180, with a focus on the spectral behaviour at subconvective
wavenumbers. The results, for the first time to the authors’ knowledge, capture
contributions from the propagating acoustic waves including longitudinal and oblique
duct modes. The three Mach numbers considered allow increasingly larger separations
between hydrodynamic and acoustic length scales. While the acoustic contributions are
nearly invisible in the 1-D streamwise wavenumber–frequency spectrum, they are clearly
identified in the 2-D wavenumber–frequency spectrum. The acoustic ridges are orders
of magnitude weaker than the convective ridge and decay with the flow Mach number
in the lower frequency range, but remain distinctly identifiable even at Mb = 0.1. The
longitudinal and oblique acoustic modes compare well with the theoretical predictions
of 2-D duct modes with a uniform mean flow. At higher frequencies, propagating
acoustic waves are diminished, but the spectral level is broadly elevated in the supersonic
wavenumber range, and its variation with Mach number is reversed.

The 1-D streamwise wavenumber–frequency spectra of the fluctuating wall pressure are
little affected by the compressibility effect and agree well with previous incompressible
DNS results in the convective wavenumber range. They exhibit lower subconvective
spectral levels and are free of the ‘artificial acoustics’ peak observed in the incompressible
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solutions, confirming that the latter is indeed a numerical artefact. It is worth pointing
out that although the present study indicates very low acoustic energy overall relative to
the hydrodynamic energy in a plane channel, small surface inhomogeneities can cause a
drastic increase in acoustic power in real-world applications through acoustic diffraction
and turbulence generation (Ji & Wang 2010; Yang & Wang 2013; Devenport et al. 2018).
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