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Adipose-derived stromal cells for
osteoarticular repair: trophic function
versus stem cell activity

M. Ruetze and W. Richter*

The identification of multipotent adipose-derived stromal cells (ASC) has raised
hope that tissue regeneration approaches established with bone-marrow-
derived stromal cells (BMSC) can be reproduced with a cell-type that is far
more accessible in large quantities. Recent detailed comparisons, however,
revealed subtle functional differences between ASC and BMSC, stressing the
concept of a common mesenchymal progenitor existing in a perivascular niche
across all tissues. Focussing on bone and cartilage repair, this review
summarises recent in vitro and in vivo studies aiming towards tissue
regeneration with ASC. Advantages of good accessibility, high yield and
superior growth properties are counterbalanced by an inferiority of ASC to
form ectopic bone and stimulate long-bone healing along with their less
pronounced osteogenic and angiogenic gene expression signature. Hence,
particular emphasis is placed on establishing whether stem cell activity of ASC
is so far proven and relevant for successful osteochondral regeneration, or
whether trophic activity may largely determine therapeutic outcome.

Introduction
Established strategies for cartilage and bone repair,
such as autologous chondrocyte transplantation
(ACT) (Ref. 1) and bone grafting (Ref. 2),
have reached broad clinical application and
yield satisfactory results due to continuous
improvement. These therapies, however, require
the excision of healthy tissue from a nonlesioned
site, necessarily incorporating the disadvantages
of additional medical procedures, donor site
morbidity and further rehabilitative burden on the
patient (Ref. 3). Repair strategies that are based on

autologous bone-marrow-derived stromal cells
(BMSC) do not circumvent these problems, but
harvesting bone marrow from the iliac crest is
generally judged as less invasive (Ref. 4). The
discovery that multipotent stromal cells can be
isolated from lipoaspirates (Ref. 5) and that the
number of adherent cells in an equal volume of
adipose tissue exceeds the content of bone
marrow aspirate by about 300-fold (Refs 6, 7, 8)
challenged the assumption that bone marrow
would be the most appropriate source for cell-
based therapies of skeletal injuries and diseases.
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In order to verify whether adipose-derived
stromal cells (ASC) represent an easily accessible

cell type that may substitute for BMSC
completely in cell-based approaches for
osteochondral ~ regeneration,  they  were

characterised in terms of in vitro performance
(Refs 9, 10), in vivo localisation (Refs 11, 12) and
their ability to differentiate into various
mesenchymal cell types (Refs 13, 14, 15, 16).
This review summarises current knowledge of
ASC and BMSC plasticity and in vivo function,
describing similarities and differences between
both cell types that have been determined upon
expansion. Furthermore, an overview is provided
on osteoarticular regenerative approaches that
have thus far been conducted using ASC. In
summary, data on ASC-based osteoarticular
repair strategies indicate that ASC do not
possess intrinsic osteochondral potential, such as
BMSC, but require reprogramming for in vivo
development towards the osteochondral lineage.
These observations stress the concept of
equivalent mesenchymal progenitors in bone
marrow and adipose tissue (Ref. 8). In view of a
long list of successful experimental intervention
studies in distinct models, trophic functions of
ASC may be more relevant than stem cell
potential in mediating osteoarticular repair.

Stemness of BMSC and ASC

Criteria for stem cell definition

Thus far absent from the literature is a
comprehensive, general convention that defines
intrinsic properties for stem cells of any given
tissue (Ref. 17). From a functional point of view, a
well-accepted interpretation would be that a
single stem cell possesses the capacity to build
up a physiological, multicellular tissue that is
capable of autonomous regeneration in vivo.
Specific cellular functions such as asymmetric
cell division, prolonged self-renewal and
differentiation capacities are needed to fulfil this
requirement. Most importantly, in vitro detection
of these properties in a particular cell type alone,
however, does not necessarily prove stemness. It
is self-explanatory that a stem cell only deserves
this designation if the observed fundamental
capacities represent intrinsic features of the native
cell in vivo, rather than being achieved by
artificial treatments or molecular reprogramming.
These stringent criteria for stem cell definition
(Ref. 18) are met by haematopoietic stem cells
(HSC), which reconstitute bone marrow when

clonally derived HSC are transplanted into
lethally irradiated mice (Ref. 19). In the context of
osteoarticular repair, BMSC are so far the only
entity representing skeletal stem cells, according
to this stringent definition. Sacchetti et al.
established that clonal BMSC populations are
self-renewing and can form an ectopic bone
organ after subcutaneous transplantation into
immunocompromised mice (Ref. 20). This
result was further refined by Chan et al. by
demonstrating the formation of multicellular bone
tissue at other ectopic sites and by unravelling
routes of differentiation from a discrete
progenitor subpopulation to cell types that either
contribute to bone, cartilage or haematopoiesis-
supportive stroma within the new bone organ
(Ref. 21). Besides BMSC and HSC, a plethora of
other cell types is commonly designated as stem
cells, although evidence for clonal in vivo organ
formation without pre-induction is missing. This
circumstance also holds true for ASC that,
nevertheless, are often referred to as adipose-
derived mesenchymal stem cells, despite the fact that
the capacity of a single ASC to build up a
functional mesenchymal tissue has not been
shown to date. Thus, the idea of universal
mesenchymal stem cells in a perivascular niche
(Ref. 22) with an intrinsic capacity to build up
and maintain multiple mesenchymal tissues
(Ref. 8) by a common mesengenic in vivo process
is still an unconfirmed hypothesis. Conclusively,
BMSC are the only perivascular cells with proven
skeletal stem cell characteristics.

Lack of evidence for stem cell characteristics
of ASC

Current data do not exclude that ASC may
possess stem cell characteristics, according to
the stringent criteria outlined above, and results
are encouraging that future experiments
may support adipose tissue-specific stem cell
properties. In vitro characterisation of isolated
ASC demonstrated extensive proliferative
potential (Ref. 5). The application of standard in
vitro differentiation protocols to ASC reflected
possession of osteogenic, adipogenic and
chondrogenic differentiation capacity (Ref. 5),
although the physiological relevance of these
assays has been questioned (Ref. 18). Notably,
clonal analyses revealed that >2% of cells within
expanded ASC cultures exhibit tri-lineage
potential in vitro, indicating that typical
isolation protocols lead only to a small fraction
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of ASC with in vitro multilineage potential after
artificial treatment (Ref. 10).

Like the most mesenchymal cells (Ref. 23), ASC
express a cell surface marker profile that is
comparable to BMSC (Refs 9, 24), fulfilling all
requirements that have been suggested as the
minimal criteria for defining multipotent
mesenchymal stromal cells (Ref. 25). Although
most mesenchymal cells also meet these
standards (Refs 23, 26), a functional equivalence
of ASC and BMSC was construed from this
classification and subsequent studies focussed
on the question of whether ASC exhibit
analogous cartilage and bone regeneration
capacities. For this purpose, ASC were directly
tested for their application to osteochondral in
vivo repair approaches; however, the question
whether ASC are skeletal stem cells functionally
equivalent to BMSC attracted little interest.

From a retrospective point of view, it seems
inconsistent that ASC were first assessed for their
cartilage and bone regeneration potential before
their capacity to build up and maintain a
physiological adipose tissue environment was
investigated. ~Although in vitro engineered
adipose tissue would have a promising potential
for surgical soft tissue reconstruction (Ref. 27),
strategies using ASC for that purpose are instead
clearly outnumbered by approaches that use (pre-
)adipocytes (Refs 28, 29, 30, 31) or even BMSC
(Refs 32, 33, 34). Beside studies that address in
vitro engineering of adipose tissue from ASC
(Ref. 35), ASC were seeded in fibrin (Ref. 36),
alginate (Ref. 37) or collagen scaffolds (Ref. 38)
and subjected to an adipogenic pre-induction
protocol prior to subcutaneous implantation. As
expected after pre-induction, in vivo adipose
tissue formation was reported in these studies.
Evidence that transplanted clonal ASC can
generate adipose tissue in vivo without such a
pre-induction is still missing, but such a
demonstration would not only be encouraging for
their use in adipose tissue engineering but would
also further clarify if ASC may indeed represent
tissue-specific stem cells distinct from BMSC.

In vitro characteristics of expanded ASC
and BMSC

Similar morphological features but

different growth behaviour

A thorough review of the literature on in vitro

performance of culture-expanded ASC and

BMSC reveals strong similarities between

stromal cells of both sources, factually
overweighing the differences. For instance, no
morphological differences were reported to date,
and the same spindle-shaped phenotype was
frequently described (Refs 39, 40, 41). Upon
isolation, adherent human and mouse ASC seem
to exhibita higher proliferation rate (Refs 41, 42, 43,
44, 45), but equal growth behaviour compared to
BMSC has also been reported (Refs 40, 46). In an
extended comparison of growth Kkinetics,
Dmitrieva et al. included the fact that the
amount of colony-forming cells in the adipose-
derived stromal vascular fraction (SVF) exceeds
that of the bone marrow nucleated fraction (BM-
NC) by at least two orders of magnitude
(Refs 42, 43, 47). This leads to the result that
ASC underwent significantly less population
doublings up to the first passage, even if, as
usual, more primary BM-NC were initially
plated. It could therefore be speculated that
signs of senescence only occur later in ASC
(Ref. 43) because BMSC underwent more cell
divisions in the same passage number. However,
Dmitrieva et al. showed that ASC indeed possess
extended proliferative potential, since more
population doublings were observed before cells
acquired a senescent phenotype (Ref. 42).

Dissimilar expression of cell surface
markers CD106, CD146 and CD34

Extensive analyses have been conducted to map
differences between cultured ASC and BMSC
with regard to surface marker expression,
leading to a reliable picture in which markers
distinguish expanded stromal cells of both
sources. Again, it is striking that, despite the
application of large panels of antibodies
(Refs 48, 49, 50), just a few CD markers are
differently expressed between ASC and BMSC.
Multiple reports describe higher expression of
CD106 in BMSC (Refs 40, 43, 47, 48, 50, 51, 52,
53), whereas there exist some studies in which
no difference was detected (Refs 49, 54).
Analogous data exist for CD146, a cell surface
marker of pericytes (Ref. 55) that has been used
to enrich for multipotent cells (Refs 56, 57) and
to identify the localisation of multipotent
stromal cells in various tissues (Refs 12, 20, 22,
58). Adherent stromal cells from bone marrow
and adipose tissue both contain a CD146-
positive population, but this fraction is about
twofold larger in early passage BMSC (Refs 42,
50, 53, 59).
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By means of a quality control check that is
commonly performed at the beginning of
studies, ASC were frequently analysed for
CD34-negativity, since the absence of this
marker is a prerequisite to meet the minimal
criteria for multipotent mesenchymal stromal
cells (Refs 25, 47). However, several reports that
dealt with a comparison of ASC and BMSC
described that adherent ASC included a
substantial CD34-positive fraction, whereas
BMSC that were analysed in parallel were
completely CD34-negative (Refs 48, 50, 52, 60,
61). In these studies, the selection of adherent
cells from the adipose tissue-derived SVF at first
led to a twofold enrichment of CD34-positive
cells (Ref. 61), followed by a gradual decrease in
subsequent passages (Ref. 24). Nevertheless, a
considerable number of CD34-positive cells was
still detected in passage 4 (Refs 48, 52), and
Yoshimura et al. even described that after 20
weeks of cultivation, almost 20% of the ASC
population was still CD34-positive. These
inconsistent data on CD34 expression in ASC
cultures may simply reflect that, depending on
tissue source and isolation protocol, CD34-
positive endothelial cells were occasionally
included in primary isolates and gradually
disappeared with culture time, due to
unfavoured growth conditions. It remains to be
determined, however, if this hypothesis or
the choice of an antibody of the appropriate
subclass (Ref. 47) accounts for the conflicting
results. In any case, the general absence of CD34
in BMSC cultures represents another noticeable
difference compared to ASC preparations.

Compared to the CD markers that were
discussed above, considerably less experimental
data indicate differential expression of CD10
(Ref. 47), CD133 (Ref. 40), CD54 (Ref. 48), HLA-
ABC (Ref. 53) and CD49d/f (Refs 48, 50)
between BMSC and ASC. In summary, the most
substantiated differences regarding cell surface
proteins are lower expression levels of CD106
(VCAM-1) and CD146 (MCAM) in ASC versus
BMSC, both of which point to a less angiogenic
signature of ASC that reoccurs in their gene
expression profile as discussed below.

Reduced osteogenic gene expression
signature in ASC

In terms of global gene and protein expression
profiling, comparisons using cDNA microarrays
and two-dimensional electrophoresis revealed

high consistencies between multiclonal ASC and
BMSC cultures (Refs 52, 62, 63). Nevertheless,
hierarchical clustering of protein and gene
expression data allowed for a separation of ASC
and BMSC specimen, possibly due to the
observation that Wnt-signalling-associated genes
are more abundant in BMSC (Ref. 52). Increased
expression levels of genes that are associated
with osteogenesis were detected in BMSC
(Refs 62, 64), arguing for a higher degree of
osteochondral commitment (Ref. 59). A similar
finding was made by mRNA representational
difference analysis, where higher ITM2A
expression in ASC could be attributed to a lower
chondrogenic potential (Ref. 65). An enrichment
of genes that are involved in angiogenic
signalling pathways was reported for BMSC
(Ref. 66) and confirmed by higher expression of
angiogenic markers, such as angiopoietin and
vascular endothelial growth factor (VEGF) in
comparison to ASC (Ref. 59). On the other hand,
ASC were shown to exhibit a more adipogenic
gene expression pattern (Ref. 64), illustrated by
higher expression levels of adiponectin and
visfatin (Ref. 59). In line with the higher
proliferation rate of ASC, genes involved in
mitosis and DNA replication are also up-
regulated compared to BMSC (Ref. 67).

Reduced performance of ASC in

osteochondral in vitro differentiation assays
In line with indications of an intrinsic osteogenic
potential of BMSC, exposure to common
osteogenic differentiation media induced more
mineralisation (Refs 40, 50, 68, 69), higher
alkaline phosphatase activity (Refs 40, 44, 68)
and stronger gene expression of osteogenic
markers, such as runx2, osteocalcin, osterix,
alkaline phosphatase and collagen-1 (Refs 40, 44,
52), compared to ASC. In turn, and
corresponding to their physiological origin, ASC
seem to exhibit a higher affinity to adipogenic
differentiation, since inclusion of lipid droplets
(Refs 44, 50, 53) and expression of the adipogenic
marker gene peroxisome proliferator-activated
receptor (PPARY) (Refs 44, 53) were more intense
than in BMSC upon induction. However, similar
adipogenic in vitro differentiation capacities of
adipose and bone marrow-derived cells were
also reported (Refs 52, 69, 70), but no study
described a higher adipogenic potential for
BMSC. In line with better in vitro osteogenesis,
BMSC also showed better performance in
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common chondrogenesis assays. In vitro
differentiation of BMSC in 3D-pellet culture
under treatment with TGF-f resulted in more
intense collagen-II staining (Refs 39, 46, 62, 68,
69, 70), proteoglycan deposition (Refs 39, 46, 53,
62, 68, 70) and gene expression of Sox-9
(Ref. 53), compared to ASC. Interestingly, the
inferior chondrogenic capacity of ASC can be
augmented to BMSC levels when BMP-6 is
added to the differentiation medium (Refs 62,
71), an observation with obvious relevance for
future in vivo applications of ASC.

Comparison of trophic activity

One main path to tissue reconstruction by cell-
based therapeutic strategies involves stem cell
activity to establish and build new tissue by
proliferating and differentiating cells, which are
progeny of the implanted cells. A second way to
regeneration is the stimulation of endogenous
healing capacity by trophic activity of implanted
cells, which attract host progenitor cells and
organise repair by local and invading -cells.
Implanted cells may even disappear after this
task has been successfully fulfilled. In this second
scenario, even transient stem cell activity or
differentiation capacity within target tissues may
be dispensable as long as trophic activity is high.

Similar to the established trophic role of BMSC
(Refs 72, 73), cultured ASC were shown to secrete a
wide range of proteins (Ref. 74) into conditioned
media that predominantly exert anti-apoptotic
(Refs 75, 76, 77), immunomodulatory (Refs 78,
79, 80) and angiogenic (Refs 77, 81, 82) effects
on co-cultured cell types. Extracellular matrix
components and secreted enzymes comprised
the largest fraction of the secretome, according
to mass spectrometry (Refs 83, 84, 85), but these
molecules are unlikely to be heavily involved in
the observed paracrine signalling. These effects
are instead mediated by secreted cytokines that
typically appear in mnano- or picomolar
concentrations. Corresponding ELISA and
multiplex approaches primarily identified VEGF
(Refs 86, 87, 88), hepatocyte growth factor
(HGF) (Refs 82, 89) and insulin-like growth
factor-1 (IGF-1) (Refs 77, 90) as factors that are
responsible for the described intercellular
communication. According to this repertoire,
both ASC and BMSC can be expected to display
trophic functions (Refs 74, 91), delineating their
potential to stimulate bone and cartilage
regeneration solely by trophic mechanisms.

In vivo comparison of ASC and BMSC
The extent of the described in vitro differences
between ASC and BMSC gives the impression
that cells of both sources may fundamentally
differ from each other. This point of view must
be carefully considered, since in vitro variances
may stem from dissimilar donor tissue
processing, cell isolation protocols, cell yield and
culture methods. In the context of osteochondral
regeneration, the proof of in  vivo
exchangeability of ASC and BMSC is far more
important, and aspects of in vivo stem cell
activity like trophic activity should be
considered, as long as precise healing
mechanisms are unclear for the diverse
application settings.

Untreated ASC do not form ectopic bone
Ectopic bone formation is a standard activity of
human BMSC on calcium phosphate ceramics
such as [-tricalcium phosphate (B-TCP) and
hydroxyapatite (HA)/TCP in immunodeficient
mice (Refs 20, 92, 93, 94, 95, 96, 97) with no
osteogenic pre-induction protocols required, in
line with skeletal stem cell activity of BMSC.
Ectopic transplantation of ASC reliably led to de
novo generation of bone when cells were
subjected to osteogenic pre-induction before
implantation (Refs 45, 98, 99, 100, 101).
Overexpression of BMP-2/RUNX2 (Ref. 102) or
BMP-7 (Ref. 103) in ASC allowed the omission
of the pre-differentiation step.

Whether ASC possess the same intrinsic ability
to form ectopic bone without any of these pre-
treatments in standard assays, and to what
extent they build up new bone themselves,
largely remained elusive until the issue was
recently addressed by Brocher et al. In this first
standardised comparison of BMSC and ASC on
multiple donors, ASC generated no ectopic bone
on osteoconductive scaffolds, while samples
from all BMSC donors formed ossicles under
identical conditions (Ref. 59). The additional
value of this ASC study was the reliable
identification of donor as well as host cells
within the ectopic setting via a recently
established in situ hybridisation technique,
specifically marking highly repetitive DNA
sequences of human as well as mouse origin
(Ref. 104). This demonstrated that ectopic bone
was formed by ASC when they were subjected
to chondrogenic pre-differentiation before
transplantation. ~ Although, in noninduced
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samples, ASC survived at the ectopic site for more
than 8 weeks and they did not form bone, as seenin
previous studies (Refs 45, 99, 100, 102, 105)
(Table 1). Only Zannettino et al. have provided
convincing data of ectopic bone formation after
ASC implantation on HA/TCP in NOD/SCID
mice, when CD146-pre-sorted cells were
transplanted; however, the origin of bone from
donor or host remained unclear (Ref. 12).

All in all, beyond their reduced performance in
osteochondral in vitro differentiation assays, ASC
showed no intrinsic osteochondral in vivo
differentiation potential and, thus, seem to
possess no skeletal stem cell properties as seen
with BMSC, providing a strong argument for

fundamental functional differences regarding
their use for in vivo osteochondral repair. Since
nonclonal cells are widely used for tissue
regeneration, the benefit of enhanced availability
of ASC, therefore, appears currently to be
balanced by an enhanced need for inductive
conditions via timely and intensive in vitro
culture efforts, if their physical contribution to
the new skeletal tissue is desired.

ASC and BMSC require pre-differentiation
for ectopic cartilage formation

The most convincing demonstration of
spontaneous chondrogenic in vivo potential
of ASC and BMSC derives from observations of

Table 1. Summary of ectopic bone formation studies with ASC
Pre- ASC donor Acceptor Scaffold Author
induction species species
Yes Human Mouse B-TCP Brocher et al. (Ref. 59)
Yes Human Mouse Healos® Niemeyer et al. (Ref. 149)
Yes Human Mouse Collagen- HA/ Hicok et al. (Ref. 150)
TCP
Yes Human Mouse B-TCP Hattori et al. (Ref. 99)
Yes Human Mouse ACHMS Hattori et al. (Ref. 100)
Yes Pig Rat BA Schubert et al. (Ref. 45)
Yes Rabbit® Rabbit COL/PLGA-B- Hao et al. (Ref. 98)
TCP

Yes Rat Mouse NanoBCP Lin et al. (Ref. 101)
YesP Human Mouse PLGA Lee et al. (Ref. 102)
YesP Rat Rat Collagen Yang et al. (Ref. 103)
No Human Mouse HA/TCP Zannettino et al.

(Ref. 12)
No Human Mouse ENGIpore® Scherberich et al.

(Ref. 105)
No Human Rat DBM Supronowicz et al.

(Ref. 151)
No Dog? Dog BCP Yao et al. (Ref. 152)
3Autologous setting.

ransgene expression.

Abbreviations: ACHMS, atelocollagen honeycomb-shaped scaffold with membrane seal; BA, bone allograft;
BCP, biphasic calcium phosphate; COL, collagen; DBM, demineralised bone matrix; HA, hydroxyapatite; PLGA,
polylactic acid/polyglycolic acid co-polymer; B-TCP, B-tricalcium phosphate.
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ectopic cartilage deposits in assays, in which

articular  chondrocytes form cartilaginous
nodules at ectopic sites in the absence of
chondrogenic  inducers. Importantly, such

activity has so far neither been demonstrated in
human BMSC nor ASC, and an apparent
necessary aspect of common strategies for
successful ectopic cartilage formation includes
chondrogenic pre-differentiation. Several studies
have been performed in which human ASC
were either used without scaffolds (Refs 62, 106)
or seeded on hydrogels (Refs 106, 107, 108)
or glycolic acid/lactic acid copolymer (PLGA)
(Refs 109, 110, 111). In addition, different
strategies were used for chondrogenic pre-
differentiation of ASC (Table 2). All included
TGF-3 treatment either during 3D pellet
culture (Refs 62, 107, 108), in vitro cultivation
of ASC in the scaffold (Refs 110, 111) or
by adenoviral TGF-3 overexpression (Ref. 109)
before  subcutaneous  implantation  into
immunocompromised mice. Ectopic cartilage
composed of implanted cells was observed in
all cases, but chondrocyte hypertrophy and
matrix calcification were unwanted side effects
reminiscent of growth plate chondrocytes
(Refs 62, 112). In conclusion, analogous studies
without chondrogenic (pre-) induction have
remained unsuccessful, with neither BMSC nor
ASC displaying intrinsic chondrogenic potential
nor trophic activity leading to generation
of ectopic cartilage of donor or host origin,
compared to chondroprogenitors from cartilage
which do display such activity (Ref. 113).

Missing evidence for physical ASC
contribution to the repair of damaged
cartilage
The most direct and least invasive approach to use
ASC for the treatment of cartilage defects is by intra-
articular injection of cells. Studies that started with
an induction of osteoarthritis (OA) by anterior
cruciate  ligament transection (ACLT) or
collagenase treatment, followed by intra-articular
injection of autologous ASC, have been
conducted in mouse (Ref. 114) and rabbit
(Refs 115, 116) (Table 3). Different histological
evaluations and OA scoring scales were used to
measure OA progression, but in all cases, positive
effects of ASC compared to the injection of cell-
free solvent were reported. Labelled ASC were
detectable in the synovial membrane and medial
meniscus 20 days after injection (Ref. 115) and at
the synovial lining and cruciate ligaments up to 5
days after injection (Ref. 114). Human ASC
injected into unimpaired mouse knee joints
showed long-term persistence in joint tissue in
60% of all mice up to 186 days after injection, but
a substantial fraction of ASC seemed to have
migrated to the bone marrow, adipose tissue and
muscle. Thus, while a certain degree of
persistence of injected cells can therefore be
assumed, evidence for in vivo differentiation of
donor ASC or long-term integration into articular
cartilage tissue is missing, and contributions by
trophic activity cannot be judged.

Besides artificial OA induction, the capacity of
ASC to repair surgical cartilage incisions has
been investigated (Table 3). In a scheme similar

Table 2. Summary of ectopic cartilage formation studies with ASC
Pre- ASC donor Acceptor Scaffold Author
induction species species
Yes Human Mouse PLGA Mehlhorn et al.
(Ref. 111)
Yes Human Mouse fibrin Yoon et al. (Ref. 108)
Yes Human Mouse PLCL/fibrin Jung et al. (Ref. 110)
Yes? Human Mouse PLGA/ Jin et al. (Ref. 109)
alginate

&Transgene expression.
Abbreviations: PLCL, polylactic acid/ polycaprolactone co-polymer; PLGA, polylactic acid/ polyglycolic acid co-
polymer.
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Table 3. Summary of orthotopic cartilage formation studies with ASC
Defect ASC Acceptor Scaffold Pre- Long-term Author
donor species induction engraftment
species
Femur Pig® Pig PGA/PLA Yes n.d. Cui et al.
(Ref. 119)
Femur Rabbit® Rabbit PLGA Yes n.d. Im et al.
(Ref. 118)
Femur Rabbit® Rabbit Fibrin Yes >8 weeks Dragoo
et al.
(Ref. 117)
OA Rabbit® Rabbit (i.a. No Nonlesional Desando
injection) regions et al.
(Ref. 115)
OA Rabbit Rabbit (i.a. No n.d. Toghraie
injection) et al.
(Ref. 116)
OA Mouse Mouse (i.a. No Nonlesional ter Huurne
injection) regions et al.
(Ref. 114)
@Autologous setting.
Abbreviations: i.a., intraarticular; n.d., not determined; OA, osteoarthritis model; PGA, polyglycolic acid; PLA,
polylactic acid; PLGA, polylactic acid/polyglycolic acid co-polymer; B-TCP, B-tricalcium phosphate.

to ACT, ASC were first harvested, expanded and
subjected to chondrogenic pre-induction for 2-3
weeks in vitro. Cells were then loaded on diverse
scaffolds and re-implanted into the lesion site.
Corresponding studies were conducted in rabbit
(Refs 117, 118) and pig (Ref. 119) and differ in
pre-induction methods and scaffold composition,
but improved healing was consistently reported
compared to cell-free matrix baseline conditions.
Among these studies, only Dragoo et al. analysed
the persistence of donor cells, making use of ASC
expressing a LacZ reporter gene (Ref. 117). All
explants showed ASC remaining 8 weeks after
transplantation, but their direct contribution to
cartilage tissue was not investigated. Notably,
approaches for cartilage regeneration without in
vitro pre-induction of ASC have so far not been
described, although BMSC were successfully
used in such a setting (Refs 120, 121, 122). Thus,
the question of functional equivalence of BMSC
and ASC in cartilage repair studies cannot be
judged from the current literature, and a direct
comparison of both cell sources under identical
conditions is highly desired. Importantly, a lack

of osteochondral commitment of expanded ASC,
although negating their skeletal stem cell activity,
may not be a major disadvantage if high trophic
activity is paramount for therapeutic action for
tissue regeneration and can be achieved with this
cell type.

Site-dependant bone repair capacity of ASC
The majority of ASC-based tissue engineering
approaches are directed at orthotopic in vivo
formation of bone (Table 4). Across all of these
studies, a well agreed upon point is that repair of
defective bone by ASC can be achieved when
transplantation is preceded by extensive pre-
differentiation protocols (Refs 101, 123, 124, 125,
126, 127, 128) or genetic manipulation with genes
encoding for bone inducers (Refs 129, 130, 131,
132, 133). Overexpression of BMP-2 represents the
most common strategy for the latter technique,
using transgenic ASC for local growth factor
delivery, rather than expecting spontaneous
differentiation into osteoblasts. BMP-2
overexpression in ASC has also been used to
substitute strategies that include immobilisation
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Table 4. Summary of orthotopic bone formation studies with ASC
Pre- Defect ASC Acceptor Scaffold Long-term Author
induction donor species engraftment
species
Cranium
Yes Calvaria Rat Rat NanoBCP n.d. Lin et al.
(Ref. 101)
Yes Palate Rat Rat PLA n.d. Conejero
et al.
(Ref. 123)
Yes Parietal Human Rat PCL/ n.d. Kim et al.
PLGA/ (Ref. 127)
TCP
Yes Parietal Human Rat PLGA n.d. Yoon et al.
(Ref. 128)
Yes Parietal Dog? Dog Coral n.d. Cui et al.
scaffold (Ref. 124)
Yes Parietal Rabbit® Rabbit PLA n.d. Di Bella
et al.
(Ref. 125)
Yes Parietal® Rabbit® Rabbit Gelatin n.d. Dudas
foam et al.
(Ref. 126)
Long bone
Yes® Femur Human Rat CP- n.d. Peterson
collagen et al.
(Ref. 132)
Yes® Femur Rabbit Rabbit PLGA 4 weeks Lin et al.
(Ref. 131)
Yes® Ulna Minipig Minipig ABM n.d. Chen et al.
(Ref. 129)
Yes® Radius Rabbit? Rabbit PLA/PCL n.d. Han and Li
(Ref. 130)
Vertebral
Yes® Cocoyx® Pig Rat Fibrin >12 weeks Sheyn et al
(Ref. 133)
Cranium
No Calvaria Human, Mouse Apatite- n.d. Levi et al.
mouse, PLGA (Ref. 145)
dog
(continued on next page)
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Table 4. Summary of orthotopic bone formation studies with ASC (continued)
Pre- Defect ASC Acceptor Scaffold Long-term Author
induction donor species engraftment
species
No Mandible Human Rat Fibrin n.d. Streckbein
et al.
(Ref. 146)
No Mandibula® Pig Pig (i.v., i.d.) n.d. Wilson
et al.
(Ref. 147)
No Palate Rat Rat PLA n.d. Conejero
et al.
(Ref. 123)
No Parietal Mouse Mouse Apatite- >12 weeks Cowan
PLGA et al.
(Ref. 144)
No Parietal Human Mouse Apatite- 2 weeks Levi et al.
PLGA (Ref. 142)
No Parietal Rabbit® Rabbit PLA n.d. Di Bella
et al.
(Ref. 125)
No Parietal Human Rat PLGA n.d. Yoon et al.
(Ref. 128)
No Parietal® Rabbit® Rabbit Gelatin n.d. Dudas
foam et al.
(Ref. 126)
Long bone
No¢ Femur Human Rat CP- n.d. Peterson
collagen et al.
(Ref. 132)
No¢ Femur Rabbit Rabbit PLGA 4 weeks Lin et al.
(Ref. 131)
No? Ulna Minipig Minipig ABM n.d. Chen et al.
(Ref. 129)
No¢ Radius Rabbit? Rabbit PLA/PCL n.d. Han and Li
(Ref. 130)
No Tibia Sheep? Sheep Healos® n.d. Niemeyer
et al.
(Ref. 143)
aAutologous setting.
PNoncritical size.
“Transgene expression.
dControl group of the study.
Abbreviations: ABM, acellular bone matrix; BCP, biphasic calcium phosphate; CP, calcium phosphate
ceramic; i.a., intraarticular; i.d., intra defect; n.d., not determined; PCL, polycaprolactone; PLA, polylactic
acid; PLGA, polylactic acid/polyglycolic acid co-polymer; 3-TCP, B-tricalcium phosphate.
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of recombinant BMP-2 protein to scaffolds prior to
implantation (Refs 134, 135, 136). Although these
cell-free approaches reproducibly led to good
healing efficiency, combinations of ASC and
recombinant BMP-2 were also used (Refs 137,
138, 139, 140, 141, 142) (not listed in Table 4), but
only Levi et al. described that ASC improved
defect repair in comparison to the BMP-loaded
scaffold alone (Ref. 142).

Controversial data exist regarding the
performance of expanded but otherwise
untreated ASC in the context of long bone
repair, although only a limited number of
studies is available (Table 4). When
nontransgenic or mock-transduced ASC were
loaded on carrier matrices and transplanted into
long-bone defects, no bone formation was
observed (Refs 129, 131, 132). In a sheep long-
bone model, ASC were unable to induce defect
bridging, while BMSC facilitated defect
regeneration in the same setting (Ref. 143). A
closer look at the ASC control groups of the
above studies further confirms the impression
that pre-differentiation or genetic manipulation
of ASC is a prerequisite for stimulation of bone
formation. This applies even for orthotopic sites
in long bones, where the microenvironment is
rich in osteoinductive proteins which are
released from the defect endings. To our
knowledge, the only exception when
nontransduced ASC led to substantial bone
formation in the context of long-bone repair is a
study by Han and Li, in which ASC were used
as a control to Runx2-overexpressing cells.
Possibly, the surgical connection of the implant
to the vascular network was the key to the
positive results of this study (Ref. 130).

Dissimilar to long-bone repair, healing of critical
size defects in the cranium appears to be
less challenging with wuntreated ASC, since
bone formation without any in vitro pre-
differentiation was reported in at least four
studies (Refs 144, 145, 146, 147). Furthermore,
untreated ASC that were transplanted as
controls for newly established repair strategies
also generated considerable amounts of bone
(Refs 125, 128, 142), although complete absence
of defect repair by ASC control groups has
also been described (Refs 123, 126). Thus,
orthotopic bone formation by uninduced ASC
appears to be site-dependent and favoured by
characteristics of the cranial microenvironment
that are not present in long bones. Origin from

the ectodermal germ layer, development via the
intramembranous pathway and enhanced
blood supply differentiates bone in the cranium
from long bones. Thus, it is tempting to
speculate that one major advantage in the
cranium may be the denser vascular network of
skull bones, which is especially interesting in the
context that, beyond an absent osteochondral
commitment, a lower angiogenic signature was
noted for ASC (Refs 42, 59, 66, 148) and
orthotopic bone formation by ACS can be
triggered by co-transplantation of endothelial
cells (Ref. 127).

If the trophic activity of ASC is the most
crucial for stimulation of bone repair, a lower
requirement for attraction and stimulation of
endothelial progenitors could explain the better
performance of ASC in the cranium. In line with
this, a persistence of donor ASC could not be
detected for more than 2 to 4 weeks after
transplantation, even in settings where complete
cranial defect repair was observed (Refs 131,
142). In sharp contrast, a single study by Cowan
et al. reported that transplantation of uninduced
ASC led to stable engraftment of the cells in a
cranial defect and over 95% of nuclei in the
newly formed bone were donor-derived after
12 weeks (Ref. 144). As it is not apparent which
specific experimental parameters have enabled
this exceptional engraftment, analogous success
is waiting for repetition. Overall, particular
success of ASC in cranial but not long-bone
defects suggests that, in view of their low
osteochondral and angiogenic signature, ASC
affect bone regeneration most probably via their
trophic activity than by in situ differentiation to
osteoblasts ~ with  long-term  persistence.
Additional precise studies must unravel the
contribution of host and donor cells to tissue
repair as well as the influence of scaffolds, pre-
cultivation, species and defect site in order to
reach consensus on the main mechanisms driving
ASC-dependent promotion of osteoarticular
repair despite lower osteogenic and angiogenic
signatures and an apparent lack of skeletal stem
cell properties.

Conclusion
More than 50 in vivo studies have been performed
to date in order to verify the potential of ASC
to be used for osteoarticular regeneration. In
each of the quite heterogeneous experimental
setups, specific protocols were established that
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Figure 1. In vivo cartilage and bone formation potential of ASC: site dependence and requirement for pre-

differentiation.

either enabled chondrogenic or osteogenic
differentiation of the cells or that resulted in
positive effects on defect healing. Regarding the
greater accessibility of ASC compared to BMSC,
these data are entirely encouraging for the
future use of ACS in skeletal regenerative
medicine. However, it is now clear that ASC do
not exhibit the same degree of osteoarticular
predetermination as BMSC and more
manipulation is required to drive ASC into the
chondrogenic or osteogenic lineage (Fig. 1). The
observations that the spontaneous formation of
an ectopic bone organ by BMSC cannot be
reproduced with ASC and that orthotopic bone
formation is only stimulated at favoured
sites confirm this issue and thereby exclude a
skeletal stem cell identity for ASC. Altogether, a
review of the literature suggests that mainly
trophic functions determine the therapeutic
outcome after ASC application. Future research
is needed on a direct comparison of BMSC and
ASC in osteoarticular therapy to decide where
and how successful BMSC protocols have
to be modified to achieve promising results
with ASC.
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