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Abstract. Let p > q and let G be the groupUð p; qÞ or Spin0ð p; qÞ. Let P ¼ LN be the maximal

parabolic subgroup of G with Levi subgroup L ffiM�U where

ðM;UÞ ¼
ðGLqðCÞ;Uð p� qÞÞ; if G ¼ Uð p; qÞ;
ðGLþq ðRÞ; Spinð p� qÞÞ; if G ¼ Spin0ð p; qÞ:

(

Let w be a one-dimensional character of M and tm an irreducible representation of U with

highest weight m. Let pw;m be the representation of P which is trivial on N and pw;mjL ¼ w&� tm.
Let Ip;q be the Harish-Chandra module of the induced representation IndGPpw;m. In this paper,
we shall determine (i) the reducibility of Ip;q, (ii) the K-types of all the irreducible subquotients

of Ip;q when it is reducible, where K is the maximal compact subgroup of G, (iii) the module
diagram of Ip;q (from which one can read off the composition structure), and (iv) the unitarity
of Ip;q and its subquotients. Except in the cases q ¼ p� 1 and q ¼ 1, Ip;q is not K-multiplicity
free.
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1. Introduction

1.1. Let p > q and let G be the group Uð p; qÞ or Spin0ð p; qÞ. Let P ¼ LN be the

maximal parabolic subgroup of G with Levi subgroup L ffiM�U where

ðM;UÞ ¼
ðGLqðCÞ;Uð p� qÞÞ; if G ¼ Uð p; qÞ;

ðGLþq ðRÞ; Spinð p� qÞÞ; if G ¼ Spin0ð p; qÞ:

(

Let w be a one-dimensional character of M and tm an irreducible representation of

U with highest weight m. Let pw;m be the representation of P which is trivial on N

and pw;mjL ¼ w&� tm: Consider the induced representation IndGPpw;m and let Ip;q be its

Harish-Chandra module. In this paper, we shall determine (i) the reducibility of Ip;q,

(ii) the K structure of all the irreducible subquotients of Ip;q when it is reducible,
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where K is a maximal compact subgroup of G, (iii) the module diagram of Ip;q (from

which one can read off the composition structure), and (iv) the unitarity of Ip;q and

its subquotients.

Note that Ip;q is not K-multiplicity free except when q ¼ p� 1 and q ¼ 1.

1.2. We introduce some notation. Let

~G ¼
Uð p; pÞ; if G ¼ Uð p; qÞ;
Spin0ð p; pÞ; if G ¼ Spin0ð p; qÞ:

�
Let g ¼ LieðGÞ and ~g ¼ Lieð ~GÞ, and let K and ~K denote the maximal compact

subgroups of G and ~G respectively. In this paper we will call a ðg;KÞ-module (resp.

ð ~g; ~KÞ-module) an infinitesimal G-module (resp. infinitesimal ~G-module).

1.3. We now describe our main results. We first show that Ip;q can be embedded

into the Harish-Chandra module Ip (see Sections 3.3 and 9.4) of a degenerate

principal series representation of ~G. In addition, Ip is K1-admissible where

K1 ¼
Uð pÞ � 1; if G ¼ Uð p; qÞ;
Spinð pÞ � 1; if G ¼ Spin0ð p; qÞ

�
ð1Þ

and Ip decomposes discretely when restricted to ðg;KÞ (see [Ko3]). Next we identify

Ip;q with its image in Ip. If W is an infinitesimal ~G-submodule of Ip, then it is K1-

admissible. By Proposition 1.6 in [Ko3], W \ Ip;q is a (possibly zero) infinitesimal

G-submodule of Ip;q. Our main result states that the converse is also true. We first

show that

THEOREM. Suppose W1 
W2 are infinitesimal ~G-submodules of Ip such that

R :¼W2=W1 is an irreducible subquotient of Ip. Define

R0 :¼
W2 \ Ip;q

W1 \ Ip;q
:

Then R0 is either zero or isomorphic to an irreducible subquotient of Ip;q. Moreover, all

irreducible subquotients of Ip;q are of this form.

Now the module structure of Ip is well known ([J1], [J2], [Le], [Mo], [S1], [S2],

[Zh]). The above theorem together with structural results on Ip allows us to deter-

mine the module structure of Ip;q. In particular, we obtain the following corollary.

COROLLARY. If W 0 is an infinitesimal G-submodule of Ip;q, then there exists an

infinitesimal ~G-submodule W (not necessarily unique) of Ip such that W 0 ¼W \ Ip;q.

If we know the ~K-types contained in an infinitesimal ~G-submodule W of Ip, then

it is relatively easy to determine the K-types of W \ Ip;q. Thus we can obtain explicit

description of the K-types which occur in each of the irreducible subquotients of

Ip;q. Moreover, we show that the module diagram of Ip;q can be identified with a

spanning subgraph of the module diagram of Ip. This immediately gives the
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composition structure of Ip;q. These results are given in Theorem 7.3.1 for

G ¼ Uð p; qÞ, and in Theorem 12.2.1 for G ¼ Spin0ð p; qÞ.
Finally we also determine the unitarity of Ip;q and all its irreducible subquotients.

The results are contained in Theorem 8.1.1 for G ¼ Uð p; qÞ and in Theorem 13.1.1

for G ¼ Spin0ð p; qÞ.

1.4. The case q ¼ 1 has been studied in detail by [Hi1], [Hi2] and [KG1]. When q ¼ 1
and tm is a one dimensional character, this is a special case in [HT] and [KG2]. By

specializing to the case q ¼ 1, we recover these results in the above papers.

1.5. We note that almost all previous successful results on the module structures of

degenerate principal series representations treat the special cases where the

representations are K-multiplicity free. In particular Hirai [Hi1], [Hi2] and Klimyk

et al. ([KG1], [KG2], [KG3]) study such problems using the Gelfand–Zetlin basis.

Some examples of representations which are not K-multiplicity free are studied in

the papers [Ho] and [P].

1.6. We will briefly describe our methods. Partly inspired by the work of Klimyk

and Gavrilik ([KG1]), we construct a basis B of Ip using the Gelfand–Zetlin basis of

an irreducible representation of Uð pÞ or Spinð pÞ. This basis is compatible with the

infinitesimal G-submodules of Ip;q in the following sense: B \ Ip;q is a basis of Ip;q,

and for any infinitesimal G-submodule W of Ip;q, B \W is a basis of W. Moreover

the Lie algebra action on B can be explicitly calculated.

Under the action of K1 (see (1)), we have the decomposition Ip;q ¼
P

l Sl, where

each l is a highest weight for K1, and Sl is the l-isotypic component. With the aid

of the basis B, we show that every submodule of Ip;q is the sum of a collection of

isotypic components for K1. Using structural results on Ip, we determine explicitly

how gC transforms each Sl in Ip;q. These information allows us to deduce the

module structure and unitarity of Ip;q and its irreducible subquotients.

1.7. Although the main ideas of the proofs for both the cases G ¼ Uð p; qÞ and
G ¼ Spin0ð p; qÞ are similar, several special considerations lead to very different

results in each case. We have therefore, divided the paper in two parts. The

first part treats Uð p; qÞ and the second treats Spin0ð p; qÞ. We will be brief in

Part 2 and we will mainly point out the differences from Part 1.

1.8. Our proofs in this paper rely heavily on the fact that our representations are

K1-admissible (see (1)). Such representations are studied under a more general

framework by T. Kobayashi (see Chapter 4 of [Ko1], and [Ko2], [Ko3]). Our

results on the restriction of the ‘ladder type’ representation of Spin0ð2p; 2pÞ
also overlaps with Example 3.4 in [Ko2]

1.9. We were informed by H. Matumoto that he had also studied the representation

Ip;q, and had obtained results on its module structure.

1.10. We will show in a future paper ([LL]) that similar results hold for a family of

degenerate principal series representation of Spð p; qÞ. Some of the representations
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constructed in this paper are also theta lifts of one-dimensional characters and

unitary lowest weight modules under the Howe correspondence [Lo].

1.11. NOTATION. We introduce a notation for later use. Let G1 be a reductive Lie

group and let P1 ¼ L1N1 be a parabolic subgroup of G1 with Levi subgroup L1. Let

ðp;UÞ be a representation of L1. Then we extend p to a representation of P1 by

letting N1 act trivially and we define the normalized induced representation

IndG1
P1
p :¼ f f : G1 ! U : f is C1; fðgpÞ ¼ ðDð p�1ÞÞ

1
2pð p�1ÞfðgÞ; g 2 G1; p 2 P1g;

where D is the modular function of P1, and G1 acts by left translation.

PART 1. THE DEGENERATE PRINCIPAL SERIES OF Uð p; qÞ

2. The Representations

2.1. Let p > q and let P ¼ LN be the maximal parabolic subgroup of Uð p; qÞ with
Levi subgroup L ffi GLqðCÞ �Uð p� qÞ. For s 2 C and s 2 Z, let ws;s : GLqðCÞ

�!C� be given by

ws;sðaÞ ¼ jdet aj
s det a
jdet aj

� �s

:

Let tmp�q be the irreducible representation of Uð p� qÞ with highest weight m. Let

ps;s;m ¼ ws;s &� tmp�q;

and consider the normalized induced representation IndUð p;qÞP ps;s;m (cf. Section 1.11).

Let Ip;qðs; s; mÞ be the Harish-Chandra module of IndUð p;qÞP ps;s;m. In this part, we shall

determine the module structure and unitarity of Ip;qðs; s; mÞ.

2.2. We define some notations. For each r5 1, let

LþðrÞ ¼ fðl1; l2; . . . ; lrÞ 2 Zr : lj 5ljþ1; for all 14 j4 r� 1g:

Then LþðrÞ can be identified with the set of dominant weights of the unitary group

UðrÞ in the usual way. For each l 2 LþðrÞ, tlr (or simply tl) shall denote a copy of

the irreducible representation of UðrÞ with highest weight l. We also let

l� ¼ ð�lr;�lr�1; . . . ;�l1Þ;

1r ¼ ð1; 1; . . . ; 1Þ 2 LþðrÞ;

ej ¼ 0; . . . ; 0; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{j

; 0; . . . ; 0

0
@

1
A for 14 j4 p:

Note that tl
�

r is the dual representation of tlr and t
1r
r is the determinant character ofUðrÞ.

2.3. By Frobenius reciprocity, the K-type tlp &� tZq occurs in Ip;qðs; s; mÞ with

multiplicity

dimHomUðqÞ�Uð p�qÞ
�
tZ

�þs1q
q

&� tmp�q; t
l
p

�
: ð2Þ
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2.4. The infinitesimal character of Ip;qðs; s; mÞ is given by

sþ sþ q� 1
2

;
sþ sþ q� 3

2
; . . . ;

sþ s� ðq� 1Þ
2

;

�
�sþ sþ q� 1

2
;
�sþ sþ q� 3

2
; . . . ;

�sþ s� ðq� 1Þ
2

;

m1 þ
p� q� 1

2
; m2 þ

p� q� 3
2

; . . . ; mp�q �
p� q� 1

2

�
: ð3Þ

Note that it is defined up to an action of the Weyl group Spþq. Given s and s, the
infinitesimal character (3) determines the infinitesimal character of tmp�q. Since irre-

ducible finite dimensional representations are uniquely determined by its infinite-

simal character, we conclude that the infinitesimal character of the degenerate

principal series in (3) determines tmp�q for fixed s and s.

3. Restriction of the Degenerate Series of Uð p; pÞ to Uð p; qÞ �Uð p� qÞ

3.1. In this section, we shall consider a degenerate principal series representation

Ipðs; sÞ of Uð p; pÞ. By restricting the action of Uð p; pÞ to Uð p; qÞ �Uð p� qÞ, we

show that we can embed Ip;qðs; s; mÞ into Ipðs; sÞ.

3.2. Recall that Uð p; pÞ is the isometry group of the following Hermitian form on

C2p:

hz;wi ¼
Xp
i¼1

ziwi �
X2p
j¼pþ1

zjwj; z ¼ ðz1; . . . ; z2pÞ; w ¼ ðw1; . . . ;w2pÞ 2 C2p:

Let fe1; . . . ; e2pg be the standard basis of C2p. Set T ¼ f1; . . . ; pg [ f2p� qþ

1; . . . ; 2pg. Let VT and V 0
T be the span of fei : i 2 T g and fei : i 62 T g, respectively,

so that C2p
¼ VT � V 0

T. Let

G ¼ fg 2 Uð p; pÞ : gjV0
T
¼ idg; H ¼ fg 2 Uð p; pÞ : gjVT

¼ idg:

Then G ffi Uð p; qÞ and H ffi Uð p� qÞ. In the language of Howe correspondences,

we say that G�H is a compact reductive dual pair in Uð p; pÞ. From now on, we

shall always identify Uð p; qÞ and Uð p� qÞ with G and H, respectively.

3.3. We now define a degenerate principal series representation of Uð p; pÞ. Let ~P be

the stabilizer of the span of fej þ epþj : 14 j4 pg in Uð p; pÞ. It is the maximal

parabolic of Uð p; pÞ, and ~P ¼ ~L ~N where ~L ffi GLpðCÞ is its Levi subgroup. Let

s 2 C and s 2 Z, and let

~ws;sðaÞ ¼ jdet aj
s det a
j det aj

� �s

ða 2 GLpðCÞ ffi ~LÞ

be a character of ~L. Let Ipðs; sÞ denote the Harish-Chandra module of IndUð p;pÞ~P
~ws;s

(cf. Section 1.11). Under the action of ~K ¼ Uð pÞ �Uð pÞ,

Ipðs; sÞ ¼
X

l2Lþð pÞ

Vl

DEGENERATE PRINCIPAL SERIES REPRESENTATIONS 315

https://doi.org/10.1023/A:1016514211478 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016514211478


where for each l 2 Lþð pÞ, Vl ffi tlp &� tl
�
þs1p

p . We will describe the module structure

and unitarity of Ipðs; sÞ in Sections 7.1 and 8. This is well known and it can be

found in [J1], [J2], [Le], [Mo], [S1], [S2] and [Zh].

3.4. For each m 2 Lþð p� qÞ, let Ipðs; sÞm denote the tmp�q-isotypic part of Ipðs; sÞ,
that is, it is the image of the H-map

HomHðtmp�q; Ipðs; sÞÞ � tmp�q ! Ipðs; sÞ

given by h� v 7! hðvÞ. Note that since the actions of G and H commute with each

other, Ipðs; sÞm is also an infinitesimal G-module.

Now H acts on C1ðHÞ by left and right translation:

ðlg f ÞðhÞ ¼ fðg�1hÞ; ðrg f ÞðhÞ ¼ fðhgÞ:

For each m 2 Lþð p� qÞ, let C1ðHÞm denote the tmp�q-isotypic part of C1ðHÞ with

respect to the left translation. By the Peter–Weyl theorem,

C1ðH Þm ffi tm
�

p�q
&� tmp�q

with respect to the action r� l by H�H.

We now fix m 2 Lþð p� qÞ. For each f 2 Ipðs; sÞm� , let Af : G! C1ðHÞ be given

by

ðAfðgÞÞðhÞ ¼ fðg; hÞ:

Note that for each fixed g 2 G, the map f! AfðgÞ from Ipðs; sÞm� to C1ðHÞ is

H-equivariant (with respect to left translation), so that AfðgÞ 2 C1ðHÞm� . So

Af : G! C1ðHÞm� . Let f‘1; . . . ; ‘rg be a basis of tm
�

p�q. Then every element y in

C1ðHÞm� can be expressed uniquely in the form y ¼
Pr

j¼1 vj &� ‘j where vj 2 tmp�q
for 14 j4 r. It follows that

Af ¼
Xr
j¼1

fj &� ‘j; ð4Þ

where for 14 j4 r, fj : G! tmp�q. Let p1 2 P. Then we can write p1 as

p1 ¼ ða1; a2Þn1 where a1 2 GLqðCÞ, a2 2 Uð p� qÞ and n1 2 N. Now one can check

that for g 2 G and h 2 H,

ðAfðgp1ÞÞðhÞ ¼ ðdð p�11 ÞÞ
�1

2ws;sða
�1
1 Þðdet a2Þ

�sra�12
ðAfðgÞÞðhÞ;

where d is the modular function of P. So we haveXr
j¼1

fjðgp1Þ&� ‘j

¼ ðdð p�11 ÞÞ
�1

2ws;sða
�1
1 Þðdet a2Þ

�s
Xr
j¼1

tmp�qða
�1
2 Þð fjðgÞÞ&� ‘j:
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It follows that for each 14 j4 r,

fjðgpÞ ¼ ðdð p�11 ÞÞ
�1

2ws;sða
�1
1 Þðdet a2Þ

�stmp�qða
�1
2 Þð fjðgÞÞ

¼ fðws;s &� tmþs1p�qp�q Þð p1ÞgðfjðgÞÞ:

Hence, fj 2 Ip;qðs; s; mþ s1p�qÞ and (4) defines a map

A : Ipðs; sÞm� ! Ip;qðs; s; mþ s1p�qÞ&� tm
�

: ð5Þ

PROPOSITION 3.4.1. The map A in (5) is an infinitesimal G�H-module iso-

morphism.

Proof. First we show that A is injective. Indeed, since f 2 Ipðs; sÞm� 
 Ipðs; sÞ,
f is completely determined by its values on Uð pÞ � 1. Next, by a straightforward

application of Frobenius reciprocity (see (2)), we see that the spaces Ipðs; sÞm� and

Ip;qðs; s; mÞ&� tm
�

have the same Uð pÞ �UðqÞ �Uð p� qÞ-types. Hence, A is an

infinitesimal isomorphism. &

Let G1 
 G2 be reductive Lie groups and let K1 and ðg1ÞC be the maximal com-

pact subgroup and complexified Lie algebra of G1 respectively. If V is an infinite-

simal G2 module such that it is K1 admissible, then we shall abuse notation and

denote the restriction of V to ðg1ÞC and K1 by ResG2
G1
V. We remark that if ~V is a

globalization of V, then by Proposition 1.6 of [Ko3], V is the set of K1-finite vectors

of ~V. In other words, ResG2
G1
V is the ððg1ÞC;K1Þ module of ~V.

COROLLARY 3.4.2. For each m 2 Lþð p� qÞ, let m̂ ¼ m� þ s1p�q. Then

ResUð p;pÞUð p;qÞ�Uð p�qÞIpðs; sÞ ¼
X

m2Lþð p�qÞ

Ip;qðs; s; mÞ&� tm̂p�q: ð6Þ

Note that if q ¼ 0, then (6) gives the ~K-types of Ipðs; sÞ.

3.5. RESTRICTION OF Ip;qðs; s; mÞ TO Uð p; q� 1Þ �Uð1Þ

To prove the next lemma, we need the following branching rule (see Exercise 6.12 in

[FH]):

ResUð pÞUð p�1Þ�Uð1Þt
l
p ¼

X
l0

tl
0

p�1 &� det
P

i
li�
P

j
l0j

1 ð7Þ

where the sum is taken over all l0 ¼ ðl01; . . . ; l
0
p�1Þ 2 Lþð p� 1Þ such that

l1 5l01 5l2 5 � � � 5l0p�1 5lp:

PROPOSITION 3.5.1. Let m 2 Lþð p� qÞ. Then

ResUð p;qÞUð p;q�1Þ�Uð1ÞIp;qðs; s; mÞ ¼
X
m0

Ip;q�1ðs; s; m0Þ&� det
P

i
mi�
P

j
m0j�s

1 ð8Þ
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where the sum is taken over all m0 ¼ ðm01; . . . ; m
0
p�qþ1Þ 2 Lþð p� qþ 1Þ such that m01 5

m1 5m02 5 � � � 5mp�q 5m0p�qþ1.

Proof. Note that Uð p; qÞ �Uð p� qÞ and Uð p; q� 1Þ �Uð p� qþ 1Þ forms a

see-saw dual pair in Uð p; pÞ. The corollary now follows from Corollary 3.4.2 by

applying the theory of see-saw pairs and the branching rule in (7) to the above dual

pairs. &

We shall ignore the action of Uð1Þ on Ip;qðs; s; mÞ and write (8) as

Ip;qðs; s; mÞ ¼
X
m0

Ip;q�1ðs; s; m0Þ:

PROPOSITION 3.5.2. If W is an infinitesimal Uð p; qÞ-submodule of Ip;qðs; s; mÞ, then

W ¼
X
m0
ðW \ Ip;q�1ðs; s; m0ÞÞ

where the sum is taken over all m0 ¼ ðm01; . . . ; m
0
p�qþ1Þ 2 Lþð p� qþ 1Þ such that

m01 5m1 5m02 5 � � � 5mp�q 5m0p�qþ1.
Proof. Let w 2W. By (8), we can write w as a finite sum w ¼

P
m0 wm0 where for

each m0 in the sum, wm0 2 Ip;q�1ðs; s; m0Þ. Let Zq�1 denote the center of the universal

enveloping algebra Uðuð p; q� 1ÞCÞ. Now Zq�1 acts by a different infinitesimal

character on each wm0 (cf. (3)). Since distinct characters are linearly independent,

there exists Z 2 Zq�1 such that wm0 ¼ Zw 2W. This proves the proposition. &

4. A Basis of Ip;qðs; r; lÞ

4.1. In this section, we shall first construct a basis B of Ipðs; sÞ using the Gelfand–

Zetlin basis of an irreducible representation of Uð pÞ. It turns out that the

intersection of B with Ip;qðs; s; mÞ is a basis of Ip;qðs; s; mÞ. Moreover, this basis

is compatible with the infinitesimal G-submodules of Ip;qðs; s; mÞ in the sense

that the intersection of any infinitesimal G-submodule W of Ip;qðs; s; mÞ with B
is a basis of W.

Readers who are only interested in the main results may skip this section and the

next two sections and proceed directly to Section 7.

4.2. We shall first review the theory of Gelfand–Zetlin (GZ) basis. Consider the

chain of subgroups of Uð pÞ:

Uð1Þ 
 Uð2Þ 
 � � � 
 Uð pÞ ð9Þ

where for each 14 r4 p� 1, UðrÞ is identified with the subgroup of matrices

X 0
0 Ip�r

� �
2MpðCÞ : XX

t
¼ Ir

� �
of Uð pÞ. This induces the obvious embedding of their complexified Lie algebras

gl1ðCÞ 
 gl2ðCÞ 
 � � � 
 glpðCÞ:
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Let Eij 2 glpðCÞ denote the matrix with 1 at the ði; jÞth entry and 0 elsewhere. Then

for 14 r4 p, glrðCÞ is the span of fEij : 14 i; j4 rg.

Let l 2 Lþð pÞ. Recall that tlp denotes a copy of the irreducible representation of

Uð pÞ with highest weight l. It has a Gelfand–Zetlin (GZ) basis with respect to the

embedding (9). Each basis vector ½mkl� is represented up to a scalar as a set of

integers [GZ1]

½mkl� ¼

m1p m2p � � � mp�1;p mpp

m1;p�1 m2;p�1 � � � mp�2;p�1 mp�1;p�1
� � � � � � � � �

m11

2
664

3
775 ð10Þ

Here mip ¼ li for i ¼ 1; . . . ; p and mkl are integers satisfying

mkl 5mk;l�1 5mkþ1;l: ð11Þ

We assume that if the above inequality is not satisfied by some mk;l�1, then we set

½mkl�= 0. If ½mkl� 6¼ 0, then for 14 r4 p, ðm1r;m2r; . . . ;mrrÞ is the highest weight of

the glrðCÞ-module in which ½mkl� lies in.

There are several normalizations of the GZ bases given in [GZ1], [GG], [Ca] and

[Z]. In Part 1 of this paper, we will use the normalization given in [Z]. In [Z], the

author defines a UðnÞ-invariant Hermitian form on tlp and the normalized GZ basis

forms an orthonormal basis with respect to the Hermitian form. Hence the GZ

basis is uniquely determined up to a nonzero scalar depending on the invariant

Hermitian form.

Let v ¼ ½mkl� 2 tlp. For each 14 i4 r4 p� 1, let vþir (resp. v�ir ) be the GZ basis

vector obtained from v by increasing (resp. decreasing) mir by 1 while leaving the

rest of the mkl’s unchanged. Again we have implicitly assumed that v�ir is zero if (11)

is not satisfied. The following theorem about the normalized GZ basis is due to

Gelfand, Zetlin and Graev (see [Z] and pp. 667–669 [GG]).

THEOREM 4.2.1. Let v be a GZ basis vector in tlp. For 14 r4 p� 1,

Er;rþ1v ¼
Xr
i¼1

aiv
þ
ir ; Erþ1;rv ¼

Xr
i¼1

biv
�
ir

where ai and bi are nonzero complex numbers.

The exact values of ai and bi are given in [Z]. For our purposes, it is sufficient to

know that ai (resp. bi) is nonzero whenever vþir (resp. v�ir ) is nonzero.

4.3. We shall now describe a basis of Ipðs; sÞ. We recall that under the action of
~K ¼ Uð pÞ �Uð pÞ,

Ipðs; sÞ ¼
X

l2Lþð pÞ

Vl
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where for each l, Vl ffi tlp &� tl̂p, and l̂ ¼ l� þ s1p. Hence, Vl has a basis consisting

of vectors ½mkl� � ½m̂k0l0 �, where ½mkl� and ½m̂k0l 0 � are normalized GZ basis of tlp and

tl̂p, respectively. It follows that

B ¼
[

l2Lþð pÞ

f½mkl� � ½m̂k0l0 � : ðmkpÞ ¼ lk; ðm̂kpÞ ¼ l̂kg

is a basis of Ipðs; sÞ. We note that each vector in B is only defined up to a scalar

depending on Vl.

Recall that uð p; qÞ and uð p� qÞ are the Lie algebras of Uð p; qÞ and Uð p� qÞ

respectively. Let ~k be the Lie algebra of ~K ¼ Uð pÞ �Uð pÞ. We shall identify the

complexified Lie algebra of Uð p; pÞ with the Lie algebra gl2pðCÞ of 2p by 2p com-

plex matrices with standard basis fEij : 14 i; j4 pg. Under this identification,

~kC ¼ glpðCÞ � glpðCÞ;

uð p; qÞC ¼ SpanfEij : i; j 2 T g;

uð p� qÞC ¼ SpanfEpþi;pþj : 14 i; j4 p� qg;

ð12Þ

where T ¼ f1; 2; . . . ; pg [ f2p� qþ 1; 2p� qþ 2; . . . ; 2pg (see Section 3.2).

We now introduce a notation. Let l 2 Lþð pÞ and r < p. If u ¼ ½mkl� is a GZ basis

vector in tlp, then drðuÞ shall denote the GZ basis vector for the group UðrÞ obtained
by deleting the top p� r rows from ½mkl�. The following proposition follows from

Proposition 3.4.1.

PROPOSITION 4.3.1. Let m 2 Lþð p� qÞ.

ðiÞ Recall that m̂ ¼ m� þ s1p�q. The set

Bm̂ ¼ f½mk;l� � ½m̂k0l0 � : ðm̂1;p�q; m̂2;p�q; . . . ; m̂p�q;p�qÞ ¼ m̂g

is a basis of Ipðs; sÞm̂.
ðiiÞ Let v0 be a fixed GZ basis vector in tm̂p�q. Then

Bðv0Þ :¼ f½mkl� � ½m̂k0l0 � 2 B : dp�qð½m̂k0l0 �Þ ¼ v0g

is a basis of Ip;qðs; s; mÞ&� v0.

4.4. From now on, we shall fix a GZ basis vector v0 in tm̂p�q and identify Ip;qðs; s; mÞ
with the subspace Ip;qðs; s; mÞ&� v0 of Ipðs; sÞm̂. We shall show that the basis Bðv0Þ
behaves well with respect to restrictions. Suppose that tm

0

p�qþ1 � tmp�q. Then clearly

tm̂
0

p�qþ1 � tm̂p�q. There exists a unique (up to scalars) GZ basis vector wm̂0 in tm̂
0

p�qþ1
such that dp�qðwm̂0 Þ ¼ v0. By definition

Bðwm̂0 Þ :¼ f½mkl� � ½m̂k0l0 � 2 B: dp�qþ1ð½m̂k0l0 �Þ ¼ wm̂0 g ð13Þ

and Proposition 4.3.1 states that (13) is a basis of Ip;q�1ðs; s; m0Þ. Moreover,

Bðv0Þ ¼
S

m0 Bðwm̂0 Þ (disjointed union) where the union is taken over all
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m0 2 Lþð p� qþ 1Þ such that tm
0

p�qþ1 contains tmp�q. Hence, we have given an alter-

native proof of Proposition 3.5.1.

PROPOSITION 4.4.1. If W is an infinitesimal Uð p; qÞ-submodule of Ip;qðs; s; mÞ&� v0,

then W \ Bðv0Þ ¼W \ B is a basis of W.

Proof. We will prove this by induction on q. The case q ¼ 0 is trivial because W

is a representation of Uð pÞ. Suppose q� 1 is true. By Proposition 3.5.2,

W ¼
X

tm
0

p�qþ1�t
m
p�q

ðW \ Ip;q�1ðs; s; m0ÞÞ: ð14Þ

We have already shown that Ip;q�1ðs; s; m0) is spanned by Bðwm̂0 Þ. By induction

hypothesis, W \ Bðwm̂0 Þ is a basis of W \ Ip;q�1ðs; s; m0Þ. Hence,

W \ Bðv0Þ ¼
[

tm
0

p�qþ1�t
m
p�q

ðW \ Bðwm̂0 ÞÞ

is a basis of W. &

5. Uð pÞ-Isotypic Subspaces in Ip;qðs; r; lÞ

5.1. As in the previous section, we let v0 be a fixed GZ basis vector in tm̂p�q and

identify Ip;qðs; s; mÞ with the subspace Ip;qðs; s; mÞ&� v0 of Ipðs; sÞ. Recall that under

the action of ~K ¼ Uð pÞ �Uð pÞ,

Ipðs; sÞ ¼
X

l2Lþð pÞ

Vl

where for each l, Vl ffi tlp &� tl̂p and l̂ ¼ l� þ s1p. We now fix l 2 L. and define

Jl̂ :¼ Spanf½m̂ij� 2 tl̂p : dp�qð½m̂ij�Þ ¼ v0g;

Sl :¼ ðIp;qðs; s; mÞ&� v0Þ \ Vl ffi tlp &� Jl̂:
ð15Þ

Note that Jl̂ is a UðqÞ-submodule of tl̂p, and Sl is the tlp-isotypic component in

Ip;qðs; s; mÞ.

LEMMA 5.1.1. The following statements are equivalent:

ðiÞ Sl 6¼ 0.
ðiiÞ Jl̂ 6¼ 0.

ðiiiÞ tl̂p contains tm̂p�q.
ðivÞ tlp contains tmp�q.
ðvÞ li 5mi 5liþq for i ¼ 1; . . . ; p� q.

Proof. (i) , (ii) , (iii) , (iv) are clear. By the definition of the GZ basis, (iv)

implies (v). It remains to show that (v) implies (iv). We will prove this by induction

on q. If q ¼ 1, then (v) is just the branching rule given in (7). Next suppose q� 1 is
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true and q5 2. We formally define mi ¼ 1 if i4 0 and mi ¼ �1 if i > p� q. Since

li 5mi and mi�qþ1 5liþ1, we have

minðli; mi�qþ1Þ5 maxðliþ1; miÞ:

Define l0 ¼ ðl01; . . . ; l
0
p�1Þ by

l0i ¼
maxðliþ1; miÞ; if i ¼ 1; . . . ; p� q;
minðli; mi�qþ1Þ; if i ¼ p� qþ 1; . . . ; p� 1:

�
Then l0 2 Lþð p� 1Þ and l0i 5mi 5l0iþðq�1Þ for 14 i4 p� q� 1. By induction

hypothesis, tl
0

p�1 � tmp�q. Since li 5l0i 5liþ1, then by (7) tlp � tl
0

p�1 � tmp�q. &

5.2. The following two lemmas are vital to our later investigations.

LEMMA 5.2.1. Let W be an infinitesimal G-submodule of Ip;qðs; s; mÞ. If W \ Sl 6¼ 0,
then Sl 
W.

Proof. Let Ip;q ¼ Ip;qðs; s; mÞ and let v0 be a fixed GZ basis vector of tm̂p�q. By
Proposition 4.3.1(ii), we identify Ip;q ’ Ip;q &� v0 in Ipðs; sÞ and Ip;q &� v0 has a basis

Bðv0Þ. By Proposition 4.4.1, W \ Bðv0Þ is a basis of W. Since W \ Sl 6¼ 0, W

contains a vector of the form w ¼ u&� v; where u is the highest weight vector of tlp,
and v is a GZ basis vector for tl̂p such that dp�qðvÞ ¼ v0.

Suppose x ¼ ½mkl� is a GZ basis vector of tl̂p. Let j5 p� q, and let xþij (resp. x�ij )

denote the GZ basis vector obtained from x by increasing (resp. decreasing) mij by 1

(cf. Section 4.2). Then it suffices to show that if u� x 2W, then u� x�ij 2W.

We refer to (12) and Epþr�1;pþr;Epþr;pþr�1 2 uðqÞC  uð p; qÞC for r ¼ p� q þ

2; . . . ; p. By Theorem 4.2.1

Epþr�1;pþrx ¼
Xr
j¼1

ajx
þ
rj and Epþr�1;pþrx ¼

Xr
j¼1

bjx
�
rj

where aj and bj are nonzero complex numbers. Note that the subscripts are shifted

by p because uð pÞC ¼MpðCÞ is embedded in the lower right corner of M2pðCÞ. Thus

u&� ðEpþr�1;pþrxÞ and u&� ðEpþr;pþr�1xÞ lie in W. Since W is spanned by a subset of

Bðv0Þ, u&� x�rj 2 Bðv0Þ. This proves that u&� x�rj 2W. &

For each m 2 Lþð p� qÞ, let

Lþð p; mÞ ¼ fl 2 Lþð pÞ : li 5mi 5liþq; 814 i4 p� qg: ð16Þ

Then by Lemma 5.1.1, Sl 6¼ 0 for l 2 Lþð p; mÞ and

Ip;qðs; s; mÞ ¼
X

l2Lþð p;mÞ

Sl:

The following lemma follows from Lemma 5.2.1

LEMMA 5.2.2. Let W be an infinitesimal Uð p; qÞ-submodule of Ip;qðs; s; mÞ, and let

LþðWÞ ¼ fl 2 Lþð p; mÞ : Sl \W 6¼ 0g: ð17Þ
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Then W ¼
P

l2LþðWÞ Sl: Consequently if W1 
W2 are infinitesimal submodules of

Ip;qðs; s; mÞ, then

ResUð p;qÞUð pÞ�UðqÞW2=W1 ¼
X

l2LþðW2Þ�L
þ
ðW1Þ

Sl: &

6. Transition Coe⁄cients

6.1. In this section, we will study the action of the Lie algebra on Sl.

First we recall the following fact about representations of Uð pÞ.

Cp
� tlp ¼

Xp
i¼1

tlþeip ; ðCp
Þ
�
� tlp ¼

Xp
i¼1

tl�eip : ð18Þ

Note that if l� ei is not a dominant weight, then we set tl�eip ¼ 0.

6.2. The Lie algebras of Uð p; qÞ and Uð p; pÞ have Cartan decompositions

uð p; qÞ ¼ k� p and uð p; pÞ ¼ ~k� ~p;

where k ¼ uð pÞ � uðqÞ and ~k ¼ uð pÞ � uð pÞ. As k and ~k modules, we have

pC ¼ pþ � p�; ~pC ¼ ~pþ � ~p�;

pþ ffi Cp &� ðCq
Þ
�; p� ffi ðCp

Þ
� &�Cq;

~pþ ffi Cp &� ðCp
Þ
�; ~p� ffi ðCp

Þ
� &�Cp:

By Proposition 4.3.1(ii), we fix a GZ basis vector v0 2 tm̂p�q and identify Ip;qðs; s; mÞ
with the subspace Ip;qðs; s; mÞ&� v0 of Ipðs; sÞ. We now fix l 2 Lþð p; mÞ. Recall that

Vl is the Uð pÞ �Uð pÞ-type of Ipðs; sÞ isomorphic to tlp &� tl̂p, where l̂ ¼ l� þ s1p. Let
L : ~pC � Vl ! Ipðs; sÞ be the Lie algebra action on Ipðs; sÞ. It is also a Uð pÞ �Uð pÞ
map. Let pi : Ipðs; sÞ ! Vl�ei denote the projection map. We consider the following

commutative diagram

ððCp
Þ
�
� tlpÞ&� ðC

p
� tl̂pÞ ¼ ~p� � Vl �!

L Pp
j¼1 Vl�ej �!

pi
Vl�ei

S S S S
ððCp

Þ
�
� tlpÞ&�ðC

q
� Jl̂Þ ¼ p� � Sl �!

L Pp
j¼1 Sl�ej �!

pi
Sl�ei

ð19Þ

Define Tl;l�ei ¼ pi " L and let T 0
l;l�ei : p

� � Sl ! Sl�ei denote its restriction to

p� � Sl. By (18), ~p� � Vl ¼
Pp

a;b¼1 Vab as a Uð pÞ �Uð pÞ-module where Vab ’

tl�eap &� tl̂þebp . Hence, Tl;l�ei is either zero or it is an isomorphism on Vii.
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Similarly we define

Tl;lþei : ~p
þ � Vl ! Vlþei and T 0

l;lþei : p
þ � Sl ! Slþei

by replacing ~p�, p�, l� ei in (19) by ~p�, p�, lþ ei respectively. We will state Prop.

5.15 of [Le].

PROPOSITION 6.2.1. Let a ¼ �ðsþ p� sÞ=2, b ¼ �ðsþ pþ sÞ=2 and 14 j4 p.

ðiÞ If lþ ej 2 Lþð pÞ, then Tl;lþej 6¼ 0 if and only if lj 6¼ aþ j� 1.
ðiiÞ If l� ej 2 Lþð pÞ, then Tl;l�ej 6¼ 0 if and only if lj 6¼ �b� pþ j.

6.3. For each 14 i4 p, let pri : C
q
� Jl̂ ! tl̂þeip and prdi : ðC

q
Þ
�
� Jl̂ ! tl̂�eip be

respectively the composition of the maps

Cq
� Jl̂ ,!Cp

� tl̂p �!
proj

tl̂þeip ð20Þ

ðCq
Þ
�
� Jl̂ ,!ðCp

Þ
�
� tl̂p �!

proj
tl̂�eip : ð21Þ

where proj is defined by using (18). We remark that the images of pri and prdi lie in

Jl̂þei and Jl̂�ei respectively.

By (19), we see that T 0
l;l�ei 6¼ 0 if and only if prp�iþ1 6¼ 0 and Tl;l�ei 6¼ 0. Simi-

larly T 0
l;lþei 6¼ 0 if and only if prdp�iþ1 6¼ 0 and Tl;lþei 6¼ 0. Note that

^ðlþ eiÞ ¼ l̂� epþ1�i.

LEMMA 6.3.1.

ðiÞ If Jl̂þei 6¼ 0, then pri 6¼ 0.
ðiiÞ If Jl̂�ei 6¼ 0, then prdi 6¼ 0.

We shall postpone the proof of this lemma to the end of this subsection. If U is a

subspace of Ip;qðs; s; mÞ, we let p�ðUÞ ¼ Lðp� �UÞ.

PROPOSITION 6.3.2. Let l 2 Lþð p; mÞ so that Sl is nonzero in Ip;qðs; s; mÞ. Let W
be the infinitesimal Uð p; qÞ-submodule generated by Sl. Let a ¼ �ðsþ p� sÞ=2,
b ¼ �ðsþ pþ sÞ=2 and 14 j4 p.

ðiÞ If lþ ej 2 Lþð p; mÞ, then Slþej 
W if and only if lj 6¼ aþ j� 1.
ðiiÞ If l� ej 2 Lþð p; mÞ, then Sl�ej 
W if and only if lj 6¼ �b� pþ j.

Proof. We shall prove (ii). The proof for (i) is similar.

First if lj ¼ �b� pþ j, then by [Le], the subspace Y ¼
P

l0j 5lj Vl0 is an infinite-

simal Uð p; pÞ-submodule of Ipðs; sÞ, so that

Y \ ðIp;qðs; s; mÞ&� v0Þ ¼
X
l0j 5lj

Sl0
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is an infinitesimal Uð p; qÞ-submodule of Ip;qðs; s; mÞ&� v0. In particular, Sl�ej\

W ¼ 0.
Conversely suppose lj 6¼ �b� pþ j, then by Proposition 6.2.1 Tl;l�ej 6¼ 0. By

Lemma 6.3.1, prp�jþ1 6¼ 0 and, hence, T 0
l;l�ej 6¼ 0. From the definition of

T 0
l;l�ej , its image must lie in W \ Sl�ej . Therefore, W \ Sl�ej 6¼ 0 and by Lemma

5.2.1, Sl�ej 
W. &

6.4. We shall devote the rest of this section to the proof of Lemma 6.3.1. We write

l̂ ¼ ðl̂1; l̂2; . . . ; l̂pÞ and let ~l ¼ ð~l1; ~l2; . . . ; ~lpþ1Þ be defined by ~l1 ¼ l̂1 þ 1 and
~lj ¼ l̂j�1 for j5 2. We consider the irreducible representation t~lpþ1 of Uð pþ 1Þ
with highest weight ~l. Let Bð~lÞ be the GZ basis of t~lpþ1. Each member ½mkl�

of Bð~lÞ has pþ 1 rows, and mk;pþ1 ¼
~lk for 14 k4 pþ 1. We shall identify

tl̂p and tl̂þeip with the following subspaces of t~lpþ1:

tl̂p ¼ Spanf½mkl� 2 Bð~lÞ : mkp ¼ l̂k; k ¼ 1; . . . ; pg;

tl̂þeip ¼ Spanf½mkl� 2 Bð~lÞ : mip ¼ l̂i þ 1;mkp ¼ l̂k if k 6¼ ig;

Jl̂ ¼ Spanf½mkl� 2 Bð~lÞ : mkp ¼ l̂k; dp�qð½mkl�Þ ¼ v0g;

Jl̂þei ¼ Spanf½mkl� 2 Bð~lÞ : mkp ¼ l̂k þ dki; dp�qð½mkl�Þ ¼ v0g:

ð22Þ

Note that tl̂p and tl̂þeip occurs in t~lpþ1 with multiplicity one.

Let Wp 
 glpþ1ðCÞ denote the span of fE1;pþ1;E2;pþ1; . . . ;Ep;pþ1g. Then Wp ’ Cp

as representations of Uð pÞ, so that Wp � tl̂p ’
P

i tl̂þei . Let L : Wp � tl̂p ! t~lpþ1 be

the Uð pÞ-map defined by the Lie algebra action: LðX� wÞ ¼ Xw. Let ~v denote

the highest weight vector of tl̂p. Then ~v ¼ ½mkl� where mpl ¼ l̂p for all l4 p.

By Theorem 4.2.1

LðEp;pþ1 � ~vÞ ¼ Ep;pþ1 ~v ¼
Xp
i¼1

ai ~v
þ
ip; ð23Þ

where ai 6¼ 0 and ~vþip is the GZ basis vector obtained from ~vþip by increasing mip by 1.

This shows that the image of L has a nontrivial component in tl̂þeip . This implies

that L is injective on tl̂þei 
Wp � tl̂p and, hence, L is an injection.

Proof of Lemma 6:3:1. We will only prove (i) as the proof of (ii) is similar.

Using the above identification, Cq is the span of fEp�qþ1;pþ1; . . . ;Ep;pþ1g in Wp.

If we replace ~v ¼ ½mij� in (23) by a GZ basis vector in Jl̂, then priðEp;pþ1 � ~vÞ ¼ ai ~v
þ
ip.

It remains to show that we can choose ~v such that ~vþip is still a GZ basis vector, that

is, ~vþip 6¼ 0. Indeed Jl̂þei 
 tl̂þei is nonzero implies that mi�1;p > mip. Pick a nonzero

GZ basis vector v1 ¼ ½m
0
kl� 2 Jl̂. Suppose

m0ip ¼ m0i�1;p�1 ¼ � � � ¼ m0i�r;p�r < m0i�r�1;p�r�1 4 � � � 4m0i�q;p�q ¼ m̂i:

This implies that

m0i�r�1;p�r 5m0i�r�2;p�r�1 5 � � �m0i�1;p > m0ip ¼ m0i�r;p�r:
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Let ~v be the (nonzero) GZ basis vector obtained from v1 by increasing

mi;p�1; . . . ;mi�r;p�r each by 1. It is now easy to see that ~vþip 6¼ 0. This proves Part

(i) of the lemma. &

6.5. We could replace (23) by the Clebsch–Gordan formula of Uð pÞ (see Chapter 5

[KV]) and give an alternative proof of Lemma 6.3.1. In Part 2, we will apply

a similar argument to prove a statement analogous to Lemma 6.3.1 for

the group Spinð pÞ. However, the Clebsch–Gordan formula for Spinð pÞ is not

available.

7. Module Structure

7.1. In this section, we shall determine the reducibility of Ip;qðs; s; mÞ, and describe

its module structure when it is reducible. We shall first review the results of [Le]

on the structure of Ipðs; sÞ. Let a ¼ �ðsþ p� sÞ=2 and b ¼ �ðsþ pþ sÞ=2. Then
Ipðs; sÞ is reducible if and only if a and b are integers, or equivalently, s is an integer

and sþ p # sðmod 2Þ. Let

cx ¼ maxða;�b� pÞ and cy ¼ minða;�b� pÞ:

If Ipðs; sÞ is reducible, then its irreducible subquotients are of the form Raðr;tÞ where

r and t are nonnegative integers such that p� cx þ cy 4 rþ t4 p and as a

Uð pÞ �Uð pÞ-module,

Raðr;tÞ ¼
X

l2LþðRaðr;tÞÞ

tlp &� tl̂p

where

LþðRaðr;tÞÞ ¼ l 2 Lþð pÞ : lr 5 cx þ r5lrþ1; lp�t 5 cy þ p� t5lp�tþ1
� �

:

ð24Þ

7.2. The detailed module structure of Ipðs; sÞ can best be described by a directed

simple group G ¼ GðIpðs; sÞÞ, called the module diagram of Ipðs; sÞ (see Section 7 of

[Le]). The vertex set of G is the set of all irreducible subquotients Raðr;tÞ in Ipðs; sÞ.
There is a directed edge from the node R1 to the node R2 if and only if there are

submodules U and V of Ipðs; sÞ such that V 
 U and there is a nonsplit exact

sequence of infinitesimal Uð p; pÞ-modules 0! R2 ! U=V! R1 ! 0:
We shall also arrange the nodes in G in such a way that all the edges are directed

downward. Then one can recover the lattice of submodules of Ipðs; sÞ from the

graph G. Note that if we reverse the direction of the edges of G, we obtain the

module diagram for the dual representation of Ipðs; sÞ. Now Ipð�s;�sÞ is iso-

morphic to the dual representation of Ipðs; sÞ. So we only need to describe G
for s4 0 (or equivalently, aþ b5 � p).
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If s4 � p (or equivalently, aþ b5 0), then G is given in Figure 1. If

�pþ 14 s4 0, then G can be obtained by deleting the lowest sþ p rows from

the graph in Figure 1.

7.3. As in the previous section, we shall identify Ip;qðs; s; mÞ with the subspace

Ip;qðs; s; mÞ&� v0 of Ipðs; sÞ, where v0 is a fixed GZ-basis vector in tm̂p�q.
Suppose Raðr;tÞ is an irreducible subquotient in Ipðs; sÞ, and W1  W2 are

infinitesimal Uð p; pÞ-submodules of Ipðs; sÞ such that Raðr;tÞ ¼W2=W1. We define

R0aðr;tÞ ¼ ðW2 \ IÞ=ðW1 \ IÞ;

where I ¼ Ip;qðs; s; mÞ. There is a canonical injection R0aðr;tÞ,!Raðr;tÞ. Note that as a

representation of Uð pÞ �UðqÞ,

R0aðr;tÞ ¼
X

l2LþðR0
aðr;tÞ

Þ

Sl

where (cf. (16) and (24))

Lþ R0aðr;tÞ

� �
:¼ LþðRaðr;tÞÞ \ Lþð p; mÞ:

Note that Ip;qð�s;�s; m�Þ is isomorphic to the dual representation of Ip;qðs; s; mÞ.
Thus if s is real, we may assume that s4 0. We are now ready to state our first main

theorem.

THEOREM 7.3.1. Let s 2 C, m 2 Lþð p� qÞ, a ¼ �ðsþ p� sÞ=2 and b ¼
�ðsþ pþ sÞ=2.

Figure 1.
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ðAÞ ðaÞ If s 62 R, then Ip;qðs; s; mÞ is irreducible.

ðbÞ If s4 0, then Ip;qðs; s; mÞ is irreducible if and only if either one of the

following conditions holds:

ðiÞ Both a and b are non-integers.

ðiiÞ a and b are integers, 2q4 p and there exist i; j such that

qþ 14 i; j4 p� q and

mi ¼ mi�1 ¼ � � � ¼ mi�qþ1 ¼ aþ i

mj ¼ mj�1 ¼ � � � ¼ mj�qþ1 ¼ �b� pþ jþ 1:

ðBÞ Suppose s4 0 and Ip;qðs; s; mÞ is reducible. In this case, a; b 2 Z, so that Ipðs; sÞ is
also reducible.

ðaÞ If Raðr;tÞ is an irreducible subquotient in Ipðs; sÞ and R0aðr;tÞ 6¼ 0, then R0aðr;tÞ is

an irreducible subquotient of Ip;qðs; s; mÞ.
ðbÞ All irreducible subquotients of Ip;qðs; s; mÞ are of the form R0aðr;tÞ.

ðcÞ Let G and G0 be the module diagrams of Ipðs; sÞ and Ip;qðs; s; mÞ respectively,
then G0 is the subgraph of G obtained by removing the set of vertices

V 0 ¼ fRaðr;tÞ : R0aðr;tÞ ¼ 0g

and removing all edges connected to the vertices in V0. In other words, G0 is a
spanning subgraph of G.

We shall postpone the proof of this theorem to Section 7.7. A consequence of

Part (B)(c) of the theorem is the following corollary which we will prove in

Section 7.8.

COROLLARY 7.3.2. Suppose W 0 is an infinitesimal Uð p; qÞ-submodule of

Ip;qðs; s; mÞ&� v0, then there exists an infinitesimal Uð p; pÞ-submodule W of Ipðs; sÞ
such that W 0 ¼W \ ðIp;qðs; s; mÞ&� v0Þ.

7.4. We shall describe a method of deciding if R0aðr;tÞ 6¼ 0. Define

Si ¼ fz 2 Z : mi 4 z4mi�qg S1i ¼ fz 2 Z : z4 cy þ i� 1g
S2i ¼ fz 2 Z : cy þ i4 z4 cx þ i� 1g S3i ¼ fz 2 Z : cx þ i4 zg

for i ¼ 1; . . . ; p. Here mi ¼ 1 if i4 0 and mi ¼ �1 if i > p� q. Note that

S1i [ S2i [ S3i ¼ Z. Define L0 ¼ f3g, Lpþ1 ¼ f1g and Li :¼ fj : Si \ Sji nonemptyg
if 14 i4 p. Hence Li is a subset of f1; 2; 3g. Next we define

ej ¼ minfi : j 2 Lig fj ¼ maxfi : j 2 Lig:

Clearly e3 ¼ 0, f1 ¼ pþ 1, e3 4 e2 4 e1, f3 4 f2 4 f1, f3 5 e2 � 1 and f2 5 e1 � 1.
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LEMMA 7.4.1. The following conditions are equivalent:

ðiÞ R0aðr;tÞ 6¼ 0.
ðiiÞ rþ t5 p� cx þ cy. 3 2 Lr, 1 2 Lp�tþ1. If r < p� t, then 2 2 Lrþ1, 2 2 Lp�t and

1 2 Lp�tþ1.

ðiiiÞ rþ t5 p� cx þ cy, r4 f3 and p� t5 e1 � 1. If r < p� t, then e2 � 1
4 r < p� t4 f2.

ðivÞ rþ t5 p� cx þ cy, e2 � 14 r4 f3 and e1 � 14 p� t4 f2.

Proof. The condition rþ t5 p� cx þ cy in (ii) to (iv) is to ensure that Raðr;tÞ 6¼ 0.
Then (i)) (ii), (iii) are clear from the definitions of Li; ei and fi. To prove (iii),

(iv), we just have to consider the cases r ¼ p� t and r < p� t separately.

Finally we show (ii) ) (i). De¢ne l 2 Lþð pÞ by

lj ¼

maxðcx þ r; mjÞ; if 14 j4 r;

maxðcy þ p� t; mjÞ; if rþ 14 j4 p� t;

minðcy þ p� t; mj�qÞ; if p� tþ 14 j4 p:

8><
>:

Then Sl 6¼ 0 and Sl 
 R0aðr;tÞ. &

7.5. We now describe how the module diagram G0 of Ip;qðs; s; mÞ can be obtained

from that of Ipðs; sÞ. For each 14 j4 p, let

lj ¼ fRaðj;tÞ 2 Gg and rj ¼ fRaðr;p�jÞ 2 Gg:

Then lj and rj form two ‘straight lines’ in G passing through Rð j;p�jÞ. The case

s4 � p is illustrated in Figure 2.

Starting with the module diagram G of Ipðs; sÞ, we first discard all the vertices on

lj for j < e2 � 1 and for j > f3. Next we discard all the vertices on rj for j < e1 � 1
and for j > f2. We also remove the edges connected to the discarded vertices.

Rename the remaining vertices Raðr;tÞ by R0aðr;tÞ. By Lemma 7.4.1(iv) and Theorem

Figure 2.
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7.3.1(B)(c), the resulting subgraph G0 is the module diagram for Ip;qðs; s; mÞ. We

illustrate this in Figure 3 where the shaded area is G0.

7.6. We study an interesting special case. If s 2 Z, s4 � p and sþ s ¼ �p, then
Ipðs; sÞ contains a unique finite-dimensional subrepresentation of Uð p; pÞ, namely

Rað0;0Þ (cf. Section 7.1). Rað0;0Þ has highest weight g ¼ ða; a; . . . ; a; 0; 0; . . . ; 0Þ 2
Lþð2pÞ where there are p copies of a’s. Using the branching rules in Exercise

6.12 in [FH] and the Littlewood–Richardson numbers, we can show that

ResUð p;pÞUð p;qÞ�Uð p�qÞRað0;0Þ ¼
X
Z;m

tZp;q &� tmp�q; ð25Þ

where the sum is taken over all highest weight Z ¼ ðZ1; . . . ; ZpþqÞ 2 Lþð pþ qÞ and

m ¼ ðm1; . . . ; mqÞ 2 Lþð p� qÞ satisfying Zi 5 0, mj 5 0 and

Z1 ¼ Z2 ¼ � � � ¼ Zq ¼ a

Zqþi þ mi ¼ a for i ¼ 1; . . . ; p� q:

One can verify that the (25) is in agreement with Theorem 7.3.1.

7.7. Proof of Theorem 7.3.1. We first prove the ‘only if ’ part of (A)(b). Suppose

a; b 2 Z and Ip;qðs; s; mÞ is irreducible. We assume that s4 � 1, so that for any

14 j4 p, aþ j� 15 � bþ p� j. First we note that aþ q� 1 < mq and

�ðbþ q� 1Þ < mp�2qþ1. Let i ¼ minft : aþ t� 15mtg. Then i5 q. We claim

that mi ¼ aþ i� 1. Otherwise, since aþ i� 2 < mi�1, we have

mi < aþ i� 1 ¼ ðaþ i� 2Þ þ 14mi�1 4mi�q:

Then we can choose l and Z in Lþð p; mÞ such that li ¼ aþ i� 1 and Zi ¼ mi�q. Then
l and Z belong to different constituents which implies that Ip;qðs; s; mÞ is reducible.
Thus we must have mi ¼ aþ i� 1. We also claim that mi ¼ mi�q, for otherwise we

can again find two elements of Lþð p; mÞ belonging to two different constituents.

Similarly let j ¼ minft : � bþ n� t > mtg. Then similar arguments show that

mj ¼ mj�q. This proves the ‘only if’ part of the statement.

Figure 3.
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Next we prove (A)(a) and the ‘if ’ part of (A)(b). First we assume that a and b are

not integers and shall show that Ip;qðs; s; mÞ is irreducible. The proof of this is

similar to that of Theorem 6.2 of [Le]. Suppose that l; l0 2 Lþð p; mÞ, that is,

Sl and Sl0 are nonzero isotypic components for Uð pÞ in Ip;qðs; s; mÞ. It suffices

to prove that the infinitesimal Uð p; qÞ-submodule W of Ip;qðs; s; mÞ generated

by Sl contains Sl0 . To do this, we construct a sequence ðZðmÞÞnm¼0 in Zn inductively

as follows. Let 14 i1 < i2 < � � � < ia 4 p and p5 j1 > j2 > � � � > jb 5 1 be such that

liu 4l0iu and ljv > l0jv , 814 u4 a, 14 v4 b, and fi1; . . . ; iag [ f j1; . . . ; jbg

¼ f1; 2; . . . ; pg. Set Zð0Þ ¼ l. For 14m4 a, we set

ZðmÞk ¼
l0im ; k ¼ im;

Zðm�1Þk ; k 6¼ im;

�

and for aþ 14m4 p,

ZðmÞk ¼
l0jm�a ; k ¼ jm�a;

Zðm�1Þk ; k 6¼ jm�a:

(

It is clear that ZðmÞ 2 Lþð pÞ. By Lemma 5.1.1, li 5mi 5liþq and l0i 5mi 5l0iþq for

i ¼ 1; 2; . . . ; p� q. Since for each m the components of ZðmÞ are taken from these

numbers, we clearly have

ZðmÞi 5mi 5ZðmÞiþq 8i ¼ 1; 2; . . . ; p� q:

Thus ZðmÞ 2 Lþð p; mÞ. We now claim that W contains SZð1Þ . First we note that

Zð1Þ ¼ lþ k1ei1 for some nonnegative integer k1 and lþ tei1 2 Lþð p; mÞ for

14 t4 k1 � 1. By Proposition 6.3.2, since �li1 6¼ aþ i1 � 1, Slþei1

W. Similarly,

since �li1 6¼ aþ tþ i1 � 1 for 14 t4 k1 � 1, Slþ2ei1
; . . . ;Slþk1ei1

¼ SZð1Þ are con-

tained in W. Next we note that Zð2Þ ¼ Zð1Þ þ k2ei2 for some nonnegative integer

k2. It is now clear that if we proceed with the above arguments along the sequence

ðZðmÞÞ, we will obtain SZðnÞ ¼ Sl0 
W.

Similar arguments also prove (B)(a).

If condition (A)(b)(ii) holds, then by Lemma 7.4.1 one can check that R0aðr;tÞ 6¼ 0 if

and only if ðr; tÞ ¼ ði; p� jÞ. Hence, Ip;qðs; s; mÞ ¼ R0aði;p�jÞ is irreducible by b(i).

Part (B)(b) is true because the Uð pÞ-isotypic components Sl contained in all the

R0aðr;tÞ exhaust all the Uð pÞ-isotypic components in Ip;qðs; s; mÞ.
Finally we prove (B)(c). Let R1 ¼ Raðr;tÞ, R2 ¼ Raðu;vÞ, R01 ¼ R0aðr;tÞ and R02 ¼

R0aðu;vÞ. Suppose that there is a directed edge in G from R1 to R2 and R01 and R02
are nonzero. We need to show that there is a directed edge from R01 to R02 in G0.
To do this, we need to show that there exist l 2 LþðR01Þ and Z 2 LþðR02Þ such that

pCðSlÞ \ SZ 6¼ 0. From Figure 1, we see that R1 ! R2 if and only if ðu; vÞ ¼

ðr� 1; tÞ or ðu; vÞ ¼ ðr; t� 1Þ. We shall only prove the case ðu; vÞ ¼ ðr� 1; tÞ as

the other case is similar. Let Ar ¼ �ðbþ p� rÞ and Br ¼ aþ r� 1. Since both

R0aðr;tÞ and R0aðr�1;tÞ are nonzero, the intersections of the intervals ½mr; mr�q�\
½Ar;Br� 6¼ ; and ½mr; mr�q� \ ½Br;1Þ 6¼ ;. In particular, Br;Brþ1 2 ½mr; mr�q�. Thus
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there exist l 2 R0aðr;tÞ and Z 2 R0aðr�1;tÞ such that lr ¼ Br þ 1, Zr ¼ Br and lj ¼ Zj for
all j 6¼ s. By the proof of Proposition 6.3.2, p�ðSlÞ \ SZ 6¼ 0. This completes the

proof. &

7.8. Proof of Corollary 7.3.2. If the corollary holds for W0
1 and W0

2 in Ip;q, then it

holds for W0
1 þW0

2. Hence we may assume that W0 is generated by a single vector.

Let

Raðr1;t1Þ ! Raðr2;t2Þ ! � � � ! Raðrk;tkÞ

be a directed path in the module diagram G. Suppose R0aðr1;t1Þ and R0aðrk;tkÞ are

nonzero, then from the description of G0 in Section 7.5, R0aðri;tiÞ 6¼ 0 for all

i ¼ 1; . . . ; k. Then Corollary 7.3.2 follows from the general theory of module dia-

grams. &

8. Unitarity

8.1. In this section, we shall determine the unitarity of Ip;qðs; s; mÞ and its sub-

quotients. Recall that we can identify Ip;qðs; s; mÞ ’ Ip;qðs; s; mÞ&� v0 in Ipðs; sÞ, where
v0 is a fixed GZ basis vector in tm̂p�q. Thus if Ipðs; sÞ is unitarizable, then so is

Ip;qðs; s; mÞ. So there are two obvious families of unitarizable representations:

unitary induction and the restriction of the complementary series of Uð p; pÞ.
Similarly, if Ipðs; sÞ is reducible and Raðr;tÞ is a unitary subquotient in Ipðs; sÞ
such that R0aðr;tÞ 6¼ 0, then R0aðr;tÞ is also unitary. We shall determine which

other representations Ip;qðs; s; mÞ or their subquotients are unitary.

THEOREM 8.1.1. Let s 2 C, s 2 Z, m 2 Lþð p� qÞ, a ¼ �ðsþ p� sÞ=2 and

b ¼ �ðsþ pþ sÞ=2.

ðAÞ (Unitary induction) If ReðsÞ ¼ 0, then Ip;qðs; s; mÞ is unitarizable.

ðBÞ (Restriction of the complementary series of Uð p; pÞ) If s # pþ 1 ðmod 2Þ and
jsj < 1, then Ip;qðs; s; mÞ is unitarizable.

ðCÞ (Other unitarizable representations) Let s < 0. Suppose that the following con-

ditions are satisfied:

ðiÞ p5 2q;
ðiiÞ there exists an integer m such that

mj ¼ m ða4 j4 bÞ

where b� a5 q� 1.

ðiiiÞ a < �a� qþmþ 2
b < b� p�mþ 1:

�

Then Ip;qðs; s; mÞ is unitarizable.

ðDÞ If Ip;qðs; s; mÞ is unitarizable, then it must be one of the representations described

in parts (A), (B) and (C) (and their duals).
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(E) (Unitary subquotients) Suppose that a; b 2 Z and aþ b5 � pþ 1 (equivalently,

s 2 Z, s4 � 1 and sþ p # sðmod 2Þ). In this case, Ipðs; sÞ is reducible.

ðaÞ (Restriction of the unitarizable subquotients in Ipðs; sÞ)

ð1Þ If 04 j4 n and R0aðj;n�jÞ 6¼ 0, then R0aðj;n�jÞ is unitarizable.

ð2Þ If�p4 s4 � 1, rþ t ¼ sþ p and R0aðr;tÞ 6¼ 0, then R0aðr;tÞ is unitarizable.

ðbÞ (Other unitarizable subquotients) Assume that pþ s < rþ t < p.

ð1Þ Suppose R0aðr;tÞ is nonzero and satisfies the following conditions:

(i) t5 q.

(ii) mj ¼ aþ r for rþ 14 j4 p� t.

Then R0aðr;tÞ is a unitarizable subquotient in Ip;qðs; s; mÞ.
ð2Þ Suppose R0aðr;tÞ is nonzero and satisfies the following conditions:

(i) r5 q.

(ii) mj�q ¼ �ðbþ tÞ for rþ 14 j4 p� t.

Then R0aðr;tÞ is a unitarizable subquotient in Ip;qðs; s; mÞ.
ð3Þ Suppose R0aðr;tÞ is nonzero and satisfies the following conditions:

(i) r5 q and t5 q.

(ii) There exists m such that �ðbþ tÞ4m4aþ r and mj ¼ m for

sþ 1� q4 j4 p� t.

Then R0aðr;tÞ is a unitarizable subquotient in Ip;qðs; s; mÞ.
ðcÞ If R0aðr;tÞ is unitarizable then it belongs to one of the cases given in Parts (a)

or (b).

If the unitarizable subquotients of Ip;qðs; s; mÞ given in Parts (E)(b) of the above

theorem occur, then they correspond to the vertices located at either the left, the

right or the upper corner of the module diagram. In the examples given in

Figure 4(a)–(c), each of these unitarizable subquotients are enclosed by a rectangle.

If s ¼ 0 and tmp�q is the trivial representation of Uð p� qÞ, then Part (C) of the

theorem implies the following:

COROLLARY 8.1.2. If p5 2q and s is real and

jsj < p� 2qþ 2;

then Ip;qðs; 0; 0Þ is irreducible and unitarizable.

Figure 4.
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Note that the length of the complementary series given in the above corollary

increases with p� 2q. This phenomenon of long complementary series is well

known for classical groups of real rank one. The case of SO0ð p; qÞ with q > 1
was first determined by J-S Li [Li] (c.f. Corollary 13.1.2).

8.2. We now briefly describe the main ideas of the proof for Theorem 8.1.1. We

assume that both a and b are real and R is an irreducible subquotient of Ipðs; sÞ.
Suppose R gives rise to an irreducible subquotient R0 in Ip;qðs; s; mÞ. We will first

construct a (not necessary positive definite) uð p; pÞ-invariant Hermitian form h: ; :i

on R. Then the restriction of h: ; :i to R0 is clearly uð p; qÞ-invariant and we will see

that it is nontrivial on R0. Since R0 is irreducible the Hermitian form is uniquely

determined up to a nonzero scalar. The Hermitian form is either positive or

negative definite on a ~K-type Vl and, hence, also on Sl. Finally we determine

whether the signatures are the same on those Vl whose restrictions to Sl are

nontrivial.

8.3. We shall devote the remaining part of this section to the proof of Theorem

8.1.1. Assume that both a and b are real. Let R be an irreducible subquotient of

Ipðs; sÞ. If a; b 62 Z, then R ffi Ipðs; sÞ, and if a; b 2 Z, then R ¼ Raðr;tÞ for some r and

t. We first describe a nondegenerate Uð p; pÞ invariant Hermitian form on R (see x 9

of [Le]). Recall that LþðRÞ denotes the set of Uð pÞ highest weights which occur in

R, so that R ¼
P

l2LþðRÞ Vl; where for each l, Vl ffi tlp &� tl̂p as a representation of

Uð pÞ �Uð pÞ. We now fix an element Z 2 LþðRÞ. For 14 j 4 p, let hj be the

function on Z given by

hjðmÞ ¼

ð�1Þjmj
Qjmj�1

a¼0
a�Zjþjþa

bþZjþp�j�a
m < 0;

1; m ¼ 0;

ð�1Þm
Qm

b¼1
bþZjþp�jþb
a�Zjþj�b

; m > 0:

8>><
>>:

For each l 2 LþðRÞ, let

cl ¼ h1ðm1Þh2ðm2Þ � � � hpðmpÞ; ð26Þ

where mj ¼ lj � Zj for 14 j4 p, and define the Hermitian form h:; :il on Vl by

h f1; f2il ¼ cl

Z
Uð pÞ�Uð pÞ

f1ðkÞf2ðkÞ dk ð f1; f2 2 VlÞ:

Let h:;:i be the sum of all h:;:il. Then

ða� lj þ j� 1Þclþej þ ðbþ lj þ p� jþ 1Þcl ¼ 0: ð27Þ

for all 14 j4 p and l 2 LþðRÞ such that l; lþ ej 2 LþðRÞ. This equation is equiva-

lent to the condition that the Lie algebra of Uð p; pÞ acts on Ipðs; sÞ by skew-

Hermitian operators. Consequently the form h:;:i is Uð p; pÞ invariant.
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LEMMA 8.3.1. Let

R0 ¼
Ip;qðs; s; mÞ; if R ¼ Ipðs; sÞ is irreducible;
R0aðr;tÞ; if Ipðs; sÞ is reducible and R ¼ Raðr;tÞ:

�
Let LþðR0Þ be the set of Uð pÞ highest weights which occurs in R0. Then R0 is uni-

tarizable if and only if all the numbers fclgl2LþðR0Þ are of the same sign.

Proof. Let Y ¼
L

l2LþðR0Þ Vl 
 R. Then R0 
 Y: Let h: ; :iY be the restriction of

the form h:;:i to Y. If all the numbers fclgl2LþðR0Þ are of the same sign, then by

multiplying h:;:iY by �1 if necessary, we may assume that h:;:iY is positive definite.

Thus its restriction to R0 is a Uð p; qÞ-invariant inner product. Conversely suppose

that there exist l and l0 in LþðR0Þ such that cl > 0 and cl0 < 0. Then for any

nonzero functions f1 2 Sl and f2 2 Sl0 , h f1; f1iY > 0 and h f2; f2iY < 0. Let ð: ; :ÞR0 is
the restriction of h: ; :iY to R0. Then it is neither positive definite nor negative

definite. Since R0 is irreducible, any Uð p; qÞ invariant Hermitian form on R0 must be

a multiple of ð: ; :ÞR0 . Hence, R0 has no Uð p; qÞ invariant inner product. &

8.4. Proof of Theorem 8.1.1(C). Note that under the given conditions, every element

l of Lþð p; mÞ are such that

lj
5mj; 14 j4 aþ q� 1;
¼ m; aþ q4 j4 b;
4mj�q; bþ 14 j4 p:

8<
:

Take Z ¼ ðm1; . . . ; ma�1;m; . . . ;m; mbþ1; . . . ; mp�qÞ, and for each l 2 Lþð p; mÞ, define
cl by (26). Then one can check that cl > 0 for all l 2 Lþð p; mÞ. Thus by

Lemma 8.3.1, Ip;qðs; s; mÞ is unitarizable. &

8.5. We need the following lemma to prove Part (D) of the theorem.

LEMMA 8.5.1. Suppose that s < 0 and Ip;qðs; s; mÞ is irreducible. If for some j, there

is an integer m and l 2 Lþð p; mÞ such that

ðiÞ �b� pþ j� 1 < m < aþ j� 1.
ðiiÞ lj ¼ m.

ðiiiÞ lþ ej 2 Lþð p; mÞ.

Then Ip;qðs; s; mÞ is not unitarizable.

Proof. Under the given conditions, a� lj þ j� 1 > 0 and bþ lj þ p� jþ 1 > 0,
so that �cl=clþej > 0. &

Remark. Note that if a and b in the previous lemma are integers, and m is either

equal to aþ j� 1 or �b� pþ j� 1, then Ip;qðs; s; mÞ is reducible and not completely

reducible. Consequently Ip;qðs; s; mÞ is not unitarizable in this case.

8.6. Proof of Theorem 8.1.1(D). First we consider the case when s is not real and

ReðsÞ 6¼ 0. Note that for any Z 2 Lþð p� 1Þ, Ip;1ðs; s; ZÞ is Uð pÞ �Uð1Þ multiplicity

free. So the methods used in Section 9 of [Le] can be used to show that Ip;1ðs; s; ZÞ is
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not unitarizable. Now for any m 2 Lþð p� qÞ, there exists Z 2 Lþð p� 1Þ such that

Ip;1ðs; s; ZÞ is embedded into Ip;qðs; s; mÞ. Hence, Ip;qðs; s; mÞ is not unitarizable.

We now assume that Ip;qðs; s; mÞ is unitarizable and does not belong to the cases

described in Parts (A), (B) and (C). Then s is real, and either s # pðmod 2Þ or
jsj > 1. If p < 2q, then flp�qþ1 : l 2 Lþð p; mÞg ¼ Z. So by Lemma 8.5.1 with

j ¼ p� qþ 1, Ip;qðs; s; mÞ is not unitarizable. Thus p5 2q.
If Ip;qðs; s; mÞ is reducible and not unitarily induced, then by Theorem 7.3.1,

Ip;qðs; s; mÞ is not completely reducible and, hence, not unitarizable. So Ip;qðs; s; mÞ is
irreducible.

By duality, we may assume that s < 0, or equivalently, aþ bþ p > 0. For

14 j4 p, let Aj ¼ aþ j� 1 and Bj ¼ �b� pþ j� 1. Recall that in the case

�1 < s < 0, we are assuming s # pðmod 2Þ, so that the midpoint of the interval

½Bj;Aj� which is given by ðs� pÞ=2þ ðj� 1Þ is an integer. Thus ½Aj� is always con-

tained in ½Bj;Aj�. Here ½x� denotes the greatest integer less than or equal to x.

We claim that Aq < mq. Otherwise by applying Lemma 8.5.1 with m ¼ ½Aq�,

Ip;qðs; s; mÞ is not unitarizable. We now consider two cases.

Case 1: Suppose there exists qþ 14 i4 p� q such that Ai 5mi. Let j be the

smallest integer i such that Ai 5mi. Then since Aj ¼ Aj�1 þ 1 < mj�1 þ 1,
½Aj�4mj�1 4mj�q. If Aj is an integer and either Aj < mj�1 or mj�1 < mj�q, then

Ip;qðs; s; mÞ is reducible. On the other hand, if Aj is not an integer and not all of ½Aj�,

mj�1 and mj�q are equal, then applying Lemma 8.5.1 with m ¼ ½Aj� contradicts

unitarity. Thus we must have ½Aj� ¼ mj�1 ¼ mj�q.
If ðBj;AjÞ contains exactly one element, then we are done. If ðBj;AjÞ contains k

integers with k5 2 and mj < mj�q, then again by applying Lemma 8.5.1 with

m ¼ ½Aj� � 1, Ip;qðs; s; mÞ is not unitarizable. So mj ¼ mj�q. By the same reasoning,

we must have mj ¼ mjþ1 ¼ � � � ¼ mjþk�1 ¼ ½Aj�. In particular, jþ k� 14 p� q.

Case 2: Suppose that Ap�q < mp�q. Then Ap�qþ1 < mp�q þ 14mp�2qþ1 þ 1, which
together with Lemma 8.5.1 imply that ½Ap�qþ1� ¼ mp�q ¼ mp�2qþ1. Moreover,

ðBp�qþ1;Ap�qþ1Þ contains exactly one integer.

8.7. Proof of Theorem 8.1.1(E)(b). We shall only prove (i). Recall that GþðR0Þ is the
set of all l 2 LðRaðr;tÞÞ such that Sl 6¼ 0. First we note that LþðR0Þ is nonempty as

ðm1; m2; . . . ; mp�q; mp�q; . . . ; mp�qÞ 2 LþðR0Þ:

We need to show that the numbers fclgl2S have the same sign. Note that since

aþ b4 rþ t, we have �bþ j� 15a� pþ j for 14 j4 p, so for l 2 Lþð pÞ,

(i) lj 5 � bþ j or l4a� pþ j� 2 implies that cl=clþej > 0.
(ii) a� pþ j4lj 4 � bþ j� 2 implies that cl=clþej < 0.

Now if l 2 S, then mj 4lj 4 � bþ s for sþ 14 j4 p� t and lp�tþ1 4a� t. By

(b), lj ¼ �b ¼ s for sþ 14 j4 p� t. In other words, for sþ 14 j4 p� t there is
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no transitions of the form l! lþ ej in R0aðr;tÞ. On the other hand, ls 5 � bþ s, so

that lj 5 � bþ s5 � bþ j for 14 j4 s, and lp�tþ1 4aþ t, so that lj 4aþ t4
a� pþ j for all p� tþ 14 j4 p. Thus cl=clþej > 0 for all l 2 LþðR0Þ such that

lþ ej 2 LþðR0Þ. &

8.8. Proof of Theorem 8.1.1(E)(c). Suppose R0aðr;tÞ is unitarizable and does not belong

to any of the cases given in Part (E)(a) of the theorem. First we note that if

l 2 LþðR0aðr;tÞÞ, then �ðbþ tÞ4lj 4aþ r for sþ 14 j4 p� t. If mrþ1 > aþ r,

then R 0
aðr;tÞ ¼ 0. So we must have mrþ1 4aþ r. It is clear that to have

unitarity, there are only three possibilities: mrþ1 ¼ aþ r, mrþ1 ¼ mrþ1�q or

mrþ1�q ¼ �ðbþ tÞ. If mrþ1 ¼ aþ r, then mj ¼ aþ r for rþ 14 j4 p� t. The

other cases are similar. &

PART 2. THE DEGENERATE PRINCIPAL SERIES OF Spin0ð p; qÞ

In this part, we shall use the methods in Part 1 to study a similar family of

degenerate principal series representations of Spin0ð p; qÞ. Since the ideas and proofs

are very similar to Part 1, we will only state the main results and omit most of the

proofs.

9. The Representations

9.1. Recall that SOð p; pÞ is the group of 2p� 2p real matrices of determinant 1
which fixes the symmetric form on V ¼ R2p:

hðx1; . . . ; x2pÞ; ðy1; . . . ; y2pÞi ¼ x1y1 þ � � � þ xpyp � ðxpþ1ypþ1 þ � � � þ x2py2pÞ:

Let fe1; . . . ; e2pg be the standard basis of R2p. Let q < p and set

T ¼ f1; . . . ; pg [ f2p� qþ 1; . . . ; 2pg. Let VT and V 0
T be the span of fei : i 2 Tg

and fei : i 62 T g respectively. Hence, V ¼ VT � V0T. We shall identify SOð p; qÞ
and SOð p� qÞ with the following subgroups of SOð p; pÞ:

SOð p; qÞ ffi fg 2 SOð p; pÞ : gjV0
T
¼ idg;

SOð p� qÞ ffi fg 2 SOð p; pÞ : gjVT
¼ idg:

Let SO0ð p; qÞ denote the connected component of SOð p; qÞ. SO0ð p; qÞ exhibits a

double cover Spin0ð p; qÞ. Set ~G ¼ Spin0ð p; pÞ, G ¼ Spin0ð p; qÞ and H ¼ Spinð p� qÞ.

Note that ~G contains

G�Z=2Z H :¼ ðG�HÞ=fðx; xÞ : x 2 Z=2Zg:

9.2. Let gl2pðCÞ be the Lie algebra consisting of all 2p by 2p complex matrices.

Then the complexified Lie algebra soð p; pÞC of ~G can be identified with the

subalgebra of skew symmetric matrices in gl2pðCÞ. Let Eij ¼ �Eji 2 soð p; pÞC
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denote the matrix which is 1 at the ði; jÞth entry, �1 at ðj; iÞth entry and 0 elsewhere.

Then the complexified Lie algebras gC and hC of G and H are given by

gC ¼ soð p; qÞC ¼ SpanfEij : i; j 2 T g;

hC ¼ soð p� qÞC ¼ SpanfEij : pþ 14 i; j4 2p� qg:
ð28Þ

9.3. Let P0 be the stabilizer of the span of fe1 þ epþ1; . . . ; ep þ e2pg in SO0ð p; pÞ. It is

a maximal parabolic subgroup with Levi subgroup GLþp ðRÞ. The intersection

P0 \ SO0ð p; qÞ is a maximal parabolic subgroup of SO0ð p; qÞ with

Levi subgroup GLþq ðRÞ � SOð p� qÞ. Let P1 denote the double cover of

P0 \ SO0ð p; qÞ in G. Similarly let ~P denote the double cover of P0 in ~G. The

Levi subgroups of P1 and ~P are respectively

SLqðRÞ � ðR
�
�Z=2Z Spinð p� qÞÞ ’ GLþq ðRÞ � Spinð p� qÞ

and

SLqðRÞ � R� ’ GLþp ðRÞ � f�1g:

The modular function of P1 (resp. ~P) is dðxyÞ ¼ ðdet xÞp�1 where x 2 GLþq ðRÞ, and
y 2 Spinð p� qÞ (resp. y 2 f�1g).

9.4. For s 2 C and s 2 f0; 1g, let ws;s denote the one-dimensional character of the

Levi subgroup of ~P defined by ws;sðxyÞ ¼ ðdet xÞ
sys where x 2 GLþp ðRÞ; y 2 f�1g.

Let Ind
~G
~P
ws;s denote the corresponding (normalized) induced representation of ~G

(see Section 1.11 for its definition). It will descend to a representation of SO0ð p; pÞ

if and only if s ¼ 0. Let Ipðs; sÞ denote its Harish-Chandra module. The module

structure and unitarity of Ipðs; sÞ has been determined by Johnson ([J1]) and

Sahi ([S2]).

9.5. For r 2 Zþ and s 2 f0; 1g, define

Ls
ð2rþ 1Þ ¼ fðl1; l2; . . . ; lrÞ : l1 5l2 5 � � � 5lr 5 0; li � s

2 2 Z 8ig;

Ls
ð2rÞ ¼ fðl1; l2; . . . ; lrÞ : l1 5l2 5 � � � 5lr�1 5 jlrj; li � s

2 2 Z 8ig:

Hence, L0
ð pÞ (resp. L1

ð pÞ) is the set of highest weights of irreducible representa-

tions of Spinð pÞ which descend (resp. do not descend) to representations of SOð pÞ.
For l ¼ ðl1; l2; . . . ; lrÞ 2 Ls

ð pÞ, let tlp be the irreducible representation of Spinð pÞ
with highest weight l. We remark that tlp is a self dual representation.

9.6. Let L1 ¼ GLþq ðRÞ � Spinð p� qÞ denote the Levi subgroup of P1 
 G. For

s 2 C and x 2 GLþq ðRÞ, let wsðxÞ ¼ ðdet xÞ
s: Let m 2 Ls

ð p� qÞ and let ps;s;m ¼
ws &� tmp�q: Let IndGP1

ps;s;m denote the corresponding (normalized) induced

representation of G (cf. 1.11). It will descend to a representation of SO0ð p; qÞ

if and only if tmp�q descends to a representation of SOð p� qÞ. Let Ip;qðs; s; mÞ
denote its Harish-Chandra module. The purpose of Part 2 is to determine the

module structure and unitarity of Ip;qðs; s; mÞ.
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9.7. Let r1 ¼ ½ð p� qÞ=2�. The infinitesimal character of Ip;qðs; s; mÞ is given by

sþ
q� 1
2

; sþ
q� 3
2

; . . . ; s�
q� 1
2

; m1þ
p� q� 2

2
;

�

m2 þ
p� q� 4

2
; . . . ; mr1þ

p� q

2
� r1

�
ð29Þ

and it is defined up to an action of the Weyl group. We also note that Ip;qð�s; s; mÞ
is the dual representation of Ip;qðs; s; mÞ.

9.8. Let

~K ¼ Spinð pÞ �Z=2Z Spinð pÞ; K ¼ Spinð pÞ �Z=2Z SpinðqÞ:

Then ~K and K are the maximal compact subgroups of ~G ¼ Spin0ð p; pÞ and

G ¼ Spin0ð p; qÞ respectively. The following are obtained by straightforward appli-

cations of Frobenius reciprocity:

(i) Under the action of ~K,

Ipðs; sÞ ¼
X

l2Ls
ð pÞ

tlp &� tlp: ð30Þ

(ii) The K-type tlp &� tZq occurs in Ip;qðs; s; mÞ with multiplicity

dimHomSpinðqÞ�Spinð p�qÞðtZq &� tmp�q; t
l
pÞ: ð31Þ

Note that the multiplicity is nonzero only if l 2 Ls
ð pÞ and Z 2 Ls

ðqÞ.

9.9. The following proposition relates Ipðs; sÞ with Ip;qðs; s; mÞ and it is analogous to

Propositions 3.4.1 in Part 1.

PROPOSITION 9.9.1. Let s 2 C and s 2 f0; 1g. Then we have

Res ~G
G�HIpðs; sÞ ¼

X
m2Ls

ð p�qÞ

Ip;qðs; s; mÞ&� tmp�q: ð32Þ

Note that each Ip;qðs; s; mÞ on the right-hand side of (32) has a distinct infini-

tesimal character.

Proposition 9.9.1 is the starting point of our investigation on the submodules of

Ip;qðs; s; mÞ and their unitarity. In Section 10 we will define a basis of Ip;qðs; s; mÞ
using the Gelfand–Zeltin basis. This sets up the notation so that we can compute the

transition maps Tl;l0 in Section 11. The arguments are parallel to that of Part 1 and

we will omit most of the details. Readers who are only interested in the statements

of the main results may skip the next two sections and proceed to Sections 12 and 13

directly. We choose to keep Sections 10 and 11 for two reasons: Firstly if p is odd,

Tl;l may not be zero. This differs from Part 1 and it affects the final theorem on the

unitarily. We feel that this case should be treated in detail. The second reason is that

the transition coefficients carry more information than the reducibility of Ip;qðs; s; mÞ
and it is useful to write them down explicitly.
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10. A Basis of Ip;qðs; r; lÞ

10.1. In this section, we shall construct a basis of Ip;q :¼ Ip;qðs; s; mÞ using the

Gelfand–Zetlin (GZ) basis for an irreducible representation of Spinð pÞ.
We identify the real Lie algebra soð pÞ of Spinð pÞ as the subspace of skew sym-

metric p by p real matrices. Suppose i 6¼ j and we let Eij ¼ �Eji 2 soð pÞ denote the

matrix which is 1 at the ði; jÞth entry, �1 at ðj; iÞth entry and 0 elsewhere. Let soðtÞ
be the span of fEij : 14 i; j4 tg. We assume that the inclusion SpinðtÞ 
 Spinðtþ 1Þ
induces the obvious embedding of matrices soðtÞ 
 soðtþ 1Þ.

Let tlp be an irreducible representation of Spinð pÞ with highest weight l 2 Ls
ð pÞ.

With respect to the embedding SpinðtÞ 
 Spinðtþ 1Þ above, tlp has a GZ basis

where each vector ½mkl� is represented up to scalars where ðm1l 5 m2l 5 � � �

5m½l=2�;lÞ 2 Ls
ðlÞ [GZ2]. If p ¼ 2rþ 1 is odd then

½mkl� ¼

m1p m2p � � � mr�1;p mrp

m1;p�1 m2;p�1 � � � mr�1;p�1 mr;p�1
m1;p�2 m2;p�2 � � � mr�2;p�2 mr�1;p�2

� � � � � � � � �

m13
m12

2
666664

3
777775 ð33Þ

If p ¼ 2r is even then

½mkl� ¼

m1p m2p � � � mr�1;p mrp

m1;p�1 m2;p�1 � � � mr�2;p�1 mr�1;p�1
m1;p�2 m2;p�2 � � � mr�2;p�2 mr�1;p�2

� � � � � � � � �

m13
m12

2
6666664

3
7777775 ð34Þ

In addition mkl satisfies

mkl 5mk;l�1 5mkþ1;l; ml�1;2l�1 5 jml;2lj; ml;2lþ1 5 jml;2lj: ð35Þ

An explicit formula for Lie algebra action of Etþ1;t on a normalized GZ basis vector

is given in [GZ2].

10.2. By (30), the set B consisting of all vectors of the form ½mkl� � ½mk0l0 �; where

½mkl� and ½mk0l0 � are normalized GZ basis vectors of tlp and l 2 Ls
ð pÞ is a basis of

Ipðs; sÞ.

10.3. We now fix m 2 Ls
ð p� qÞ and consider Ip;q ¼ Ip;qðs; s; mÞ. We also fix a GZ

basis vector v0 in tmp�q. By (32), Ip;q &� tmp�q 
 Ipðs; sÞ so that we may identify Ip;q with

the subspace Ip;q &� v0 of Ipðs; sÞ. If u ¼ ½mkl� is a GZ basis vector in an irreducible

representation of Spinð pÞ, then dp�qðuÞ will denote the GZ basis vector for the group

SpinðqÞ obtained by deleting the top p� q rows from ½mkl�. We now define

Bðv0Þ :¼ f½mkl� � ½mk0l0 � 2 B : dp�qð½mk0l0 �Þ ¼ v0g:
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Then Bðv0Þ forms a basis of Ip;qðs; s; mÞ&� v0. Furthermore, we define

Jl :¼ Spanf½mij� 2 tlp : dp�qð½mij�Þ ¼ v0g;

Sl :¼ tlp &� Jl
ð36Þ

Hence Ip;q ¼
P

l Sl. The following lemma can be deduced easily from the GZ bases

and we will need it in Section 12.2.

LEMMA 10.3.1. The following statements are equivalent:

ðiÞ Sl 6¼ 0.
ðiiÞ tp ¼ tlp contains tp�q ¼ tmp�q.
ðiiiÞ mi � lj 2 Z and jlij5 jmij5 jliþqj for i ¼ 1; . . . ; ½ð p� q=2Þ�. Here we formally

define liþq ¼ 0 if iþ q > r.

10.4. With the help of Proposition 9.9.1 and the basis Bðv0Þ of Ip;qðs; s; mÞ con-
structed in Section 10.3, we can deduce statements analogous to Propositions 3.5.1,

3.5.2 and 4.4.1 in Part 1. We will leave the precise formulation for the reader.

Let W be a submodule of Ip;q. Define

LðWÞ ¼ fl 2 Ls
ð pÞ : Sl \W 6¼ 0g ð37Þ

Then under the action of K, W ¼
P

l2LðWÞ Sl. The following lemma is the main

result of this section (cf. Lemma 5.2.1)

LEMMA 10.4.1. If W1 
W2 be infinitesimal G-submodules of Ip;q, then as a

representation of K,

W2=W1 ¼
X

l2LðW1Þ�LðW2Þ

Sl: &

11. Transition Coe⁄cients

11.1. In this section, we determine how the Lie algebra of Spinð p; qÞ transforms the

Spinð pÞ-isotypic components Sl in Ip;qðs; s; mÞ.

11.2. Let l 2 Ls
ð pÞ. Recall that

Cp
� tlp ¼

Xp
j¼1

tlþejp þ
Xp
j¼1

tl�ejp þ g1t
l
p ð38Þ

where g1 ¼ 0; 1 and it is 1 if and only if p ¼ 2rþ 1 is odd and lr 6¼ 0. Note that if

l� ej is not a dominant weight, then we set tl�ejp ¼ 0.
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11.3. Let

soð p; pÞC ¼ soð pÞC � soð pÞC � ~pC;

soð p; qÞC ¼ soð pÞC � soðqÞC � pC

be the Cartan decompositions. We remark that

~pC ’ Cp &�Cp; pC ’ Cp &�Cq
ð39Þ

as representations of ~K and K, respectively. Fix a ~K-type Vl ¼ tlp &� tlp of Ipðs; sÞ and
consider the ~K-module map L : pC � Vl ! Ipðs; sÞ given by

LðX� uÞ ¼ X:u ðX 2 pC; u 2 VlÞ:

Let pl0 : Ipðs; sÞ ! Vl0 denote the projection map onto the ~K-type Vl0 . We define

Tl;l0 ¼ pl0 " L and let T0l;l0 : pC � Sl ! Sl0 denote its restriction to pC � Sl. T
0
l;l0

essentially describes the Lie algebra action of p on Sl. Since Tl;l0 is a ~K homo-

morphism, it is easy to see by (38) that Tl;l0 6¼ 0 if and only if l0 is one of the

following:

(i) l0 ¼ lþ ej or l� ej and it is a dominant weight.

(ii) p ¼ 2rþ 1 is odd, lr > 0 and l0 ¼ l.

PROPOSITION 11.3.1 ([J1]). Let a ¼ �s� ð p� 1Þ=2.

ðiÞ Tl;lþej ¼ 0 if and only if lj ¼ aþ j� 1 ¼ �s� p�1
2 þ j� 1.

ðiiÞ Tl;l�ej ¼ 0 if and only if lj ¼ �aþ j� pþ 1 ¼ sþ j� p�1
2 .

ðiiiÞ If p ¼ 2rþ 1 is odd, then Tl;l ¼ 0 if and only if slr ¼ 0.

The next lemma deduces T0l;l0 from Tl;l0 .

LEMMA 11.3.2. Suppose l0 ¼ lþ ej or l� ei and suppose Sl and Sðl0Þ are nonzero.

Then Tl;l0 6¼ 0 if and only if T 0
l;l0 6¼ 0.

Proof. We will give a sketch. First we modify (19) using (39) and (38). The proof

then reduces to a lemma similar to Lemma 6.3.1. &

Finally combining the above lemma with Proposition 11.3.1 allows us to deduce

the following proposition (cf. Proposition 6.3.2).

PROPOSITION 11.3.3. Suppose the tlp-isotypic component Sl in Ip;qðs; s; mÞ is

nonzero, and W is the infinitesimal G-submodule generated by Sl. Let 14 j4 r.

ðiÞ If Slþej 6¼ 0, then W contains Slþej if and only if lj 6¼ aþ j� 1.
ðiiÞ If Sl�ej 6¼ 0, then W contains Sl�ej if and only if lj 6¼ �a� pþ jþ 1. &

11.4. We note that Tl;l and T 0
ll may be nonzero when p is odd. This is a major

difference from Part 1. It has no effect on the module structure of Ip;qðs; s; mÞ but we
will see in Section 13.3 that it severely affects the unitarity of Ip;qðs; s; mÞ.
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LEMMA 11.4.1. Suppose p ¼ 2rþ 1 is odd and Sl 6¼ 0. Suppose slr 6¼ 0 so that

Tl;l 6¼ 0 by Proposition 11.3.1(iii). Then T 0
l;l ¼ 0 if and only if q4 r and m1þr�q ¼ 0.

Proof. We will only give a sketch. Let pr denote the composite of the following

map:

pr : Cq
� Jl ,!Cp

� tlp !
proj

tlp;

where proj denote the canonical projection in (38) and Jl was defined in (36).

The first half of the proof is similar to Lemmas 6.3.1 and (19) by reducing the

statement to the fact that T 0
l;l ¼ 0 if and only if pr ¼ 0.

To determine if pr ¼ 0, we modify the proof of Lemma 6.3.1 in the following

manner: First we interpret pr as the Lie algebra action of soð pþ 1ÞC on some

irreducible representation tpþ1 containing tlp (with multiplicity one). One can show

that pr ¼ 0 if and only if Ep;p�1Jl in tpþ1 has a trivial projection onto the subspace

tlp. By the explicit action of Ep;p�1 in [GZ2], the latter condition holds if and only if

mr�1;p�1 ¼ 0 for all GZ basis vector ½mkl� in Jl. The last condition is equivalent to

m1þr�q ¼ 0. &

12. Module Structures

12.1. In this section, we will determine the reducibility of Ip;qðs; s; mÞ and describe

all its irreducible subquotients when it is reducible. First we review the result of [J1]

on the structure of Ipðs; sÞ. Let a ¼ �s� ðp� 1Þ=2. Then Ipðs; sÞ is irreducible if and
only if either one of the following conditions holds:

(i) sþ
p� 1þ s

2
¼ �aþ

s
2
62 Z,

(ii) p is odd and jsj ¼
s
2
.

This is an immediate consequence of Proposition 11.3.1.

Next we shall describe the subquotients of Ipðs; sÞ when it is reducible. Since

Ipð�s; sÞ is isomorphic to the dual module of Ipðs; sÞ, it is sufficient to consider the

case when s4 0. Let t ¼ maxð0;�aþ ðs=2ÞÞ, then there exists a filtration of sub-

modules

0 ¼Wt�1
= Wt
= Wtþ1
= � � � 
= Wr ¼ Ipðs; sÞ;

such that for each i, the quotient Ri :¼Wi=Wi�1 has K-types given by,

Ri ¼
P

l t
l
p
&� tlp; where the sum is taken over all l 2 Ls

ð pÞ such that

jlij5aþ i5 jliþ1j. Ri is irreducible except when p ¼ 2r is even and i ¼ r. If

p ¼ 2r is even and i ¼ r, then Wr ¼Wþ
r þW�

r for some submodules W�
r of

Ipðs; sÞ containing Wr�1. Define R�r :¼W�
r =Wr�1. Then Rr ¼ Rþr � R�r , and Rþr

(resp. R�r ) is irreducible and it has K-types
P

l t
l
p
&� tlp; where the sum is taken

over all l 2 Ls
ð pÞ such that lr 5aþ r (resp. �lr 5aþ r). The module diagram G

of Ip is shown in Figure 5.

R0 is nonzero if and only if a5 ðs=2Þ. In this case R0 is a finite dimensional

representation of ~G ¼ Spin0ð p; pÞ with highest weight ða; a; . . . ; aÞ 2 Ls
ð2pÞ.
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12.2. We define

R0i :¼ ðWi \ Ip;qÞ=ðWi�1 \ Ip;qÞ  Ri

ðR�r Þ
0 :¼ ðW�

r \ Ip;qÞ=ðWr�1 \ Ip;qÞ  R�r :
ð40Þ

These are infinitesimal G-submodules. By Lemma 10.3.1 R0i 6¼ 0 if and only if

jmiþ1j4aþ i4 jmi�qj: ð41Þ

Here we assume that mi ¼ 1 if i < 0 and mi ¼ 0 if i > r1. ðR
þ
r Þ
0
6¼ 0 if and only if

ðR�r Þ
0
6¼ 0. The following theorem describes the structure of Ip;qðs; s; mÞ. Its proof is

similar to that of Theorem 7.3.1 and we will omit it. Note that we have omitted the

case when s > 0. This is because Ip;qð�s; s; mÞ is isomorphic to the dual module of

Ip;qðs; s; mÞ.

THEOREM 12.2.1. Suppose s 2 C and let Ip;q ¼ Ip;qðs; s; mÞ where m 2 Ls
ð p� qÞ.

(A) (a) If sþ ðp� 1þ sÞ=2 62 Z, then Ip;q is irreducible.

(b) If sþ ðp� 1þ sÞ=2 2 Z and s4 0, then Ip;q is irreducible if and only if either

the one of the following is true:

ðiÞ p ¼ 2rþ 1 is odd and ðs; sÞ ¼ ð0; 0Þ or ð� 1
2 ; 1Þ.

ðiiÞ There exists i such that q4 i4 ½ðp� qÞ=2� and

jmij ¼ jmi�1j ¼ � � � ¼ jmi�qþ1j ¼ �s�
p� 1
2

þ i5 0:

(B) Suppose s4 0 and Ip;q is reducible.

ðiÞ Then R0i (resp ðR
�
r Þ
0) is either zero or it is an irreducible subquotient of Ip;q.

ðiiÞ Every irreducible subquotient of a reducible Ip;q is of the form R0i or ðR
�
r Þ
0.

ðiiiÞ Let G0 and G0 be the module diagrams of Ip;q and Ipðs; sÞ respectively. Then
G0 is a spanning subgraph of G. It is obtained by deleting those vertices Ri

and R�r from G such that R0i ¼ 0 and ðR�r Þ
0
¼ 0.

Note that in Part (A)(a) and (A)(b)(i) of the above theorem, Ipðs; sÞ is irreducible.

Figure 5.
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12.3. We will now describe how to obtain the module digram G0 of Ip;qðs; s; mÞ from
the module diagram G of Ipðs; sÞ.

Let

s1 ¼ minfi : jmiþ1j4aþ ig; s2 ¼ maxfi : aþ i4 jmi�qjg:

By (41), R0j 6¼ 0 if and only if s1 4 j4 s2. Delete the vertex Rj (or R�j ) from G if

j < s1 and j > s2. Remove the edges connected to the deleted vertices. Rename

the remaining vertices Rj by R0j and R�r by ðR�r Þ
0. Then the resulting graph is

the module diagram G0 of Ip;q. G0 is a connected subgraph of G. It will contain

ðRþr Þ
0 if and only if it contains ðR�r Þ

0. An argument similar to Section 7.8 proves the

following corollary.

COROLLARY 12.3.1. If W0 is an infinitesimal G-submodule of Ip;qðs; s; mÞ, then

there exists an infinitesimal ~G-submodule W of Ipðs; sÞ such that

W 0 ¼W \ ðIp;qðs; s; mÞ&� v0Þ:

13. Unitarity

13.1. In this section, we shall determine which of the representation Ip;qðs; s; mÞ or
its irreducible subquotients are unitarizable.

THEOREM 13.1.1. Let s 2 C, s 2 f0; 1g, m 2 Ls
ð pÞ, a ¼ �s� ð p� 1Þ=2 and

r ¼ ½ p=2�.

(A) (Unitarity of Ip;qðs; s; mÞ)

(a) (Unitary induction) If ReðsÞ ¼ 0, then Ip;qðs; s; mÞ is unitarizable.

(b) Let p ¼ 2r be even.

ðiÞ (Restriction of the complementary series of Spin0ð p; pÞ) If s 2 ð�
1
2 ;

1
2Þ,

then Ip;qðs; s; mÞ is unitarizable.

ðiiÞ If s ¼ 0, q4 r and there exists qþ 14 a4 r such that ma�q ¼ 0, and
jsj < ðpþ 3Þ=ð2Þ � a, then Ip;qðs; 0; mÞ is unitarizable.

(c) If s ¼ 0, p ¼ 2rþ 1 is odd, q4 r, and there exists qþ 14 b4 rþ 1 such

that mb�q ¼ 0, and jsj < ðpþ 3Þ=ð2Þ � b, then Ip;qðs; 0; mÞ is unitarizable.

(d) If Ip;qðs; s; mÞ does not belong one any the cases in Parts ðaÞ, ðbÞ and ðcÞ,

then it is not unitarizable.

(B) (Unitary subquotients) Suppose that a 2 ðs=2Þ þ Z and a5 � ðp� 1Þ=2
ðequivalently s4 0 and sþ ðp� 1þ sÞ=2 2 ZÞ so that Ipðs; sÞ is reducible.

(a) (Restriction of the unitarizable subquotients in Ipðs; sÞ)

ðiÞ If p ¼ 2r is even, and ðRþr Þ
0 and ðR�r Þ

0 are nonzero, then they are

unitarizable.

ðiiÞ If s ¼ 0, �ðr� 1Þ4a4 0, and R0�a 6¼ 0, then it is unitarizable.
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(b) (New unitary subquotients) If q4 r, i is an integer such that q4 i4 r and

s ¼ mi�qþ1 ¼ 0, then R0i is unitarizable.

(c) ðaÞ and ðbÞ give all the irreducible subquotients of Ip;qðs; s; mÞ which are

unitarizable.

If the unitary subquotients given in Part (B)(b) occur in some Ip;qðs; s; mÞ, then it

must correspond to the highest vertex in the module diagram of Ip;qðs; s; mÞ.

COROLLARY 13.1.2 ([Li]). If q4 ½p=2� and jsj < ð pþ 1Þ=2� q, then Ip;qðs; 0; 0Þ is
unitarizable.

13.2. The proof of Theorem 13.1.1 follows the same strategy as that of

Theorem 8.1.1 outlined in Section 8.2. If p is even, the argument is similar to

the proof of Theorem 8.1.1 given in Section 8.3. We will omit it. If p is odd,

we need to give special consideration to the fact that T 0
l;l is not always zero

and we will sketch the proof in the next subsection.

13.3. Sketch of Proof of Theorem 13.1.1 when p ¼ 2rþ 1 is odd. Let R0 denote an

irreducible subquotient of Ip;qðs; s; mÞ. As in the Uð p; qÞ case, it is easy to see that R0

is unitarizable only if s 2 R or ReðsÞ ¼ 0. If ReðsÞ ¼ 0, Ip;qðs; s; mÞ is unitary

induced.

Next we will assume that s 2 R� f0g. Suppose T 0 :¼ T 0
l;l 6¼ 0 for some l. By

Lemma 11.4.1, this implies that lr > 0 and, m1þr�q > 0 if r5 q. We may choose a

nonzero w ¼ vl &� ½mkl� 2 Sl where mp�1;r�1 > 0 and vl is the highest weight vector

of tlp. Let R
00 denote the soð p; 1Þ-submodule in R0 generate by v. By Theorem 12.2.1,

R00 is an irreducible subquotient of some degenerate principal series of Ip;1ðs; s; m00Þ
where m00r�1 ¼ mp�1;r�1 > 0. We claim that R00 is not unitarizable so R0 ' R00 is not

unitarizable. The claim follows from Theorem 13 of [KG1]. Alternatively let

soð p; 1Þ ¼ k00 � p00 denote the Cartan decomposition. By Equation (28) of

[KG1], there exists X 2 p00 
 p and v 2 Sl \ R00 such that T0ðX� vÞ ¼ v. Therefore,

for any Hermitian form ð: ; :Þ on R00, ðXv; vÞ þ ðv;XvÞ ¼ 2ðv; vÞ 6¼ 0 and this implies

that R00 is not unitarizable.

Suppose s 2 R� f0g and R0 is unitarizable, then T 0
l;l ¼ 0 and the above dis-

cussion implies that either one of the following condition holds:

(a) If Sl 6¼ 0, then lr ¼ 0.
(b) r5 q and m1þr�q ¼ 0.

Next we assume (a) or (b) above and suppose R0 embeds into the irreducible

subquotient R of Ipðs; sÞ. Using an argument similar to those used in Section 9 of

[Le], we can construct a Hermitian product on R satisfying

hXu; vi þ hu;Xvi ¼ 0 ð42Þ

for all X 2 ~p, u 2 Vl and v 2 VZ such that l 6¼ Z. Note that this Hermitian product

is not soð p; pÞ-invariant because (42) does not necessary hold for u; v 2 Vl.
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On the other hand, the restriction of h ; i to R0 is soð p; qÞ-invariant because

T 0
l;l ¼ 0.
The proof now proceeds by checking the signature of h ; i on R0. This portion of

the proof is similar to that of Theorem 8.1.1 given in Section 8.3 and we will leave

the details to the reader.
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