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Abstract. Let p > g and let G be the group U(p, ¢) or Spin,(p, ¢). Let P = LN be the maximal
parabolic subgroup of G with Levi subgroup L = M x U where

(GLy(©). U(p — 9)) if G =U(p.q).

M, U) = (GL;(R), Spin(p — ¢q)), if G = Spingy(p, q).

Let y be a one-dimensional character of M and t* an irreducible representation of U with
highest weight u. Let 7, , be the representation of P which is trivial on N and m, ,|; = y&x 7.
Let I, , be the Harish-Chandra module of the induced representation Indgnm. In this paper,
we shall determine (i) the reducibility of 7, 4, (ii) the K-types of all the irreducible subquotients
of 1, , when it is reducible, where K is the maximal compact subgroup of G, (iii) the module
diagram of 1, , (from which one can read off the composition structure), and (iv) the unitarity
of I, , and its subquotients. Except in the cases g =p — 1 and ¢ = 1, I, ; is not K-multiplicity
free.

Mathematics Subject Classifications (2000). 22E46, 22E47.
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1. Introduction

1.1. Let p > ¢ and let G be the group U(p, q) or Spiny(p, q). Let P = LN be the
maximal parabolic subgroup of G with Levi subgroup L =~ M x U where

(GL,(©), U(p — q)), if G =U(p,q),
(GL; (R), Spin(p — q)),  if G = Spiny(p, ).

Let y be a one-dimensional character of M and t* an irreducible representation of
U with highest weight p. Let 7, , be the representation of P which is trivial on N
and 7, .|, = = 7. Consider the induced representation Ind$m, , and let 1, be its
Harish-Chandra module. In this paper, we shall determine (i) the reducibility of 1, ,,
(i) the K structure of all the irreducible subquotients of [, , when it is reducible,

M, U) =
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where K is a maximal compact subgroup of G, (iii) the module diagram of /, , (from
which one can read off the composition structure), and (iv) the unitarity of 7, , and
its subquotients.

Note that [, , is not K-multiplicity free except when ¢ =p—1 and ¢ =1.

1.2. We introduce some notation. Let
G- { U(p. p). if G=U(p,q).

Sping(p, p), if G = Spiny(p, q).
Let g = Lie(G) and g: Lie(G), and let K and K denote the maximal compact
subgroups of G and G respectively. In this paper we will call a (g, K)-module (resp.
(g, K)-module) an infinitesimal G-module (resp. infinitesimal G-module).

1.3. We now describe our main results. We first show that 7, , can be embedded
into the Harish-Chandra module /, (see Sections 3.3 and 9.4) of a degenerate
principal series representation of G. In addition, /, is Kj-admissible where

K — U(p) x 1, if G =U(p,q),
"= I Spin(p) x 1, if G = Spiny(p, q)

and I, decomposes discretely when restricted to (g, K) (see [Ko3]). Next we identify
I, , with its image in [,. If W is an infinitesimal G-submodule of I,, then it is K;-
admissible. By Proposition 1.6 in [Ko3], WN1,, is a (possibly zero) infinitesimal
G-submodule of 7, ,. Our main result states that the converse is also true. We first
show that

()

THEOREM. Suppose W, C W, are infinitesimal G-submodules of I, such that
R:=W,/Wy is an irreducible subquotient of I,. Define

R = Wanlp,

wini,,
Then R' is either zero or isomorphic to an irreducible subquotient of 1, ,. Moreover, all
irreducible subquotients of 1, , are of this form.

Now the module structure of 1, is well known ([J1], [J2], [Le], [Mo], [S1], [S2],
[Zh]). The above theorem together with structural results on 7, allows us to deter-
mine the module structure of 1, ,. In particular, we obtain the following corollary.

COROLLARY. If W' is an infinitesimal G-submodule of I, ,, then there exists an
infinitesimal G-submodule W (not necessarily unique) of I, such that W' = WN1,,.

If we know the K-types contained in an infinitesimal G-submodule W of 1,, then
it is relatively easy to determine the K-types of W NI, ,. Thus we can obtain explicit
description of the K-types which occur in each of the irreducible subquotients of
I, ,. Moreover, we show that the module diagram of I, , can be identified with a
spanning subgraph of the module diagram of 7,. This immediately gives the
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composition structure of I,,. These results are given in Theorem 7.3.1 for
G =U(p, q), and in Theorem 12.2.1 for G = Spiny(p, q).

Finally we also determine the unitarity of 7, , and all its irreducible subquotients.
The results are contained in Theorem 8.1.1 for G = U(p, ¢) and in Theorem 13.1.1
for G = Spiny(p, q).

1.4. The case ¢ = 1 has been studied in detail by [Hil], [Hi2] and [KG1]. When ¢ = 1
and t* is a one dimensional character, this is a special case in [HT] and [KG2]. By
specializing to the case ¢ = 1, we recover these results in the above papers.

1.5. We note that almost all previous successful results on the module structures of
degenerate principal series representations treat the special cases where the
representations are K-multiplicity free. In particular Hirai [Hil], [Hi2] and Klimyk
et al. ([KG1], [KG2], [KG3]) study such problems using the Gelfand—Zetlin basis.
Some examples of representations which are not K-multiplicity free are studied in
the papers [Ho] and [P].

1.6. We will briefly describe our methods. Partly inspired by the work of Klimyk
and Gavrilik ([KG1]), we construct a basis B of I, using the Gelfand—Zetlin basis of
an irreducible representation of U(p) or Spin(p). This basis is compatible with the
infinitesimal G-submodules of I, , in the following sense: BN 1, , is a basis of 1, ,
and for any infinitesimal G-submodule W of I, ,, BN W is a basis of W. Moreover
the Lie algebra action on B can be explicitly calculated.

Under the action of K (see (1)), we have the decomposition 1, , = >, S;, where
each A is a highest weight for Kj, and S; is the A-isotypic component. With the aid
of the basis B, we show that every submodule of I, , is the sum of a collection of
isotypic components for Kj. Using structural results on /,, we determine explicitly
how g¢ transforms each S, in [,,. These information allows us to deduce the
module structure and unitarity of I,, and its irreducible subquotients.

1.7. Although the main ideas of the proofs for both the cases G = U(p, g) and
G = Spiny(p, q) are similar, several special considerations lead to very different
results in each case. We have therefore, divided the paper in two parts. The
first part treats U(p,q) and the second treats Spiny(p,q). We will be brief in
Part 2 and we will mainly point out the differences from Part 1.

1.8. Our proofs in this paper rely heavily on the fact that our representations are
K;-admissible (see (1)). Such representations are studied under a more general
framework by T. Kobayashi (see Chapter 4 of [Kol], and [Ko2], [Ko3]). Our
results on the restriction of the ‘ladder type’ representation of Spiny(2p, 2p)
also overlaps with Example 3.4 in [Ko2]

1.9. We were informed by H. Matumoto that he had also studied the representation
I,,, and had obtained results on its module structure.

1.10. We will show in a future paper ([LL]) that similar results hold for a family of
degenerate principal series representation of Sp(p, ¢). Some of the representations
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constructed in this paper are also theta lifts of one-dimensional characters and
unitary lowest weight modules under the Howe correspondence [Lo].

1.11. NOTATION. We introduce a notation for later use. Let G| be a reductive Lie
group and let P; = L;N; be a parabolic subgroup of G| with Levi subgroup L;. Let
(m, U) be a representation of L. Then we extend = to a representation of P; by
letting N act trivially and we define the normalized induced representation

Indp'm = {f: G1 — U:fis C* flgp) = A YPa(p~g). g € Gi.p € P},

where A is the modular function of P, and G; acts by left translation.

PART 1. THE DEGENERATE PRINCIPAL SERIES OF U(p, q)

2. The Representations

2.1. Let p > g and let P = LN be the maximal parabolic subgroup of U(p, ¢) with
Levi subgroup L= GL,(C) x U(p —¢q). For s C and g e Z, let y,: GL,(C)
— C* be given by

o deta\’
ot = tdetal (5%

Let 7, be the irreducible representation of U(p — ¢) with highest weight u. Let
TC»WT,.U = Xs,o X T;—q’
and consider the normalized induced representation Indg(” ”’)ns,g, u (cf. Section 1.11).

Let 1, ,(s, o, u) be the Harish-Chandra module of Indg(p’q)ns,g,u. In this part, we shall
determine the module structure and unitarity of 1, ,(s, o, u).

2.2. We define some notations. For each r > 1, let
AT ={(h, gy A) €272 4y = dyq, forall 1 <j<r—1}.

Then AT(r) can be identified with the set of dominant weights of the unitary group
U(r) in the usual way. For each 1 € AT(r), rf, (or simply 7%) shall denote a copy of
the irreducible representation of U(r) with highest weight 1. We also let

2‘* = (_/’Lr’ _irflv R _2‘1)1
L=(,1,. .., 1)eA ),

g=10,...,0,1,0,...,0 for 1 <j<p.

Note that /" is the dual representation of t* and " is the determinant character of U(r).

2.3. By Frobenius reciprocity, the K-type régrg occurs in 1, ,(s, 0, u) with
multiplicity

. *+ol,
dim HomU(q)XU(p,q) (‘L’Z oo Tﬁ—q’ ‘L';) (2)
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2.4. The infinitesimal character of 1, ,(s, o, 1) is given by
<s+a+q—l s+o+qg—3 st+o—(g—1)

2 ' 2 2 '
—s+0+q—1 —s+a+qg—3 —s+a—(g—1)

pP—q-1 pP—q-3 pP—q-1
/v‘l‘Fvaz‘i‘Tw-wﬂp_q—f)- 3)

Note that it is defined up to an action of the Weyl group S,;,. Given s and o, the
infinitesimal character (3) determines the infinitesimal character of 7/_ . Since irre-
ducible finite dimensional representations are uniquely determined by its infinite-
simal character, we conclude that the infinitesimal character of the degenerate
principal series in (3) determines t),_, for fixed s and o.

3. Restriction of the Degenerate Series of U(p, p) to U(p,q) x U(p — ¢q)

3.1. In this section, we shall consider a degenerate principal series representation
I,(s, o) of U(p, p). By restricting the action of U(p, p) to U(p, q) x U(p — q), we
show that we can embed 1, ,(s, o, 1) into I,(s, o).

3.2. Recall that U(p, p) is the isometry group of the following Hermitian form on
C¥:

2p

(z, w) Zz,w — Z ZWj, z=(21,...,22), wW=(Wi,..., W) € c.
Jj=p+1
Let {ei,...,es} be the standard basis of C¥. Set T= {1,....,pU{2p — g+
1,...,2p}. Let V' and V' be the span of {e;: i € T} and {e;: i ¢ T}, respectively,
SO that C¥ =Vro V. Let

={geU(p.,p): gly, =id}, H={geU(p,p):¢gly, =id}.

Then G =2 U(p, q) and H =2 U(p — ¢q). In the language of Howe correspondences,
we say that G x H is a compact reductive dual pair in U(p, p). From now on, we
shall always identify U(p, ¢) and U(p — ¢q) with G and H, respectively.

3.3. We now define a degenerate principal series representation of U(p, p). Let P be
the stabilizer of the span of {e,—f-epﬂ 1 <J < p} in U(p,p). It is the maximal
parabolic of U(p, p), and P = LN where L = GL,(C) is its Levi subgroup. Let
se€C and o € Z, and let

deta
| det al

be a character of L. Let 1, (s, 0) denote the Harish-Chandra module of IndU(” 5
(cf. Section 1.11). Under the action of K = U(p) x U(p),

Lis,o)= YV,

AeA*(p)

Lso(@) = |d€ta|s( )0 (a € GL,(C) = L)

,(T

https://doi.org/10.1023/A:1016514211478 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016514211478

316 SOO TECK LEE AND HUNG YEAN LOKE

where for each 2 € A*(p), V; 2 1) ® rf,'*”l”. We will describe the module structure
and unitarity of [,(s, o) in Sections 7.1 and 8. This is well known and it can be
found in [J1], J2], [Le], [Mol], [S1], [S2] and [Zh].

3.4. For each pe A (p—q), let I,(s, 0), denote the t_ -isotypic part of I,(s, o),
that is, it is the image of the H-map

Hompy(t),_,, I,(s, 0)) ® t,_, — I,(s, 0)

given by & ® v h(v). Note that since the actions of G and H commute with each
other, I,(s, o)y is also an infinitesimal G-module.
Now H acts on C*(H) by left and right translation:

U/ YI) = fig™' ), (ref)) = flhg).

For each ue At (p —q), let C*(H), denote the 7/ -isotypic part of C*(H) with
respect to the left translation. By the Peter—Weyl theorem,

o ~ LM n
CHH), =1, X1, ,

with respect to the action r x/ by H x H.
We now fix u € AT(p —g). For each f e Iy(s,0),, let Af: G — C*(H) be given
by

(AfiNh) = flg. h.

Note that for each fixed g € G, the map f— Af(g) from I,(s,0), to C*(H) is
H-equivariant (with respect to left translation), so that Af(g) € C*(H),.. So
Af: G — C*(H),.. Let {€1,..., ¢} be a basis of T;j*_q. Then every element y in
C*(H),~ can be expressed uniquely in the form y = Z;:l v R {; where v; € T,
for 1 <j<r. It follows that

A=Y fw, @)
=
where for 1<j<r, fj:G— 7,_, Let preP. Then we can write p; as

p1 = (a1, ax)m where a; € GL,(C), a, € U(p — ¢g) and n; € N. Now one can check
that for g€ G and he H,

(Afigp)(h) = (3(p1") 21, o(ar et a2) " r 1 (AfQ)(h),

where ¢ is the modular function of P. So we have

> fiep =g
j=1

— ((pr) g plar H(detar) ™ e (@ N fi(g) @ .
Jj=1
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It follows that for each 1 < j<r,
fitgp) = O(pT ) 2, o(ar )(det a2) " th_(a; " )(f1(2))
= {(y o ® T (POY(R))-

Hence, fj € I, (s, 0, u+0l,_,) and (4) defines a map
A 1y(s,0) s = Lpy(s, o0, p+ 01, )R ™, (5)

PROPOSITION 3.4.1. The map A in (5) is an infinitesimal G x H-module iso-
morphism.

Proof. First we show that A4 is injective. Indeed, since f € I,(s,0),» € I,(s, 0),
fis completely determined by its values on U(p) x 1. Next, by a straightforward
application of Frobenius reciprocity (see (2)), we see that the spaces [,(s, ), and
I, ,(s,0, ;)= t* have the same U(p) x U(g) x U(p — g)-types. Hence, A is an
infinitesimal isomorphism. O

Let G| € G be reductive Lie groups and let K; and (g;)c be the maximal com-
pact subgroup and complexified Lie algebra of G, respectively. If V' is an infinite-
simal G, module such that it is K; admissible, then we shall abuse notation and
denote the restriction of V' to (g;)c and K; by Resgf V. We remark that if V' is a
globalization of V, then by Proposition 1.6 of [Ko3], V' is the set of K;-finite vectors
of V. In other words, Resng is the ((g;)c, K1) module of V.

COROLLARY 3.4.2. For each pe A*(p—q), let = p* +0l,_,. Then

U(p.p) — ]
Resu(ﬁz)xu(pfq)lp(s, o) = Z L y(s,0, )R 7). (6)
HeA*(p—q)

Note that if ¢ =0, then (6) gives the k—types of I,(s, o).

3.5. RESTRICTION OF 1, (s, 0, 1) TO U(p,q—1) x U(1)

To prove the next lemma, we need the following branching rule (see Exercise 6.12 in

[FH]):
U(p) A Ve Z[AI_Z‘A;
ResUg—l)xU(l)Tp = ZIIH < det | i 7
>
where the sum is taken over all A" = (4},...,4, |) € At (p—1) such that
Mzl 2laz 20 2

PROPOSITION 3.5.1. Let pe A"(p —q). Then
Z,-/‘f*Z,v/‘;*“

U(p.
Resng,Z)_l)XU(l)Ip,q(s, o, 1) = le,q,l(s, o, /)= det] 8)
u’
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where the sum is taken over all )/ = (1}, ..., W, .)€ AT (p—q+ 1) such that i} >
=y = 2y S

Proof. Note that U(p,q) x U(p—¢q) and U(p,q— 1) x U(p—g+1) forms a
see-saw dual pair in U(p, p). The corollary now follows from Corollary 3.4.2 by
applying the theory of see-saw pairs and the branching rule in (7) to the above dual
pairs. [

We shall ignore the action of U(l) on 1,,(s, o, #) and write (8) as

I, (s,0,1)= le,q_l(s, o, ).
W

PROPOSITION 3.5.2. If W is an infinitesimal U( p, q)-submodule of 1, ,(s, o, j1), then

W= (Wl i(s.0.u)

u
where the sum is taken over all W = (uj, ..., 1w, 1) € At(p—q+1) such that
By Z i 2= 2y g =y

Proof. Let w € W. By (8), we can write w as a finite sum w = Zu’ wy where for
each i’ in the sum, w, € I, ,_1(s, 0, i'). Let Z,_| denote the center of the universal
enveloping algebra U(1(p,q—1)c). Now Z,_; acts by a different infinitesimal
character on each w, (cf. (3)). Since distinct characters are linearly independent,
there exists Z € Z,_; such that wy, = Zw € W. This proves the proposition. []

4. A Basis of 1, ,(s, 0, n)

4.1. In this section, we shall first construct a basis B of 1,(s, ¢) using the Gelfand—
Zetlin basis of an irreducible representation of U(p). It turns out that the
intersection of B with I, ,(s, o, 1) is a basis of I, (s, o, u). Moreover, this basis
is compatible with the infinitesimal G-submodules of 7, ,(s, o, u) in the sense
that the intersection of any infinitesimal G-submodule W of I, ,(s, o, u) with B
is a basis of W.

Readers who are only interested in the main results may skip this section and the
next two sections and proceed directly to Section 7.

4.2. We shall first review the theory of Gelfand—Zetlin (GZ) basis. Consider the
chain of subgroups of U(p):

udcu@c---<cUp ©)

where for each 1 <r<p—1, U(r) is identified with the subgroup of matrices

{(1(‘)/ Ip0r> € M,(C): xx' :[r}

of U(p). This induces the obvious embedding of their complexified Lie algebras
ghi(C) € glh(©) < - - - < g, (O).
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Let Ej € gl,(C) denote the matrix with 1 at the (i, j)th entry and 0 elsewhere. Then
for 1 <r<p, gl(C) is the span of {E;:1<1i,j<r}.

Let 2 € AT(p). Recall that rﬁ denotes a copy of the irreducible representation of
U(p) with highest weight A. It has a Gelfand—Zetlin (GZ) basis with respect to the
embedding (9). Each basis vector [my,] is represented up to a scalar as a set of
integers [GZ1]

mip map Mp—1p Mpp
mi p—1 Myp—1 =0 Mp_2p_1 Mp_1,p—1
i) = ! R e (10)
mii
Here my, =2; for i=1,...,p and my, are integers satisfying
My 2 Mpg (=1 Z My 1) (11

We assume that if the above inequality is not satisfied by some my ;_1, then we set
[my] = 0. If [myy] # 0, then for 1 < r < p, (my,, my,, ..., my,) is the highest weight of
the gl.(C)-module in which [n1] lies in.

There are several normalizations of the GZ bases given in [GZ1], [GG], [Ca] and
[Z]. In Part 1 of this paper, we will use the normalization given in [Z]. In [Z], the
author defines a U(n)-invariant Hermitian form on rf, and the normalized GZ basis
forms an orthonormal basis with respect to the Hermitian form. Hence the GZ
basis is uniquely determined up to a nonzero scalar depending on the invariant
Hermitian form.

Let v =[my] € 7:1;;. For each 1 <i<r<p—1, let v} (resp. v;) be the GZ basis
vector obtained from v by increasing (resp. decreasing) m; by 1 while leaving the
rest of the my,’s unchanged. Again we have implicitly assumed that v is zero if (11)
is not satisfied. The following theorem about the normalized GZ basis is due to
Gelfand, Zetlin and Graev (see [Z] and pp. 667-669 [GG]).

THEOREM 4.2.1. Let v be a GZ basis vector in r;}. For 1<r<p-—1,

r r

— + _ -

Ei v = E ajivy, Eop,0= E biU,‘r
i=1 i=1

where a; and b; are nonzero complex numbers.

The exact values of a; and b; are given in [Z]. For our purposes, it is sufficient to
know that a; (resp. b;) is nonzero whenever v (resp. v;) is nonzero.

4.3. We shall now describe a basis of I,(s, 5). We recall that under the action of
K=U(p) x U(p),

Iy(s,0) = Z vV,

2eA*(p)
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where for each A, V; = Tﬁ X rﬁ, and 1= 2" + ol,. Hence, V; has a basis consisting
of vectors [my] ® [7101], where [my] and [17y,/] are normalized GZ basis of rﬁ and

7/, respectively. It follows that

s
B= | & liwrl: (i) = s, () = i)
LeAT(p)
is a basis of I,(s, 5). We note that each vector in B is only defined up to a scalar
depending on V.

Recall that 1u(p, g) and 1u(p — ¢q) are the Lie algebras of U(p, g) and U(p —q)
respectively. Let f be the Lie algebra of K = U(p) x U(p). We shall identify the
complexified Lie algebra of U(p, p) with the Lie algebra gl,,(C) of 2p by 2p com-
plex matrices with standard basis {£j;: 1 <i,j<p}. Under this identification,

fe = al,(©) @ gL,(©),
u(p, ¢)c = Span{Ej;: i,j € T}, (12)
u(p —q)c =Span{E,iipyj: 1 < i, j<p—q},
where T={1,2,...,p}U{2p—q+1,2p—q+2,...,2p} (see Section 3.2).
We now introduce a notation. Let A € AT(p) and r < p. If u = [my] is a GZ basis
vector in ré, then d,(u) shall denote the GZ basis vector for the group U(r) obtained

by deleting the top p — r rows from [myy]. The following proposition follows from
Proposition 3.4.1.

PROPOSITION 4.3.1. Let ue At (p—q).
(i) Recall that i = p* +ol,_,. The set

Bﬂ = {[mk,l] ® [ﬁlk’l’] : (”;ll,p—qa ”hZ,p—qy ey ”;lp—q,p—q) = ,&}

is a basis of Iy(s, o).

(1) Let vy be a fixed GZ basis vector in ‘Eﬁ_q. Then

B(vo) = {[mi] ® [7uer] € B: dyp—y([1er]) = vo}

is a basis of I,,(s, o, 1) ¥ vo.

4.4. From now on, we shall fix a GZ basis vector vy in rﬁ‘_q and identify 1, ,(s, o, 1)
with the subspace 1, 4(s, g, 1) ® vg of I,(s, 0);. We shall show that the basis B(vo)
behaves well with respect to restrictions. Suppose that ‘L"l;_q +1 2 T, Then clearly
r;;fq ) rfj_q. There exists a uniqge. (up to scalars) GZ basis vector wy in rﬁfq 1
such that d,_,(wy) = vo. By definition

B(wp) == {mu] @ [mger] € B: dp— g1 ([1er]) = wi} 13)

and Proposition 4.3.1 states that (13) is a basis of 1, 1(s, 0, ). Moreover,
B(vo):UH, B(wy) (disjointed union) where the union is taken over all
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@ € AT(p—q+1) such that TZ_ g1 contains t,_ . Hence, we have given an alter-
native proof of Proposition 3.5.1.

PROPOSITION 4.4.1. If W is an infinitesimal U( p, q)-submodule of 1, ,(s, o, 1) X vy,
then WNB(vy) = WNDB is a basis of W.

Proof. We will prove this by induction on ¢g. The case g = 0 is trivial because W
is a representation of U(p). Suppose ¢ — 1 is true. By Proposition 3.5.2,

W= > (WNlyi(s.0.1). (14)

u”

n
Tp—zﬂrl D.L'P*(I

We have already shown that 7, ,_i(s, o, i) is spanned by B(wy). By induction
hypothesis, W N B(wy) is a basis of WN1,, 1(s,0, ). Hence,

wnBw)= |J WnBwp)

W

n
Tp—q+l D"'-[’*’I

is a basis of W. I

5. U(p)-Isotypic Subspaces in I, (s, o, u)

5.1. As in the previous section, we let vy be a fixed GZ basis vector in rﬁ_q and
identify 1, ,(s, o, p) with the subspace 1, ,(s, o, 1) ® vg of I,(s, 6). Recall that under
the action of K= U(p) x U(p),

Iy(s, 0) = Z V,

AeAt(p)

where for each A, V; = r;}x rf) and 1= i* +0l,. We now fix A€ A. and define

J; = Span{[;] € t, 2 dpy([y]) = vo}. 15
Sy = y(s, 0, W) Rvp) NV, = r; xJ;.

Note that J; is a U(g)-submodule of ‘c,’;, and S, is the rf;-isotypic component in
1, 4(s,0, 1.

LEMMA 5.1.1. The following statements are equivalent:

1 S, #£0.

(i1) J; # 0.

(%11) IZ) contains rzfq.
@iv) T, contains Ty_,.

(V) Ai = W = Aigg for i=1,...,p—q.

Proof. (1) < (ii)) < (iii)) < (iv) are clear. By the definition of the GZ basis, (iv)

implies (v). It remains to show that (v) implies (iv). We will prove this by induction
on ¢q. If ¢ = 1, then (v) is just the branching rule given in (7). Next suppose ¢ — 1 is
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true and ¢ > 2. We formally define 4, = o0 if i <0 and y; = —oc0 if i > p — ¢. Since
Ai = p; and Wicgy1 = Air1, we have

min(Ai, ;g1 1) = max(Lig1, 1ty).
Define 2" = (4,..., 4, ;) by

7 max(Aiy1, ), if i=1,...,p—q,

P min(4, igyr), i i=p—q+1,...,p—1
Then 2 '€ A"(p—1) and 2;> ;> 2, for 1<i<p—g—1 By induction
hypothesis, t&_; D t#_ . Since ;> 4] > i1, then by (7) t/ Dl DTh_. O

5.2. The following two lemmas are vital to our later investigations.

LEMMA 5.2.1. Let W be an infinitesimal G-submodule of 1, ,(s, o, w). If WN S, # 0,
then S, C W.

Proof. Let I, , =1, ,(s,0,p) and let vy be a fixed GZ basis vector of rﬁ‘_q. By
Proposition 4.3.1(ii), we identify 1, , >~ 1, ,® vy in I,(s, o) and I, ,&® vy has a basis
B(vy). By Proposition 4.4.1, W N B(vy) is a basis of W. Since WNS,#0, W
contains a vector of the form w = ux v, where u is the highest weight vector of rﬁ,
and v is a GZ basis vector for t; such that d,_,(v) = vo.

Suppose x = [my] is a GZ basis vector of r;, Letj = p —¢q, and let xl'-; (resp. x;;)
denote the GZ basis vector obtained from x by increasing (resp. decreasing) m; by 1
(cf. Section 4.2). Then it suffices to show that if u® x € W, then u®x3[ ew.

We refer to (12) and E,—1 ptr, Epyrprr—1 € W(G)e CU(p, q)c for r=p—qg+
2,...,p. By Theorem 4.2.1

r r

=+ _ N
ajix,;; and  Epip 1 pyrx = E bjx,;
J=1 J=1

Ep+r—l,p+rx =

where a; and b; are nonzero complex numbers. Note that the subscripts are shifted
by p because 1(p)c = M,(C) is embedded in the lower right corner of M»,(C). Thus
uUR (Eppr—1p4rX) and u (Epyr pr—1x) lie in W. Since W is spanned by a subset of
B(v), uw x;; € B(vo). This proves that um x;; € W. O

For each ue At (p—q), let
A (pow={AeN(p) 1 ki =1 = disg, YI<i<p—gq} (16)
Then by Lemma 5.1.1, S; #0 for 1€ A™(p, p) and

I, ,(s,0,0) = Z S;.

AeAt (p.)

The following lemma follows from Lemma 5.2.1

LEMMA 5.2.2. Let W be an infinitesimal U(p, q)-submodule of 1, ,(s, o, 1), and let
A(W)={he A (p,): S; N W #0}. (17
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Then W = ZzeA*(W) S,. Consequently if W\ C W, are infinitesimal submodules of
1, 4(s, 0, 1), then

ResugitugW2/Wi= 35 Si H
AeNT(Wy)—AT (W)

6. Transition Coefficients

6.1. In this section, we will study the action of the Lie algebra on S;.
First we recall the following fact about representations of U(p).

p
Uer=Y ot C)en=) 1 (18)
i=1 i=1
Note that if A1+ ¢; is not a dominant weight, then we set rpiﬂ" =0.
6.2. The Lie algebras of U(p, q) and U(p, p) have Cartan decompositions

u(p,g)=t@p and u(p,p)=fa@d,
where f=1u(p)®u(g) and f= 1(p) ®u(p). As f and f modules, we have

pc=pt@®p, Pe=bT@D,
pt=2C’r(CH", p =2C) =l
PreCrm (@), p = () xc.

By Proposition 4.3.1(ii), we fix a GZ basis vector vy € tlfij and identify 1, ,(s, o, 1)
with the subspace I, (s, o, p) X vg of I,(s, g). We now fix 1 € At (p, p). Recall that
V; is the U(p) x U(p)-type of I,(s, o) isomorphic to 7, ® 7, where i=7"+o0l,. Let
L:pec®V; — I,(s,0) be the Lie algebra action on I,(s, o). It is also a U(p) x U(p)
map. Let p;: I,(s, 0) — V,_,, denote the projection map. We consider the following
commutative diagram

|
=
®
>
I~
N
|
-

(@Y eda@er) = b oV, S Viey = Vi

U U U U

Pi

(@Y ®RCI®T) = b ®S, — Y S, —> S,

19)
Define T, ;- =pioL and let T ie s PT®S, — S, denote its restriction to

P~ ®S;. By (I18), b~ ®V,=>", | Va as a U(p) x U(p)-module where V=~
‘cj;‘gﬂ &rﬁ;*"”. Hence, T ,_., is either zero or it is an isomorphism on V.
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Similarly we define
T)u’)'_‘_g‘: f)+ RV, > Vi+s,- and T : er ®S;, —> Sl+f:,-

A At

by replacing p~, p~, 2 — ¢ in (19) by p~, b, 4 + & respectively. We will state Prop.
5.15 of [Le].

PROPOSITION 6.2.1. Let o =—(s+p—0)/2, f=—(s+p+0)/2 and 1 <j<p.

Q) If A+¢& € A (p), then T4 #0 if and only if J; #a+j—1.
(il) If 2 —¢ € AT(p), then T;; ., #0 if and only if J; # —f —p+J.

6.3. For each 1 <i<p, let pr;: C'®J; — rf;*sf and pr¢: (C* ®J; — rpi_f‘f be
respectively the composition of the maps

5 proj

Cl®J;—C o X8 (20)
(C) @ J;— (@) @1 2% o, 1)

where proj is defined by using (18). We remark that the images of pr; and pr? lie in
J;,, and J;_ respectively.

By (19), we see that 7, ,  # 0 if and only if pr,_,,, # 0 and 7, # 0. Simi-
larly T;”/HS’_ #0 if and only if pr;'fﬂrl #0 and T, ,4+, #0. Note that

(Gt e) = A — epiri

LEMMA 6.3.1.
() If J;,, #0, then pr; #0.
(i) If J;_, #0, then pr{ #0.

We shall postpone the proof of this lemma to the end of this subsection. If U is a
subspace of I,,(s, o, p), we let p*(U) = L(p* ® U).

PROPOSITION 6.3.2. Let A € A™(p, u) so that S; is nonzero in I, ,(s,0,1). Let W
be the infinitesimal U(p, q)-submodule generated by S,. Let « = —(s+p—0a)/2,
f=—(+p+0)/2 and 1 <j<p.

Q) If A+e e At (p,p), then Sive € W if and only if J; # o +j— 1.
(i) If 2 —¢ € AT(p, w), then Si—e; S W if and only if i;# —B—p+J.

Proof. We shall prove (ii). The proof for (i) is similar.
First if 4; = —f — p 4+, then by [Le], the subspace Y =5, - 4 V', is an infinite-
simal U(p, p)-submodule of I,(s, g), so that

YN Uypyls, 0, mu0) = Y Sy

PSS
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is an infinitesimal U(p, ¢)-submodule of 1, (s, 0, y)®vo. In particular, S; N
W =0.

Conversely suppose 4; # —f —p +J, then by Proposition 6.2.1 T, # 0. By
Lemma 6.3.1, pr, ;,; #0 and, hence, T, . #0. From the definition of
T its image must lie in WNS; .. Therefore WnS; ., #0 and by Lemma

Ind—gp?

521, S, C W. O

6.4. We shall devote the rest of this section to the proof of Lemma 6.3.1. We write
j:(;t 22,.. A,,) and let 1= (11,;12,... ip+1) be defined by 21 _21+1 and
5 = /Jj—1 for j > 2. We consider the irreducible representatlon Tp+1 of Up+1
w1th hrghest weight J. Let B(}) be the GZ basis of 7/ - Each member [my]
of B(J) has p+1 rows, and iy pi = J; for 1 k<p+1. We shall identify

rp and r;“' with the following subspaces of t p

t/ = Span{[my] € BU): myy, = Ak =1,....p},

ot = Span{{my] € BG): myy = 4+ 1y, = g i k # i),

]

: B . (22)
J; = Span{[my] € B(4): myy = i, dp—g([mii]) = vo},

I3, = Span{[my] € B(): mip = Ak + Oxis dpg([mug]) = o}

Note that rp and r;,“‘f occurs in r’l ., with multiplicity one.

Let W, C gl »+1(C) denote the span of {Ey pt1, E2 P B pi1 ) Then W, ~C’
as representations of U(p), so that W, ® rA >y Thte, Let L:W,® r — T;+1 be
the U(p)-map defined by the Lie algebra action: L(X ® w) = Xw. Let v denote
the highest weight vector of rp Then » = [my] where m,,;_)tp for all /<p.
By Theorem 4.2.1

P
L(E[) p+1 & U) [l [)+ Z l[)’ (23)

where @; # 0 and v+ is the GZ basis vector obtained from v u by increasing m;, by 1.
This shows that the image of L has a nontrivial component in r”s' This implies
that L is injective on T c W, ®r and, hence, L is an 1nJectron

Proof of Lemma 6.3.1. We will only prove (i) as the proof of (ii) is similar.

Using the above identification, C? is the span of {E,_si1pt1, ..., Eppy1} in W
If we replace v = [m;] in (23) by a GZ basis vector in J;, then pr; (Ep p+1 ® D) = ajv ,p
It remains to show that we can choose v such that v v is still a GZ basis vector, that
is, U;; # 0. Indeed JA - T+ is nonzero implies that mi_1p, > m;,. Pick a nonzero
GZ basis vector v} = [mk,] € J;. Suppose

ro_ _ o ’ ’ A
My, =m;_y, 1 = =My <M 1pr1 S0 S m;_gp—q = Hi-

This implies that

/ / / ro_
l”nl-,,,l,p,,. = mifrf2,p7r71 = - 'mifl,p > mip - mifr,pfr'
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Let v be the (nonzero) GZ basis vector obtained from wv; by increasing
Mip—1, ..., Mi—rp— €ach by 1. It is now easy to see that f;;]; # 0. This proves Part

(1) of the lemma. O

6.5. We could replace (23) by the Clebsch—-Gordan formula of U( p) (see Chapter 5
[KV]) and give an alternative proof of Lemma 6.3.1. In Part 2, we will apply
a similar argument to prove a statement analogous to Lemma 6.3.1 for
the group Spin(p). However, the Clebsch—-Gordan formula for Spin(p) is not
available.

7. Module Structure

7.1. In this section, we shall determine the reducibility of 1, ,(s, o, 1), and describe
its module structure when it is reducible. We shall first review the results of [Le]
on the structure of /,(s,0). Let « = —(s+p —0)/2 and f = —(s+ p + 0)/2. Then
I,(s, 0) is reducible if and only if @ and f are integers, or equivalently, s is an integer
and s+ p = g(mod 2). Let

¢y =max(o, —f —p) and ¢, =min(z, —f — p).

If 1,(s, o) is reducible, then its irreducible subquotients are of the form R, , where
r and ¢ are nonnegative integers such that p—cy4+c¢, <r+¢t<p and as a
U(p) x U(p)-module,

Y
R[,(,-J) = Z ‘Ep X ‘Cp

)*EA-F(Ra(r,I))

where

AT (Rugr) = {’AL EAT(DP): e ZCx+1Zlpst, lpr Z o +p— 12 Jpiin }
(24)

7.2. The detailed module structure of I,(s, o) can best be described by a directed
simple group G = G(I,(s, 0)), called the module diagram of I,(s, o) (see Section 7 of
[Le]). The vertex set of G is the set of all irreducible subquotients R, ;) in I,(s, 6).
There is a directed edge from the node R; to the node R, if and only if there are
submodules U and V of I,(s,o) such that V¥ C U and there is a nonsplit exact
sequence of infinitesimal U(p, p)-modules 0 - R, — U/V — Ry — 0.

We shall also arrange the nodes in G in such a way that all the edges are directed
downward. Then one can recover the lattice of submodules of 1,(s, o) from the
graph G. Note that if we reverse the direction of the edges of G, we obtain the
module diagram for the dual representation of I,(s, o). Now I,(—s, —0) is iso-
morphic to the dual representation of I,(s,s). So we only need to describe G
for s <0 (or equivalently, a+ f = —p).
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Rop,0) Rop—1,1) Ro,p-1) Ra0,p)

NN SN S

\/ \/ \/

a(2 0) a(l 1) a(O 2)
R0,0)

Figure 1.

If s< —p (or equivalently, o+ f>0), then G is given in Figure 1. If
—p+1<s<0, then G can be obtained by deleting the lowest s+ p rows from
the graph in Figure 1.

7.3. As in the previous section, we shall identify I, ,(s, o, ) with the subspace

I, ,(s,0,))®vyg of I,(s,0), where vy is a fixed GZ-basis vector in r‘ﬁ;‘fq.

Suppose Ry is an irreducible subquotient in /,(s,0), and W; C W, are

infinitesimal U(p, p)-submodules of I,(s, o) such that R, , = W>/Wi. We define
Ry =20 D/(W N 1),

where I = I, 4(s, o, u). There is a canonical injection R, <> Ry Note that as a

representation of U(p) x U(g),

R;(z n = Z S;

et (Ra(’ ,))

where (cf. (16) and (24))

AT (R;(z r)) = A" (Ryr) N AT (p. ).

Note that 1, ,(—s, —o, u*) is isomorphic to the dual representation of 1, ,(s, o, 1).
Thus if s is real, we may assume that s < 0. We are now ready to state our first main
theorem.

THEOREM 73.1. Let seC, pneAt(p—¢q), a=—(s+p—0)/2 and p=
—(s+p+0)/2.
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(A) () If s€R, then I, (s, o, is irreducible.
(b) If s <0, then I, (s, o, ) is irreducible if and only if either one of the
following conditions holds:

(i) Both o and B are non-integers.
(1) o and [ are integers, 2q <p and there exist i,j such that
g+1<i,j<p—q and

B =iy = = g = 0+
W=t = = g = —f-p+j+1

(B) Suppose s < 0 and 1, ,(s, o, 1) is reducible. In this case, o, p € Z, so that 1,(s, o) is
also reducible.

(@) If Ry is an irreducible subquotient in I,(s, o) and R;(m) #+ 0, then R;(m) is
an irreducible subquotient of 1, (s, o, ).
(b) All irreducible subquotients of I, ,(s, o, n) are of the form R;(”).

(c) Let Gand G be the module diagrams of 1,(s, o) and I, ,(s, o, 1) respectively,
then G is the subgraph of G obtained by removing the set of vertices

V' = {Ra(r,t) . R;(m) =0}

and removing all edges connected to the vertices in V'. In other words, G is a
spanning subgraph of G.

We shall postpone the proof of this theorem to Section 7.7. A consequence of
Part (B)(c) of the theorem is the following corollary which we will prove in
Section 7.8.

COROLLARY 7.3.2. Suppose W' is an infinitesimal U(p, q)-submodule of
1y (s, 0, W)X vy, then there exists an infinitesimal U(p, p)-submodule W of I,(s, o)
such that W' = WnN (I, ,(s, 0, 1) vg).

7.4. We shall describe a method of deciding if R, , # 0. Define

Si={zelZ: wy<z<p,) Si={zel:z< e, +i1—1}
Sy={zel:cy,+i<z<cy+i—-1} Sy={zel:cc+i<z}

for i=1,...,p. Here ;=00 if i<0 and y; = —oco if i>p—gq. Note that
S1;US»US3 =2, Define Ly =1{3}, Ly41 ={1} and L;:={j: §;NS; nonempty}
if 1 <i<p. Hence L; is a subset of {1, 2,3}. Next we define

eg=min{i: je L;} f=max{i:je L;}.

Clearly e3 =0, fi=p+1, s <erx<el, ai<hH<fi,3zera—1and r=e — 1.
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LEMMA 7.4.1. The following conditions are equivalent:

(1) R;(m) #0.

()r+tzp—cr+cp.3el, el 1. If r<p—t then2e Ly, 2€ L, and
1€Lp,t+1.

(ii)r+t=zp—cc+c, r<fs and p—t=ze —1. If r<p—t, then e;—1
<r<p—t<f

(Vyr+tzp—cc+c, ea—1<r<fiand es—1<p—t<fh

Proof. The condition r + ¢ > p — ¢y + ¢, in (ii) to (iv) is to ensure that R, # 0.
Then (i) = (ii) < (iil) are clear from the definitions of L;, ¢; and f;. To prove (iil) <
(iv), we just have to consider the cases r = p —t and r < p — ¢t separately.

Finally we show (ii) = (i). Define 1 € A (p) by

max(cy + 7, i), if1<j<r,
Aj = { max(cy +p — 1, 1), fr+l1<j<p—1t,
min(c}’—l_p_lvluj—q)’ lfp_[+1<]<p
Then S; #0 and S, € R, . O

7.5. We now describe how the module diagram G’ of 1, ,(s, o, u) can be obtained
from that of I,(s, o). For each 1 <j<p, let

lj=1{Rajp € Gt and  1;={Rup-) € G}

Then /; and r; form two ‘straight lines’ in G passing through R(;,—;). The case
s < —p is illustrated in Figure 2.

Starting with the module diagram G of I,(s, o), we first discard all the vertices on
lj for j < e; — 1 and for j > f3. Next we discard all the vertices on r; for j < e; — 1
and for j > f,. We also remove the edges connected to the discarded vertices.
Rename the remaining vertices Rg(.) by Ry ,. By Lemma 7.4.1(iv) and Theorem

Ra(jpi)

Figure 2.
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Figure 3.

7.3.1(B)(c), the resulting subgraph G’ is the module diagram for 1, ,(s, o, u). We
illustrate this in Figure 3 where the shaded area is G

7.6. We study an interesting special case. If s € Z, s < —p and s+ ¢ = —p, then
I,(s, o) contains a unique finite-dimensional subrepresentation of U(p, p), namely
Ruo,0) (cf. Section 7.1). Ryo,0) has highest weight y = (o, o, ...,2,0,0,..., 0) €
A*(2p) where there are p copies of «’s. Using the branching rules in Exercise
6.12 in [FH] and the Littlewood—Richardson numbers, we can show that

U(p.p) _
Resy g« (p—g Ra0.0) = Z TR Ty (25)
i

where the sum is taken over all highest weight n = (;,...,1,,,) € At(p+¢) and
=, ....1,) € AT(p—q) satisfying n, >0, ;>0 and

m=m=--=n=u
nq+i+/_,tizo( fori:1,..-,P_Q~

One can verify that the (25) is in agreement with Theorem 7.3.1.

7.7. Proof of Theorem 7.3.1. We first prove the ‘only if” part of (A)(b). Suppose
o, €Z and I, (s, 0, n) is irreducible. We assume that s < — 1, so that for any
l<j<p, a+j—-1=2 —B+p—j. First we note that a+¢g—1<py, and
—B+qg—1) <py_s44- Let i=minfr:oa+1—1>p} Then i>gq. We claim
that u;, = o+ i— 1. Otherwise, since o +i—2 < y,_;, we have

p<oti—l=(@+i=2)+1<p; <p,

Then we can choose /Z and 7 in A™(p, ) such that 2; = o« +i— 1 and 5; = Wi—q- Then
/. and 5 belong to different constituents which implies that 7, ,(s, o, p) is reducible.
Thus we must have y; = o +i— 1. We also claim that p; = y;_,, for otherwise we
can again find two elements of AT(p, u) belonging to two different constituents.
Similarly let j=min{z: —f+n—1t> u,}. Then similar arguments show that
% = t—q- This proves the ‘only if’ part of the statement.
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Next we prove (A)(a) and the ‘if * part of (A)(b). First we assume that o and f§ are
not integers and shall show that 7, ,(s, o, p) is irreducible. The proof of this is
similar to that of Theorem 6.2 of [Le]. Suppose that 4,1 € AT(p, u), that is,
S, and S, are nonzero isotypic components for U(p) in I, ,(s, o, u). It suffices
to prove that the infinitesimal U(p, g)-submodule W of I,,(s, o, u) generated
by S; contains S;. To do this, we construct a sequence ()" _, in Z" inductively
asfollows.Let1<i1 <h<---<ig<pandp=j >j, > -->j, =1 besuch that

4, <4 and ij>i/ Vi<u<a 1<v<b, and {i,...,i.}U{j1,....jp)
={1,2,...,p}. Set 17(0)—/1 For 1 <m <a, we set

o _ [ k=

k 175;7171)7 k # il’l’h

and for a+1<m<p,

n = s K= ma
1 .
"V k% .

It is clear that n € A*(p). By Lemma 5.1.1, 4; > p; > Aivq and 4} > p; > 2, for
i=1,2,...,p—q. Since for each m the components of n are taken from these

numbers, we clearly have

ST 115113] Vi=1,2,...,p—q.
Thus 1 € A*(p, w). We now claim that W contains S,u. First we note that
nW =) +kye, for some nonnegative integer ki and 1+ tg, € AT(p,p) for
t < ki — 1. By Proposition 6.3.2, since —4; # o+ i — 1, Si+z:,-1 C W. Similarly,

since —A; Fo+t+ii—1 for 1 <<k —1, S)”Q""'l e S/l+k18i1 = Sﬂ(n
tained in W. Next we note that n® =» 4 kse;, for some nonnegative integer
ky. It is now clear that if we proceed with the above arguments along the sequence
(1), we will obtain S,m =Sy S W.

Similar arguments also prove (B)(a).

If condition (A)(b)(ii) holds, then by Lemma 7.4.1 one can check that RZ,(,.’ y # 0if
and only if (r,?) = (i, p —j). Hence, I, ,(s,0,p) = R;U.’pfj) is irreducible by b(i).

Part (B)(b) is true because the U( p)-isotypic components S, contained in all the
R;W) exhaust all the U(p)-isotypic components in I, ,(s, o, i).

Finally we prove (B)(c). Let Ry = Ru4,5, R2 = Ruyur, R} = R;(, N and R, =

R}, Suppose that there is a directed edge in G from Ry to R; and R} and R)
are nonzero. We need to show that there is a directed edge from R} to R} in G
To do this, we need to show that there exist 2 € AT(R}) and 5 € A+(R ) such that
be(S) NS, #0. From Figure 1, we see that Ry — R, if and only if (u,v) =
(r—1,1 or (u,v) =(r,t—1). We shall only prove the case (u,v)= (r—1,¢) as
the other case is similar. Let 4, = —(f+p—7r) and B, =a+r— 1. Since both
Ry, and R}, ,, are nonzero, the intersections of the intervals [u,, p,_,JN
4y, B)] #9 and [w,, u,_, ] N [B,, 00) # . In particular, B,, B,y € [1,, Hr—g)- Thus

are con-
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there exist 4 € R}, , and n € R, , , such that 4, = B, + 1, n, = B, and 4; =y, for
all j#s. By the proof of Proposition 6.3.2, p~(S,) NS, # 0. This completes the
proof. ]

7.8. Proof of Corollary 7.3.2. If the corollary holds for W} and W, in I, ,, then it
holds for W} 4+ W),. Hence we may assume that W’ is generated by a single vector.
Let

R”("latl) - Ra("z,fz) — - = R

be a directed path in the module diagram G. Suppose R, ,, and R}, ., are

nonzero, then from the description of G in Section 7.5, R/, ~ #0 for all
i=1,...,k Then Corollary 7.3.2 follows from the general theory of module dia-
grams. [

8. Unitarity

8.1. In this section, we shall determine the unitarity of 1, ,(s, o, #) and its sub-
quotients. Recall that we can identify 1, ,(s, o, ) > I, (s, o, ) ® vy in I,(s, ), where
vo 1s a fixed GZ basis vector in rﬁ_q. Thus if 1,(s, o) is unitarizable, then so is
1, 4(s,0,1). So there are two obvious families of unitarizable representations:
unitary induction and the restriction of the complementary series of U(p, p).
Similarly, if 1,(s, o) is reducible and R, is a unitary subquotient in I,(s, o)
such that R}, ,#0, then R}, , is also unitary. We shall determine which
other representations I, ,(s, o, u) or their subquotients are unitary.

THEOREM 8.1.1. Let se€C, ceZ, pnelAf(p—q), a=—(s+p—0)/2 and
B=—(s+p+0)/2

(A) (Unitary induction) If Re(s) =0, then I, (s, 0, n) is unitarizable.

(B) (Restriction of the complementary series of U(p, p)) If 0 =p+ 1 (mod 2) and
Is| <1, then I,,(s, o, ) is unitarizable.

(C) (Other unitarizable representations) Let s < 0. Suppose that the following con-
ditions are satisfied:

i) p=2q
(1) there exists an integer m such that
wp=m (a<j<b)
where b—a > q— 1.
i L
Then 1, ,(s, o, n) is unitarizable.

(D) If 1,,4(s, 0, 1) is unitarizable, then it must be one of the representations described
in parts (A), (B) and (C) (and their duals).

https://doi.org/10.1023/A:1016514211478 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016514211478

DEGENERATE PRINCIPAL SERIES REPRESENTATIONS 333

(E) (Unitary subquotients) Suppose that o, f € Z and o. + = — p + 1 (equivalently,
seZ, s< —1 and s+p=o(mod 2)). In this case, I,(s,c) is reducible.
(a) (Restriction of the unitarizable subquotients in 1,(s, 0))

() If0<j<n and R;(i,n—/') # 0, then R;(/y”_j) is unitarizable.
@) f-p<s< —Lr+it=s+pand R, , #0, then R, , is unitarizable.

a(r,t

(b) (Other unitarizable subquotients) Assume that p+s <r+1t < p.

(1) Suppose R;(m) is nonzero and satisfies the following conditions:

(i) t=q.
(i) gy=o+r for r+1<j<p—1
Then R;(m) is a unitarizable subquotient in I, (s, o, ).

(2) Suppose R, is nonzero and satisfies the following conditions:

1) r=gq.
(i) w_y=—B+0 for r+1<j<p—rt.

Then R, is a unitarizable subquotient in I, 4(s, o, p).
(3) Suppose R;(,.,,) is nonzero and satisfies the following conditions:
(1) r=q and t = q.
(i) There exists m such that —(f+1) <m<o+r and w,=m for
s+1—-g<j<p—1t
Then R;(m) is a unitarizable subquotient in I, (s, 0, ).

(©) If Ry, , is unitarizable then it belongs to one of the cases given in Parts (a)
or (b).

If the unitarizable subquotients of 1, ,(s, o, 1) given in Parts (E)(b) of the above
theorem occur, then they correspond to the vertices located at either the left, the
right or the upper corner of the module diagram. In the examples given in
Figure 4(a)—(c), each of these unitarizable subquotients are enclosed by a rectangle.

If 0 =0 and 7)_, is the trivial representation of U(p — ¢), then Part (C) of the
theorem implies the following:

COROLLARY 8.1.2. If p=2q and s is real and
sl <p—2q+2,

then 1, ,(s,0,0) is irreducible and unitarizable.

(@ (®) ©

Figure 4.
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Note that the length of the complementary series given in the above corollary
increases with p —2¢q. This phenomenon of long complementary series is well
known for classical groups of real rank one. The case of SOg(p, q) with ¢ > 1
was first determined by J-S Li [Li] (c.f. Corollary 13.1.2).

8.2. We now briefly describe the main ideas of the proof for Theorem 8.1.1. We
assume that both « and f are real and R is an irreducible subquotient of I,(s, ¢).
Suppose R gives rise to an irreducible subquotient R" in I, ,(s, o, ). We will first
construct a (not necessary positive definite) 1( p, p)-invariant Hermitian form (., .)
on R. Then the restriction of {.,.) to R’ is clearly u(p, g)-invariant and we will see
that it is nontrivial on R'. Since R’ is irreducible the Hermitian form is uniquely
determined up to a nonzero scalar. The Hermitian form is either positive or
negative definite on a k—type V, and, hence, also on S,. Finally we determine
whether the signatures are the same on those V; whose restrictions to S, are
nontrivial.

8.3. We shall devote the remaining part of this section to the proof of Theorem
8.1.1. Assume that both o and f are real. Let R be an irreducible subquotient of
Iy(s,0). If o, p & Z, then R = I,(s, 0), and if a, f € Z, then R = R, ; for some r and
t. We first describe a nondegenerate U( p, p) invariant Hermitian form on R (see § 9
of [Le]). Recall that A*(R) denotes the set of U(p) highest weights which occur in
R, so that R=73"; \+g Vi, where for each 4, V; = rj) X r’f as a representation of
U(p) x U(p). We now fix an element n € A*(R). For 1 <j <p, let h; be the
function on Z given by
DM gt m <0,
hi(m)= {1, m =0,

(D" T Bl om0,
For each 1 e A*(R), let
¢ = hi(m)hy(my) - - - hy(mp), (26)

where m; = /; —n; for 1 <j< p, and define the Hermitian form (., .), on V; by

ioh) = o / AORE dk (fifs e V).

U(p)xU(p)
Let (.,.) be the sum of all (.,.),. Then
(@ —Jy+j— Dy + (B+A4+p—j+ e, =0. @7)
forall 1 <j<pand Ze AT(R) such that 4, 2 + ¢ € AT(R). This equation is equiva-

lent to the condition that the Lie algebra of U(p,p) acts on I,(s,o) by skew-
Hermitian operators. Consequently the form (.,.) is U(p, p) invariant.
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LEMMA 8.3.1. Let

R — { I, 4(s,0, 1), if R=1I,(s,0) is irreducible,

Ry s if I,(s, 0) is reducible and R = Ry ).

Let AT(R)) be the set of U(p) highest weights which occurs in R'. Then R’ is uni-
tarizable if and only if all the numbers {c;},ca+r) are of the same sign.

Proof. Let Y = @).eA*(R') V; CR. Then R' C Y. Let (., .)y be the restriction of
the form (.,.) to Y. If all the numbers {c;};,cz+g) are of the same sign, then by
multiplying (.,.)y by —1 if necessary, we may assume that (.,.), is positive definite.
Thus its restriction to R’ is a U(p, ¢)-invariant inner product. Conversely suppose
that there exist A and A" in AT(R’) such that ¢; >0 and ¢y < 0. Then for any
nonzero functions f; € S; and f, € Sy, (f1./f1)y > 0 and (f3, f2)y < 0. Let (., )p is
the restriction of (.,.)y to R’. Then it is neither positive definite nor negative
definite. Since R’ is irreducible, any U(p, ¢) invariant Hermitian form on R’ must be
a multiple of (.,.)p. Hence, R’ has no U(p, ¢) invariant inner product. O

8.4. Proof of Theorem 8.1.1(C). Note that under the given conditions, every element
J. of AT(p,u) are such that

= W, I<j<a+qg-1,
)uj =m, a—+ q g] < b,
Take 1 = (1. - fy 12 Moo, iy -0 1, ,), and for each 2 € AT(p, p), define
c; by (26). Then one can check that ¢; >0 for all Ae AY(p,u). Thus by
Lemma 8.3.1, 1, ,(s, o, 1) is unitarizable. O

8.5. We need the following lemma to prove Part (D) of the theorem.

LEMMA 8.5.1. Suppose that s < 0 and 1, (s, o, ) is irreducible. If for some j, there
is an integer m and ). € A*(p, u) such that

) —-p—p+j—1l<m<oa+j—1.
(ii) 4 =m.
(iii) 7.+ & € A (p, ).
Then 1, (s, o, u) is not unitarizable.
Proof. Under the given conditions, « —4;+j—1>0and f+4;+p—j+1>0,
so that —c;/c 4 > 0. [

Remark. Note that if o and f in the previous lemma are integers, and m is either
equal toa+j—1or —f —p+,j—1, then 1, ,(s, 0, 1) is reducible and not completely
reducible. Consequently 7, ,(s, o, u) is not unitarizable in this case.

8.6. Proof of Theorem 8.1.1(D). First we consider the case when s is not real and
Re(s) # 0. Note that for any n.€ A*(p — 1), I,1(s, a,n) is U(p) x U(1) multiplicity
free. So the methods used in Section 9 of [Le] can be used to show that I, i(s, o, 1) is
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not unitarizable. Now for any u € A*(p — ¢), there exists # € AT(p — 1) such that
1,1(s,0,n) is embedded into 1,,(s, o, u). Hence, 1, (s, o, 1) is not unitarizable.

We now assume that 1, ,(s, o, ) is unitarizable and does not belong to the cases
described in Parts (A), (B) and (C). Then s is real, and either ¢ = p(mod 2) or
Is| > 1. If p<2q, then {i,—441: A€ AT(p,w)}=2Z. So by Lemma 8.5.1 with
j=p—q+1, I,,s, 0,p) is not unitarizable. Thus p > 2q.

If 1, ,(s, 0, 1) is reducible and not unitarily induced, then by Theorem 7.3.1,
I, ,(s, o, ) is not completely reducible and, hence, not unitarizable. So I, ,(s, o, p) is
irreducible.

By duality, we may assume that s <0, or equivalently, o+ f+p > 0. For
1<j<p, let 4j=a+j—1 and Bj=—f—p+,j—1. Recall that in the case
—1 <5 <0, we are assuming ¢ = p(mod 2), so that the midpoint of the interval
[B;, A;] which is given by (¢ — p)/2 4 (j — 1) is an integer. Thus [4,] is always con-
tained in [Bj, 4;]. Here [x] denotes the greatest integer less than or equal to x.

We claim that 4, < u,. Otherwise by applying Lemma 8.5.1 with m =[4,],
1, (s, o, 1) is not unitarizable. We now consider two cases.

Case 1: Suppose there exists ¢+ 1 < i< p — ¢ such that 4; > u,;. Let j be the
smallest integer ¢ such that A4;>y;. Then since 4;=4;1+1<p_;+1,
(4] <wy <py_y If A; is an integer and either 4; < w; or w;_; < p;_,, then
I, ,(s, o, ) is reducible. On the other hand, if 4; is not an integer and not all of [4)],
ti—y and w,;_, are equal, then applying Lemma 8.5.1 with m =[4;] contradicts
unitarity. Thus we must have [4;] = w;_; = w;_,.

If (B;, 4;) contains exactly one element, then we are done. If (B;, 4;) contains k
integers with k >2 and p; < p;_,, then again by applying Lemma 8.5.1 with
m = [A;] — 1, I, 4(s, o, 1) is not unitarizable. So w; = p;_,. By the same reasoning,
we must have w; = =+ = i = [4] In particular, j+k—-1<p—gq.

Case 2: Suppose that 4, , < p,_,. Then 4,411 < p,_4 + 1 < W, 5,41 + 1, which
together with Lemma 8.5.1 imply that [4, 441]= w,_, =1, »,.1- Moreover,
(By—g+1, Ap—g+1) contains exactly one integer.

8.7. Proof of Theorem 8.1.1(E)(b). We shall only prove (i). Recall that T"(R') is the
set of all 2 € A(Ry.,) such that S; # 0. First we note that A*(R’) is nonempty as

(ﬂl’ ﬂz, RN} :up—qs :up—qv RN} :up—q) S A+(R,)

We need to show that the numbers {c,};cg have the same sign. Note that since
a+p<r+t we have —f+j—1=>a—p+jfor 1 <j<p, so for e AT(p),

(i) 4= —B+jor A<oa—p+j—2 implies that ¢;/c;qy > 0.
(i) o —p+j< /4 < —B+j—2 implies that c;/c;4, <O.

Now if A€ S, then ;<4 < —f+sfors+1<j<p—rand /, 4y <a—1 By
(b), 4 =—f=sTfors+1<j<p—t. In other words, for s +1 < j < p — t there is
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no transitions of the form 2 — 4+ ¢; in R}, . On the other hand, 4, > — f+3, so
that ;; > —f+s> —f+jfor 1 <j<s, and Jp— 4 <o+t sothat 4; <o+t <
a—p+jforall p—t+1<j<p. Thus ¢;/c;y,, >0 for all 1€ AT(R)) such that
J+ g€ AT(R). L]
8.8. Proof of Theorem 8.1.1(E)(c). Suppose R;(m) is unitarizable and does not belong
to any of the cases given in Part (E)(a) of the theorem. First we note that if
L€ A+(R;(r,,)), then —(f+t)< A4 <a+r for s+1<j<p—1t. If >0+,
then Rj,,=0. So we must have pu.; <a+r. It is clear that to have
unitarity, there are only three possibilities: . =o0+r, w4 =4y, Or
Wesi—qg=—B+0. If wyy=o+r, then wy=o+r for r+1<j<p—1t The
other cases are similar. O

PART 2. THE DEGENERATE PRINCIPAL SERIES OF Spiny(p, q)

In this part, we shall use the methods in Part 1 to study a similar family of
degenerate principal series representations of Spin,(p, ¢). Since the ideas and proofs
are very similar to Part 1, we will only state the main results and omit most of the
proofs.

9. The Representations
9.1. Recall that SO(p, p) is the group of 2p x 2p real matrices of determinant 1
which fixes the symmetric form on V = R*:

(V1o X2 (1o 1)) = X101 4+ X0 — (ot Tpst + -+ + XapYap)-

Let {ei,...,es} be the standard basis of R¥”. Let g<p and set
T={l,...,ppU{2p—q+1,...,2p}. Let Vr and V' be the span of {e;:ic T}
and {e;: i ¢ T} respectively. Hence, V' =Vr @ V. We shall identify SO(p, q)
and SO(p — ¢) with the following subgroups of SO(p, p):

SO(p, q) = {g € SO(p. p): gly, =id},

SO(p — q) = {g € SO(p, p): gly, = id}.

Let SOy(p, q) denote the connected component of SO(p, q). SOy(p, gq) exhibits a
double cover Sping(p, ). Set G = Spiny(p, p), G = Spiny(p, ¢) and H = Spin(p — ¢g).
Note that G contains

G xzpp7 H:= (G x H)/{(x,x): x € Z/27}.

9.2. Let gl,,(C) be the Lie algebra consisting of all 2p by 2p complex matrices.
Then the complexified Lie algebra so(p,p)c of G can be identified with the
subalgebra of skew symmetric matrices in gl,,(C). Let Ej = —E; € 30(p,p)c
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denote the matrix which is 1 at the (i, j)th entry, —1 at (j, {)th entry and 0 elsewhere.
Then the complexified Lie algebras gc and {c of G and H are given by

ac = 30(p, q)c = Span{Ej;: i,j € T},

. (28)
Hc = 30(p — q)¢ = Span{E;: p+ 1 <i,j<2p—q}.

9.3. Let Py be the stabilizer of the span of {e; + )11, ..., €, + ez} in SOy(p, p). It is
a maximal parabolic subgroup with Levi subgroup GL;;([R). The intersection
PyNSOy(p,q) is a maximal parabolic subgroup of SOg(p,q) with
Levi subgroup GL+(R) x SO(p —¢q). Let Py denote the double cover of
Py NSOy(p, q) in G. Slmﬂarly let P denote the double cover of Py in G. The
Levi subgroups of P; and P are respectively

SL,(R) x (R* xz/2z Spin(p — q)) =~ GL;([RR) x Spin(p — q)
and
SL,(R) x R* >~ GL;([R{) x {£1}.

The modular function of P (resp. P) is d(xy) = (det x)P~! where x € GL;(IR), and
y € Spin(p — q) (resp. y € {£1}).

9.4. For s € C and ¢ € {0, 1}, let ,, denote the one-dimensional character of the
Levi subgroup of P defined by Ls.0(Xy) = (det x)'y” where x € GL+([RQ) ye{£l}.
Let IndG,(“, denote the corresponding (normalized) induced representation of G
(see Section 1.11 for its definition). It will descend to a representation of SOy(p, p)
if and only if ¢ = 0. Let /,(s, 0) denote its Harish-Chandra module. The module
structure and unitarity of I,(s,s) has been determined by Johnson ([J1]) and
Sahi ([S2]).

9.5. For re Z" and o € {0, 1}, define

NQr41)={(h, s A): M Zda= 22,20, 4 —SeZ Vi,
Ag(zr):{(/11’22,“-,;%): /11 Z/LZZ 2/1; 1 |/Lr|’ t_EGZVl}-

Hence, A%(p) (resp. A'(p)) is the set of highest weights of irreducible representa-
tions of Spin(p) which descend (resp. do not descend) to representations of SO( p).
For A= (A1, 42, ..., 4) € A%(p), let 7:,‘; be the irreducible representation of Spin( p)

with highest weight 4. We remark that T; is a self dual representation.

9.6. Let L; = GL*(IR) x Spin(p — ¢) denote the Levi subgroup of P; € G. For
seC and xe€ GL+([R) let y,(x)=(detx)’. Let ue A°(p—¢q) and let m,,, =
A ¥, Let Ind Tsopn denote the corresponding (normalized) induced
representation of G (cf 1.11). It will descend to a representation of SOg(p, q)
if and only if 7/, descends to a representation of SO(p —q). Let I, (s, 0, 1)
denote its Harish-Chandra module. The purpose of Part 2 is to determine the
module structure and unitarity of 1, ,(s, o, ).
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9.7. Let ri =[(p — q)/2]. The infinitesimal character of I,,(s, o, u) is given by

qg—1 q—3 q—1 p—q—2
(s+ > 8+ > v S ) s U+ 5 )

p—q—4 r—q
H2+T""’M"‘+T_rl) (29)
and it is defined up to an action of the Weyl group. We also note that I, ,(—s, g, 1)
is the dual representation of I, ,(s, o, p).

9.8. Let

K = Spin(p) xz7,27 Spin(p), K = Spin(p) xz,27 Spin(q).

Then K and K are the maximal compact subgroups of G:Spino(p, p) and
G = Spiny( p, q) respectively. The following are obtained by straightforward appli-
cations of Frobenius reciprocity:

(1) Under the action of K,
I(s.0)= Y 1=t (30)

2eN’(p)

(ii) The K-type 7, Rt} occurs in I,,(s, o, u) with multiplicity
dim Homspin(q)xspm(p_q)(rg X ‘EZ_(], T;) (31)
Note that the multiplicity is nonzero only if 4 € A°(p) and 5 € A%(g).

9.9. The following proposition relates 1,(s, o) with 1, ,(s, g, p) and it is analogous to
Propositions 3.4.1 in Part 1.

PROPOSITION 909.1. Let s € C and o € {0,1}. Then we have

Resl, ylp(s.0)= Y Lys.o.m=tl . (32)
neN’(p—q)

Note that each 1, ,(s, o, #) on the right-hand side of (32) has a distinct infini-
tesimal character.

Proposition 9.9.1 is the starting point of our investigation on the submodules of
1, 4(s, 0, 1) and their unitarity. In Section 10 we will define a basis of I, (s, o, i)
using the Gelfand—Zeltin basis. This sets up the notation so that we can compute the
transition maps 7 » in Section 11. The arguments are parallel to that of Part 1 and
we will omit most of the details. Readers who are only interested in the statements
of the main results may skip the next two sections and proceed to Sections 12 and 13
directly. We choose to keep Sections 10 and 11 for two reasons: Firstly if p is odd,
T, may not be zero. This differs from Part 1 and it affects the final theorem on the
unitarily. We feel that this case should be treated in detail. The second reason is that
the transition coefficients carry more information than the reducibility of 1, ,(s, o, 1)
and it is useful to write them down explicitly.
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10. A Basis of 1, ,(s, o, u)

10.1. In this section, we shall construct a basis of 1,,:=1,,(s, 0, u) using the
Gelfand—Zetlin (GZ) basis for an irreducible representation of Spin(p).

We identify the real Lie algebra $o(p) of Spin(p) as the subspace of skew sym-
metric p by p real matrices. Suppose i # j and we let Ej; = —Ej; € 50(p) denote the
matrix which is 1 at the (7, j)th entry, —1 at (j, i)th entry and 0 elsewhere. Let 30(¢)
be the span of {£;: 1 < i,j < t}. We assume that the inclusion Spin(¢) C Spin(s + 1)
induces the obvious embedding of matrices $0(f) C 3o(r+ 1).

Let rf, be an irreducible representation of Spin(p) with highest weight A € A%(p).
With respect to the embedding Spin(z) C Spin(z + 1) above, rj,' has a GZ basis
where each vector [my] is represented up to scalars where (my = my > ---
= my) € A°(l) [GZ2]. If p=2r+1 is odd then

mip niy e me_1,p nyp
mi p—1 ny p—1 ce my_1.p—1 my p—1
mip—2 myp—o 0 Ny_2p-2 my_1,p-2
1) = T ! (33)
ni3
miz

If p=2r is even then

mip myy, e me—_i1,p my,
miy p—1 my p—1 e my_3 p—1 my_1,p—1
nmyp-—2 myp-2 v My, 2 my_1,p-2
)= s e T : (34)
my3
miz

In addition my,; satisfies
My = My = Mygr, M1 -1 2 myl, myag = [myol. (35)

An explicit formula for Lie algebra action of E,,;, on a normalized GZ basis vector
is given in [GZ2].

10.2. By (30), the set B consisting of all vectors of the form [myy] ® [my ], where
[my] and [my,] are normalized GZ basis vectors of r; and A € A’(p) is a basis of

I,(s, 0).

10.3. We now fix u € A’°(p — ¢) and consider I, , = I, ,(s, o, n). We also fix a GZ
basis vector vg in t,_,. By (32), I, ¢ x t,,_, C I,(s, o) so that we may identify 7, ; with
the subspace 1, ,x vo of 1,(s, o). If u = [my] is a GZ basis vector in an irreducible
representation of Spin(p), then d,_,(u) will denote the GZ basis vector for the group
Spin(g) obtained by deleting the top p —¢g rows from [my;]. We now define

B(UO) = {[n7k/] ® [Wlk'//] e B: dp,q([mk///]) = 1)0},
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Then B(vg) forms a basis of 1,,(s, o, u) ® vg. Furthermore, we define

J;. = Span{[m;] € t,: dp_y([my]) = vo},
. (36)
S,1 = T; X J/1

Hence 1, , =), S;. The following lemma can be deduced easily from the GZ bases
and we will need it in Section 12.2.

LEMMA 10.3.1. The following statements are equivalent:
(i) S, #0.

(i) 7, = ‘c[ﬂ contains Tp_q =T, .
(i) w, — A4y € Z and |2] Z ;| = digql for i=1,...,[(p —q/2)]. Here we formally

define Jirg =0 if i+q>r.

10.4. With the help of Proposition 9.9.1 and the basis B(vg) of 1, (s, g, u) con-

structed in Section 10.3, we can deduce statements analogous to Propositions 3.5.1,

3.5.2 and 4.4.1 in Part 1. We will leave the precise formulation for the reader.
Let W be a submodule of 1,,. Define

AW)={AeA°(p): S; N W #0} (37

Then under the action of K, W =3, ,y,S:. The following lemma is the main
result of this section (cf. Lemma 5.2.1)

LEMMA 104.1. If Wy C W, be infinitesimal G-submodules of 1,,, then as a
representation of K,

Wo/Wi= Y. S O

AeA(W)—A(W?)

11. Transition Coefficients

11.1. In this section, we determine how the Lie algebra of Spin(p, ¢) transforms the
Spin( p)-isotypic components S, in 1, (s, o, w).

11.2. Let 4 € A’(p). Recall that

p
C’'® rj, = Z I;“" + Z I;_""' + ylrj (38)

J=1 J=1

where y; = 0,1 and it is 1 if and only if p =2r 41 is odd and 4, # 0. Note that if
A =+eg is not a dominant weight, then we set r;ﬂ’ =0.
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11.3. Let

30(p, p)c = $0(p)c @ 30(p)¢c @ Pe,
30(p, Q)¢ = 50(p)c ® 30(9)¢c D be

be the Cartan decompositions. We remark that

PexCPxC’, pe~C’xCY (39)
as representati9ns of K and K, respectively. Fix a K-type V; = r;; X r;; of I,(s, o) and
consider the K-module map L: pec ® V; — I,(s, 0) given by

LX®u)=Xu (Xepc,uel)).

Let p, : I,(s,0) — V; denote the projection map onto the K-type V. We define
T,y=pyoLandlet T, ,:pc®S; — S; denote its restriction to pc ® S,. T, ,
essentially describes the Lie algebra action of p on S,. Since T is a K homo-
morphism, it is easy to see by (38) that T, ; # 0 if and only if 1" is one of the
following:

(i) ' =A+¢ or A—¢ and it is a dominant weight.
(i) p=2r+1is odd, 4, >0 and 1 =/

PROPOSITION 11.3.1 ([J1]). Let o = —s—(p —1)/2.

() Tijye; =0 if and only if lj=oa+j—1= _5_1%14_]'_ 1.
(i) Ty =0 if and only if Jjj=—a+j—p+1=s +j—1’%1.
(i) If p=2r+1 is odd, then T),; =0 if and only if si, = 0.

The next lemma deduces 7, , from T ;.

LEMMA 11.3.2. Suppose ' = i+ ¢ or A — & and suppose S, and Sy are nonzero.
Then T; ; #0 if and only if T', ,, #0.

Proof. We will give a sketch. First we modify (19) using (39) and (38). The proof
then reduces to a lemma similar to Lemma 6.3.1. O

Finally combining the above lemma with Proposition 11.3.1 allows us to deduce
the following proposition (cf. Proposition 6.3.2).

PROPOSITION 11.3.3. Suppose the rﬁ-isotypic component S, in I,,(s, o, n) is
nonzero, and W is the infinitesimal G-submodule generated by S;. Let 1 <j<r.

() If Site #0, then W contains S;,, if and only if A #o+j— 1.
(i) If S, #0, then W contains S;_,, if and only if J; # —o—p+j+1. O

11.4. We note that 7, and T, may be nonzero when p is odd. This is a major
difference from Part 1. It has no effect on the module structure of 1, ,(s, o, 1) but we
will see in Section 13.3 that it severely affects the unitarity of I, ,(s, o, u).

https://doi.org/10.1023/A:1016514211478 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016514211478

DEGENERATE PRINCIPAL SERIES REPRESENTATIONS 343

LEMMA 11.4.1. Suppose p=2r+1 is odd and S; # 0. Suppose si, #0 so that
T).; # 0 by Proposition 11.3.1(ii1). Then T', ; = 0 if and only if ¢ < r and p,,_, = 0.
Proof. We will only give a sketch. Let pr denote the composite of the following
map: '
pr:C!®J;,— C’ Qv+

P P
where proj denote the canonical projection in (38) and J, was defined in (36).

The first half of the proof is similar to Lemmas 6.3.1 and (19) by reducing the
statement to the fact that 77 ; =0 if and only if pr=0.

To determine if pr = 0, we modify the proof of Lemma 6.3.1 in the following
manner: First we interpret pr as the Lie algebra action of $o(p+ 1) on some
irreducible representation 7,,; containing r; (with multiplicity one). One can show
that pr = 0 if and only if E, ,_1J; in 7,4 has a trivial projection onto the subspace
rf;. By the explicit action of E, ,_1 in [GZ2], the latter condition holds if and only if
my_1 p,—1 = 0 for all GZ basis vector [my] in J,. The last condition is equivalent to
g = 0. 0

12. Module Structures

12.1. In this section, we will determine the reducibility of 7, ,(s, o, u) and describe
all its irreducible subquotients when it is reducible. First we review the result of [J1]
on the structure of I,(s, o). Let « = —s — (p — 1)/2. Then I,(s, o) is irreducible if and
only if either one of the following conditions holds:

Q) s+¥: —a+%¢l,

(i) p is odd and |s| = %

This is an immediate consequence of Proposition 11.3.1.

Next we shall describe the subquotients of I,(s, 5) when it is reducible. Since
I,(—s, o) is isomorphic to the dual module of 7,(s, ), it is sufficient to consider the
case when s < 0. Let t = max(0, —x + (6/2)), then there exists a filtration of sub-
modules

0 = Wt*lg th Werlg e g Wl' = [p(ss 0)7

such that for each i, the quotient R;:= W;/W,_; has K-types given Dby,
Ri=),7,®t, where the sum is taken over all 1€ A’(p) such that
|Ail = oo +i>=|Aip1]. R; is irreducible except when p =2r is even and i=r. If
p=2ris even and i=r, then W,= W} + W, for some submodules W¥* of
I,(s, o) containing W,_;. Define Rf := W¥/W,_,. Then R, =R @R, , and R}
(resp. R;) is irreducible and it has K-types ), rf,& r‘f;, where the sum is taken
over all 1 € A’(p) such that A, > o +r (resp. —4, = o + r). The module diagram G
of I, is shown in Figure 5.

Ry is nonzero if and only if o > (6/2). In this case Ry is a finite dimensional
representation of G = Sping(p, p) with highest weight (o, o, ..., a) € A°(2p).
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R, R; /R:
bR, \ Ry
Ry 2 Ry
p=2r+1 p=2r
Rivq Ry
R, VR,

Figure 5.

12.2. We define
Ri:=Winl,)/(WieiN ) CR

40
(REY :=(Wrn1,,)/(W,.1N1,,) C RF. “

These are infinitesimal G-submodules. By Lemma 10.3.1 R;# 0 if and only if
i | < o4 < . (41)

Here we assume that u; = co if i <0 and g; =0 if i > r1. (RF) #0 if and only if
(R;) # 0. The following theorem describes the structure of I, ,(s, o, ). Its proof is
similar to that of Theorem 7.3.1 and we will omit it. Note that we have omitted the
case when s > 0. This is because I, ,(—s, o, ut) is isomorphic to the dual module of

1y 4(s, 0, 1.

THEOREM 12.2.1. Suppose s € C and let I, , =1, ,(s, 0, 1) where p € A’°(p — q).

A) (@ If s+(p—1+0)/2¢Z, then I,, is irreducible.
(b) If s+(p—1+0)/2€Zands <0, then I, , is irreducible if and only if either
the one of the following is true:

1) p=2r+1 is odd and (s,c) =(0,0) or (—%, 1).
(ii) There exists i such that q <i<[(p —q)/2] and

p=1_ .
il = il = - = g1 :—S—T—HZO.

(B) Suppose s <0 and 1,, is reducible.

(i) Then R (resp (RF)') is either zero or it is an irreducible subquotient of 1, ,.
(i) Every irreducible subquotient of a reducible 1, , is of the form R; or (RF).
(iii) Let G' and G' be the module diagrams of I, , and I,(s, o) respectively. Then

G is a spanning subgraph of G. It is obtained by deleting those vertices R;
and R* from G such that R, =0 and (R¥) =0.

Note that in Part (A)(a) and (A)(b)(i) of the above theorem, /,(s, o) is irreducible.
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12.3. We will now describe how to obtain the module digram G’ of 1, ,(s, o, u) from
the module diagram G of I,(s, ).
Let

sp=min{i: g | <o+, so=max{i: o+ < gy}

By (41), R; # 0 if and only if 51 <j < s5;. Delete the vertex R; (or Rji) from G if
j<s and j > s;. Remove the edges connected to the deleted vertices. Rename
the remaining vertices R; by R; and RE by (R¥). Then the resulting graph is
the module diagram G of I,,. G is a connected subgraph of G. It will contain
(R')"if and only if it contains (R;")’. An argument similar to Section 7.8 proves the
following corollary.

COROLLARY 12.3.1. If W' is an infinitesimal G-submodule of 1,4(s, o, 1), then
there exists an infinitesimal G-submodule W of I,(s, o) such that

W' =Wwn(,,(s, o, 1)K ).

13. Unitarity

13.1. In this section, we shall determine which of the representation I, ,(s, o, ) or
its irreducible subquotients are unitarizable.

THEOREM 13.1.1. Let s€C, oe€{0,1}, ueA’(p), a=-s—(p—1)/2 and
r=1[p/2]
(A) (Unitarity of 1, ,(s, o, 1))

(a) (Unitary induction) If Re(s) =0, then I, (s, 0, p) is unitarizable.
(b) Let p=2r be even.
(1) (Restriction of the complementary series of Sping(p, p)) If s € (— % , %),
then 1, (s, o, 1) is unitarizable.
(i) If 0 =0, g <r and there exists q+ 1 < a <r such that u,_, =0, and
Is] < (+3)/(2)—a, then I, ,(s,0, ) is unitarizable.

() If 6 =0,p=2r+1is odd, g <r, and there exists g+ 1 < b <r—+1 such
that w,_, =0, and |s| < (p+3)/(2) — b, then I, ,(s,0, p) is unitarizable.

(d) If I, (s, o, w) does not belong one any the cases in Parts (a), (b) and (c),
then it is not unitarizable.

(B) (Unitary subquotients) Suppose that o€ (6/2)+7Z and o= —(p—1)/2
(equivalently s <0 and s+ (p —1+0)/2 € Z) so that I,(s, o) is reducible.

(a) (Restriction of the unitarizable subquotients in 1,(s, ))

() If p=2r is even, and (R") and (R) are nonzero, then they are
unitarizable.
@) If 6=0, =(r—=1)<a<0, and R_,#0, then it is unitarizable.
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(b) (New unitary subquotients) If ¢ < r, i is an integer such that ¢ < i < r and
0= Wi_gr1 =0, then R; is unitarizable.

(c) (@) and (b) give all the irreducible subquotients of I, ,(s, o, ) which are
unitarizable.

If the unitary subquotients given in Part (B)(b) occur in some 1, ,(s, ¢, 1), then it
must correspond to the highest vertex in the module diagram of 1, (s, o, w).

COROLLARY 13.1.2 ([Li]). If ¢ < [p/2] and |s| < (p +1)/2 — g, then I, ,(s,0,0) is
unitarizable.

13.2. The proof of Theorem 13.1.1 follows the same strategy as that of
Theorem 8.1.1 outlined in Section 8.2. If p is even, the argument is similar to
the proof of Theorem 8.1.1 given in Section 8.3. We will omit it. If p is odd,
we need to give special consideration to the fact that 77, is not always zero
and we will sketch the proof in the next subsection.

13.3. Sketch of Proof of Theorem 13.1.1 when p =2r+1 is odd. Let R' denote an
irreducible subquotient of 1, 4(s, o, 1). As in the U(p, g) case, it is easy to see that R’
is unitarizable only if s € R or Re(s) =0. If Re(s) =0, I,,(s, o, u) is unitary
induced.

Next we will assume that s € R — {0}. Suppose 7’ :=T",, # 0 for some 1. By
Lemma 11.4.1, this implies that 4, > 0 and, p;4,_, > 0 if r > g. We may choose a
nonzero w = v; ® [my] € S; where m,_;,_; > 0 and v; is the highest weight vector
of rj;. Let R” denote the 3o(p, 1)-submodule in R’ generate by v. By Theorem 12.2.1,
R" is an irreducible subquotient of some degenerate principal series of 1, (s, g, 1)
where @, = my,_1,-1 > 0. We claim that R” is not unitarizable so R' 2 R” is not
unitarizable. The claim follows from Theorem 13 of [KG1]. Alternatively let
s0(p, ) =t"@®p"” denote the Cartan decomposition. By Equation (28) of
[KGT1], there exists X € p” C p and v € S; N R” such that T'(X ® v) = v. Therefore,
for any Hermitian form (.,.) on R”, (Xv, v) + (v, Xv) = 2(v, v) # 0 and this implies
that R” is not unitarizable.

Suppose s € R — {0} and R’ is unitarizable, then 7', = 0 and the above dis-
cussion implies that either one of the following condition holds:

(a) If S; #0, then 4, =0.
(b) r>¢q and p,,_,=0.

Next we assume (a) or (b) above and suppose R’ embeds into the irreducible
subquotient R of 1,(s, ¢). Using an argument similar to those used in Section 9 of
[Le], we can construct a Hermitian product on R satisfying

(Xu, v) + (u, Xv) =0 (42)

forall Xep,ueV,andve V', such that A # 5. Note that this Hermitian product
is not $o(p, p)-invariant because (42) does not necessary hold for wu,ve V.
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On the other hand, the restriction of (,) to R is 30(p, g)-invariant because
T, =0.

The proof now proceeds by checking the signature of {, ) on R'. This portion of
the proof is similar to that of Theorem 8.1.1 given in Section 8.3 and we will leave
the details to the reader.
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