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CUBIC AND HIGHER ORDER ALGORITHMS FOR IT 

BY 

J. M. BORWEIN AND P. B BORWEIN 

ABSTRACT. We show that the theory of elliptic integral transfor­
mations may be employed to construct iterative approximations for 
77 of order p (p any prime). Details are provided for two, three and 
seven. The cubic case proves amenable to surprisingly complete 
analysis. 

0. Introduction. Simple three term recursion relations based on the 
arithmetic-geometric mean iteration of Gauss and Legendre have recently been 
used to compute in excess of 4 million digits of ir. (See [10].) These algorithms, 
first suggested by Brent [4] and Salamin [9], converge quadratically and arise 
from quadratic transformations of elliptic integrals. (See also [1], [2], [3] and 
[7].) Iterations that converge faster than quadratically can be based on higher 
order elliptic transformations. As we shall see, the cubic transformation and its 
concommitant cubically converging algorithm for TT is particularly amenable to 
analysis. In general, for any prime p, we will show that it is possible to 
construct an algorithm for pi that converges in such a manner that the error at 
the nth step is like the pth power of the error at the preceding step. 

1. Preliminaries. We first summarize the pieces of the theory of elliptic 
integrals that we require. This information is all pleasantly accessible in Cayley 
[5]. The complete elliptic integral of the first kind of modulus k is defined by 

(I'D g r - T O : ^ 1 ^ „ ^ _ , ^ x 2 ) ( l - k 2 x 2 ) ] ' 

The complete elliptic integral of the second kind is defined by 

(1-2) E : = E ( k ) : = J0 V(l-*2) ^ 

The conjugate modulus k' is defined by k': = V(l — k2). It is elementary that 

dK E K 
(1-3) 

dk fc(fc')2 k 
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Legendre's relation between elliptic integrals of the first and the second kind is 

(1-4) EK' + E'K-KK' = ?-

where K': = K(k') and E' : = E(k'). This elementary, though not entirely 
straightforward, formula is at the heart of the algorithm for IT because it allows 
the calculation of rr to be related to the tractable problem of calculating elliptic 
integrals. In fact, we shall see that K/TT is straightforward to calculate itera-
tively. From (1-3) E/TT may also be computed and from (1-4) TT may be 
extracted rationally. (One can always compute derivatives of these analytic 
limits by differentiating iteratively.) 

If p is an odd prime it transpires that there exists a unique polynomial of 
degree p + 1 in u and v called the modular equation of degree p (which we 
shall denote by mp(u, v)) and a rational function of degree p in u and v called 
the multiplier and denoted by Mp : = Mp(u, v) so that 

(1-5) MPK(A) = K(fc), 0 < k < A < 1. 

provided u:=k1/4 and v := A1/4 satisfy 

(1-6) mp(u9v) = 0. 

The modular equation has real integral coefficients and has coefficients of up+1 

and vp+1 of absolute value 1. The modular equation and the multiplier are 
related by 

(1-7) PM2
P 
2 k(k')2dk 

k{k'fd\' 

Note that if mp is known then dkld\ may be easily computed and, hence, Mp 

as well. 

2. General algorithms for complete elliptic integrals, IT and log. For fixed p 

iV = A1/4G(0,l) 

and define vt recursively by demanding that vi+1e(0,vt) satisfies 

(2-1) mp(i;i+1,i;i) = 0. 

This uniquely determines vi+1 (see [6]). Furthermore, vt converges to zero and 
one can show that 

7, _ 9 ( l - p ) / 2 p 

Thus, from (1-5), since K(0) = TT/2, 

(2-2) s«_!(n_L_). „0=x» 
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This algebraic product (in A) for K(\)lir exhibits pth-order convergence. In 
order to generate TT, note that from (1-4) with k := 1/^2 (so that K' = K and 
E' = E) we have 

2EK-K2 = -

or 

W / W 7 VIT/ 2TT 

From (2-2) we may calculate K/TT with the initial value v0: = 2~1/8 (i.e. 
fc:=l/V2) and from (2-2) and (1-3) we may calculate (llir)(dKldk) and, 
hence, E/TT. The derivative in (1-3) may be computed iteratively from the 
derivatives of the partial products in (2-2). This whole process converges with 
pth-order. We shall examine the details for p = 2, 3 and 7 later. 

Since 

|log(£) - K(V[1 - k2]) | = 0(k2 log fc), 

and since we may calculate K at the same rate as TT, we may use the above 
methods to generate log as well. (See [3], [4] and [7].) This, of course, gives us 
an entrée to the computation of all the elementary functions and related 
constants. 

3. The quadratic case. The quadratic transformation does not conform to 
exactly the same rules as the transformations of order an odd prime. One form 
of the quadratic transformation (see [5]) gives 

(modular equation) 

where 

or equivalently 

Whence, 

where 

A little manipulation 

K(k) 

yields: 

K(k) = (l + y)(K(y)) 

W ( l - k 2 ) 
7* i+V(i-fc2) 

, 2V7 
k =-

1 + 7 
0 0 

Z n = l 

i -V(i-fc2) 
n+1- l+Vd-fc2}-

2 
— K(k) = lim an IT 
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where 

(3-1) K+1:=y j , k0:=k 

and 

(3-2) an+1:=(l + kn+1)an, a0:=l. 

Upon differentiation we have: 

2 dK(k) 

77 dk 

where 

- = l im£n 

(3-3) h+l'-kj(i-kiy l0'-'1 

and 

(3-4) 0 n + 1 : = (1 + kn+1)(3n + /n+1an , j30 : = 0. 

(Note that /n = dkjdk and |3n = dajdk.) From the above, (1-3) and (2-3) with 
the starting value fc : = 1/V2 we deduce that 

<<x o 2V2 (3-5) 7Tn: = — > i r 

and that the convergence is quadratic. 
This algorithm for TT (equations (3-1), (3-2), (3-3), (3-4) and (3-5)) behaves 

numerically like those discussed in [1], [2], [4], and [10]. The twentieth 
iteration, for example, is correct through more than 1.4 million digits. 

4. The cubic case. The cubic modular equation is 

(4-1) u4-v4-2u3v3 + 2uv = 0. 

The cubic multiplier is given by 

(4-2) M3(u,v) = —V—3. 

We can use the explicit formula for quartic equations to solve (4-1) for u as a 
function of v. We have 

y: = ^J[4v2(l-v8)] 

R: = J(v6+y) 
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and 

v3 D-R 
(4-3) " = T + — • 

This value of u is the unique root of (4-1) in (0, v). If we likewise solve (4-1) 
for v as a function of u we have 

y = 3J[4u2(l-u8)] 

R = V(u6+y) 

and 

" 3 R + D 

(4-4) u = - y + — • 

This value of v is the unique root in (w, 1). We proceed to generate the 
sequence of vt as in Section 2. We discover that by using (4-3) (with v:=vn 

and u:=vn+1) and subtracting (4-4) (with u := vn and v := un_i) we have 

(4-5) un+i = Un-> /K + ^[4i;S(l-uS)]}+i;n-i. 

This surprisingly simple solution of the quartic (4-1) can be coupled with the 
multiplier (4-2) to generate an algorithm for IT (see Section 2). 

THE CUBIC ALGORITHM. Let 

( 4 _ 6 ) Vn+^vî-y/tâ + ï/lAvlil-vS'ïï+Vn-!. 

( 4 " ? ) w n + 1 : = — 3 — - 2 ^ - 7 T T W n . 

(4-8) a n + i : = ( ^ i ± i + 1 v 

(4-9) p n + 1 := ( ^ + l V + (6wn+1Dn -2t ;n + 1wn) ^ 
Vn + lan 

where i v = 2~1/8, vx := 2" 7 / 8(( l -3 1 / 2)2- 1 / 2 + 31/4), w 0 : = l , a 0 : = l and /30: = 0. 
Then 

8 • 21/8 

( 4 - 1 0 ) 7r n : = - ^ 7 7 
«n ' Pn 

and the convergence is cubic. 
Note that an —» 2K(VO)/TT, that wn = dvjdv0 (implicitly differentiating (4-1)) 

and that 0n = dajdv0. The algorithm is now constructed, essentially as in 
Section 2 or Section 3. The value v1 is computed from u0 using (4-3). The 
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cubic convergence follows directly from (4-1). Note that with vn=:v and 
vn+1 = :u we have 

. Vn+1 Vn 2 3 
vn+i + -z— = ir+vz

n'v
3
n+1 2vn 2 

whence, 

The following table illustrates the cubic convergence. The second row of the 
table is the number of correct digits of IT provided by the nth iteration of the 
algorithm. 

1 2 3 

correct 
digits 2 10 34 106 327 

5. The septic case. For p > 3 the modular equation is of too high a degree to 
solve explicitly. However, it is quite practical to solve this equation by 
Newton's method. For the case p = 7 the modular equation is given by 

(5-1) (1 - u8)(l - v8) - (1 - uv)8 = 0. 

This equation is tempting to employ in algorithms since it is an eighth degree 
polynomial which is particularly easy to evaluate. Also since u behaves like 
v7/S, if we use Newton's method to solve (5-1) we have a very good initial 
estimate. The multiplier is given by 

,*. ^x , w x V(1-UV)(1-UV + U2V2) 
(5-2) M7(u,v) = -± - -n -. 

v-u 
In order to calculate TT we now follow the steps outlined in section 2, namely: 

a] Generate v0, vl9 v2- • • by inverting the septic modular equation (5.1) start­
ing with v0:=2~1/8. 

b] Generate w0, wl5 w2- • -where wt : = dvjdvo and w 0 : = l . (Note that 
dvi+1/dVi can be calculated from (5-1) and a].) 

c] Generate a0, al9..., an where 

ok+i' = 

M7(vi+1,Vi) 

and a0:=l. This converges to 2K(l/v/2)/7r. 
d] Generate j30> P i , . . . , |3n where ft := dajdvo and 0O

 : = 0. 
e] 7 T n : = ( 8 - 2 1 / 8 ) / ( a n - p n ) - ^ 7 r . 
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This process converges septically. The first three iterations yield, respectively 
7, 64 and 464 correct digits of TT. We note that the only non-rational part of 
the above algorithm is step a]. 

6. Concluding remarks. The steps a] to e] can be used to construct an 
algorithm of order p, provided one knows the modular equation of order p. We 
need only replace the septic modular equation and multiplier by those of pth 
order. From (1-7) we can calculate the multiplier from the modular equation. 

The most time consuming step is a], the solution of the modular equation by 
Newton's method. It is worth remembering, however, that even with the 
explicit quadratic and cubic algorithms that square roots and cube roots must 
be extracted to high precision and that this also utilizes Newton's method. In 
fact, it appears at least as efficient to solve the cubic modular equations by 
Newton's method in the cubic algorithms as it is to generate the {nj from the 
recursion, which requires extracting both a square and a cube root. The crucial 
fact about Newton's method is that it is self correcting. Thus, at each step of an 
inversion, calculations need only be performed to twice the precision of the 
previous step. This allows one to show that inverting an algebraic equation is of 
much the same time complexity as a single full precision multiplication (See [3] 
and [4]). It is thus legitimate to call the septic algorithm "septic" because the 
root extraction is not governing the order of the approximation. Of course, one 
can always turn a quadratic algorithm into a quartic algorithm and so on by 
composing two steps of the iteration. What is interesting is that in our case the 
algorithms are genuinely of prime order. 

Calculating high order modular equations is a tractable though not com­
pletely elementary problem. Modular equations up to degree twenty are 
presented by Cay ley in tabular form in [6]. 

From a complexity point of view all the algorithms for IT are roughly 
equivalent requiring 0(log nM(n)) single digit operations to calculate n digits of 
77 (M(n) denotes the number of single digit operations required to multiply two 
n digit numbers together; a fast multiplication is 0(n log n log n)). For any 
particular one of these algorithms the update (i.e. steps a] through e] inclusive of 
the septic case) require a constant number of multiplications, divisions, addi­
tions and root extraction and each of these operations is 0(M(n)). Further 
details may be found in [3] and [4]. 

It is possible to show that the iterates are monotone decreasing in the 
following sense. Let vt(p) denote the ith iterate of the pth order iteration. 
Then vt(p) decreases as p l increases. 

It is also possible to show that the error in the IT algorithm behaves like 
ut(p). From these considerations one can show that the algorithm based on the 
modular equation of order 19 produces more than 19l digits of TT on the ith 

https://doi.org/10.4153/CMB-1984-067-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-067-7


1984] ALGORITHMS FOR IT 443 

iteration. In particular, the 7th iteration produces in excess of a billion (U.S.) 
digits. 

Finally, we note that considerable material on elliptic functions and integrals 
may be found in [11], and that in [8] Ramanujan uses the same ingredients to 
construct many fascinating explicit approximations to TT. 

REFERENCES 

1. J. M. Borwein and P. B. Borwein, A very rapidly convergent product expansion for IT, BIT 
23 (1983), 538-540. 

2. J. M. Borwein and P. B. Borwein, More Quadratically Converging Algorithms for ir, Math. 
Comput. (to appear). 

3. J. M. Borwein and P. B. Borwein, The arithmetic-geometric mean and fast computation of 
elementary functions, SIAM Review 26 (1984). 

4. R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. 
Mach. 23 (1976), 242-251. 

5. A. Cayley, An Elementary Treatise on Elliptic Functions, Bell and Sons 1895, republished 
Dover 1961. 

6. A. Cayley, A Memoir on the transformation of elliptic functions, Phil. Trans. T. 164 (1874), 
397-456. 

7. D. J. Newman, Rational approximation versus fast computer Methods, in Lectures on 
Approximation and Value Distribution, Presses de l'Université de Montréal, 1982, 149-174. 

8. S. Ramanujan, Modular equations and approximations to TT, Quart. J. Math., 44 (1914), 
350-372. 

9. E. Salamin, Computation of TT using arithmetic-geometric mean, Math. Comput. 135 (1976), 
565-570. 

10. Y. Tamura and Y. Kanada, Calculation of TT to 4,196,293 decimals based on Gauss-
Legendre algorithm, preprint. 

11. E. T. Whitakker and G. N. Watson, A Course of Modem Analysis, Cambridge University 
Press, Ed. 4, 1927. 

DEPARTMENT OF MATHEMATICS., STATISTICS AND COMPUTING SCIENCE 

DALHOUSIE UNIVERSITY 

HALIFAX, N.S., B3H 4H8 

https://doi.org/10.4153/CMB-1984-067-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-067-7

