Two Circular Notes.

By R. Tucker, M.A.

I.

1. In Fig. 8, take

$$
\angle \mathrm{BFD}=\theta=\angle \mathrm{CDE}=\angle \mathrm{AEF},
$$

and denote DE, EF, FD by x, y, z respectively;
then

$$
\begin{aligned}
x \sin \mathrm{~B} \sin (\mathrm{C}+\theta) & +z \sin \mathrm{C} \sin \theta=a \sin \mathrm{~B} \sin \mathrm{C}
\end{aligned}=\mathrm{P}, ~ \begin{aligned}
x \sin \mathrm{~A} \sin \theta+y \sin \mathrm{C} \sin (\mathrm{~A}+\theta) & =\mathrm{P} \\
y \sin \mathrm{~B} \sin \theta+z \sin \mathrm{~A} \sin (\mathrm{~B}+\theta) \quad & =\mathrm{P}
\end{aligned}
$$

From these equations

$$
\begin{array}{cc}
& x\left[\sin ^{3} \theta+\sin (\mathrm{A}+\theta) \sin (\mathrm{B}+\theta) \sin (\mathrm{C}+\theta)\right] \\
=x \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C} \sin (\theta+\omega) / \sin \omega=\mathrm{P} \sin \mathrm{~A}, \\
\text { i.e., } \quad x=a \sin \omega / \sin (\theta+\omega) .
\end{array}
$$

Hence $\triangle \mathrm{DEF}$ is similar to ABC , and the modulus of similarity is $\sin \omega / \sin (\theta+\omega)$.
2. The preceding result is got, in an elegant geometrical manner, in Milne's Companion (Simmons, Cap. V., the Tucker Circles, pp. 127-137) ; $c . f$. also H. M. Taylor, On the relations of the intersections of a circle with a triangle, L.Math. Soc. Proceedings, vol. XV., pp. 122-139.
3. We readily deduce the equation to the circle DEF to be

$$
\begin{gather*}
\left(\lambda^{2} \equiv a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \\
\lambda^{2} \sin ^{2}(\theta+\omega) \cdot \Sigma(a \beta \gamma)=\Sigma(a u) \cdot \Sigma\left\{b^{2} c^{2} \sin (A+\theta) \cdot u\right\} \cdot \sin \theta \tag{i.}
\end{gather*}
$$

This circle cuts the sides $B C, C A, A B$, in points $D^{\prime}, E^{\prime}, \mathbf{F}^{\prime}$ such that

$$
\angle \mathrm{AF}^{\prime} \mathrm{E}^{\prime}=\theta=\angle \mathrm{BD}^{\prime} \mathrm{F}^{\prime}=\angle \mathrm{CE}^{\prime} \mathrm{D}^{\prime}
$$

4. The equation to this group of circles is given in the form

$$
(\alpha-\mathrm{K} a)(\beta-\mathrm{K} b)(\gamma-\mathrm{K} c)-\alpha \beta \gamma=0 .
$$

(Simmons l.c. p. 136, and Casey, Conics 2nd edition, p. 421. In the lst edition the form was utterly wrong.)
5. For the "T.R." circle, $\theta=\omega$, and (i.) becomes, since

$$
\begin{gathered}
\sin (\mathbf{A}+\omega)=\left(b^{3}+c^{2}\right) \sin \mathrm{A} / \lambda \\
\mathrm{K}^{2} \Sigma(a \beta \gamma)=\Sigma(a a) . \Sigma\left\{b c\left(b^{2}+c^{2}\right) a_{\}}^{\}}\right.
\end{gathered}
$$

which is a neater form than either of the forms given by me in Quar. Jour. of Math. (The "Triplicate-Ratio" Circle, vol. XIX., p. 346).
6. For the "Cosine" Circle, $\theta=\frac{\pi}{2}$, and (i.) becomes

$$
\mathrm{K}^{2} \Sigma(a \beta \gamma)=4 \searrow(a \alpha) \cdot \Sigma\left\{b^{2} c^{2} \cos \mathrm{~A} \cdot a\right\} .
$$

II.

1. In Fig. 9 I connect any point O with the vertices A, B, C of the triangle and then bisect the angles $\mathrm{BOC}, \mathrm{COA}, \mathrm{AOB}$ by lines meeting BC, CA, AB in D, E, F.

I propose to consider some properties of the group of triangles DEF.
2. For $\mathrm{AO}, \mathrm{BO}, \mathrm{CO}$ write $1, m, n$; and denote the triangles BOC, COA, AOB by $\delta_{a}, \delta_{b}, \delta_{c}$, then the trilinear co-ordinates of O are

$$
2 \delta_{a} / a, \quad 2 \delta_{b} / b, \quad 2 \delta_{c} / c .
$$

3. From Euc. vi. 3
$A D, B E, C F$ cointersect in a point, P, and the points D, E, F are given by

Hence the equations to

$$
\left.\begin{array}{l}
\mathrm{AD}, \tag{i.}\\
\mathrm{BE}, \\
\mathrm{CP},
\end{array}\right\} \text { are } \quad \begin{aligned}
& b m \beta=c u \gamma, \\
& c n \gamma=a l u, \\
& a / u=b m \beta,
\end{aligned},\left\{\begin{array}{c}
\text { and the point } \mathrm{P} \text { is } \\
a l u=b m \beta=c n \gamma .
\end{array}\right.
$$

4. Now

$$
\begin{aligned}
& \frac{\mathrm{BD}}{m}=\frac{\mathrm{CD}}{n}=\frac{a}{m+n}, \\
& \frac{\mathrm{CE}}{n}=\frac{\mathrm{AE}}{l}=\frac{b}{n+l}, \\
& \frac{\mathrm{AF}}{l}=\frac{\mathrm{BF}}{m}=\frac{c}{l+m} ;
\end{aligned}
$$

and therefore

$$
\begin{aligned}
2 \triangle \mathrm{BDF} & =\mathrm{BD} \cdot \mathrm{BF} \cdot \sin \mathrm{~B} \\
& =m^{2} \cdot 2 \triangle /(m+n \cdot l+m) ;
\end{aligned}
$$

$$
\begin{equation*}
\therefore \triangle \mathrm{DEF}=\triangle \cdot 2 l m n /(l+m \cdot m+n \cdot n+l) . \tag{ii.}
\end{equation*}
$$

5. The equation to the circle DEF is

$$
\begin{gathered}
2 a b c . l+m \cdot m+n \cdot n+l . \Xi(a \beta \gamma)= \\
\Sigma(a \alpha) . \Sigma\left[a l \cdot a\left\{b^{2} \cdot l+m \cdot m+n+c^{2} \cdot m+n \cdot n+l-a^{2} \cdot n+l \cdot l+m\right\}\right]
\end{gathered}
$$

6. The equations to $\mathrm{DE}, \mathrm{EF}, \mathrm{FD}$ are

$$
\left.\begin{array}{r}
a l a+b m \beta-c n \gamma=0 \tag{iv.}\\
-a l a+b m \beta+c n \gamma=0 \\
a l a-b m \beta+c n \gamma=0
\end{array}\right\}
$$

7. If $\mathrm{D}^{\prime}, \mathrm{E}^{\prime}, \mathrm{F}^{\prime}$ are the Harmonic Conjugates to $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively, we have

$$
\frac{\mathrm{BD}^{\prime}}{m}=\frac{\mathrm{CD}^{\prime}}{n}=\frac{a}{m-n}, \text { etc. }
$$

and the points

$$
\left.\begin{array}{l}
\mathrm{D}^{\prime} \\
\mathrm{E}^{\prime} \\
\mathrm{F}^{\prime}
\end{array}\right\} \text { are given by }\left|\begin{array}{ccc}
o & -c n & b m \\
c n & o & -a l \\
-b m & a l & o
\end{array}\right|
$$

Hence the line $D^{\prime} E^{\prime} F^{\prime}$, the axis of Perspective of DEF and $A B C$, has for its equation

$$
a l a+b m \beta+c n \gamma=0
$$

8. If the ratio $l: m: n$ is given, O is, of course, determined by the intersections of the circles on $\mathrm{DD}^{\prime}, \mathrm{EE}^{\prime}, \mathrm{FF}^{\prime}$ as diameters.
9. The equations to the circles on $\mathrm{DD}^{\prime}, \mathrm{FF}^{\prime}$, referred to BC, BA as axes are

$$
\begin{aligned}
& \left(m^{2}-n^{2}\right)\left(x^{2}+y^{2}+2 x y \cos \mathrm{~B}\right)-2 m^{2} a x-2 m^{2} a y \cos \mathrm{~B}+m^{2} a^{2}=0, \\
& \left(m^{2}-l^{2}\right)\left(x^{2}+y^{2}+2 x y \cos \mathrm{~B}\right)-2 m^{2} c x \cos \mathrm{~B}-2 m^{2} c y+m^{2} c^{2}=0 .
\end{aligned}
$$

10. The circle (iii.) cuts BC again in d, so that

$$
\left.\begin{array}{l}
\frac{\mathrm{B} d}{c^{2}(m+n)(n+l)+a^{2}(n+l)(l+m)-b^{2}(l+m)(m+n)} \\
=\frac{\mathrm{C} d}{a^{2}(n+l)(l+m)+b^{2}(l+m)(m+n)-c^{2}(m+n)(n+l)}
\end{array}\right\}
$$

11. If $l=m=n, \mathrm{O}$ is the circumcentre, P the centroid, and (iii.) the nine-point circle.

If O is Ω,
and P is
and if O is Ω^{\prime} and P is

$$
\begin{aligned}
l: m: n & =c b^{2}: a c^{2}: b a^{2} \\
b \alpha & =c \beta=a \gamma \\
l: m: n & =c^{2} b: a^{2} c: l^{2} a \\
c a & =a \beta=b \gamma
\end{aligned}
$$

12. If \mathbf{P} is Ω, then $l: m: n=c a: a b: b c$, and if P is Ω^{\prime}, then $\quad l: m: n=a b: b c: c a$.
13. If P is the circumcentre, then

$$
l: m: n=\operatorname{cosec} 2 \mathrm{~A}: \operatorname{cosec} 2 \mathrm{~B}: \operatorname{cosec} 2 \mathrm{C}
$$

and if P is the orthocentre, then

$$
l: m: n=\cot \mathrm{A}: \cot \mathrm{B}: \cot \mathrm{C}
$$

and (iii.) is, of course, the nine-point circle.
14. If O is the orthocentre, then

$$
l: m: n=\cos \mathrm{A}: \cos \mathrm{B}: \cos \mathrm{C}
$$

and P is $a \sin 2 \mathrm{~A}=\beta \sin 2 \mathrm{~B}=\gamma \sin 2 \mathrm{C}$.
15. If $l: m: n=s-a: s-b: s-c$, then P is the Gergonne point, and (iii.) is the In-circle.
16. If \mathbf{P} is the Symmedian-point, then (iii.) is
$2\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right) \Sigma(a \beta \gamma)=\Sigma(a \alpha) . \Sigma\left[b c a\left(b^{4}+c^{4}-a^{4}+\lambda^{2}\right)\right]$,
where $\lambda^{2} \equiv a^{2} b^{2}+b^{2} c^{2}+c^{2} u^{3}$ as before.
17. If $n=0, m=a, l=b$, (iii.) becomes

$$
(a+b) \Sigma(a \beta \gamma)=\Sigma(a a) \cdot[b \cos \Lambda a+a \cos B \beta]
$$

which cuts $A B$ in the points where the bisector of $\angle C$ and the perpendicular from \mathbf{C} meet it.
18. If the locus of P is the line

$$
p a+q \beta+r \gamma=0
$$

then the envelope of DE is found from the equations
and

$$
\left.\begin{array}{l}
\left.\left.\frac{p}{a l}+\frac{q}{b m}+\begin{array}{c}
r \\
c n \\
a l a \\
a \\
b m \beta-c n \gamma=0
\end{array}\right\}, ~\right\}
\end{array}\right\}
$$

It is readily seen to be the in-conic

$$
p^{2} \alpha^{2}+q^{2} \beta^{2}+r^{2} \gamma^{2}-2 p \eta \alpha \beta+2 q r \beta \gamma+2 r p \gamma \alpha=0
$$

The chords of contact are

$$
\left.\begin{array}{r}
p a-q \beta+r \gamma=0 \\
-p a+q \beta+r \gamma=0 \\
p a+q \beta+r \gamma=0
\end{array}\right\}
$$

In like manner, with the same condition, the envelope of $\mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime}$ is

$$
p^{2} \alpha^{2}+q^{2} \beta^{2}+r^{2} \gamma^{2}-2 q r \beta \gamma-2 r p \gamma \alpha-2 p q \alpha \beta=0
$$

19. If P, P^{\prime} are inverse points, and O, O^{\prime} are given by $(l, m, n),\left(l^{\prime}, m^{\prime}, n^{\prime}\right)$, then we have

$$
a^{2} l l^{\prime}=b^{2} m m^{\prime}=c^{2} n n^{\prime} .
$$

The equation to PP^{\prime}, in the general case, is

$$
a l l^{\prime} a\left[m^{\prime} n-m n^{\prime}\right]+\ldots+\ldots=0
$$

hence, if (vi.) is satisfied, and the line passes through the symmedian point, we must have

$$
\begin{equation*}
\Sigma\left[m^{\prime} n-m n^{\prime}\right]=0 . \tag{rii.}
\end{equation*}
$$

20. If $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime \prime}$ are points such that $\mathrm{P}, \mathrm{P}^{\prime}, \mathrm{P}^{\prime \prime}$ are collinear, then we have

$$
\Sigma l^{\prime} l^{\prime \prime} m n\left[m^{\prime \prime} n^{\prime}-m^{\prime} n^{\prime \prime}\right]=0
$$

21. If P, P^{\prime} are inverse points, the equation (vii.) is satisfied by the cubic

$$
\Sigma\left(\frac{m-n}{a^{2} l}\right)=0:
$$

a value is

$$
\frac{1}{l}: \frac{1}{m}: \frac{1}{n}=\lambda^{2}-2 b^{2} c^{2}: \lambda^{2}-2 c^{2} a^{2}: \lambda^{2}-2 a^{2} b^{2}
$$

An Aritbmetical Problem.

By Dr Wm. Peddie.

