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A Data Assimilation Reminder

1.1 Recalling the Basic Idea of Statistical Data Assimilation

This is an expansion of the discussion of data assimilation in Abarbanel (2013).
There we further developed a path integral (Abarbanel (2009); Cox (1964))
approach to the subject of data assimilation, which was illustrated by examples
from nonlinear electrical circuits, chaotic fluid dynamics, and laboratory neuro-
biological experiments. The neurobiological experiments were performed in the
laboratory of Daniel Margoliash and his students and postdoctoral fellows at the
University of Chicago. The designation ‘data assimilation’ made its first appear-
ance, to my knowledge, within the community of meteorologists working on
numerical weather prediction (Anthes (1974); Ghil and Malanotte-Rizzoli (1991);
Pires et al. (1996); Kalnay (2003); Lorenc and Payne (2007); Evensen (2009);
Reich and Cotter (2015) and climate modeling. It was understood, probably from
the outset of these endeavors in the 1950s, that one required knowledge of the state
of the earth system, the atmosphere, and the ocean, at some time t f inal in order
to use the equations of fluid dynamics, so-called General Circulation Models, to
predict forward in time for t ≥ t f inal . The prediction is the validation (or not) of
the model proposed to represent the source of the data. Just “fitting” the observed
data is a consistency check on the information transfer methods, but one must do
more.

The reason one needs prediction, known in Machine Learning as ‘generaliza-
tion,’ is that many, usually most, of the model state variables are unobserved.
One requires them, however, to predict forward for t ≥ t f inal , and, as they are
unobserved or even unobservable, one cannot measure them directly, so their role
in prediction is the only method for probing the accuracy with which we have
estimated them via data assimilation.

One problem was, and remains, that we have only an approximate idea what the
state of the earth system is at any time with enough accuracy and spatial coverage
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to have confidence in those predictions. The situation simply got worse when, in
1963, the seminal paper of Ed Lorenz (1963) showed that the intrinsic instabil-
ities of many nonlinear systems, certainly including fluid dynamics on a spatial
grid, amplified small errors in initial conditions as well as errors in fixed physical
parameters and would lead to exponential growth in those errors. It was hoped that
with ‘enough’ measurements of the state space of the earth system one could pass
‘enough’ information to the physical dynamical models to rectify the discouraging
prospect one faced.

In the literature that I have reviewed (Ghil and Malanotte-Rizzoli (1991); Pires
et al. (1996); Kalnay (2003); Lorenc and Payne (2007); Evensen (2009); Reich
and Cotter (2015)) the important question of how many measurements are actu-
ally required to make accurate predictions is not addressed. We will address this
question.

This transfer of information in measured state variables to ‘complete’ physical
models by estimating all the unmeasured state variables and all the unknown or
poorly known time independent parameters of the model acquired the name ‘data
assimilation.’

In the discussions here and earlier (Abarbanel (2013)), we have called this proc-
ess of information transfer Statistical Data Assimilation; SDA to emphasize its
generality across many disciplines where the nonlinear Physics of the problems at
hand are important and the value of viewing it as part of considerations in Statistical
Physics as developed since the nineteenth century.

The statistical part of the designation SDA comes from unavoidable noise in the
measurements and errors in the models. How one represents errors in a model is
not at all a settled subject, but some statement must be made, and, naturally, we
will do so.

In the process of SDA we require three critical ingredients to transfer informa-
tion in observations to properties of models proposed to represent the source of that
information.

● We should have well curated data. ‘Curation’ means we should understand not
just the binary or ascii numbers presented as ‘data,’ but we also should under-
stand the instruments used to collect the data. We should have knowledge of the
calibration of these instruments and, if at all possible, we should have knowl-
edge of the errors, whatever their source, in these data. We should also know
the statistical distribution of these errors. The information here, in addition to
the raw ascii numbers, is often called ‘metadata’, and it is not always availa-
ble. A good experiment will provide the data and the metadata; be sure to ask
for it.
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● We will have a model of the processes that produced the well curated data
we receive. In a physical or biophysical setting, we may have some guidance
for the construction of such a model, or we may be proposing a model whose
consistency with the data we wish to examine and whose validity we wish to
establish.

● We must have a method for transferring the information from the data to
the model: this comprises estimating all model variables that are unob-
served in the measurement processes as well as estimating the value of time
independent parameters in the model. Some parameters are known, perhaps
from other observations, but we wish to estimate all those that we do not
know.

The topics in this book are primarily focused on the third item. We do not pro-
vide guidance here to propose and design experiments, in the laboratory or in the
field, for every domain of science one might wish to address. We have actually
worked with members of the Margoliash neurobiology laboratory at the University
of Chicago to design laboratory experiments that produce excellent predictions;
examples of this are discussed throughout this book.

Similarly, we do not propose to discuss specific models for all areas of scientific
inquiry. We do hope to convey the overall principles and issues in SDA and to
illustrate these with examples.

The third item provides a methodology to transfer the information to a priori
ill-informed properties of the model; in particular, one wishes to estimate time
independent parameters and unobserved states. The thrust of this volume is not
to provide a model, typically in the form of a differential equation for the state
variables involved in the processes generating the data. Providing a model for use
in SDA rests on the experience and insight of the user, and it is not a button to push
called Give me a model, please in some package of algorithms. We will formulate
a general framework for the operations utilized to transfer the information in the
data to properties of the model, once the data are collected and the models are
formulated.

Models are, in a sense, the ‘art’ of data assimilation. It is in this that the skill of
the scientist is displayed. It is a matter of insight and some experience to formulate
models. The context of SDA is, first of all, to establish whether a proposed model
is consistent with the data. Only consistency is possible as we have no knowledge
of the unobserved state variables. So while we should be using measurements y(τk)

in the observation window we cannot check if the unobserved state variables are
correct, because, well, we do not know them; similarly with the unknown time
dependent parameters.
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All state variables and all parameters come into play when we want to vali-
date (or not) the model by using it, deterministically or statistically, to predict the
behavior of the observed system after [t0, t f inal].

1.2 What Is in the Following Chapters?

We ended Abarbanel (2013) with a discussion entitled “Unfinished Business,” and
we will spare the diligent reader having to go over our state of ignorance those few
years ago by recalling what was “unfinished.”

We then will recall our notation and formulation of SDA in a section called
“Remembrance of Things Path” and identify the items we’ll consider in this
collection of writings.

This seems a good place to apologize to Proust (Proust (1913)) and all of his
dedicated readers for our choice of a pun here. How could one help but do it?

Picking up from the items of Unfinished Business we will address how to use the
information in the waveforms of the data as a function of time. Then we will apply
the ideas to a useful instructional model and to an interesting geophysics problem.

● SDA Variational Principles; Euler-Lagrange Equations for SDA Variational
Calculations; Using Waveform Information; Lorenz96 Examples; Lagrangian
Drifters and Shallow Water Flows

● Annealing in the Model Precision R f
● Symplectic Integration and SDA Variational Principles; “Fokker-Planck Equa-

tion” for the SDA Standard Model
● Monte Carlo Methods; Metropolis-Hastings – Random Proposals; Hamiltonian

Monte Carlo Methods – Structured Proposals or Symplectic Proposals
● SDA and Its Equivalence to Supervised Machine Learning; 〈A(X)〉 = 〈− log P
(X|Y)〉.
Many of these items were not unfinished in 2012; indeed, they were not even

known as items to require attention at that time.
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