AN APPLICATION OF SOME SPACES OF LORENTZ

P. G. ROONEY

1. Introduction. The spaces $\Lambda(\alpha)$ and $M(\alpha)$ were defined by Lorentz (2) as follows. Let $0 < \alpha < 1$, $0 < l \leq \infty$; let ϕ be measurable on $(0, l)$, and, in case $l = \infty$, let the set where $|\phi(x)| > \epsilon$ have finite measure for each positive ϵ . Define *^t*

$$
||\phi(\cdot)||_{\Lambda(\alpha)} = \alpha \int_0^t x^{\alpha-1} \phi^*(x) dx
$$

where $\phi^*(x)$ is the equi-measurable rearrangement of $|\phi|$ in decreasing order, and

$$
\text{II} \qquad \qquad ||\phi(\cdot)||_{\mathbf{M}(\alpha)} = \sup_{E} \left(m(E) \right)^{-\alpha} \int_{E} |\phi(x)| \, dx, \ E \subseteq (0, l).
$$

The spaces $\Lambda(\alpha)$ and $M(\alpha)$ consist of those ϕ for which

$$
||\phi(\cdot)||_{\Lambda(\alpha)} < \infty, \quad ||\phi(\cdot)||_{M(\alpha)} < \infty
$$

respectively.

Lorentz (2; §5) found, among other things, necessary and sufficient conditions that a given sequence be the moment sequence of a function in either $\Lambda(\alpha)$ or $M(\alpha)$, for $l = 1$. It is the object of this paper to find necessary and sufficient conditions that a function $f(s)$ on $s > 0$ be the Laplace transform of a function in $\Lambda(\alpha)$ or $M(\alpha)$ for $l = \infty$. To this end we make use of the Widder-Post inversion operator,

III
$$
L_{k, i}[f(s)] = \frac{(-1)^k}{k!} \left(\frac{k}{t}\right)^{k+1} f^{(k)}\left(\frac{k}{t}\right),
$$

whose theory may be found in (4; chap. VII).

Section 2 of this paper contains the theory for the spaces $\Lambda(\alpha)$, and §3 the theory for the spaces $M(\alpha)$.

Henceforth when $l < \infty$, we shall denote the spaces $\Lambda(\alpha)$, $M(\alpha)$, L_p , over $(0, l)$ by $\Lambda(\alpha, l)$, and their respective norms by $||\phi(\cdot)||_{\Lambda(\alpha, l)}$. We shall continue to denote the spaces $\Lambda(\alpha)$ on $(0, \infty)$ by $\Lambda(\alpha)$ and the norms by $||\phi(\cdot)||_{\Lambda(\alpha)}$.

2. The space $\Lambda(\alpha)$. The first theorem yields some properties of the Laplace transform of a function in $\Lambda(\alpha)$, while the second theorem is the representation theorem.

THEOREM 1. If $\phi \in \Lambda(\alpha)$, and

$$
f(s) = \int_0^\infty e^{-st} \phi(t) dt,
$$

Received September 21, 1954. This work was done at the Summer Research Institute of the Canadian Mathematical Congress.

then

$$
\int_0^\infty s^{-\alpha} |f(s)| ds < \infty.
$$

If ϕ *is positive and decreasing, then the above condition is necessary and sufficient that* $\phi \in \Lambda(\alpha)$.

Proof. Suppose $\phi \in \Lambda(\alpha)$. Then

$$
\int_0^{\infty} s^{-\alpha} |f(s)| ds \leq \int_0^{\infty} s^{-\alpha} ds \int_0^{\infty} e^{-st} |\phi(t)| dt
$$

=
$$
\int_0^{\infty} |\phi(t)| dt \int_0^{\infty} e^{-st} s^{-\alpha} ds = \Gamma(1 - \alpha) \int_0^{\infty} t^{\alpha - 1} |\phi(t)| dt
$$

 $\leq \alpha^{-1} \Gamma(1 - \alpha) ||\phi(\cdot)||_{\Lambda(\alpha)} < \infty.$

se ϕ is positive and decreasing.

$$
\int_0^\infty s^{-\alpha} |f(s)| \, ds = \alpha^{-1} \Gamma(1-\alpha) \, ||\phi(\cdot)||_{\Lambda(\alpha)},
$$

and $\phi \in \Lambda(\alpha)$.

THEOREM 2. Necessary and sufficient conditions that a function $f(s)$, defined for $s > 0$, be the Laplace transform of a function in $\Lambda(\alpha)$ are that

for σ \sim 0, be the Laplace transform of a *juniciron* in $\Gamma(\alpha)$ are that (1) / *has derivatives of all orders in* (0, oo) *and f(k)(s)—>0* as *s —*» oo

 (9) $||T - [f(e)]||$ $\sum_{i=1}^n |P(x_i, y_i)| |\Lambda(x_i, y_i)| \leq 1$, where It is independent of k ($k = 0, 1, 2, ...$).

Proof of necessity. Let

$$
f(s) = \int_0^\infty e^{-st} \phi(t) dt, \phi \in \Lambda(\alpha).
$$

The necessity of (1) is well known; see $(4;$ chap. 2, §5).

Now by (4; chap. 7, §6),

$$
L_{k, t}[f(s)] = \int_0^\infty K(t, u) \phi(u) du,
$$

where $K(t, u) = (k/t)^{k+1} e^{-ku/t} (u^k/k!)$. Thus $K(t, u) \ge 0$, and

$$
\int_0^\infty K(t, u) du = \int_0^\infty K(t, u) dt = 1.
$$

em 3.8.1), for each $a > 0$,

 $Hence, b$

$$
\int_0^a L_{k, t} [f(s)]^* dt \leqslant \int_0^a \phi^*(t) dt,
$$

and thus by $(3;$ Theorem 3.4.3), for any $a > 0$,

$$
\alpha \int_0^a t^{\alpha-1} L_{k, t} [f(s)]^* dt \leq \alpha \int_0^a t^{\alpha-1} \phi^*(t) dt.
$$

¹This theorem, like all of Lorentz's, is stated for the case $l = 1$. However, all of Lorentz's theorems used here with one exception (to be noted later) are true for l infinite, as a glance at the proof shows.

Letting $a \rightarrow \infty$, we have

 $||L_{k,\cdot}|[f(s)]||_{\Lambda(\alpha)} \leq ||\phi(\cdot)||_{\Lambda(\alpha)},$

and (2) is necessary.

Proof of sufficiency. By $(2, 3.5(7))$, if $g(t)$ is positive and non-increasing

$$
\int_0^\infty t^{p-1} |g(t)|^p dt \leqslant K_p \bigg\{ \int_0^\infty |g(t)| dt \bigg\}^p, \ p \geqslant 1
$$

 $\epsilon = \frac{f^{\alpha-1} \tilde{L}}{f(x)} \int_{0}^{x} f(x)dx$ Then the above result vi Let $p = 1/\alpha$, $g(t) = t$ L_k , $f(f(s))$: Then, the above result yields

$$
\int_0^{\infty} |L_{k, t}[f(s)]|^{1/\alpha} dt = \int_0^{\infty} \{L_{k, t}[f(s)]^*\}^{1/\alpha} dt
$$

 $\leq K_{1/\alpha} \left\{ \int_0^{\infty} t^{\alpha-1} L_{k, t}[f(s)]^* dt \right\}^{1/\alpha} \leq K_{1/\alpha} N^{1/\alpha}.$

Hence,

 $||L_{k}$.[$f(s)$] $||_{L(1/a)} \leqslant N'$

where $N' = K^{\alpha}_{1/\alpha} N$.

Thus, by (4; chap. 1, §17, and chap. 7, §15), $\phi \in L(1/\alpha)$, and an increasing unbounded sequence ${k_i}$ exist such that

(i)
$$
||\phi(\cdot)||_{L(1/\alpha)} \leq N',
$$

\n(ii) $f(s) = \int_0^\infty e^{-st} \phi(t) dt$
\n(iii) for any $\psi \in L((1 - \alpha)^{-1}),$
\n
$$
\lim_{t \to \infty} \int_0^\infty \psi(t) L_{k_i, t}[f(s)] dt = \int_0^\infty \psi(t) \phi(t) dt.
$$

It remains to be shown that $\phi \in \Lambda(\alpha)$.

It remains to be shown that $\varphi \in H(\alpha)$.
But by ℓ^2 : Theorem $2 \beta 1$ for any. But by \mathbf{v} , Theorem 3.6.1), for any $\mathbf{v} \in \mathcal{M}(\mathbf{a})$,

$$
\left|\int_0^\infty \boldsymbol{\psi}(t) \, L_{k,\,t}[f(s)] \, dt\right| \, \leqslant \, ||\boldsymbol{\psi}(\cdot)||_{\mathbf{M}(\alpha)} ||L_{k,\,t}[f(s)]||_{\boldsymbol{\Lambda}(\alpha)} \leqslant N \, ||\boldsymbol{\psi}(\cdot)||_{\mathbf{M}(\alpha)}.
$$

Hence, by (iii), and since, by (2; 1.3(4)), $L((1 - \alpha)^{-1}) \subseteq M(\alpha)$, for any $\psi \in L((1-\alpha)^{-1}),$

$$
\left|\int_0^\infty \psi(t) \, \phi(t) \, dt\right| = \lim_{t \to \infty} \left| \int_0^\infty \psi(t) \, L_{k_i, t}[f(s)] \, dt \right| \leqslant N \, ||\psi||_{\mathbf{M}(\alpha)}.
$$

Changing ψ to ψ sgn ϕ , we have for any positive $\psi \in L((1 - \alpha)^{-1})$

$$
\int_0^\infty \psi(t) |\phi(t)| dt \leq N ||\psi(\cdot)||_{\mathbf{M}(\alpha)},
$$

and thus, by (3; Theorem 3.4.2), for any positive $\psi \in L((1 - \alpha)^{-1})$,

$$
\int_0^\infty \psi(t) \phi^*(t) dt \leq N ||\psi(\cdot)||_{\mathbf{M}(\alpha)}.
$$

Let $\psi(t) = \alpha t^{\alpha-1}$, $0 < \delta \leq t \leq R$, $\psi(t) = 0$ otherwise. Then $\psi \in L((1 - \alpha)^{-1})$, and $||\psi(\cdot)||_{M(\alpha)} \leq 1$. Hence

$$
\alpha \int_{\delta}^{R} t^{\alpha-1} \phi^*(t) \ dt \leqslant N,
$$

and so, letting $\delta \rightarrow 0$, $R \rightarrow \infty$, we have

$$
||\phi(\cdot)||_{\Lambda(\alpha)} < \infty,
$$

and $\phi \in \Lambda(\alpha)$.

3. The space $M(\alpha)$. The first theorem of this section yields some properties of the Laplace transform of a function in $M(\alpha)$, while the second theorem is the representation theorem.

THEOREM 3. If $\phi \in M(\alpha)$, and

$$
f(s) = \int_0^\infty e^{-st} \phi(t) dt,
$$

then $s^{\alpha} f(s)$ *is bounded for* $s > 0$. If ϕ *is positive and decreasing, then the condition that* $s^{\alpha} f(s)$ be bounded is necessary and sufficient for $\phi \in M(\alpha)$.

Proof. Let
$$
\phi \in M(\alpha)
$$
. Then if $s > 0$, by (3; Theorem 3.6.1),
\n
$$
|f(s)| \leq \int_0^{\infty} e^{-st} |\phi(t)| dt \leq ||e^{-st}||_{\Lambda(\alpha)} ||\phi(\cdot)||_{M(\alpha)}
$$
\n
$$
= \alpha \int_0^{\infty} t^{\alpha-1} e^{-st} dt ||\phi(\cdot)||_{M(\alpha)} = s^{-\alpha} \Gamma(\alpha+1) ||\phi(\cdot)||_{M(\alpha)},
$$

and $s^{\alpha} f(s)$ is bounded.

Conversely, suppose ϕ is positive and decreasing, and $s^{\alpha} f(s)$ is bounded. Let $\delta > 0$, and

$$
\frac{1}{2s}<\delta<\frac{1}{s}.
$$

Then

$$
\int_0^s \phi(t) dt \leqslant e^{s\delta} \int_0^s e^{-st} \phi(t) dt \leqslant e \int_0^\infty e^{-st} \phi(t) dt \leqslant M s^{-\alpha} \leqslant M' \delta^{-\alpha},
$$

so that $||\phi(\cdot)||_{M(\alpha)} \leq M'$ and $\phi \in M(\alpha)$.

THEOREM 4. *Necessary and sufficient conditions that a function f(s)*, *defined for* $s > 0$ *, be the Laplace transform of a function in* $M(\alpha)$ *are that*

(1) *f* has derivatives of all orders in $(0, \infty)$, $f^{(k)}(s) \rightarrow 0$ as $s \rightarrow \infty$ $(k = 0, 1,$ $2, \ldots$,

(2) $\|L_{k}$. $[f(s)]\|_{M(\alpha)} \leq N$ where N is independent of k (k = 0, 1, 2, ...). *Proof of necessity.* Let

$$
f(s) = \int_0^\infty e^{-st} \phi(t) dt, \qquad \phi \in M(\alpha).
$$

The necessity of (1) is well known.

<https://doi.org/10.4153/CJM-1955-034-6>Published online by Cambridge University Press

Now as in Theorem 2,

$$
L_{k, l}[f(s)] = \frac{1}{k!} \left(\frac{k}{t}\right)^{k+1} \int_0^{\infty} e^{-ku/t} u^k \phi(u) \ du = \frac{k^{k+1}}{k!} \int_0^{\infty} e^{-ku} u^k \phi(tu) \ du.
$$

Hence, if $m(E) = \delta$,

$$
\delta^{-\alpha} \int_E |L_{k, t}[f(s)]| dt \leq \frac{\delta^{-\alpha} k^{k+1}}{k!} \int_0^{\infty} e^{-ku} u^k du \int_E |\phi(tu)| dt
$$

= $\frac{k^{k+1}}{k!} \int_0^{\infty} e^{-ku} u^{k+\alpha-1} du (u\delta)^{-\alpha} \int_{uE} |\phi(t)| dt$

where $uE = \{t | t = uv, v \in E\}$, so that $m(uE) = um(E)$. Thus

$$
\delta^{-\alpha} \int_E |L_{k, l}[f(s)]| dt \leq \frac{k^{k+1}}{k!} ||\phi(\cdot)||_{\mathbf{M}(\alpha)} \int_0^{\infty} e^{-ku} u^{k+\alpha-1} du
$$

= $||\phi(\cdot)||_{\mathbf{M}(\alpha)} \Gamma(k+\alpha)/k^{\alpha} \Gamma(k).$

Hence, since $\Gamma(k + \alpha)/k^{\alpha} \Gamma(k)$ is bounded, we have $||L_{k,\cdot} |f(s)||_{M(\alpha)} \le N$.

Proof of *sufficiency.* It is clear that

$$
||L_{k,\cdot}[f(s)]||_{\mathbf{M}(\alpha,\,l)} \leq ||L_{k,\cdot}[f(s)]||_{\mathbf{M}(\alpha)}.
$$

Further, by² (2; Theorem 4), $M(\alpha, l) \subseteq L((1 - \alpha')^{-1}, l)$ and

$$
||L_{k,\cdot}[f(s)]||_{L((1-\alpha')^{-1},l)} \leqslant K_l||L_{k,\cdot}[f(s)]||_{\mathbf{M}(\alpha,l)},
$$

for every α' , $0 < \alpha' < \alpha$. Let α' be fixed $0 < \alpha' < \alpha$ and let $\{l_i\}$ be a positive increasing unbounded sequence. Then by (4; chap. 1, Theorem 17a), since

 $\|L_{k} \cdot [f(s)]\|_{L((1-\alpha')^{-1},l_1)} \leq K_l N$

there is a function $\phi_1 \in L((1 - \alpha')^{-1}, l)$ and an increasing unbounded sequence ${k_{i1}}$ such that

$$
||\phi(\cdot)||_{L((1-\alpha')^{-1},l_1)} \leqslant K_{l_1}N
$$

and

$$
\lim_{i\to\infty}\,\int_0^{t_1}\psi(t)\,L_{k_{i1}},\,[f(s)]\,dt\,=\,\int_0^{t_1}\psi(t)\,\phi_1(t)\,dt,
$$

for every $\psi \in L(1/\alpha', l_1)$. Further, since

$$
||L_{k_{i1}}[f(s)]||_{L((1-\alpha')^{-1}, l_2)} \leq K_{l_2}N
$$

there is, by (4; chap. 1, Theorem 17a), a function $\phi_2 \in L((1 - \alpha')^{-1}, l_2)$ and an increasing unbounded sequence $\{k_{i2}\}\subseteq \{k_{i1}\}\$ such that

$$
||\phi_2(\cdot)||_{L((1-\alpha')^{-1},l_2)} \leqslant K_{l_2}N,
$$

and

²Lorentz states that this theorem is true for l infinite also. However, this is not the case, as it would imply untrue relations between the *Lp* spaces.

$$
\lim_{t\to\infty}\int_0^{t_*}\psi(t)\ L_{k_{i\bullet},t}[f(s)]\ dt=\ \int_0^{t_*}\psi(t)\ \phi_2(t)\ dt
$$

for every $\psi \in L(1/\alpha', l_2)$. Inductively, since

$$
||L_{k_{i,j-1},\cdot}[f(s)]||_{L((1-\alpha')^{-1},l_i)} \leq K_{l_i}N
$$

there is a function $\phi_j \in L((1-\alpha')^{-1}, l_j)$, and an increasing unbounded sequence ${k_{ij}} \subseteq {k_{i,j-1}}$ such that

$$
||\phi_j(\cdot)||_{L((1-\alpha')^{-1},l_i)} \leq K_{l_i}N
$$

and

$$
\lim_{t\to\infty}\int_0^{t_i}\psi(t)\,L_{k_{ij}},\,[f(s)]\,dt=\int_0^{t_i}\psi(t)\,\,\phi(t)\,dt,
$$

for every $\psi \in L(1/\alpha', l_i)$.

But, if $j < j'$, $\phi_j(t) = \phi_{j'}(t)$ for almost all t in $0 \le t \le l_j$. For $\phi_j - \phi_{j'}$ $\in L((1 - \alpha')^{-1}, l_j)$, and hence if $\psi \in L(1/\alpha', l_j)$ and $\bar{\psi} = \psi$, $0 \leq t \leq l_j$, $\bar{\psi} = 0, t \geq l_j$, then since $\bar{\psi} \in L(1/\alpha', l_{j'})$, and ${k_i}_{j'} \subseteq {k_{ij}}$,

$$
\int_0^{l_i} \psi(t) (\phi_j(t) - \phi_{j'}(t)) dt = \int_0^{l_i} \psi(t) \phi_j(t) dt - \int_0^{l_{i'}} \overline{\psi}(t) \phi_{j'}(t) dt
$$

=
$$
\lim_{t \to \infty} \int_0^{l_i} \psi(t) L_{k_{ij}}, [f(s)] dt - \lim_{t \to \infty} \int_0^{l_{i'}} \overline{\psi}(t) L_{k_{ij'}}, [f(s)] dt
$$

=
$$
\lim_{t \to \infty} \left\{ \int_0^{l_i} \psi(t) L_{k_{ij'}}, [f(s)] dt - \int_0^{l_i} \psi(t) L_{k_{ij'}}, [f(s)] dt \right\} = 0.
$$

Thus by (1; chap. IV, §4.2 and Theorem 3), $\phi_j(t) = \phi_{j'}(t)$ almost everywhere in $0 \leq t \leq l_{i}$.

For each $t \ge 0$ let $\phi(t) = \phi_j(t)$ where *j* is the least *i* such that $t \le l_i$. Then clearly $\phi \in L((1 - \alpha')^{-1}, l)$ for each $l > 0$, and if $k_i = k_{i,j}$, and $\psi \in L(1/\alpha', l)$,

$$
\lim_{t\to\infty}\int_0^l\psi(t)\,L_{k_i,\,t}[f(s)]\,dt=\int_0^l\psi(t)\,\phi(t)\,dt.
$$

Further, ϕ has a Laplace transform. For if $s > 0$, then

$$
e^{-s} \text{sgn}(\phi(t)) \in L(1/\alpha', l) \cap \Lambda(\alpha)
$$

and thus by (3; Theorem 3.6.1)

$$
\int_0^t e^{-st} |\phi(t)| dt = \left| \int_0^t e^{-st} \text{sgn}(\phi(t)) \phi(t) dt \right|
$$

=
$$
\lim_{t \to \infty} \left| \int_0^t e^{-st} \text{sgn}(\phi(t)) L_{k_i, t}[f(s)] dt \right|
$$

$$
\leq ||e^{-st}||_{(\Delta \alpha)} \limsup_{t \to \infty} ||L_{k_i, t}[f(s)]||_{\mathbf{M}(\alpha)} \leq s^{-\alpha} \Gamma(\alpha + 1) N.
$$

Thus

$$
\int_0^\infty e^{-st} \phi(t) dt
$$

exists for $s > 0$. Also,

$$
\lim_{t\to\infty}\int_0^\infty e^{-st}L_{k_i, t}[f(s)] dt = \int_0^\infty e^{-st}\phi(t) dt,
$$

*r*_{, by} (3. Theorem 3.6.1.) for each *s >* 0. For, by (3; Theorem 3.6.1.),

$$
\left| \int_{t}^{\infty} e^{-st} L_{k_{i},t}[f(s)] dt \right| \leq ||L_{k_{i},t}[f(s)]||_{\mathbf{M}(\alpha)} \cdot \alpha \int_{t}^{\infty} t^{\alpha-1} e^{-st} dt
$$

$$
\leq N \alpha \int_{t}^{\infty} e^{-st} t^{\alpha-1} dt < \epsilon
$$

and we may also choose l so large that

$$
\int_{l}^{\infty} e^{-st} |\phi(t)| dt < \epsilon.
$$

Then,

$$
\limsup_{t \to \infty} \left| \int_0^{\infty} e^{-st} (\phi(t) - L_{k_i, t}[f(s)]) dt \right|
$$

$$
\leq \limsup_{t \to \infty} \left| \int_0^t e^{-st} (\phi(t) - L_{k_i, t}[f(s)]) dt \right| + 2\epsilon = 2\epsilon,
$$

and thus since ϵ is arbitrary,

$$
\lim_{t\to\infty}\int_0^\infty e^{-st}L_{k_i, t}[f(s)] dt = \int_0^\infty e^{-st}\phi(t) dt.
$$

But by (4; chap. 7, Theorem 11b), this last limit is equal to $f(s)$. Thus $f(s)$ is the Laplace transform of ϕ , and all that remains to be shown is that $\phi \in M(\alpha)$.

But by (4; chap. 7, Theorem 6a)

$$
\lim_{k\to\infty}L_{k, t}[f(s)] = \phi(t) \text{ a.e.}
$$

Hence if E is any subset, of measure δ , then from Fatou's lemma

$$
\int_{E} |\phi(t)| dt \leq \liminf_{k} \int_{E} |L_{k,t}[f(s)]| dt \leq N\delta^{\alpha}
$$

Hence

$$
||\phi(t)||_{\mathbf{M}(\alpha)} = \sup_{E} \delta^{-\alpha} \int_{E} |\phi(t)| dt \leq N
$$

and $\phi \in M(\alpha)$.

In conclusion it may be mentioned that results of the type obtained in theorems 2 and 4 hold for considerably more general spaces than $\Lambda(\alpha)$ and $M(\alpha)$. For example, analogues of these theorems hold true if the values of $f(s)$ be in a reflexive Banach space; the proof of this fact is much like the proofs given here.

REFERENCES

- 1. S. Banach, *Théorie des operations linéaires* (Warsaw, 1932).
- 2. G. G. Lorentz, *Some new functional spaces,* Ann. Math., *51* (1950), 37-55.
- 3. *main*, *Bernstein polynomials* (Toronto, 1953).
- 4. D. V. Widder, *The Laplace transform* (Princeton, 1941).

University of Alberta