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2.1 Conditional Expectation 51

2.1 Conditional Expectation

Martingales are a central object in probability. To define them properly we need
to develop the notion of conditional expectation.

Proposition 2.1.1 (Existence of conditional expectation) Let (Ω, F , P) be a prob-
ability space. Let G ⊂ F be a sub-σ-algebra. Let X : Ω → R be an inte-
grable random variable (i.e. E |X | < ∞). Then, there exists an a.s. unique
G-measurable and integrable random variable Y such that for all A ∈ G we
have E[X1A] = E[Y1A].

Definition 2.1.2 Let (Ω, F , P) be a probability space. Let G ⊂ F be a sub-
σ-algebra. Let X : Ω → R be an integrable random variable (i.e. E |X | < ∞).
Denote E[X | G] to be the (a.s. unique) random variable such that for all A ∈ G,
we have E[X1A] = E[E[X | G]1A].
For an event A ∈ F , we denote P[A | G] := E[1A | G].
If P[A] > 0, we also define

E[X | A,G] :=
E[X1A | G]

P[A]
and P[B | A,G] :=

P[B ∩ A | G]
P[A]

.

It is important to note that conditional expectation produces a random vari-
able and not a number. One may think of E[X | G] as the “best guess” for X
given the information G.
Uniqueness is a simple exercise:

Exercise 2.1 Let (Ω, F , P) be a probability space. Let G ⊂ F be a sub-σ-
algebra. Let X be an integrable random variable.

Let Y, Z : Ω → R be G-measurable random variables, and assume that for
any A ∈ G the expectations E[Y1A] = E[Z1A] = E[X1A] exist and are equal.

Show that Y, Z are integrable, and that Y = Z a.s. B solution C

We now prove the existence of conditional expectation.

Proof of Proposition 2.1.1 The existence of conditional expectation utilizes
a powerful theorem from measure theory: the Radon–Nykodim theorem. It
states that if µ, ν are σ-finite measures on a measurable space (M, Σ), and if
ν � µ (i.e. for any A ∈ Σ, if µ(A) = 0 then ν(A) = 0), then there exists a
measurable function dν

dµ such that for any ν-integrable function f , we have that
f dν
dµ is µ-integrable and

∫
f dν =

∫
f dν
dµ dµ. (See Theorem A.4.6 in Durrett,

2019.)
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This is a deep theorem, but from it the existence of conditional expectation
is straightforward.
We start with the case where X ≥ 0. Let µ = P on (Ω, F ) and define

ν(A) = E[X1A] for all A ∈ G. One may easily check that ν is a measure
on (Ω,G) and that ν � P ��G . Thus, there exists a G-measurable function dν

dµ

such that for any A ∈ G, we have E[X1A] = ν(A) =
∫

1Adν =
∫

1A
dν
dµ dµ. A

G-measurable function is just a random variable measurable with respect to G.
So we may take Y = dν

dµ , and we have E[X1A] = E[Y1A] for all A ∈ G.
For a general X (not necessarily nonnegative) we may write X = X+ − X−

for X± nonnegative. One may check that Y := E[X+ | G] − E[X− | G] has the
required properties. �

The uniqueness property described in Exercise 2.1 is a good tool for com-
puting the conditional expectation in many cases; usually one “guesses” the
correct random variable and verifies it by showing that it admits the properties
guaranteeing it is equal to the conditional expectation a.s.
Let us summarize some of the most basic properties of conditional expecta-

tion with the following exercises.

Exercise 2.2 Let (Ω, F , P) be a probability space, X an integrable random
variable, and G ⊂ F a sub-σ-algebra.
Show that if X is G-measurable, then E[X | G] = X a.s.
Show that if X is independent of G, then E[X | G] = E[X] a.s.
Show that if P[X = c] = 1, then E[X | G] = c a.s. B solution C

Exercise 2.3 Let (Ω, F , P) be a probability space, X an integrable random
variable, and G ⊂ F a sub-σ-algebra.
Show that E[E[X | G]] = E[X]. B solution C

Recall that for A ∈ F , we defined P[A | G] = E[1A | G].

Exercise 2.4 Prove Bayes’ formula for conditional probabilities:
Show that for any B ∈ G and A ∈ F with P[A] > 0, we have

P[B | A] =
E[1B P[A | G]]

P[A]
. B solution C

Exercise 2.5 Show that conditional expectation is linear; that is,

E[aX + Y | G] = a E[X | G] + E[Y | G] a.s.
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Show that if X ≤ Y a.s., then E[X | G] ≤ E[Y | G] a.s.
Show that if Xn ↗ X a.s., Xn ≥ 0 for all n a.s., and X is integrable, then

E[Xn | G]↗ E[X | G]. B solution C

Exercise 2.6 Let (Ω, F , P) be a probability space, X an integrable random
variable, and G ⊂ F a sub-σ-algebra.

Show that if Y is G-measurable and E |XY | < ∞, then E[XY | G] = Y E[X |
G] a.s. B solution C

Exercise 2.7 Let (Ω, F , P) be a probability space and X an integrable random
variable. Suppose that (An)n is a sequence of pairwise disjoint events such that∑

n P[An] = 1 (i.e. (An)n form an almost-partition of Ω). Let G = σ((An)n).
Show that for all n,

E[X | G]1An =
E[X1An ]
P[An]

1An a.s.

Use this to conclude that

E[X | G] =
∑
n

E[X1An ]
P[An]

· 1An a.s. B solution C

Definition 2.1.3 Let X be an integrable (real-valued) random variable, and Y
another random variable, not necessarily real-valued. Define E[X | Y ] := E[X |
σ(Y )].

Exercise 2.8 Show that if X is an integrable random variable, andY is a random
variable taking on countably many values, then

E[X | Y ] =
∑
y∈RY

E
[
X1{Y=y }

]

P[Y = y]
1{Y=y },

where RY = {y : P[Y = y] > 0}.

Exercise 2.9 Prove Chebychev’s inequality for conditional expectation: Show
that if X ∈ L2(Ω, F , P), then a.s.

P[|X | ≥ a | G] ≤ a−2 · E
[
X2 | G

]
.
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Exercise 2.10 Prove Cauchy–Schwarz for conditional expectation: Show that
if X,Y ∈ L2(Ω, F , P), then XY is integrable and a.s.(

E[XY | G]
)2
≤ E

[
X2 | G

]
· E

[
Y 2 | G

]
.

Proposition 2.1.4 (Jensen’s inequality) If ϕ is a convex function such that
X, ϕ(X ) are integrable, then a.s.

E[ϕ(X ) | G] ≥ ϕ(E[X | G]).

Proof As in the usual proof of Jensen’s inequality, we know that ϕ(x) =
sup(a,b)∈S (ax+b) where S =

{
(a, b) ∈ Q2 : ∀ y , ay + b ≤ ϕ(y)

}
. If (a, b) ∈ S,

then monotonicity of conditional expectation gives

E[ϕ(X ) | G] ≥ a E[X | G] + b a.s.

Taking the supremum over (a, b) ∈ S, since S is countable, we have that

E[ϕ(X ) | G] ≥ ϕ(E[X | G]) a.s. �

Proposition 2.1.5 (Tower property) Let (Ω, F , P) be a probability space, X an
integrable random variable, andH ⊂ G ⊂ F sub-σ-algebras.
Then, E[E[X | G] | H ] = E[E[X | H ] | G] = E[X | H ] a.s.

Proof Note that E[X | H ] is H -measurable and thus G-measurable. So
E[E[X | H ] | G] = E[X | H ] a.s.
For the other assertion, since E[X | H ] is H -measurable, we only need to

show the second property. That is, for any A ∈ H , since A ∈ G as well,

E[E[X | H ]1A] = E[E[X1A | H ]] = E[X1A]
= E[E[X1A | G]] = E[E[X | G]1A]. �

2.2 Martingales: Definition and Examples

Definition 2.2.1 Let (Ω, F , P) be a probability space. A filtration is a sequence
(Ft )t of nested sub-σ-algebras Ft ⊂ Ft+1 ⊂ F .

Example 2.2.2 The basic example of a filtration is one induced by a sequence
of random variables. If (Xt )t is a sequence of random variables in a probability
space (Ω, F , P), then Ft = σ(X0, . . . , Xt ) is easily seen to be a filtration. 4 5 4
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Definition 2.2.3 Let (Ω, F , P) be a probability space. Let (Ft )t be a filtration.
Let (Mt )t be a sequence of complex-valued random variables.
The sequence (Mt )t is said to be amartingale with respect to the filtration

Ft if the following conditions hold: For all t,

• Mt is measurable with respect to Ft ,
• E |Mt | < ∞, and
• E[Mt+1 | Ft ] = Mt a.s.

Exercise 2.11 Let µ be a probability measure on Z such that for (Ut )t≥1 i.i.d.-µ,
we have E[Ut ] = 0 and E |Ut | < ∞. Let M0 = 0 and Mt :=

∑t
k=1 Uk . Show that

(Mt )t is a martingale with respect to the filtration Ft = σ(U1, . . . ,Ut ).
What about the filtration F ′t = σ(M0, . . . , Mt )? B solution C

Exercise 2.12 Let (Mt )t be a martingale with respect to a filtration (Ft )t .
Show that (Mt )t is also a martingale with respect to the canonical filtration
F ′t = σ(M0, . . . , Mt ). B solution C

In light of Exercise 2.12, we do not really need to specify the filtration when
speaking about a martingale (Mt )t , since we can always refer to the canonical
filtration σ(M0, . . . , Mt ). Thus, whenever we speak of a martingale without
specifying the filtration, we are referring to the canonical filtration.

Exercise 2.13 Let (Xt )t be the simple random walk on Zd . That is, Xt =∑t
j=1 Uj , whereUj are i.i.d. uniform on the standard basis ofZd and the inverses.
Show that Mt = 〈Xt, v〉 is a martingale, where v ∈ Rd .
Show that Mt = | |Xt | |

2 − t is a martingale. B solution C

Definition 2.2.4 Let (Ω, F , P) be a probability space and (Ft )t a filtration. A
stopping time with respect to the filtration (Ft )t is a random variable T with
values in N ∪ {∞} such that {T ≤ t} ∈ Ft for every t.
A stopping time with respect to a process (Xt )t is defined as being a stopping

time with respect to the canonical filtration of the process σ(X0, . . . , Xt ).

Usually we will not specify the filtration, since it will be obvious from the
context.

Example 2.2.5 Some examples: If (Xt )t is a process and we take the canonical
filtration,

• T = inf {t : Xt ∈ A} is a stopping time;
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• E = sup {t : Xt ∈ A} is typically not a stopping time.
4 5 4

Exercise 2.14 Show that if (Mt )t is a martingale and T is a stopping time, then
(MT∧t )t is also a martingale. B solution C

Exercise 2.15 Show that if T,T ′ are both stopping times with respect to a
filtration (Ft )t , then so is T ∧ T ′. B solution C

The relation of probability and harmonic functions is via martingales as the
following exercise shows.

Exercise 2.16 Let G be a finitely generated group. Let µ be an adapted proba-
bility measure on G. Let (Xt )t be the µ-random walk.
Show that f : G → C is µ-harmonic if and only if ( f (Xt ))t is a martingale

(with respect to the canonical filtration Ft = σ(X0, . . . , Xt )). B solution C

2.3 Optional Stopping Theorem

It follows from the definition that E[Mt ] = E[M0] for a martingale (Mt )t . We
would like to conclude that this also holds for random times. However, this is
not true in general.

Example 2.3.1 Let Mt =
∑t

j=1 X j , where (X j )j are all i.i.d. with distribution
P[X j = 1] = P[X j = −1] = 1

2 (i.e. (Mt )t is the simple random walk on Z). Let
T = inf {t : Mt = 1}.

We have seen that (Mt )t is a martingale and T is a stopping time.
In Section 2.4, we will prove that T < ∞ a.s. (i.e. the simple random walk

on Z is recurrent). So MT is well defined, and actually, by definition MT = 1
a.s. However, M0 = 0 a.s., so E[MT ] = 1 , 0 = E[M0]. 4 5 4

In contrast to the general case, uniform integrability is a condition under
which E[MT ] = E[M0] for stopping times.

Definition 2.3.2 (Uniform integrability) Let (Xα)α∈I be a collection of random
variables. We say that the collection (Xα)α is uniformly integrable if

lim
K→∞

sup
α
E

[
|Xα |1{ |Xα |>K }

]
= 0.
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Exercise 2.17 Show that if X is integrable, then the collection Xα := X is
uniformly integrable. B solution C

Exercise 2.18 Show that if (Xα)α is uniformly integrable, then supα E |Xα | <
∞.

B solution C

Exercise 2.19 Show that if for some ε > 0 we have supα E |Xα |1+ε < ∞, then
(Xα)α is uniformly integrable. B solution C

Exercise 2.20 Show that if (Fα)α is a collection of σ-algebras and X is an
integrable random variable, then (E[X | Fα])α is uniformly integrable. B solution C

Exercise 2.21 Show that if (Xn)n is uniformly integrable and Xn → X a.s.,
then X is integrable. B solution C

The following is not the strongest form of optional stopping theorems that
are possible to prove, but it is sufficient for our purposes.

Theorem 2.3.3 (Optional stopping theorem) Let (Mt )t be a martingale and T a
stopping time, both with respect to a filtration (Ft )t .
We have that E |MT | < ∞ and E[MT ] = E[M0] if one of the following holds:

• The stopping timeT is a.s. bounded; that is, there exists t ≥ 0 such thatT ≤ t
a.s.

• T < ∞ a.s. and (Mt )t is uniformly integrable and E |MT | < ∞.

We will actually see (in Exercise 2.25) that in the last condition, the require-
ment E |MT | < ∞ is redundant.

Proof For the first case, if T ≤ t a.s., then

E[MT ] = E
t−1∑
j=0

1{T> j } · (Mj+1 − Mj ) + E[M0].

Since {T > j} = {T ≤ j}c ∈ Fj , we get that

E
[
(Mj+1 − Mj )1{T> j }

]
= EE[(Mj+1 − Mj )1{T> j } | Fj]

= E
[
1{T> j } E[Mj+1 − Mj | Fj]

]
= 0.

So E[MT ] = E[M0] in this case.
For the second case, note that since E |MT | < ∞, then E

[
|MT |1{ |MT |>K }

]
→

0 as K → ∞.
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Now, (Mt )t is uniformly integrable so supt E
[
|Mt |1{ |Mt |>K }

]
→ 0 as K →

∞. Thus,

E
[
|MT∧t |1{ |MT∧t |>K }

]
≤ E

[
|MT |1{ |MT |>K }1{T ≤t }

]
+ E

[
|Mt |1{ |Mt |>K }1{T>t }

]
≤ E

[
|MT |1{ |MT |>K }

]
+ E

[
|Mt |1{ |Mt |>K }

]
,

so supt E
[
|MT∧t |1{ |MT∧t |>K }

]
→ 0 as K → ∞.

Let

ϕK (x) =




K if x > K,

x if |x | ≤ K,

−K if x < −K .

Note that |ϕK (x) − x | ≤ |x |1{ |x |>K }.
Since MT∧t → MT a.s. as t → ∞ (because we assumed that T < ∞ a.s.), we

also have that ϕK (MT∧t ) → ϕK (MT ) a.s. as t → ∞. Since ϕK (MT∧t ), ϕK (MT )
are uniformly bounded by K , we can apply dominated convergence to obtain
that

lim
t→∞

E |ϕK (MT∧t ) − ϕK (MT ) | = 0.

Thus,

E |MT − MT∧t |

≤ E |ϕK (MT ) − MT | + E |ϕK (MT∧t ) − MT∧t | + E |ϕK (MT∧t ) − ϕK (MT ) |

≤ E
[
|MT |1{ |MT |>K }

]
+ sup

t
E

[
|MT∧t |1{ |MT∧t |>K }

]
+ E |ϕK (MT∧t ) − ϕK (MT ) |.

Taking t → ∞ and then K → ∞, we get that E |MT − MT∧t | → 0.
SinceT∧t is an a.s. bounded stopping time,E[MT∧t ] = E[M0]. In conclusion,

| E[MT − M0]| = | E[MT − MT∧t ]| → 0. �

Exercise 2.22 Show that if a stopping time T is a.s. finite and a martingale
(Mt )t is a.s. uniformly bounded (i.e. there exists m such that |Mt | ≤ m a.s. for
all t), then E[MT ] = E[M0]. B solution C

Exercise 2.23 Assume that (Xn)n, X are random variables such that Xn → X
a.s. Show that if (Xn)n is uniformly integrable, then Xn → X also in L1. B solution C

Exercise 2.24 Show that for a martingale (Mt )t and for any a.s. finite stopping
time T , we have E |MT∧t | ≤ E |Mt |. B solution C
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Exercise 2.25 A specific case of the martingale convergence theorem states
that if (Mt )t is a martingale with supt E |Mt | < ∞, then there exists a random
variable M∞ such that Mt → M∞ a.s., and E |M∞ | < ∞. (We will prove the
martingale convergence theorem in Theorem 2.6.3.)
Use this to show that if (Mt )t is a uniformly integrable martingale and T is

an a.s. finite stopping time, then E |MT | < ∞ (so this last condition is redundant
in the optional stopping theorem). B solution C

2.4 Applications of Optional Stopping

Let us give some applications of the optional stopping theorem (OST) to the
study of random walks on Z.
We consider Z = 〈−1, 1〉. This is the usual Cayley graph on Z, with neighbors

given by adjacent integers. We take the measure µ = 1
2 (δ1 + δ−1). That is,

uniform on {−1, 1}.
Thus, the µ-random walk (Xt )t can be represented as Xt =

∑t
j=1 Uj where

(Uj )j are i.i.d. and P[Uj = 1] = P[Uj = −1] = 1
2 .

First, it is simple to see that (Xt )t is a martingale (we have already seen this
above). Now, let Tz := inf {t : Xt = z}. Note that Tz is a stopping time. Also,
for a < 0 < b we have the stopping time Ta,b := Ta ∧ Tb , which is the first exit
time of (a, b).

Now, the martingale
(
Mt = XTa,b∧t

)
t
is a.s. uniformly bounded (by |a |∨ |b|).

As an exercise to the reader it is left to show that Ta,b < ∞ P0-a.s. Thus,

0 = E[MTa,b ] = P[Ta < Tb] · a + P[Tb < Ta] · b
= P[Ta < Tb](a − b) + b.

We deduce that

P0[Ta < Tb] =
b

b − a
.

Now, note that (x + Xt )t has the distribution of a random walk started at x.
Thus, for all n > x > 0,

Px[T0 < Tn] = P0[T−x < Tn−x] =
n − x

n
= 1 −

x
n
.

This is the probability that a gambler starting with x dollars will go bankrupt
before reaching n dollars in wealth, and is known as the gambler’s ruin estimate.

One of the extraordinary facts (albeit classical) about the random walk on Z
is now obtained by taking n → ∞:

Px[T0 = ∞] = lim
n→∞

Px[T0 > Tn] = 0.
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That is, no matter how much money you have entering the casino, you always
eventually reach 0 (and this is in the case of a fair game!)
In other words, the random walk on Z is recurrent: it reaches 0 a.s. But how

long does it take to reach 0?
Note that since the random walk takes steps of size 1, we have that for

n > x > 0, under Px , the event T0 > Tn implies that T0 ≥ 2n − x. Thus,

Ex[T0] =
∞∑
n=0

Px[T0 > n] ≥
∑
n>x

Px[T0 ≥ 2n − x]

≥
∑
n>x

Px[T0 > Tn] =
∑
n>x

x
n
= ∞.

So Ex[T0] = ∞. Indeed the walker reaches 0 a.s., but the time it takes is infinite
in expectation. That is, the random walk on Z is null-recurrent. We will expand
on the notions of recurrence and null-recurrence in Chapter 3 (and specifically
in Section 3.8).

Exercise 2.26 Show that for a < 0 < b, we have that P0[Ta,b < ∞] = 1.
In fact, strengthen this to show that for all a < 0 < b there exists a constant

c = c(a, b) > 0 such that for all t, and any a < x < b,

Px[Ta,b > t] ≤ e−ct .

Conclude that Ex[Ta,b] < ∞ for all a < x < b. B solution C

Let us now consider a different martingale.

E
[
X2
t+1 | Xt

]
= 1

2 (Xt + 1)2 + 1
2 (Xt − 1)2 = X2

t + 1.

So
(
Mt := X2

t − t
)
t
is a martingale.

If we apply the OST (Theorem 2.3.3) we get

−1 = E−1[MT0 ] = E−1
[
X2
T0

]
− E−1[T0] = −E−1[T0].

So E−1[T0] = 1, a contradiction!
The reason is that we applied the OST in the case where we could not,

since (Mt )t is not necessarily bounded, and this in fact shows that (Mt )t is not
uniformly integrable.
One may note that for −n < x < n, under Px , the martingale

(
Mt∧T−n,n

)
t

admits

|Mt∧T−n,n | ≤
���X

2
T−n,n

− T−n,n
��� + |X

2
t − t |1{T−n,n>t} ≤ 2n2 + T−n,n + t1{T−n,n>t} .
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Thus
(
using (a + b)2 ≤ 2a2 + 2b2

)
,

Ex

[���Mt∧T−n,n
���
2]
≤ 2Ex

[���2n2 + T−n,n
���
2]
+ 2t2 Px[T−n,n > t]

≤ 2Ex

[���2n2 + T−n,n
���
2]
+ 2t2 · e−ct,

for some c = c(n) > 0. This implies that supt Ex

[
|Mt∧T−n,n |

2
]
< ∞, so(

Mt∧T−n,n

)
t
is a uniformly integrable martingale.

Given this, we may apply the OST to get that for any −n < x < n,

x2 = Ex[MT−n,n ] = Ex

[
X2
T−n,n

]
− Ex[T−n,n] = n2 − Ex[T−n,n],

so Ex[T−n,n] = n2− x2. Specifically, E[T−n,n] = n2. This property is sometimes
referred to as the random walk on Z being diffusive.
Similarly to the above, one may easily see that the martingale (Mt∧T0,n )t is

Px-a.s. bounded for any 0 < x < n. So

x2 + Ex[T0,n] = Ex

[
|XT0,n |

2
]
= Px[T0 > Tn] · n2 = xn.

Thus, Ex[T0,n] = (n − x)x.
For general a < x < b, note that under Px , the walk (Xt )t has the same

distribution as (a + Xt )t under Px−a. Thus, for a < x < b,

Ex[Ta,b] = Ex−a[T0,b−a] = (b − x)(x − a).

2.5 Lp Maximal Inequality

The goal of this section is to prove the following theorem, which shows how to
control the maximum of a martingale up to a certain time, using only the last
value.

Theorem 2.5.1 (Lp maximal inequality) Let (Mt )t be a martingale. Then, for
any 1 < p < ∞ and any t,

E[max
k≤t
|Mk |

p] ≤
( p
p−1

)p
· E |Mt |

p .

Proof LetFt = σ(M0, . . . , Mt ) be the natural filtration. Let Nt = maxk≤t |Mk |.
As a first step we show that for any r > 0,

r · P[Nt ≥ r] ≤ E
[
|Mt |1{Nt ≥r }

]
.

(This is also known as Doob’s inequality.) Indeed, fix r > 0 and t > 0. Let

T = inf{s ≥ 0 : |Ms | ≥ r } ∧ t,
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which is a stopping time. Since {T = s} ∈ Fs , we have that for all s ≤ t,

E
[
|Ms |1{T=s }

]
= E

[
| E[Mt | Fs]|1{T=s }

]
≤ E

[
|Mt |1{T=s }

]
.

Summing over s ≤ t, using that P[T ≤ t] = 1, we have

E |MT | ≤ E |Mt |.

Finally, note that |MT |1{Nt<r } = |Mt |1{Nt<r } by the definition of Nt and T , so
that

E
[
|Mt |1{Nt ≥r }

]
= E |Mt | − E

[
|Mt |1{Nt<r }

]
≥ E

[
|MT |1{Nt ≥r }

]
≥ r · P[Nt ≥ r],

because |MT |1{Nt ≥r } ≥ r1{Nt ≥r }. This proves Doob’s inequality above.
Fix some R > 0 and denote Kt = Nt ∧ R. Note that {Kt ≥ r } = {Nt ≥ r }

for r ≤ R, and {Kt ≥ r } = ∅ for r > R. Now, for p > 1 we integrate Doob’s
inequality:

E |Kt |
p =

∫ ∞

0
prp−1 P[Kt ≥ r]dr ≤

∫ R

0
prp−2 E

[
|Mt |1{Nt ≥r }

]
dr

= E

[
|Mt |

∫ R

0
prp−21{r≤Nt }dr

]
=

p
p−1 E

[
|Mt | · |Kt |

p−1
]

≤
p

p−1 ·
(
E |Mt |

p)1/p
·
(
E |Kt |

p) (p−1)/p,

where the last inequality is Hölder’s inequality. Recalling that Kt = Nt ∧ R,
taking R→ ∞, and using monotone convergence, we have(

E |Nt |
p)1/p

≤
p

p−1 ·
(
E |Mt |

p)1/p,

which is the required assertion. �

Exercise 2.27 Let (Xt )t be a lazy random walk on Z; that is the µ-random walk
for µ(1) = µ(−1) = 1

2 (1 − p) and µ(0) = p for some p ∈ [0, 1).
Let Mt = maxk≤t |Xk |. Show that E |Mt |

2 ≤ 4t. B solution C

Exercise 2.28 Let (Xt )t be a lazy random walk on Z; that is the µ-random
walk for µ(1) = µ(−1) = 1

2 (1 − p) and µ(0) = p for some p ∈ [0, 1). Let
Mt = maxk≤t |Xk |. Prove that there exists C, c > 0 such that for all t > 0 and
all m > 0,

c exp
(
−C t

m2

)
≤ P[Mt ≤ m] ≤ C exp

(
−c(1 − p) t

m2

)
. B solution C
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2.6 Martingale Convergence

One amazing property of martingales is that they converge under appropriate
conditions.

Definition 2.6.1 A sub-martingale is a process (Mt )t such that E |Mt | < ∞ and
E[Mt+1 | M0, . . . , Mt ] ≥ Mt for all t.
A super-martingale is a process (Mt )t such that E |Mt | < ∞ and E[Mt+1 |

M0, . . . , Mt ] ≤ Mt for all t.
A process (Ht )t is called predictable (with respect to (Mt )t ) if Ht is mea-

surable with respect to σ(M0, . . . , Mt−1) for all t.

Of course any martingale is a sub-martingale and a super-martingale.

Exercise 2.29 Show that if (Mt )t is a sub-martingale then also Xt := (Mt −

a)1{Mt>a } is a sub-martingale. B solution C

Exercise 2.30 Show that if (Mt )t is a sub-martingale (respectively, super-
martingale) and (Ht )t is a bounded nonnegative predictable process, then the
process

(H · M)t :=
t∑

s=1
Hs (Ms − Ms−1)

is a sub-martingale (respectively, super-martingale).
Show that when (Mt )t is a martingale and (Ht )t is bounded and predictable

but not necessarily nonnegative, then (H · M)t is a martingale. B solution C

Exercise 2.31 Show that if (Mt )t is a sub-martingale and T is a stopping time
then (MT∧t )t is a sub-martingale. B solution C

Lemma 2.6.2 (Upcrossing Lemma) Let (Mt )t be a sub-martingale. Fix a < b ∈
R and let Ut be the number of upcrossings of the interval (a, b) up to time t;
more precisely, define: N0 = −1 and inductively

N2k−1 = inf {t > N2k−2 : Mt ≤ a} and N2k = inf {t > N2k−1 : Mt ≥ b}.

Set Ut = sup {k : N2k ≤ t}.
Then

(b − a) · E[Ut ] ≤ E
[
(Mt − a)1{Mt>a }

]
− E

[
(M0 − a)1{M0>a }

]
.
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Proof Define Xt = a + (Mt − a)1{Mt>a }. Set Ht = 1{∃ k : N2k−1<t≤N2k }. Note
that Ht isσ(X0, . . . , Xt−1)-measurable, since Ht = 1 if and only if N2k−1 ≤ t−1
and N2k > t − 1.
Now, one verifies that

t∑
s=1

Hs · (Xs − Xs−1)≥
Ut∑
k=1

N2k∑
s=N2k−1+1

(Xs − Xs−1) =
Ut∑
k=1

(MN2k − a) ≥ (b − a)Ut .

Note that (Xt )t is a sub-martingale by Exercise 2.29. By Exercise 2.30, since
Hs ∈ [0, 1], At :=

∑t
s=1 Hs · (Xs − Xs−1) and Bt :=

∑t
s=1(1−Hs) · (Xs − Xs−1)

are also sub-martingales. Specifically, E[Bt ] ≥ E[B0] = 0. We have that

(b − a) E[Ut ] ≤ E[At ] ≤ E[At + Bt ] = E[Xt − X0].

This is the required form. �

Theorem 2.6.3 (Martingale convergence theorem) Let (Mt )t be a sub-martingale
such that supt E

[
Mt1{Mt>0}

]
< ∞. Then there exists a random variable M∞

such that Mt → M∞ a.s. and E |M∞ | < ∞.

Proof Since (Mt − a)1{Mt>a } ≤ Mt1{Mt>0} + |a |, we have by the upcrossing
lemma that (b − a) E[Ut ] ≤ E

[
Mt1{Mt>0}

]
+ |a |, where Ut is the number of

upcrossings of the interval (a, b). Let U = U(a,b) = limt→∞Ut be the total
number of upcrossings of (a, b). By Fatou’s lemma,

E[U] ≤ lim inf
t→∞

E[Ut ] ≤
|a | + supt E

[
Mt1{Mt>0}

]
b − a

< ∞.

Specifically, U < ∞ a.s. Since this holds for all a < b ∈ R, taking a union
bound over all a < b ∈ Q, we have that

P[∃ a< b ∈ Q : lim inf
t→∞

Mt ≤ a< b ≤ lim sup
t→∞

Mt ] ≤
∑

a<b∈Q

P
[
U(a,b) = ∞

]
= 0.

But then, a.s. we have that lim sup Mt ≤ lim inf Mt , which implies that an a.s.
limit Mt → M∞ exists.
By Fatou’s lemma again,

E
[
M∞1{M∞>0}

]
≤ lim inf

t→∞
E

[
Mt1{Mt>0}

]
≤ sup

t
E

[
Mt1{Mt>0}

]
< ∞.

Another application of Fatou’s lemma gives

E
[
−M∞1{M∞<0}

]
≤ lim inf

t→∞

(
E

[
Mt1{Mt>0}

]
− E[Mt ]

)
≤ lim inf

t→∞

(
E

[
Mt1{Mt>0}

]
− E[M0]

)
≤ sup

t
E

[
Mt1{Mt>0}

]
− E[M0] < ∞.
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Thus
E |M∞ | = E

[
M∞1{M∞>0}

]
− E

[
M∞1{M∞<0}

]
< ∞. �

Exercise 2.32 Show that if (Mt )t is a super-martingale and Mt ≥ 0 for all t a.s.,
then Mt → M∞ a.s., for some integrable random variable M∞. B solution C

Exercise 2.33 Show that if (Mt )t is a uniformly integrable martingale then
Mt → M∞ a.s. and in L1 for some integrable M∞. B solution C

Exercise 2.34 Let (Ft )t be a filtration. Let X be an integrable random variable.
Show that E[X | Ft ]→ E[X | F∞] a.s. and in L1, where F∞ = σ

( ⋃
t Ft

)
.

B solution C

Exercise 2.35 (Backward martingale convergence theorem) Let (σn)n be a non-
increasing sequence of σ-algebras. Let X be an integrable random variable.
Show that E[X | σn]→ E[X | σ∞] a.s. and in L1, where σ∞ =

⋂
n σn.

(Hint: use the upcrossing lemma.) B solution C

2.7 Bounded Harmonic Functions

We will now use the martingale convergence theorem to study the space of the
bounded harmonic functions.

Theorem 2.7.1 Let G be a finitely generated group, and let µ be an adapted
probability measure on G. Then, dimBHF(G, µ) ∈ {1,∞}. That is, there are
either infinitely many linearly independent bounded harmonic functions or the
only bounded harmonic functions are the constants.

Proof Let h be a bounded harmonic function. Let (Xt )t be the µ-random
walk on G. Then, (h(Xt ))t is a bounded martingale. Thus, h(Xt ) → L a.s.
for some integrable random variable L. Hence, h(Xt+k ) − h(Xt ) → 0 a.s. for
any k.
Fix x ∈ G. Let k > 0 be such that P[Xk = x] = α > 0. Exercise 2.36

proves that P[Xt+k = Xt x | Xt ] = α a.s. for all t (this is known as the Markov
property, which will be discussed in Section 3.1, Exercise 3.1). Thus, for any
ε > 0,

P[|h(Xt x) − h(Xt ) | > ε] ≤ α−1 P[|h(Xt+k ) − h(Xt ) | > ε]→ 0.
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Now assume that dimBHF(G, µ) < ∞. Then there exists a ball B = B(1, r)
such that for all f , f ′ ∈ BHF(G, µ), if f ��B = f ′��B then f = f ′. Define a
norm on BHF(G, µ) by | | f | |B = maxx∈B | f (x) |. Since all norms on finite-
dimensional spaces are equivalent, there exists a constant K > 0 such that
| | f | |B ≤ || f | |∞ ≤ K · | | f | |B for all f ∈ BHF(G, µ).
Now, since | |y.h| |∞ = | |h| |∞, for any t we have a.s.

inf
c∈C
| |h − c| |∞ = inf

c∈C

X−1
t .h − c∞ ≤ K · inf

c∈C

X−1
t .h − cB

≤ K · inf
c∈C

max
x∈B
|h(Xt x) − c| ≤ K ·max

x∈B
|h(Xt x) − h(Xt ) |.

Since this last term converges to 0 in probability, infc∈C | |h − c| |∞ = 0 must
hold. Thus, h is constant. �

Exercise 2.36 Let (Xt )t be the µ-random walk for an adapted probability
measure µ on a group G. Show that

P[Xt+k = Xt x | Xt ] = P[Xk = x] a.s.

for all t, k. B solution C

Exercise 2.37 Check that | | f | |B in the proof of Theorem 2.7.1 is indeed a norm,
for the specific B chosen. (In general, it is only a semi-norm.)

The following is a major open problem in the theory of bounded harmonic
functions. It basically states that the property of having only constant bounded
harmonic functions should not change if we restrict to “nice” random walk
measures. We will return to this conjecture in Chapter 6.

Conjecture 2.7.2 Let G be a finitely generated group. Then for any two µ, ν ∈
SA(G, 2), we have dimBHF(G, µ) = dimBHF(G, ν).

Exercise 2.38 Let G be a finitely generated group and µ ∈ SA(G, 1). Recall the
space of Lipschitz harmonic functions LHF(G, µ).
Show that, if there exists a nonconstant positive h ∈ LHF(G, µ), then

dim LHF(G, µ) = ∞. (Hint: consider LHF modulo the constant functions.)
B solution C
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2.8 Solutions to Exercises
Solution to Exercise 2.1 :(
Let A = {Y > 0} and B = {Y ≤ 0}. Note that A, B ∈ G. Thus,E[ |Y |1A] = E[Y1A] = E[X1A] ≤ E[ |X |1A],
and similarlyE[ |Y |1B ] = −E[Y1B ] = −E[X1B ] ≤ E[ |X |1B ]. Thus,E |Y | ≤ E |X | < ∞. SoY is integrable.
Similarly for Z .

Now, let A =
{
Y − Z > 1

n

}
. Then since A ∈ G, we have

0 = E[(Y − Z)1A] ≥ P[A] · 1
n ,

implying that P
[
Y > Z + 1

n

]
= 0. A union bound over n implies that P[Y > Z] = 0. Reversing the roles of

Y, Z , we have that P[Z > Y] = 0 as well, culminating in P[Y , Z] = 0. :)X

Solution to Exercise 2.2 :(
When X is G-measurable, since for any A ∈ G we have E[X1A] = E[X1A] trivially, we have that E[X | G] =
X a.s.

If X is independent of G then for any A ∈ G we have E[X1A] = E[X] · E[1A] = E[E[X] · 1A]. Since a
constant random variable is measurable with respect to any σ-algebra (and specifically E[X] is G-measurable),
we have the second assertion.

The third assertion is a direct consequence, since a constant is always independent of G. :)X

Solution to Exercise 2.3 :(
Since Ω ∈ G we have

E[X] = E[X1Ω] = E[E[X | G]1Ω] = E[E[X | G]]. :)X

Solution to Exercise 2.4 :(
Since B ∈ G,

E[1B P[A | G]] = E[1A1B ] = P[B | A] · P[A]. :)X

Solution to Exercise 2.5 :(
Linearity: let Z = a E[X | G] + E[Y | G]. So Z is G-measurable. Also, for any A ∈ G,

E[(aX +Y )1A] = a E[X1A] + E[Y1A] = a E[E[X | G]1A] + E[E[Y | G]1A] = E[Z1A].

Monotonicity: By linearity it suffices to show that ifX ≥ 0 a.s. thenE[X | G] ≥ 0 a.s. Indeed, forX ≥ 0 a.s.,
letY = E[X | G]. Then we may consider {Y < 0} ∈ G, and we have that 0 ≤ E

[
X1{Y<0}

]
= E

[
Y1{Y<0}

]
≤

0, soY1{Y<0} = 0 a.s. So if we set Z = Y1{Y≥0} we have thatY = Z ≥ 0 a.s.
Monotone convergence: Write Yn = E[Xn | G],Y = E[X | G]. By monotonicity above, Yn ≤ Yn+1 ≤ Y

a.s. Let Z = limn Yn , which exists a.s. because the sequence is monotone. Z is G-measurable as a limit of
G-measurable random variables. Also, for any A ∈ G we have Xn1A ↗ X1A and Yn1A ↗ Z1A a.s. So by
monotone convergence, E[Z1A]↖ E[Yn1A] = E[Xn1A]↗ E[X1A]. Hence Z = E[X | G] a.s. :)X

Solution to Exercise 2.6 :(
Note that Y E[X | G] is a G-measurable random variable, as a product of two such random variables. So we
need to show that for any A ∈ G we have

E[XY1A | G] = E[E[X | G]Y1A] a.s.

IfY = 1B then this is immediate. IfY is a simple random variable this follows by linearity. For a nonnegative
Y we may approximate by simple random variables and use the monotone convergence theorem. For generalY ,
we may writeY = Y+ −Y− whereY± are nonnegative, and use linearity. :)X

Solution to Exercise 2.7 :(
Start with the assumption that X ≥ 0.

LetY =
∑

n
E[X1An ]
P[An ] · 1An . It is immediate to verify thatY is G-measurable.

Also, E[Y] = E[X], so Q(B) := E[X]−1 · E[Y1B ] defines a probability measure on (Ω, F ). Similarly,
P(B) := E[X]−1 · E[X1B ] defines a probability measure on (Ω, F ). The system {∅, An : n ∈ N} is a
π-system. For any n we have

E[X] · P(An ) = E[X1An ] = E[Y1An ] = E[X] ·Q(An ).
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Since P,Q are equal on a π-system generating G, they must be equal on all of G by Dynkin’s lemma. That is,
for any B ∈ G we have

E[X1An 1B ] = E[X]P(An ∩ B) = E[X]Q(An ∩ B) = E[Y1An 1B ],

which implies, since An ∈ G, that a.s.

E[X | G] · 1An = E[X1An | G] = Y1An =
E[X1An ]
P[An]

· 1An .

For general integrable X, decompose X = X+ − X−. :)X

Solution to Exercise 2.11 :(
Since |Mt | ≤

∑t
k=1 |Uk |, we have that Mt is integrable and Ft -measurable.

Note that Mt+1 = Mt +Ut+1 and note thatUt+1 is independent of Ft and of F ′t . Thus,

E[Mt+1 | Ft ] = Mt + E[Ut+1] = Mt,

E[Mt+1 | F
′
t ] = Mt + E[Ut+1] = Mt . :)X

Solution to Exercise 2.12 :(
Since M0, . . . , Mt are all measurable with respect to Ft , we have that F ′t ⊂ Ft for all t . Thus, by the tower
property,

E[Mt+1 | F
′
t ] = E[E[Mt+1 | Ft ] | F ′t ] = E[Mt | F

′
t ] = Mt

a.s. :)X

Solution to Exercise 2.13 :(
Note that in both cases Mt is measurable with respect to σ(Xt ) ⊂ σ(X0, . . . , Xt ).

In the first case, denoting by e1, . . . , ed the standard basis of Zd , then

E[Mt+1 | X0, . . . , Xt ] =
1

2d

d∑
j=1

〈
Xt + e j, v

〉
+

〈
Xt − e j, v

〉
=

1
2d

d∑
j=1

2 〈Xt, v〉 = Mt .

In the second case,

E
[
| |Xt+1 | |

2 | X0, . . . , Xt

]
=

1
2d

d∑
j=1
| |Xt + e j | |

2 + | |Xt − e j | |
2 =

1
2d

d∑
j=1

2
(
| |Xt | |

2 + 1
)
= | |Xt | |

2 + 1.

Thus,
E[Mt+1 | X0, . . . , Xt ] = | |Xt | |

2 + 1 − (t + 1) = Mt . :)X

Solution to Exercise 2.14 :(
Because {T ≤ t } ∈ σ(M0, . . . , Mt ) and {T > t } = {T ≤ t }c ∈ σ(M0, . . . , Mt ), we get that MT∧t =
Mt1{T>t } +

∑t
j=0 Mj1{T= j } is measurable with respect to σ(M0, . . . , Mt ). Also,

E |MT∧t | = E
t−1∑
j=0

1{T> j } · ( |Mj+1 | − |Mj |) + E |M0 | < ∞.

It now suffices to show that
E

[
MT∧(t+1) | M0, . . . , Mt

]
= MT∧t .

Indeed, since {T = t } = {T ≤ t }\{T ≤ t − 1} ∈ σ(M0, . . . , Mt ), we have that

E[MT∧(t+1) | M0, . . . , Mt ] = E
[
Mt+11{T>t } | M0, . . . , Mt

]
+

t∑
j=0

E
[
Mj1{T= j } | M0, . . . , Mt

]

= E[Mt+1 | M0, . . . , Mt ] · 1{T>t } +

t∑
j=0

Mj1{T= j } = MT∧t . :)X
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Solution to Exercise 2.15 :(
For any t we have that {T ∧T ′ ≤ t } = {T ≤ t } ∪ {T ′ ≤ t } ∈ Ft . :)X

Solution to Exercise 2.16 :(
If f is µ-harmonic then for any x ∈ G,

E
[
| f (Xt ) |1{Xt−1=x }

]
=

∑
y

µ(y) | f (xy) | · P[Xt−1 = x] < ∞,

so that f (Xt ) is integrable for every t . Also,

E[ f (Xt+1) | Ft ] = E
[
X−1
t . f (Ut+1) | Ft

]
=

∑
y

µ(y)X−1
t . f (y) =

∑
y

µ(y) f (Xt y) = f (Xt ),

which shows that ( f (Xt ))t is a martingale.
Now assume that f is such that ( f (Xt ))t is a martingale. Since µ is adapted, for any x ∈ G, there exists

t > 0 such that P[Xt = x] > 0. So,

f (x) = E[ f (Xt+1) | Xt = x] =
∑
y

µ(y) f (xy),

which implies that f is harmonic at x. As before, the above sum converges absolutely because f (Xt+1) is
integrable. :)X

Solution to Exercise 2.17 :(
Set YK = |X |1{|X |>K } . So YK → 0 a.s. Since 0 ≤ YK ≤ |X | for all K , by dominated convergence we have
that

lim
K→∞

E
[
|Xα |1{|Xα |>K }

]
= lim

K→∞
E[YK ] = 0. :)X

Solution to Exercise 2.18 :(
Uniform integrability implies that there exists K such that for all α we have E

[
|Xα |1{|Xα |>K }

]
< 1. Since

E
[
|Xα |1{|Xα |≤K }

]
≤ K , we arrive at

sup
α
E |Xα | ≤ sup

α

(
E

[
|Xα |1{|Xα |>K }

]
+ E

[
|Xα |1{|Xα |≤K }

] )
≤ 1 + K . :)X

Solution to Exercise 2.19 :(
Choose p = 1 + ε and q = 1+ε

ε . Hölder’s inequality gives for any α,

E
[
|Xα |1{|Xα |>K }

]
≤ (E[ |Xα |p ])1/p · (P[ |Xα | > K])1/q

≤ (E[ |Xα |p ])1/p · (E[ |Xα |1+ε ])1/q · K−(1+ε)/q

= E[ |Xα |1+ε ] · K−ε .

Thus,

lim
K→∞

sup
α
E

[
|Xα |1{|Xα |>K }

]
≤ sup

α
E

[
|Xα |

1+ε
]
· lim
K→∞

K−ε = 0. :)X

Solution to Exercise 2.20 :(
Let ε > 0. There exists δ > 0 such that if A ∈ F and P[A] < δ then E[ |X |1A] < ε. (Otherwise we could
find (An )n ⊂ F such that P[An] < n−1 and E[ |X |1An ] ≥ ε. But since X is integrable, E[ |X |1An ]→ 0 by
the dominated convergence theorem, a contradiction.)

Take K > δ−1 E |X |. Then, since {E[ |X | | Fα ] > K } ∈ Fα ,

E
[
| E[X | Fα ] |1{| E[X |Fα ]|>K }

]
≤ E

[
E[ |X | | Fα ]1{E[|X | |Fα ]>K }

]

= E
[
E[ |X |1{E[|X | |Fα ]>K } | Fα ]

]

= E
[
|X |1{E[|X | |Fα ]>K }

]
.

Using A = {E[ |X | | Fα ] > K }, we have that

P[A] ≤ E[E[ |X | | Fα ]] · K−1 = E |X | · K−1 < δ,
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so E[ |X |1A] < ε. This was uniform over α, so we conclude that for all ε > 0 there exists δ > 0 such that if
K > δ−1 E |X | then

sup
α
E

[
| E[X | Fα ] |1{| E[X |Fα ]|>K }

]
< ε.

This is exactly uniform integrability. :)X

Solution to Exercise 2.21 :(
By Fatou’s lemma,

E |X | = E[lim
n
|Xn |] ≤ lim inf

n→∞
E |Xn | ≤ sup

n
E |Xn | < ∞. :)X

Solution to Exercise 2.22 :(
Note that if |Mt | ≤ m a.s., then obviously (Mt )t is uniformly integrable.

Also, since T < ∞ a.s., we have that |MT∧t | → |MT | a.s. as t → ∞. Thus, |MT | ≤ m a.s., implying that
E[ |MT |] < ∞.

By the optional stopping theorem we have that E[MT ] = E[M0]. :)X

Solution to Exercise 2.23 :(
This is similar to the proof of Theorem 2.3.3.

Define

ϕK (x) =



K if x > K,

x if |x | ≤ K,

−K if x < −K .

Note that |ϕK (x) − x | ≤ |x |1{|x |>K } . Since ϕK (Xn ) → ϕK (X) a.s., and |ϕK (Xn ) | ≤ K for all n, by
dominated convergence we have that ϕK (Xn ) → ϕK (X) in L1. Thus,

E |Xn − X | ≤ E |ϕK (Xn ) − ϕK (X) | + E[ |Xn |1{|Xn |>K }] + E[ |X |1{|X |>K }],

implying that

lim sup
n→∞

E |Xn − X | ≤ sup
t
E

[
|Xt |1{|Xt |>K }

]
+ E

[
|X |1{|X |>K }

]
.

Since E |X | < ∞ (as the a.s. limit of a uniformly integrable sequence), this goes to 0 as K → ∞. :)X

Solution to Exercise 2.24 :(
Set Xt := |Mt | − |MT∧t |. Using Jensen’s inequality we have that a.s.

E[ |Mt+1 | | Mt, . . . , M0] ≥ |E [Mt+1 | Mt, . . . , M0] | = |Mt |.

(That is, ( |Mt |)t is a sub-martingale.) Note that

|MT∧(t+1) | − |MT∧t | = ( |Mt+1 | − |Mt |)1{T>t },

so
Xt+1 − Xt = ( |Mt+1 | − |Mt |)1{T≤t } .

Thus,

E[Xt+1 − Xt | M0, . . . , Mt ] = 1{T≤t } · E[ |Mt+1 | − |Mt | | M0, . . . , Mt ] ≥ 0.

(That is, (Xt )t is also a sub-martingale.) Taking expectations we get that E[Xt ] ≥ E[Xt−1] ≥ · · · ≥ E[X0] =
E[M0 −MT∧0] = 0. Hence, E |Mt | ≥ E |MT∧t |, as required. :)X

Solution to Exercise 2.25 :(
Since supt E |MT∧t | ≤ supt E |Mt | < ∞, we have that MT∧t → M∞ a.s., for some integrable M∞. But
MT∧t → MT a.s. as well, which implies that MT = M∞ a.s., so MT is integrable. :)X
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Solution to Exercise 2.26 :(
Let K = b − a. Compute, for any a < x < b,

P[Xt+K < (a, b) | Xt = x, Ta,b > t] ≥ P[∀ 0 ≤ j < K, Ut+ j+1 = 1 | Xt = x, Ta,b > t] = 2−K ,

using the fact that (Ut+ j+1)∞
j=0 are all independent of Ft , and that {Ta,b > t } = {Ta,b ≤ t }c ∈ Ft .

Since Ta,b > t + K implies that Ta,b > t and that Xt+K ∈ (a, b), we may bound

P[Ta,b > t + K] =
b−1∑

x=a+1
P[Ta,b > t + K | Xt = x, Ta,b > t] · P[Xt = x, Ta,b > t]

≤
(
1 − 2−K

)
·

b−1∑
x=a+1

P[Xt = x, Ta,b > t] =
(
1 − 2−K

)
· P[Ta,b > t].

Inductively we obtain that

P[Ta,b > Kn] ≤
(
1 − 2−K

)n
. :)X

Solution to Exercise 2.27 :(
This is just the Lp maximal inequality, with p = 2, together with the fact that E |Xt |

2 = (1 − p)t ≤ t , which
stems from the OST applied to the martingale

(
|Xt |

2 − (1 − p)t
)
t
. :)X

Solution to Exercise 2.28 :(
We start with the upper bound. Consider

(
|Xt |

2 − (1 − p)t
)
t
. This is easily seen to be a martingale. Started at

|x | ≤ m and up to the stopping time

T = Tm+1 ∧T−m−1 = inf {t ≥ 0 : |Xt | = m + 1},

this is a bounded martingale, so by the OST (Theorem 2.3.3),

|x |2 = Ex

[
|XT |

2 − (1 − p)T
]
= (m + 1)2 − (1 − p) Ex [T ].

Hence, by Markov’s inequality, uniformly over |x | ≤ m, we have Px
[
T > 2

1−p (m + 1)2
]
≤ 1

2 .
LetUt = Xt − Xt−1 for all t ≥ 1, so that (Ut )t≥1 are i.i.d. −µ. Since (Us+k )k≥1 are independent of Fs ,

for any |x | ≤ m and any t > s we have that

Px [T > t | Fs ] = 1{T>s} · Px


∀ 1 ≤ k ≤ t − s,

�������
Xs +

k∑
j=1

Us+ j

�������
≤ m


= 1{T>s} · PXs [T > t − s] ≤ 1{T>s} · sup

|y |≤m
Py [T > t − s].

Thus, for |x | ≤ m and any t > 2
1−p (m + 1)2,

Px [Mt ≤ m] = Px [T > t] = Px
[
T > t, T > 2

1−p (m + 1)2
]

≤ Px
[
T > 2

1−p (m + 1)2
]
· sup
|y |≤m

Py
[
T > t − 2

1−p (m + 1)2
]
≤ · · · ≤ 2

−b
(1−p)t

2(m+1)2
c
,

which gives the desired upper bound.
Now for the lower bound. For 0 ≤ x ≤ m we have

Px [Xt < −m] ≤ Px [ |Xt − X0 | ≥ m + 1] ≤ P[ |Xt | ≥ m + 1] ≤
E |Xt |

2

(m + 1)2 ≤
t

(m + 1)2 .

Similarly, for −m ≤ x ≤ 0,

Px [Xt > m] ≤
t

(m + 1)2 .
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Under P0, both Xt and −Xt have the same distribution. Shifting by x, for some |x | ≤ m, we get that
Px [Xt ≤ x] = P[Xt ≤ 0] ≥ 1

2 , and similarly Px [Xt ≥ x] ≥ 1
2 . Recall that by the L

p maximal inequality we
know that

Ex |Mt |
2 ≤ 4Ex |Xt |

2 = 4
(
x2 + (1 − p)t

)
≤ 4

(
x2 + t

)
,

since
(
|Xt |

2 − (1 − p)t
)
t
is a martingale.

Putting all this together we have for any 0 ≤ x ≤ m,

Px [Mt ≤ km, |Xt | ≤ m] ≥ Px [Xt ≤ x] − Px [Xt < −m] − Px [Mt > km]

≥
1
2
−

t

(m + 1)2 −
Ex

[
|Mt |

2
]

k2m2 ≥
1
2
−

t

(m + 1)2 −
4
(
x2 + t

)
k2m2 ,

and similarly for −m ≤ x ≤ 0 we have

Px [Mt ≤ km, |Xt | ≤ m] ≥
1
2
−

t

(m + 1)2 −
4
(
x2 + t

)
k2m2 .

Choosing k = 8 and ` =
⌊

1
8 m

2
⌋
, we arrive at the conclusion that for all |x | ≤ m we have

Px [M` ≤ 8m, |X` | ≤ m] > 1
4 .

Similarly to the proof of the upper bound, for any |x | ≤ m and any t > s we have

Px [Mt ≤ 8m, |Xs | ≤ m | Fs ] = 1{Ms≤8m, |Xs |≤m} · Px


∀ 1 ≤ k ≤ t − s,

�������
Xs +

k∑
j=1

Us+ j

�������
≤ 8m


= 1{Ms≤8m, |Xs |≤m} · PXs [ |Mt−s | ≤ 8m]
≥ 1{Ms≤8m, |Xs |≤m} · inf

|y |≤m
Py [ |Mt−s | ≤ 8m].

We obtain that for any |x | ≤ m and t > `,

Px [Mt ≤ 8m] ≥ Px [Mt ≤ 8m, |X` | ≤ m]

≥ Px [M` ≤ 8m, |X` | ≤ m] · inf
|y |≤m

Py [Mt−` ≤ 8m] ≥ · · · ≥ 4−bt/`c,

which completes the proof of the lower bound. :)X

Solution to Exercise 2.29 :(
The function ϕ(x) = x1{x>0} is convex and nondecreasing, so by Jensen’s inequality E[ϕ(Mt+1 − a) |
M0, . . . , Mt ] ≥ ϕ(E[Mt+1 − a | M0, . . . , Mt ]) ≥ ϕ(Mt − a). :)X

Solution to Exercise 2.30 :(
We write a solution only for the sub-martingale case, since all are very similar.

E[(H · M )t+1 − (H · M )t | M0, . . . , Mt ] = Ht+1 E[(Mt+1 −Mt ) | M0, . . . , Mt ] ≥ 0.

We have used the fact that Ht+1 is σ(M0, . . . , Mt )-measurable. :)X

Solution to Exercise 2.31 :(
Let Ht = 1{T≥t } , which is a bounded predictable process. Then, MT∧t = M0 +

∑t
s=1 Hs (Ms − Ms−1),

which is a sub-martingale by Exercise 2.30. :)X

Solution to Exercise 2.32 :(
The process Xt := −Mt is a sub-martingale and supt E

[
Xt1{Xt >0}

]
≤ 0 < ∞. So Xt converges a.s., which

implies the a.s. convergence of Mt . :)X
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Solution to Exercise 2.33 :(
Since (Mt )t is uniformly integrable,

sup
t
E

[
Mt1{Mt >0}

]
≤ sup

t
E |Mt | < ∞,

so by martingale convergence Mt → M∞ a.s., for some integrable M∞. By uniform integrability again,
Mt → M∞ in L1 as well. :)X

Solution to Exercise 2.34 :(
Let Mt = E[X | Ft ]. Since (Mt )t is a uniformly integrable martingale, it converges a.s. and in L1 to some
integrable M∞. Now, for any event A, we have that Mt1A → M∞1A a.s. and in L1 as well. Thus, if A ∈ Fn
for some n,

E[M∞1A] = lim
t→∞

E[Mt1A] = E[X1A].

Consider the probability measures:

µ(A) :=
E[((M∞)+ + X−)1A]
E[(M∞)+ + X−]

and ν(A) :=
E[((M∞)− + X+)1A]
E[(M∞)− + X+]

.

SinceM∞, X are integrable, these are indeed probability measures, and µ, ν agree on the π-system
⋃

t Ft . Thus,
by Dynkin’s lemma (also known as the π − λ theorem) µ, ν must agree on all of F∞. Hence, M∞ = E[X | F∞]
a.s. :)X

Solution to Exercise 2.35 :(
Set Xn = E[X | σn].

Fix n and consider Mt := Xn−t for t ≤ n and Mt = X0 for t ≥ n. Then (Mt )t is a martingale. IfUn is the
number of upcrossings of the interval (a, b) byM0, . . . , Mn , then (b−a) E[Un] ≤ E

[
(Mn − a)1{Mn>a}

]
=

E
[
(X0 − a)1{X0>a }

]
.

Now, letU∞ be the number of upcrossings of the interval (a, b) by (Xn )n . ThenUn ↗U∞, so bymonotone
convergence, E[U∞] < ∞. Exactly as in the proof of the martingale convergence theorem, this holding for all
a < b ∈ Q implies that Xn → X∞ a.s. for some integrable X∞. Since (Xn )n is uniformly integrable, we get
that Xn → X∞ in L1 as well.

Set Y = lim supn→∞ Xn . So Y = X∞ a.s. Note that for any n, all (Xt )t≥n are σn -measurable, so we
have that Y = lim supn≤t→∞ Xt is also σn -measurable. This implies that Y is measurable with respect to
σ∞ =

⋂
n σn .

For any A ∈ σ∞, we have that Xn1A → X∞1A in L1, so

E[Y1A] = E[X∞1A] = lim
n→∞

E[E[X | σn]1A] = lim
n→∞

E[X1A].

Thus, E[X | σ∞] = Y = X∞ a.s. :)X

Solution to Exercise 2.36 :(
Write Xt =U1 · · ·Ut for (Ut )t≥1 i.i.d.-µ elements.

SetY = X−1
t Xt+k , and note thatY is independent of Ft , and specifically thatY is independent of Xt . Thus,

P[Xt+k = Xt x | Xt ] = P[Y = x | Xt ] = P[Y = x] a.s.

Since (Ut )t≥1 all have the same distribution, we find that Y = Ut+1 · · ·Ut+k has the same distribution as
Xk =U1 · · ·Uk . :)X

Solution to Exercise 2.38 :(
Let V = LHF(G, µ)/C (modulo the constant functions). Fix some finite symmetric generating set S of G.
Assume that dim LHF(G, µ) < ∞, so dimV < ∞.

Recall the Lipschitz semi-norm | |∇S f | |∞ := supx∈G,s∈S | f (xs) − f (x) |. We have that | |∇S f | |∞ = 0 if
and only if f is constant. Also, | |∇S ( f + c) | |∞ = | |∇S f | |∞ for any constant c. Thus, | |∇S · | |∞ induces a
norm onV .

Another semi-norm onG is given by | | f | |B := maxx∈B | f (x)− f (1) |, where B is some finite subset. Note
that | | f + c | |B = | | f | |B for any constant c. Because dim LHF(G, µ) < ∞, if B = B(1, r ) for r large enough
then | | · | |B is a semi-norm on LHF(G, µ) such that | | f | |B = 0 if and only if f is constant. Thus, | | · | |B
induces a norm onV as well.
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Since V is finite dimensional, all norms on it are equivalent. Thus, there exists a constant K > 0 such that
| |∇Sv | |∞ ≤ K · | |v | |B for any v ∈ V . Since these semi-norms are invariant to adding constants, this implies
that | |∇S f | |∞ ≤ K · | | f | |B for all f ∈ LHF(G, µ).

Now, let h ∈ LHF(G, µ) be a positive harmonic function. Then, (h(Xt ))t is a positive martingale, implying
that it converges a.s. Thus, for any fixed k, we have h(Xt+k ) − h(Xt ) → 0 a.s.

Fix x ∈ G and let k be such that P[Xk = x] = α > 0. By Exercise 2.36, P[Xt+k = Xt x | Xt ] = α,
independently of t . We have that a.s. convergence implies convergence in probability, so for any ε > 0,

P[ |h(Xt x) − h(Xt ) | > ε] ≤ α−1 P[ |h(Xt+k ) − h(Xt ) | > ε]→ 0.

Soh(Xt x)−h(Xt ) → 0 in probability, for any x ∈ G. SinceB is a finite ball this implies thatmaxx∈B |h(Xt x)−
h(Xt ) | → 0 in probability.

Now we also use the fact that | |∇S (x.h) | |∞ = | |∇Sh | |∞. Thus, for all t , we have a.s. that

| |∇Sh | |∞ =
∇S

(
X−1
t .h

)∞ ≤ K ·
X
−1
t .h

B = K ·max
x∈B
|h(Xt x) − h(Xt ) |.

Since this converges to 0 in probability, we have | |∇Sh | |∞ = 0 and h is constant. :)X

https://doi.org/10.1017/9781009128391.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128391.004

