
J. Fluid Mech. (2024), vol. 988, A50, doi:10.1017/jfm.2024.445

Intrinsic features of flow-induced stability
of a square cylinder
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Vortex-induced vibrations and galloping of an elastically mounted square cylinder are
investigated for cylinder mass ratio m* = 2–50, damping ratio ζ = 0–1.0, mass-damping
ratio m*ζ = 0–50 and flow reduced velocity Ur = 1–80. We home in on the effects of
m*, ζ , m*ζ , (m∗ + m∗

a0)ζ and (m∗ + m∗
ae)ζ on the critical reduced velocity Urc marking

the onset of galloping, where m∗
a0 is the quiescent-fluid added mass ratio and m∗

ae is the
effective added mass ratio. Vibration responses, forces, vibration frequencies and added
mass ratios are studied and discussed. The different branches of vortex-induced vibrations
have different dependencies of m∗

ae on Ur. The m∗
ae in the initial branch is positive and

drops rapidly with Ur, but that in the lower branch is negative and declines gently. In the
galloping regime, m∗

ae jumps from negative to positive at the onset of galloping, declining
slightly with increasing Ur. Our results and prediction equations show that when ζ = 0, Urc
is independent of m* for m* ≥ 5, albeit slightly higher for m* = 3. The latter is ascribed to
mode competition. When ζ > 0, Urc linearly increases with increasing ζ . Detailed analysis
substantiates that m*ζ or (m∗ + m∗

a0)ζ does not serve as the unique criterion to predict
the galloping occurrence. Here, we propose a new combined mass-damping parameter
(m∗ + m∗

ae)ζ in the relationship between galloping onsets and structural properties, which
successfully scales all data of Urc at different m* and ζ values.

Key words: flow–structure interactions, vortex shedding

1. Introduction

Flow-induced vibration (FIV) of slender structures is a result of fluid–structure
interactions, which can be observed in many engineering fields, such as offshore drilling
platforms and suspension bridges. When fluid flow passes these slender structures,
they may undergo vortex-induced vibration (VIV) and/or galloping, both of which are
commonly known as FIV. Blevins (1990) defined galloping as a large-amplitude and

† Email address for correspondence: alam@hit.edu.cn, alamm28@yahoo.com

© The Author(s), 2024. Published by Cambridge University Press 988 A50-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

44
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:alam@hit.edu.cn
mailto:alamm28@yahoo.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.445&domain=pdf
https://doi.org/10.1017/jfm.2024.445


C. Lin and Md.M. Alam

low-frequency self-excited vibration of non-circular structures at a reduced velocity higher
than a threshold. The galloping vibration is initiated when the overall damping of the
system is negative because of negative flow-induced damping, given that the structural
damping is positive (Blevins 1990; Païdoussis, Price & Delangre 2010; Qin, Alam & Zhou
2017, 2019).

Structural mass ratio m*, damping ratio ζ , natural frequency fn, Reynolds number Re,
reduced velocity Ur, structure shape and turbulent intensity all play important roles in
galloping. Barrero-Gil, Sanz-Andres & Roura (2009) concluded that a square cylinder
cannot gallop at Re < 159 with m*ζ = 0.25, 1.25 and 2.5, while Joly, Etienne & Pelletier
(2012) observed galloping for Re > 140 with m* = 20, ζ = 0. The latter threshold Re value
is much lower than the former. When Re was systematically increased with m* = 10,
ζ = 0, Sen & Mittal (2011) found that the oscillation frequency abruptly decreases at
Re > 170 when a square cylinder vibrates in both transverse and streamwise directions,
which points to the occurrence of galloping instability. The galloping vibration regime
(Re > 170) corresponded to 2S (two single vortices in one oscillation period) and 2P
(two paired vortices) vortex shedding modes. The 2S and 2P modes were associated with
high-amplitude (Re < 215) and very-high-amplitude (Re ≥ 215) vibrations, respectively. At
Re ≥ 220, the transverse vibration amplitude when the cylinder was only allowed to vibrate
in the transverse direction was much smaller than that when it was allowed to vibrate
in both transverse and streamwise directions. For the transverse vibration, the 2S mode
prevailed. Sen & Mittal (2015) investigated the influence of m* on galloping instability
for m* = 1, 5, 10 and 20, ζ = 0 and Re = 50–250. Galloping was only found for high
m* = 5, 10 and 20 with the onset of galloping at Re = 186, 174 and 169, respectively. With
increasing m*, the critical Re (or critical reduced velocity Urc) marking the onset of lock-in
and galloping increases and decreases, respectively. They varied Ur by increasing the
free-stream flow velocity (i.e. Re), where the Strouhal number and forces of a fixed cylinder
are very sensitive to Re. Given that they increased Ur by varying Re, their m* effect is
contaminated by the Re effect, as is shown later. They identified three vortex-shedding
modes: 2S, C(2S) and 2P + 2S. Modes 2S and C(2S) are involved in VIV, whereas the
galloping vibration features 2S mode for A* (= A/D) < 0.7 and 2P + 2S mode for A* > 0.7,
where A is the vibration amplitude and D is the cylinder width.

For a square cylinder with m* = 10, Bhatt & Alam (2018) reported the occurrence
of galloping at Re = 200 but not at Re = 100. In the case of galloping vibrations, they
observed N(2S) vortex shedding mode, where the wake is akin to the wake of a 2S
mode. Zhao (2015) examined the FIVs of a square cylinder and a rectangular cylinder
at m* = 10, Re = 200, and found that Urc for galloping increases with increasing cylinder
cross-sectional aspect ratio α, with Urc = 13 for the square cylinder. Zhao et al. (2019)
experimentally investigated the effect of m* on the vibration response of a square
cylinder at ζ = (1.31–2.58) × 10−3. When m* was increased, the combined VIV–galloping
response weakened and ceased to exist for m* ≥ 11.31. Sourav & Sen (2019) for Re ≤ 250
identified the threshold m* = 3.4 above which VIV and galloping were separated. Han &
Langre (2022) at low Reynolds numbers pointed out that galloping may occur even for a
very low mass ratio, and there is no critical mass ratio for galloping of a square cylinder.
The galloping onset is delayed at a low mass ratio.

The effects of m*, ζ and m*ζ on the response of a freely vibrating circular cylinder
were numerically investigated by Bahmani & Akbari (2010) for Re = 80–160. When m*
or ζ was increased, both A* and Ur ranges of VIV shrank. They further noted that
the oscillator system behaves nonlinearly with m* and ζ . Rabiee & Farahani (2020)
numerically investigated FIV of a heated square cylinder with ζ = 0, 0.01, 0.05, 0.1, 0.25
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and 0.5 at Re = 80, 90, 220 and 250. They also observed an inverse relationship between
A* and ζ . At Re = 220 involving galloping vibrations, as ζ increases from 0 to 0.1 and
0.25, A* reduces by 36 % and 91 %, respectively.

As Re, Ur, m∗ and ζ all play key roles in vibration generation, they all must
simultaneously exceed their threshold values for the onset of galloping. In general, if any
of these parameters falls short of the corresponding threshold value with the remaining
parameters being sufficiently high, the cylinder will execute VIV alone, and the transition
to galloping will not take place.

Sen & Mittal (2016) found that the wake mode type is a direct function of the
synchronization type; it is a 2S or C(2S) mode for 1:1 synchronization between the
oscillation and shedding frequencies, a 2P + 2S mode when the synchronization is very
close or equal to 1:3 and a 3(2S) or unstable 2S mode when the synchronization
is a little far from 1:3. Zhao et al. (2014) experimentally observed an increased A*
for 1:3 synchronization, deviating from the trend of the typical galloping response.
Yao & Jaiman (2017) found a low-frequency galloping instability and a kink in the
amplitude response around 1:3 synchronization for a triangular cylinder. Daniel, Todd &
Yahya (2021) observed amplitude deviations from a typical galloping response at higher
synchronizations.

Beating phenomena in instantaneous vibration responses were observed in some studies
on VIV of a circular cylinder. Khalak & Williamson (1999) indicated that this beating is
associated with the transition between the lower and upper branches, and hence between
the 2S and 2P modes. Voorhees et al. (2008) pointed out that the difference in frequencies
between the cylinder vibration and the vortex shedding gives rise to the beating. Shen,
Chan & Wei (2018) reported similar observations. The modulation frequency equals the
difference between the two frequencies. In the galloping branch, the vibration of a square
cylinder is generally quasi-periodic, but it is periodic only when the vortex-shedding to
oscillation frequency ratio fs/fo = 3 (Zhao et al. 2014; Zhao 2015; Sen & Mittal 2016). We
focus on not only the effect of m* but also ζ and a combined mass-damping parameter on
the vibration responses of a square cylinder, and revisit the mechanisms and roles of the
1:3 and 1:5 synchronizations further.

1.1. Objective
The transverse dynamic response of a cylinder can be simplified as a spring–damper–mass
system expressed in non-dimensional form as

Ÿ + 4π

(
1

Ur

)
ζ Ẏ +

(
2π

Ur

)2

Y = CL

2m∗ , (1.1)

where Y, Ẏ and Ÿ are respectively the instantaneous displacement, velocity and
acceleration of the cylinder in the transverse direction. The non-dimensional parameters
are defined and listed in table 1, where c and k are the damping and spring constants of
the cylinder system, respectively. Parameter m is the mass of the cylinder per unit length
and ρ is the density of the fluid. Terms fo and fs are the cylinder vibration frequency and
vortex shedding frequency, respectively. Force FL is the lift force acting on the unit span
of the cylinder.

In (1.1), Ur, ζ and m* are the parameters involved in FIVs while CL is the flow-induced
lift force that depends on Ur, ζ , m* and Y. One can estimate CL from (1.1) when Ur, ζ ,
m* and Y are all known. Undoubtedly, ζ and m* are the structural parameters, the latter
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Amplitude ratio: A* = A/D Lift force coefficient: CL = FL/(0.5ρDU2∞)

Reduced velocity: Ur = U∞/( fnD) Normalized time: t* = tU∞/D
Mass ratio: m* = m/(ρD2) Normalized pressure: p∗ = p/(ρU2∞)

Damping ratio: ζ = c/(2
√

km) Frequency ratio: fr = fo/fn
Natural frequency: fn = 1/2π

√
k/m Reynolds number: Re = ρU∞D/μ

Strouhal number: St = fsD/U∞ Critical damping: cc = 4πmfn

Table 1. Definitions of non-dimensional parameters.

indicating the heaviness of the structure. On the other hand, Ur (= U∞/fnD, as defined
in table 1), consists of a structural parameter (i.e. fn) and a flow parameter (i.e. U∞/D),
the former representing the structural rigidity or strength (how many oscillations per
second) while the latter indicating the flow strength (how many D the flow can travel per
second) or forcing frequency in other words. Thus, Ur represents a competition between
the structural rigidity and flow strength. That is, the smaller the Ur, the higher the structural
rigidity and/or the smaller the flow strength, and vice versa. If Ur with a constant fnD is
varied by changing U∞ (i.e. Re), it acts as a flow parameter. Conversely, if Ur is varied
via fn, keeping U∞ (i.e. Re) constant, it acts as a structural parameter. When the effect of
Ur on A* (i.e. A* versus Ur graph) is investigated with increasing Ur via U∞, the effect
involves the combined influence of Ur and Re. On the other hand, when the same is done
via fn, it solely involves the influence of Ur. When Re is kept constant, a better presentation
of the Ur effect is provided.

We aim to investigate the effects of m* (= 2–50), ζ (= 0–1), m*ζ (= 0–50) and
Ur (= 1–80) on vibration and frequency responses, flow structures, added mass and
forces of an elastically mounted square cylinder at Re = 170. This investigation further
explores whether m*ζ is an appropriate parameter to characterize FIV. If not, what
is the appropriate parameter? To guarantee the occurrence of galloping and avoid the
three-dimensional effect, we select Re = 170 based on investigations by Barrero-Gil et al.
(2009), Joly et al. (2012) and Sen & Mittal (2011).

2. Methodology

2.1. Governing equations and numerical set-up
The flow is assumed to be incompressible, viscid and two-dimensional while the physical
properties of the fluid are constant. The governing equations to simulate the flow field
around an elastically mounted rigid square cylinder are the continuity and Navier–Stokes
equations, which can be written in a non-dimensional form as

continuity: ∇u∗ = 0 (2.1)

and

momentum:
∂u∗

∂t∗
+ u∗∇u∗ = −∇p∗ + 1

Re
∇2u∗, (2.2)

where p* (= p/ρU2∞), u* and t* (= tU∞/D) are the normalized static pressure, normalized
velocity and normalized time, respectively. Term u* is composed of two velocity
components u* = (u*, v*) = (u/U∞, v/U∞) in the streamwise and transverse directions,
respectively. Parameter D is the width of the square cylinder. Reynolds number is defined
as Re = ρU∞D/μ, where μ is the viscosity of the fluid, ρ is the fluid density and U∞ is the
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Inlet Outlet
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Figure 1. A schematic of the flow configuration and computational domain.

free-stream flow velocity. The reduced velocity Ur = U∞/( fnD), where fn (= 1/2π
√

k/m)
is the natural frequency of the cylinder.

Ansys-Fluent 17.2 based on the finite-volume method is utilized as the solver. The
second-order upwind scheme and the central differencing scheme are used to discretize
the convective and diffusion terms, respectively. A first-order implicit formulation is
adopted for time discretization because of its unconditional stability (Manson, Pender
& Wallis 1996) and compatibility with the dynamic mesh (Shaaban & Mohany 2018).
The pressure-correction-based iterative algorithm SIMPLE (semi-implicit method for
pressure-linked equations) proposed by Patankar (1980) is employed for coupling the
velocity and pressure fields.

The dynamic response of the cylinder system is given by (1.1). The fourth-order
Runge–Kutta method is employed to solve this second-order differential equation at each
time step, where the fluid forces acting on the cylinder are composed of pressure and
shear stress forces, obtained directly from the ANSYS-Fluent 17.2 solver. The lift force is
provided on the right-hand side of (1.1), which is integrated to advance the cylinder motion.
In the next time step, the cylinder displacement, velocity and acceleration are updated,
and the equation of fluid motion is integrated to complete the fluid–solid coupling. At
each time step, the deformation of the computational domain is managed by the dynamic
meshing tool in ANSYS-Fluent 17.2, with the mesh updated using the Laplace smoothing
and layering methods. In the subsequent time step, the field variables (u, v and p) within
the entire computational domain are updated based on each node’s information, which
involves solving the governing equations: the continuity (2.1) and the Navier–Stokes (2.2)
equations.

2.2. Domain size, grid resolution and time-step dependence test
A schematic of the cylinder configuration is shown in figure 1. The computational domain
is rectangular, scaled with D as a length of Lu + Ld = 75D in the flow direction and a height
of H = 50D in the transverse direction. It gives a blockage ratio D/H = 2.0 %, which is
less than the 3.3 % used in Zheng & Alam (2017) and Bhatt & Alam (2018). The boundary
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(b)

(a)

Figure 2. (a) Global view and (b) zoomed-in view of the meshes around the square cylinder.

conditions at the inlet are u* = 1.0, v* = 0. Symmetry conditions (v* = 0, ∂u*/∂y* = 0
and ∂p*/∂y* = 0) are applied to both upper and lower boundaries. The inlet boundary is
set as the velocity inlet (u* = 1, v* = 0), while the outlet boundary is given as ∂u*/∂x* = 0,
∂v*/∂x* = 0 and ∂p*/∂x* = 0. No-slip boundary conditions are deployed on the cylinder
surface. The initial flow field in the computation domain is given as u* = 1, v* = 0 and
p* = 0.

Figure 2(a) shows a global view of grid distributions in the entire computational domain,
and figure 2(b) shows a zoom-in view of grid distributions around a quadrant of the
square cylinder. The entire flow field is given a structured quadrangular grid system. The
oscillating cylinder is surrounded by a central box of size 8D × 8D (figure 2a). The central
box of high grid density moves with the vibrating cylinder, while the remaining grids in the
domain are stationary. A dynamic mesh scheme is utilized to move the cylinder including
the central box and to adjust the mesh accordingly. The motion of the cylinder is defined
by the user-defined function. At each time step, smoothing and layering are applied at each
new position of the cylinder.

Grid and time-step independence tests were performed for a vibrating cylinder with
m* = 10 and Ur = 7 (table 2). Four grids M1 = 22 292, M2 = 44 799, M3 = 76 622 and
M4 = 145 232 were tested, each with time steps �t = 0.001, 0.002, and 0.005. The values
of A*, fr = fo/fn and C′

L are presented in table 2, where fo was estimated from the fast
Fourier transform (FFT) of the Y signal, A* was obtained from the root-mean-square value
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�t (s) Number of nodes A* fr C′
L

0.005 22 292 (M1) 0.0829 (21.11 %) 1.0838 (3.87 %) 0.1603 (27.14 %)

44 799 (M2) 0.0654 (9.17 %) 1.1258 (2.65 %) 0.2038 (3.39 %)

76 622 (M3) 0.0594 (4.71 %) 1.1556 (0.32 %) 0.2107 (0.95 %)

145 232 (M4) 0.0566 1.1594 0.2127

0.002 22 292 (M1) 0.0833 (21.85 %) 1.0996 (4.49 %) 0.1905 (23.52 %)

44 799 (M2) 0.0651 (8.60 %) 1.149 (1.61 %) 0.2353 (3.02 %)

76 622 (M3) 0.0595 (3.87 %) 1.1675 (0.27 %) 0.2424 (0.04 %)

145 232 (M4) 0.0572 1.1643 0.2423

0.001 22 292 (M1) 0.0853 (22.74 %) 1.0823 (6.67 %) 0.1939 (26.87 %)

44 799 (M2) 0.0659 (9.41 %) 1.1545 (0.95 %) 0.246 (2.97 %)

76 622 (M3) 0.0597 (3.52 %) 1.1654 (0.25 %) 0.2533 (0.04 %)

145 232 (M4) 0.0576 1.1625 0.2534

Table 2. Grid and time-step independence tests for vibrating cylinder at Re = 170, m* = 10 and Ur = 7.

5

0

0.2

0.4

0.6
Zhao (2015)
Present

10 15
Ur

A∗

0.5

1.0

1.5

2.0

fr

20 5 10 15
Ur

20

(b)(a)

Figure 3. Comparisons of (a) response amplitude A* and (b) frequency ratio fr (= fo/fn) of a square cylinder
at mass ratio m* = 10, damping ratio ζ = 0 for Re = 200.

of Y as A∗ = Yrms × √
2/D and C′

L was calculated from the lift signal. The percentage
deviation is provided in parentheses with increasing node numbers. When the grid system
increases from M1 to M4, the deviations get smaller. The deviations in the results between
M3 and M4 for �t = 0.001, 0.002 and 0.005 are less than 3.52 %, 3.87 % and 4.71 %,
respectively. Grid M3 is considered, given that the node number for M4 is approximately
twice that for M3 and the deviations in the results between M4 and M3 are small. The
deviations in the results for M3 are less than 4.3 % between �t = 0.002 and 0.001, while
it is 13.08 % between �t = 0.005 and 0.002. Grid M3 and �t = 0.002 are thus chosen for
further successive simulations. There were 240 nodes on each side of the cylinder surface
for M3. The first layer of elements had a radial distance of 0.005D from the cylinder
surface.

2.3. Validation
In addition to the grid and time-step validation, the model for FIVs was validated for a
square cylinder vibration at Re = 200 for Ur = 3–22. This Re = 200 is chosen to compare
the results from Zhao (2015). Figure 3 compares the vibration and frequency responses
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0
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0.8
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fs/fo = 0.1923Ur + 0.4505

fs/fo = 0.1638Ur + 0.0939

fs/fo = 0.1708Ur + 0.2432
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m∗ = 5
m∗ = 10
m∗ = 20

2

Ur

(c)(a)

(b)

Figure 4. Dependence on reduced velocity Ur and mass ratio m* of (a) response amplitude A* and (b) fs/fo.
(c) Zoom-in view of A*–Ur plot in (a) for Ur = 1–12. Here, ζ = 0 and Re = 170.

between the present and Zhao’s works for a cylinder with m* = 10, ζ = 0, and Re = 200.
The present results of A* and fr concur well with those of Zhao (2015).

3. Results and discussion

3.1. Effect of m* on vibration response
We present here the effect of m* on vibration and frequency responses at ζ = 0 (figure 4).
The cylinder responses can be divided into three branches, namely the initial branch
(IB), lower branch (LB) and galloping branch (GB). For m* = 20, the vortex excitation
regime (including IB and LB) appears when Ur ≤ 12, whereas GB occurs when Ur > 12.
Following Bhatt & Alam (2018), the identifications of IB and LB are made based on
the relationship between St and Ur shown in figure 5(a). The Strouhal number St – the
dimensionless vortex shedding frequency of the vibrating cylinder – was estimated from
the power spectral density functions of the lift signals. Here, St0 is used to denote the
dimensionless shedding frequency of a fixed cylinder (figure 5a). The IB corresponds to
St < St0 while the LB to St > St0. The boundary between IB and LB is characterized by
a jump in St, e.g. between Ur = 5.7 and 5.77 for m* = 20, between Ur = 5.45 and 5.5 for
m* = 10 and between Ur = 5.2 and 5.3 for m* = 5 (figure 5a). The value of A* increases
with increasing Ur in IB, which is accompanied by a declining St and a constant fs/fo = 1.0
(figures 4a,b and 5a). The fs/fo = 1.0 indicates the lock-in (figure 4b). On the other hand,
fr grows with increasing Ur (figure 5b).

A marked rise in A* also characterizes the boundary between IB and LB (figure 4c). In
the LB regime, A* after reaching a peak declines with increasing Ur. The LB is further
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Figure 5. Variations of (a) Strouhal number St, (b) oscillation frequency ratio fr, (c) time-mean drag coefficient
C̄D and (d) fluctuating lift C′

L with reduced velocity Ur for different mass ratio m* values. Here, damping ratio
ζ = 0 and Re = 170.

characterized by fs/fo = 1.0 (lock-in, figure 4b), declining St and increasing fr. These three
attributes are similar to those in IB. How do IB and LB differ? Why are there jumps in St
and fr between IB and LB? The distinct phase lag φ between CL and Y* (= Y/D) answers
these two questions: φ = 0° in IB and φ = 180° in LB (not shown), given ζ = 0. The jump
in φ from 0° to 180° occurs at the boundary between IB and LB.

The GB can be identified from the recovery in the increase of A* (figure 4a) and jump
in fs/fo (figure 4b) or from the plunge in fr (figure 5b). Therefore, the critical reduced
velocity Urc for the onset of galloping is 13, 12 and 12 for m* = 5, 10 and 20, respectively.
In GB, A* increases rapidly with Ur. Deviating from this trend, A* surges at 1:3 (i.e.
fs/fo = 3) and 1:5 (i.e. fs/fo = 5) synchronizations (figure 4a,b). The surge is stronger
at 1:3 synchronization than at 1:5 synchronization. The onset of galloping for m* = 5
coincides with 1:3 synchronization. Sen & Mittal (2016), Yao & Jaiman (2017) and Daniel
et al. (2021) all observed 1:3 synchronization. Here, we find that 1:5 synchronization
also plays a role in the vibration responses. The vibration response is generally
quasi-periodic (amplitude varying with time) but is periodic (constant amplitude)
for 1:3 and 1:5 synchronizations. Sen & Mittal (2016) reported that the vibration
response for m* = 5 was quasi-periodic for the entire GB because they ignored the
1:5 synchronization.

Term fs/fo in GB generally increases linearly with increasing Ur except for the
occurrence of synchronizations around fs/fo = 3 or 5 (figure 4b). The linear relationship
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between fs/fo and Ur can be expressed as

fs/fo = 0.1638Ur + 0.0939 for m∗ = 20, (3.1a)

fs/fo = 0.1708Ur + 0.2432 for m∗ = 10, (3.1b)

fs/fo = 0.1923Ur + 0.4505 for m∗ = 5. (3.1c)

The value of St is more or less independent of Ur in the galloping regime while fr being
smaller than 1.0 slightly increases with Ur (figure 5a,b).

Parameter m* plays a crucial role in A*. It is a well-accepted argument that an increase
in m* reduces A* (e.g. Bahmani & Akbari 2010). In the vortex excitation regime (including
IB and LB), a larger m* leads to a smaller A* and a postponement of the A* peak. On the
other hand, in the GB regime, the scenario is the opposite: the larger the value of m*,
the larger is A* and the smaller is Ur for galloping onset (figure 4a). That is, the vortex
excitation regime shrinks, and the onset of galloping advances when m* is increased. The
surge in A* at 1:3 synchronization grows with increasing m*. In addition, a larger m* in
the GB regime leads to (i) reductions in fs/fo and gradient of fs/fo with Ur (figure 4b; (3.1)),
(ii) a decrease of St and (iii) an augmentation of fr.

The maximum A* of a square cylinder in the VIV regime is much smaller than that of a
circular cylinder case (Sen & Mittal 2011, 2015; Li et al. 2019). Li et al. (2019) for a square
cylinder at Re = 150 demonstrated that the maximum A* is 0.17, 0.14 and 0.11 at m* = 5,
10 and 20, respectively. Zhao (2015) observed the maximum A* of 0.11 at m* = 10 and
Re = 200. The maximum A* in our study (Re = 170) is 0.18, 0.14 and 0.1 at m* = 5, 10 and
20, respectively. Thus, the observed influence of m* on the vibration response within the
VIV regime in our study appears to be consistent with the previous findings. Experimental
results, typically obtained at higher Re values, feature larger A* values in the galloping
regime (Zhao et al. 2014) than the numerical results at lower Re values.

3.2. Effect of m* on fluid forces
Figure 5(c,d) illustrates dependencies of C̄D and C′

L on Ur for different m* values. The
corresponding C̄D0 and C′

L0 for the fixed cylinder are represented by blue dashed lines.
In IB, with increasing Ur, C̄D (< C̄D0) declines and C′

L (> C′
L0) grows for all m* values.

A larger m* corresponds to a larger C̄D but a smaller C′
L. The scenario is the opposite

in LB, i.e. C̄D > C̄D0 and C′
L < C′

L0, the former declining and the latter growing. On
the other hand, C̄D augments in GB, with surges at 1:3 synchronization. Although rising
in the early part of GB (i.e. up to 1:3 synchronization for m* = 10 and 20, and 1:5
synchronization for m* = 5), C′

L does not appreciably vary in the late part of GB.
Parameter m* has distinct influences in different regimes. Increasing m* renders

increased C̄D and decreased C′
L in IB but the reverse correspondence in LB. In GB,

relationships of C̄D and C′
L with m* are straightforward, both increasing with m*. A fixed

cylinder, complementing fn =∞, corresponds to Ur = 0. Parameters C̄D, C′
L and St all

approach their fixed cylinder values when Ur decreases toward Ur = 0.

3.2.1. Quiescent fluid added-mass force and flow-induced force
According to Lighthill (1986), the lift force (FL) can be decomposed into a ‘potential force’
component and a ‘vortex force’ component, where the ‘potential force’ is caused by the
potential added-mass force and the ‘vortex force’ is due to the dynamics of vorticity in the
flow. Given that the fluid is viscous, Alam (2022) proposed a quiescent-fluid added-mass
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force FLa0 (replacing the potential force) and a flow-induced force FLf (replacing the
vortex force). Naturally, the magnitude of the quiescent-fluid added-mass force differs
from that of the potential force, depending on the body shapes and orientations (Chen,
Alam & Zhou 2020). Alam (2022) further proved that the quiescent-fluid added-mass
force must be considered to correctly estimate the flow-induced force and the phase lag
between force and displacement. The total lift force is expressed as

FL = FLa0 + FLf . (3.2)

Normalizing all forces by (1/2ρU2∞D),

CL(t) = CLa0(t) + CLf (t). (3.3)

Here, CL(t) is the lift force coefficient, defined as CL(t) = FL(t)/(0.5ρDU2∞), and FL(t)
is the total force on the cylinder in the y direction. Coefficients CLa0(t) and CLf (t) are
the instantaneous quiescent-fluid added-mass force coefficient and flow-induced force
coefficient, respectively.

Force FLa0(t) is given by

FLa0(t) = −ma0ÿ(t) (neglecting quiescent - fluid damping force). (3.4)

Here, ma0 is the quiescent-fluid added mass and is expressed as ma0 = m∗
a0×md, where

m∗
a0 is the quiescent-fluid added-mass ratio and md = ρD2 is the fluid mass displaced by

the cylinder.
The quiescent-fluid added mass and potential added mass are the added masses

measured in the quiescent fluid (still and viscid fluid) and potential fluid (inviscid,
incompressible fluid), respectively. The former is generally measured numerically while
the latter can be measured both numerically and experimentally by plucking the cylinder
in quiescent fluid. When the damping is small, the natural frequency of the cylinder system
in a vacuum can be considered as

fn = 1
2π

√
k
m

. (3.5)

When the cylinder is submerged in a fluid (e.g. water), the natural frequency of the cylinder
oscillation changes because of the added mass ma generated by the fluid. The modified
natural frequency fnf of the cylinder in a fluid can be expressed as

fnf = 1
2π

√
k

m + ma
. (3.6)

Combining (3.5) and (3.6),

ma = m

[(
fn
fnf

)2

− 1

]
. (3.7)

When fnf is measured directly from the decay of the cylinder oscillation, all the parameters
on the right-hand side of (3.7) are known, which leads to the estimation of ma. See Chen
et al. (2020) and Alam (2022) for details of measuring ma. The quiescent-fluid added-mass
coefficient m∗

a0 is coincidentally about 1.0 for a circular cylinder but approximately 1.5 for
a square cylinder with zero incidence angle (Chen et al. 2020).

Following (3.3), CL(t) is then decomposed into CLa0(t) and CLf (t), and their
corresponding fluctuating (root-mean-square) coefficients C′

La0 and C′
Lf , respectively, are
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Figure 6. (a) Variations of fluctuating quiescent-fluid added-mass force coefficient C′
La0 and flow-induced lift

coefficient C′
Lf with Ur and m*. (b) Zoomed-in view of (a) for Ur = 1–8. Here, ζ = 0 and Re = 170.

obtained as presented in figure 6. Coefficient C′
La0 gets smaller with increasing m* in all

branches. In IB, the growth in C′
La0 is very high for all m* values, largely following A*

trends in IB. On the other hand, C′
Lf in IB does not change appreciably for the high m* = 10

and 20 but does increase for the low m* = 5. Both C′
La0 and C′

Lf decline in LB for all m*
values. This suggests that the increase of A* in IB is largely due to the imminent resonance
effect (vortex shedding frequency approaching the cylinder natural frequency), while the
decrease of A* in LB results from the decreasing C′

Lf and the retreating resonance effect
(vortex shedding frequency retreating from the cylinder natural frequency). A larger m*
leads to a smaller C′

Lf in LB but the opposite scenario takes place in GB. Interestingly,
in GB, although A* increases with increasing Ur for all m* values, C′

Lf and C′
La0 gently

increase and decrease (Ur > 16), respectively. This indicates that flow-induced force (FLf )
and added-mass force (FL0) in GB vary with U2+

r and U2−
r , respectively. There are peaks in

C′
Lf at Ur = 16 and 17.7 for m* = 10 and 20, respectively, where both Ur values correspond

to fs/fo = 3. Similar peaks are also observed for C′
La0, albeit weaker than those for C′

Lf .

3.3. Role of effective added mass ratio in vibration branches
When a square cylinder oscillates freely in the transverse direction, the effective added
mass ratio m∗

ae and added damping ratio ζ a can be presented as

m∗
ae = mae

ρD2 = FL0 cos φ

ρ(2πfo)2Y0D2
(3.8)

and

ζa = ca

cc
= − FL0 sin φ

8π2mfofnY0
. (3.9)

The different branches of VIVs have different relationships of m∗
ae with Ur (figure 7e). In

IB, the FL and Y signals are in phase, cos φ > 0; m∗
ae is therefore positive. On the contrary,
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Figure 7. (a) Time histories, (b) power spectral density functions, (c) time histories of low-pass-filtered and
(d) time histories of high-pass-filtered Y* (black lines) and CL (red lines) at Ur = 26 and m* = 20. (e) Variations
of effective added mass m∗

ae with Ur and ( f ) zoomed-in view of m∗
ae variations in GB. Here, ζ = 0 and Re = 170.

the FL and Y signals are out of phase, cos φ < 0, in LB, which makes m∗
ae negative. The

IB and LB are distinguished by m∗
ae changing from positive to negative (figure 7e). In

the IB and LB, the cylinder motion is sinusoidal. The natural frequency of the vibrating
cylinder is then modified because of mae generated by the surrounding fluid. The modified
frequency fnf equals the natural frequency of the cylinder vibrating in the fluid, i.e. fnf = fo:

fo = 1
2π

√
k

m + mae
. (3.10)

Combining (3.5) and (3.10),
mae = m[( fn/fo)2 − 1]. (3.11)

Parameter m∗
ae can be presented as

m∗
ae = mae

ρD2 = m∗[( fn/fo)2 − 1] = m∗[(1/fr)2 − 1]. (3.12)

The equation demonstrates that m∗
ae is proportional to [(1/fr)2 − 1]. Since fr being <1.0

linearly grows with Ur in IB (figure 5b), m∗
ae being >0 declines parabolically with Ur.

On the other hand, again fr grows with Ur in LB but now fr > 1.0, hence m∗
ae is negative,
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Figure 8. Typical response curve showing major characteristics in IB, LB and GB as well as at their borders.

declining with Ur at a smaller slope than that in IB. A large m* yields a greater m∗
ae

magnitude in both IB and LB as m∗
ae is directly proportional to m* (figure 7e; (3.12)).

In GB, both FL and Y signals are composed of low- and high-frequency components
corresponding to the oscillation and vortex shedding frequencies, respectively (figure 7a).
These low- and high-frequency components were decomposed using the FFT-filter tool
(figure 7c,d). The cutoff frequency for the decomposition was chosen as the average
of the high and low frequencies. It can be observed that there are two major peaks in
the power spectra (figure 7b) for the vibration in GB. The CL and Y* associated with
the cylinder oscillation are in phase (figure 7c), while those with the vortex shedding
frequency are antiphase (figure 7d). In GB, the effective added mass associated with the
cylinder vibration can be referred to as m∗

ae while that with the vortex shedding frequency
is termed as m∗

aes (figure 7e). Here m∗
ae jumps from negative to positive at the onset of

galloping. The jump in m∗
ae is caused by the drop in fr while m∗

ae in GB is positive because
fr < 1.0 (figure 5b; (3.12)). The value of m∗

ae in GB slightly declines with increasing Ur and
m* (figure 7f ), following the increase of fr with Ur (figures 5b and 7e; (3.12)). On the other
hand, m∗

aes is negative and declines when Ur is increased, and a larger m* corresponds to a
smaller m∗

aes (figure 7e). In IB and LB, the cylinder vortex shedding frequency ( fs) equals
the vibration frequency ( fo), i.e. fs = fo, where only one frequency persists in both FL and
Y signals. Parameter m∗

aes in IB and LB thus can be expressed as

m∗
aes = mae

ρD2 = m∗[( fn/fs)2 − 1] = m∗[(1/fr)2 − 1]. (3.13)

Therefore, m∗
aes = m∗

ae in IB and LB, where the dependence of m∗
aes on Ur is the same as

that of m∗
ae. The major features of different branches are summarized in figure 8.

3.4. Identifications of IB–LB and LB–GB boundaries
In FIV experiments and simulations, researchers largely get vibration response (A* versus
Ur) and have difficulty in identifying the borders between different branches in A* versus
Ur curves, particularly when the A* variations with Ur are smooth. Bhatt & Alam (2018)
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showed that the borders between IB and LB can be distinguished from the relationship
between St and Ur as St < St0 for IB and St > St0 for LB. That is, the IB–LB boundary
(i.e. boundary between IB and LB) is accompanied by a jump in St (figure 8). Without
measuring St, how can the borders be determined? Here are additional methods to identify
the borders. Firstly, the IB–LB boundary can be identified from the change in m∗

ae from
+ve to −ve, and the LB–GB boundary can be pinpointed from the change in m∗

ae from
−ve to +ve (figures 7e and 8). Secondly, the IB–LB boundary is characterized by a jump
in Y* − CL phase lag from <90° to >90° (Williamson & Goverdhan 2004; Bhatt & Alam
2018). Thirdly, a dramatic drop and a rise in C′

L mark the IB–LB and LB–GB boundaries,
respectively (figures 5d and 8). Fourthly, the IB–LB and LB–GB boundaries undergo a
jump and a drop in fr, respectively. In the literature, the identification of different branches
was made based on the relationship between St and Ur. Here, we explore more avenues
and generalize them to expand the methodology for identifying these branches. Figure 8
encompasses all possible parameter changes (i.e. m∗

ae, St, φ, C′
L and fr), which aids in

discerning distinct vibration branches when one of the parameters is measured.

3.5. Beat mechanism different from the classical beat
Next, we focus on the reasons for the uneven features of the vibration amplitude in the
GB, taking the case of m* = 20 and ζ = 0 as an example. Except at Ur = 17.7–17.8 and
Ur = 30–30.1, the vibrations in GB do not exactly repeat from one period to another
(figures 9 and 10), which indicates that there are multiple frequency components, resulting
in an obvious beat-like variation in the amplitudes of Y* histories. As already discussed
with figure 4(a,b), Ur = 17.7–17.8 and Ur = 30–30.1 correspond to 1:3 (i.e. fs/fo = 3) and
1:5 (i.e. fs/fo = 5) synchronizations, respectively. Interestingly, the beating amplitude in
Y* (i.e. the change in the vibration amplitude due to beating) grows and declines as fs/fo
respectively approaches and departs from fs/fo = 3 and/or 5, as does the beating period
(figures 9 and 10). The general consensus is that a beat is characterized by amplitude
modulation. It is an interference pattern between two different frequencies, perceived
as a periodic variation in amplitude. As two frequencies are close to each other (i.e.
small difference between them), the beating period becomes longer and it will be infinite
(constant amplitude) when the two frequencies are identical.

First, we analyse the beat phenomenon for fs/fo = 3. The Lissajous diagrams of CL–Y*
for Ur = 15–20 presented in figure 11 also demonstrate that the vibration amplitude in
GB changes from cycle to cycle except at Ur = 17.7–17.8 (i.e. fs/fo = 3), where the CL–Y*
diagram is an enclosed curve (figure 11e, f ), and the frequency in CL is three times that in
Y* at Ur = 17.7–17.8. It can be deemed ‘1:3 lock-in’ where fs locks in with 3fo. Figure 12
shows power spectra (EY and ECL) and envelopes of Y* and CL at Ur = 17.5 and 19. For
Ur = 17.5, fs/fo = 2.951 < 3, whereas for Ur = 19, fs/fo = 3.185 > 3. In the power spectra
of EY (figure 12a,e), there is a minor peak ( f ′

o) on the left-hand side of fo for Ur = 17.5
(figure 12a) and on the right-hand side of fo for Ur = 19 (figure 12e). The beat frequency
(i.e. the frequency of the envelope) in Y* can be represented as fbY = 1/TbY = | fo − f ′

o|
(figure 12c,g). The question is, what is the origin of f ′

o? Generally, such a beat frequency
is generated from the interference between two frequencies. One can expect this beat
frequency is due to the difference between the vortex shedding frequency and cylinder
vibration frequency as these two frequencies are predominantly active during the cylinder
vibrations. This is, however, not the case here as is shown below.

Similarly, there is a minor peak ( f ′
s ) on the right-hand side of fs (i.e. fs/fo < 3) and on

the left-hand side of fs (i.e. fs/fo > 3) for Ur = 17.5 and 19, respectively (figure 12b, f ). The
corresponding beat frequency is fbL = 1/TbL = | fs − f ′

s | (figure 12d,h).
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Figure 9. (a–l) Time histories of cylinder displacement Y* for different Ur. The red curve is the envelope of
Y*. Here, m* = 20, ζ = 0 and Re = 170.

For a given Ur,

fbY = fbL (i.e. Tby = TbL) (3.14)

and

| fo − f ′
o| = | fs − f ′

s |. (3.15)

It is found that f ′
s = 3fo.
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Figure 10. (a–i) Time histories of cylinder displacement response Y* for different Ur values. Here, m* = 20,
ζ = 0 and Re = 170.

Using (3.14), it can, therefore, be written as

| fs − f ′
s | = | fs − 3fo| = | fo − f ′

o|. (3.16)

This is to say that the beat frequency in both Y* and CL is fb = | fs − 3fo|. This explains
that the beat frequency will be smaller as fs/fo gets closer to 3, and it will be zero
(no beating) when fs/fo = 3. That is, the beating phenomenon is linked to the difference
between fs and 3fo, tending to 1:3 synchronization, not directly linked to the difference
between fs and fo. In GB, since fs/fo is proportional to Ur (figure 4b; (3.1)), the beating
Ur around fs/fo = 3 can be predicted from (3.1) for different values of m*. The other peaks
ECL and EY emerge at 2fs − f ′

s and 2fo − f ′
o, respectively. A beating phenomenon was also

observed in some studies of the FIV of a circular cylinder associated with a mode change
or mode competition. Voorhees et al. (2008), Zhang et al. (2015) and Shen et al. (2018)
indicated that this beating is due to the difference between the vibration frequency and
the vortex shedding frequency (i.e. fo and fs), while Pan, Cui & Miao (2007) and Mittal
(2017) claimed that the beating is the modulation between the natural frequency fn of the
cylinder and the Strouhal frequency fs, fixed of the fixed cylinder. The beating phenomenon
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Figure 11. (a–i) Lissajous CL–Y* diagrams for different Ur. Here, m* = 20, ζ = 0 and Re = 170.

of a vibrating square cylinder in GB, however, is not the same as the cases of the circular
cylinder mentioned above. It is the difference between fs and 3fo that gives rise to the
beating phenomenon as fs/fo gets close to 3. This observation is made for the first time.

Apart from the 1:3 synchronization mentioned above, we also observed the 1:5
synchronization ( fs/fo = 5) between the vibration frequency and the shedding frequency
at Ur = 23.65, 27.6 and 30 for m* = 5, 10 and 20, respectively. Here the beat frequency
fb = | fs − 5fo| as fs/fo gets close to 5. The beat amplitude (figure 10) is, however, much
smaller than that in the case involving 1:3 synchronization (figure 9).

3.6. Effects of m*, ζ , m*ζ , (m∗ + m∗
a0)ζ and (m∗ + m∗

ae)ζ on Urc for galloping onset

Next, we analyse the effects of m* and ζ on Urc for the onset of galloping. To save time and
computational resources, we simulated the responses at high Ur values only (figures 13 and
14). Parameter Urc is identified from the abrupt increase in A* (figure 13) and/or from the
sudden decrease in fr (figure 14). For all ζ values examined, A* decreases with increasing
m* before the galloping onset (i.e. for Ur < Urc), which implies that A* in LB and/or DB
(desynchronization branch) weakens with increasing m*. However, for a given m*, A* for
Ur < Urc does not change appreciably with increasing ζ . Figure 14 displays that fr > 1.0
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Figure 12. Power spectrum of (a,e) Y* and (b, f ) CL. Envelopes of (c,g) Y* and (d,h) CL. (a–d) Ur = 17.5,
(e–h) Ur = 19. Here, m* = 20, ζ = 0 and Re = 170.

for Ur < Urc but fr < 1.0 for Ur > Urc. In the latter Ur regime, when m* is increased, fr
increases to approach 1.0.

To further investigate the influence of m* and ζ on Urc, more cases of m* and ζ are
also considered. Table 3 summarizes Urc for m* = 2, 3, 5, 10, 20, 30, 40 and 50 and ζ = 0,
0.001, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6 and 1.0 at Ur ≤ 80. When ζ = 0, Urc is 17, 13, 12,
12, 12, 12 and 12 for m* = 3, 5, 10, 20, 30, 40 and 50, respectively, i.e. Urc decreases
with increasing m* for 3 ≤ m* < 10 before being insensitive to m* for m* ≥ 10. Figure 15
shows the dependence of galloping occurrence on m* = 2–50 and ζ = 0–1. No galloping is
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Figure 13. Variations of vibration amplitude A* with reduced velocity Ur for different m* and ζ values.
Here, Re = 170.

observed at m* = 2 for all ζ values examined. Galloping is observed for m* = 3–10 when
ζ = 0.2, while the same occurs at m* = 5 only for ζ = 0.4. For ζ ≥ 0.6, no galloping is
observed, regardless of m*, until Ur = 80 examined. When m* is increased from 5 (i.e.
m* ≥ 5), Urc changes insignificantly for ζ ≤ 0.01, but significantly for ζ ≥ 0.05 (table 3,
figure 16a). Parameter Urc, however, significantly increases when m* is decreased from 5
to 3 for all ζ values (table 3, figure 16b). For all m* values examined, an increase in ζ

makes Urc higher, particularly when ζ > 0.01 (table 3, figure 16b). That is, the effect of ζ

on Urc is insignificant for ζ ≤ 0.01 but significant for ζ > 0.01, a higher ζ suppressing the
cylinder vibration. Joly et al. (2012) also found a higher Urc value at ζ = 0.1 than that at
ζ = 0.

The three-dimensional view of the dependence of Urc on m* and ζ shown in figure 17
allows us to observe the variations of Urc with m* and ζ more intuitively at ζ ≤ 0.2. The
value of Urc achieves its maximum at m* = 30 and ζ = 0.1. For all m* values, an increase
in ζ leads to a larger Urc. The increase is, nevertheless, larger for a large m*. Particularly
for ζ > 0.01, Urc declines for m* ≤ 5 and rapidly increases with increasing m*. The degree
of the decrease and/or increase becomes larger for a higher ζ value.

Some researchers have debated whether m*ζ can serve as the FIV criterion of a
circular cylinder. Griffin, Skop & Ramberg (1975) and Griffin (1980) used a Skop–Griffin
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Figure 14. Variations of frequency ratio fr with reduced velocity Ur for different m* and ζ . The red dotted
line represents fr = 1. Here, Re = 170.

ζ 0 0.001 0.01 0.05 0.1 0.2 0.4 0.6 1

m* ≤ 2 — — — — — — — — —
m* = 3 17 17 18 22 28 44 — — —
m* = 5 13 13 13.5 16.5 21.5 34 67.5 — —
m* = 10 12 12 13 17 25.5 50 — — —
m* = 20 12 12 13 22.5 43 — — — —
m* = 30 12 12.5 14 31 63.5 — — — —
m* = 40 12 12.5 14 40 — — — — —
m* = 50 12 12.5 15 50 — — — — —

Table 3. Effects of m* and ζ on Urc. ‘—’ means no galloping observed for Ur ≤ 80 examined.

parameter SG (= 2π3S2m∗ζ , where S is the Strouhal number of the static cylinder) to
plot the maximum vibration amplitude A∗

max against SG (i.e. m*ζ ). It is known as the
Griffin plot. However, this plot showed a large scatter of A∗

max data. Later, Khalak &
Williamson (1999) and Govardhan & Williamson (2000) introduced a combined parameter
(m∗ + m∗

a0)ζ to modify the Griffin plot, where m∗
a0 (i.e. potential added-mass ratio CA in
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Figure 15. Dependence of galloping occurrence on m* = 2–50 and ζ = 0–1. Here, Re = 170.
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Figure 16. Effect of (a) mass ratio m* and (b) damping ratio ζ on critical reduced velocity Urc. Here,
Re = 170.

their investigations) is the quiescent-fluid added-mass ratio and is about 1.0 for a circular
cylinder. They demonstrated that (m∗ + m∗

a0)ζ collapses the A∗
max data well for a wide

range of (m∗ + m∗
a0)ζ > 0.06. Sarpkaya (1978, 1995) stated that the vibration response

depends on m*ζ for SG > 1 (i.e. m*ζ > 0.4), while it depends on m* and ζ separately
rather than on m*ζ for m*ζ < 0.4. Blevins & Coughran (2009) for two-degrees-of-freedom
vibration found that the ratio of inline to transverse amplitudes is governed by m* and ζ

independently. Bahmani & Akbari (2010) claimed that m*ζ can be used to characterize
A∗

max with an acceptable accuracy. For a cylinder submerged in the wake of another
cylinder, Alam (2021) claimed that m*ζ (i.e. m*ζ = 0–8) does not serve as a unique
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Figure 17. Relationship of Urc with m* (= 3–50) and ζ (= 0–0.2). Here, Re = 170.

parameter to characterize the vibration amplitude. In addition, Bearman (1984) reported
that low values of m* affect the frequency ratio independently, not m*ζ . Williamson &
Goverdhan (2004) and Govardhan & Williamson (2004) demonstrated that the VIV range
depends only on m* at (m* + CA)ζ < 0.05. Here, we will see whether m*ζ or (m∗ + m∗

a0)ζ
works well to collapse Urc data. If not, what is the intrinsic parameter that dictates the
vibration? Figure 18(a,b) shows the relationships of Urc with m*ζ and (m∗ + m∗

a0)ζ . As
shown in figure 18(a), there are more than one Urc data point, significantly different, for a
given m*ζ (e.g. three Urc values for m*ζ = 1.0 and four Urc values for m*ζ = 2.0), which
indicates that m*ζ cannot serve as the only criterion for galloping onset. In figure 18(b),
the Urc data scattering alleviates, which points to a linear increase in Urc with (m∗ + m∗

a0)ζ
overall at m* ≥ 5. But still, there are some scattered data points, and the collapse of Urc
data on a line is still not credible. It hints that something is still missing in (m∗ + m∗

a0)ζ .
We find the missing parameter here.

As m* decreases, fr in GB deviates considerably from unity, i.e. the vibration frequency
differs from the natural frequency (figures 5b and 14). The deviation is attributed to the
flow-induced added mass m∗

af that should be considered in (m∗ + m∗
a0)ζ . The effective

added mass is the quiescent-fluid added mass plus flow-induced added mass, i.e. m∗
ae =

m∗
a0 + m∗

af (Alam 2022). While m∗
a0 is independent of Ur, m∗

af is highly dependent on Ur

and markedly changes at Urc. Therefore, m∗
af is crucial and should be added with m∗

a0.
That is, in the mass-damping parameter, we have to consider m∗

ae, not m∗
a0, i.e. (m∗ +

m∗
a0)ζ should be replaced by (m∗ + m∗

ae)ζ . As shown in figure 7( f ), m∗
ae jumps at Urc and

declines with increasing m* and Ur. We consider m∗
ae at the galloping onset for (m∗ +

m∗
ae)ζ , and the dependence of Urc on (m∗ + m∗

ae)ζ is presented in figure 19. For (m∗ +
m∗

ae)ζ > 0.55, as shown in figure 19(a), the Urc data points collapse well on a line at
m* ≥ 5, showing that Urc linearly increases with (m∗ + m∗

ae)ζ . The relationship between
Urc and (m∗ + m∗

ae)ζ can be represented by a curve-fitting equation:

Urc = 17.4(m∗ + m∗
ae)ζ + 2.5 (for (m∗ + m∗

ae)ζ > 0.55 and m∗ ≥ 5). (3.17)
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Figure 18. Combined mass-damping parameter (a) m*ζ and (b) (m∗ + m∗
a0)ζ with critical reduced velocity

Urc. Here, Re = 170.
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Figure 19. (a) Relationship between critical reduced velocity Urc and combined mass-damping parameter
(m∗ + m∗

ae)ζ . (b) Zoomed-in view of Urc variations at (m∗ + m∗
ae)ζ ≤ 0.55.

For (m∗ + m∗
ae)ζ ≤ 0.55 as shown in figure 19(b), the Urc also increases linearly, albeit

with a smaller slope, with increasing (m∗ + m∗
ae)ζ for m* ≥ 5. The Urc data points for

m* = 5 appear more scattered when (m∗ + m∗
ae)ζ > 0.55. The linear relationship at (m∗ +

m∗
ae)ζ ≤ 0.55 and m* ≥ 5 can be represented as

Urc = 5.6(m∗ + m∗
ae)ζ + 12.3 (for (m∗ + m∗

ae)ζ ≤ 0.55 and m∗ ≥ 5). (3.18)

Equation (3.18) further proves that when ζ = 0 or is very small, Urc becomes
independent (Urc = 12.3) of m*, which is consistent with the observation made in
figure 16(a).

For m* = 3, Urc again linearly increases with (m∗ + m∗
ae)ζ , with a larger slope than

the case for m* ≥ 5 (figure 19a). The relationship between Urc and (m∗ + m∗
ae)ζ can be

expressed as
Urc = 18.5(m∗ + m∗

ae)ζ + 16 (for m∗ = 3). (3.19)
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The slopes of Urc in (3.17) and (3.19) are close to each other although the Urc intercepts
differ between the two cases.

The use of (m∗ + m∗
ae)ζ in (3.17)–(3.19) can predict Urc. Term (m∗ + m∗

ae)ζ can,
therefore, be considered a criterion for the prediction of galloping onset. Equation (3.17)
also illustrates why galloping is not observed for m* = 20 and ζ = 0.2, where (m∗ +
m∗

ae)ζ = 4.76. The value of Urc predicted by (3.17) is 85.19 > 80 examined. It can therefore
be concluded that the criterion for a fluid–structure system is (m∗ + m∗

ae)ζ , not m*ζ or
(m* + CA)ζ or (m∗ + m∗

a0)ζ . For a given (m∗ + m∗
ae)ζ , Urc is higher for m* < 5 than for

m* ≥ 5. There is a threshold of m* (= 5) after (m* ≥ 5) or before (m* < 5) which the
relationships between Urc and (m∗ + m∗

ae)ζ differ. We further shed light on this threshold
in the next section.

3.7. Underlying physics of m* and ζ effects on galloping onset

3.7.1. Effects of m* and ζ when ζ = 0
Using the global linear stability analysis method, Meliga & Chomaz (2011), Zhang
et al. (2015) and Yao & Jaiman (2017) investigated the mechanism of VIVs of a freely
vibrating cylinder. They identified two modes responsible for the onset of instability
in the fluid–structure system: wake mode (WM) and structure mode (SM). These two
leading modes have a strong coupling for low m*, while they are decoupled for high
m*. Parameter m* plays an important role in the selection of the leading mode. The
essential characteristic of the flutter-induced lock-in is the competition between the two
unstable modes (Zhang et al. 2015). Li et al. (2019) utilized linear stability analysis
and direct numerical simulations to investigate the underlying mechanisms of galloping
of a square cylinder with zero damping. They concluded that the unstable SM leads
to the low-frequency large-amplitude vibration of the cylinder, while the unstable WM
results in the high-frequency vortex shedding in the wake. The instability of SM is
the primary cause of the galloping phenomenon. The onset of galloping is postponed
when SM and WM compete with each other. As such, the galloping phenomenon can
be completely suppressed or Urc can be delayed at relatively low-Re and low-m* (< 5)
conditions. In their study, the galloping vibration completely disappeared for low m*
(m* < 4, Re = 150) because of the strong competition between the enhanced SM and
WM at low m* (lighter structure). They also introduced a ‘pre-galloping’ region, located
between VIV and galloping, where galloping does not occur but the SM is unstable.

Here, we investigate the influence of m* on galloping by analysing the high-frequency
( fs) and low-frequency ( fo) signals of the vibration. At ζ = 0, Urc remains constant for
m* ≥ 10 while it increases with decreasing m* for 3 ≤ m* < 10. Ultimately, galloping
is suppressed for m* ≤ 2, i.e. a relatively low m* inhibits galloping. Given that the
maximum Ur examined in this study is 80, galloping may be observed for a smaller m*
(≤ 2) if Ur is further increased (Han & Langre 2022). It has already been shown that
the high-pass-filtered CL and Y* associated with the vortex shedding are antiphase, not
auspicious for the cylinder vibration. Conversely, the low-pass-filtered signals are in phase,
auspicious for the cylinder vibration. First, we analyse vibration signals (Y*) at m* = 20
with Ur = 12 and 13, corresponding to pre-galloping and galloping regions, respectively
(figure 20a,d). To gain insight into the evolution of the frequency content over time, the
continuous wavelet transform (CWT) is performed using the Morlet wavelet (figure 20b,e).
The wavelet centre frequency Fc = 3 and the wavelet scales equal 2Fc–2Fc × 214, which
allows us to measure frequency in the range of Fs/214–Fs/2 (where Fs is the sampling
frequency). Additionally, power spectra of vibration responses in different developing
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Figure 20. (a,d) Time histories of Y*. (b,e) Time–frequency spectrum of Y* based on CWT. (c, f ) Power
spectral density functions of Y* at different regimes. (a–c) m* = 20, Ur = 12; and (d–f ) m* = 20, Ur = 13.
Here, ζ = 0 and Re = 170.

regimes are shown in figure 20(c, f ). The cylinder vibration in each signal comprises two
distinct frequencies fo and fs, associated with SM and WM, respectively. Consider EY, fo
and EY,fs as the energy intensity at fo and fs, respectively.

In the pre-galloping region, the vibration amplitude rapidly develops and reaches its
maximum at t* ≈ 200 (figure 20a). At t* < 800, there is an intensified competition between
fo and fs, where EY,fo and EY,fs are considerable (figure 20c); this transition is marked
as regime I. In regime II, EY,fo rapidly decreases and becomes insignificant while EY,fs
dominates the competition, suppressing the vibration at fo (figure 20c). In regime III
(t* > 2500), the cylinder vibration solely occurs at fs, and the amplitude remains constant.

After galloping, EY,fo increases gradually in regimes I and II, and it remains unchanged
in regime III (figure 20e). In regime I, EY,fo is lower than EY,fs (figure 20f ). Parameter EY,fo
increases and EY,fs remains unchanged from regimes I to II; eventually, EY,fo becomes
larger than EY,fs. This indicates that SM dominates the competition and results in the
occurrence of galloping. In regime III, EY,fo remains unchanged, with EY,fo/EY,fs = 7.92
(figure 20f ).

The EY values can be used to characterize the vibration amplitude. As shown in
figure 21, the cylinder vibration is decomposed into low-frequency and high-frequency
vibrations after the commencement of galloping. We define the vibration amplitudes of
the low- and high-pass-filtered Y* as A∗

low and A∗
high corresponding to EY,fo and EY,fs,

respectively. In the pre-galloping region, the vibration amplitude A* in regime III can
also be characterized by EY,fs, which declines gently with increasing Ur (figures 4a and
21). After the onset of galloping, A∗

high remains almost unchanged. The almost unchanged
EY,fs and A∗

high nearly before the galloping occurrence and after the galloping occurrence
indicate that vortex shedding is not involved in the occurrence of galloping. The value of
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Figure 21. Dependence of A* on Ur and m*. Here, ζ = 0 and Re = 170.

A∗
low, however, increases markedly with the increase of Ur in the galloping regime. It is the

low-frequency motion (SM) that is auspicious for the cylinder vibration, and consequently
promotes the occurrence of galloping. As shown in figure 20(b,e), EY,fo at m* = 20 and 13
is significantly greater than that at Ur = 12, while EY,fs is almost the same.

Since Urc is delayed with a decrease in m* from 5 to 3 and galloping is suppressed for
m* = 2 (table 3, figure 16a), we will further investigate the mode competition phenomenon
at m* = 3 to evaluate to influence of m* on the competition. At m* = 3, both A* in
pre-galloping region and A∗

high in galloping regime increase compared to that at m* = 20
(figure 21), and the EY,fs value at m* = 3 is significantly intensified (figures 20b,e and
22b,e). Consequently, the competition between EY,fo and EY,fs becomes more intense at
m* = 3, with EY,fo/EY,fs = 1.52 at the galloping onset in regime III (figure 22f ). It can
be inferred that if m* is further decreased, EY,fs could completely overpower EY,fo and
suppress galloping. At the galloping onset, EY,fo/EY,fs, i.e. A∗

low/A∗
high, diminishes with

decreasing m*. It can be reasonably inferred that if A∗
low/A∗

high at the galloping onset
drops to 1 with a further decrease in m*, then galloping will be completely suppressed.
Figure 23 presents the influence of A∗

low/A∗
high on m* at the galloping onset. It can be

seen that A∗
low/A∗

high decreases linearly with decreasing m*, and can be represented by a
curve-fitting equation:

A∗
low/A∗

high = 0.41m∗ + 0.155. (3.20)

When A∗
low/A∗

high = 1, the critical m* predicted by (3.20) is m∗
c = 2.06 ≈ 2. Equation

(3.20) explains why galloping is not observed for m* ≤ 2. Additionally, we observed
galloping at m* = 2.5 and Ur = 40, further verifying the rationality of the prediction of
m∗

c . Figure 23 also shows the dependence of A∗
low/A∗

high on m* at Re = 150 and 160, where
A∗

low/A∗
high declines with decreasing m*, the declining rate increasing with decreasing Re.

When A∗
low/A∗

high decreases to 1, m∗
c is larger at a smaller Re.
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Figure 23. Effect of m* and Re on A∗
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high at the galloping onset. Here, ζ = 0.

In summary, at ζ = 0, as m* decreases, the contribution of WM becomes more
significant, leading to a delay in the onset of galloping. Eventually, galloping can be
completely suppressed at sufficiently low m* values. At m* = 3, the occurrence of
galloping at ζ = 0 depends on the competition between SM and WM while the competition
is contingent on m*. However, at m* ≥ 5, the contribution of WM becomes negligible; the
cylinder vibration is thus dominated by SM, leading to a constant Urc as m* increases.
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Figure 24. Time histories of (a,c) low-pass-filtered and (b,d) high-pass-filtered Y* (black lines) and CL (red
lines) in GB. (a,b) m* = 20, ζ = 0.05 and Ur = 23 in regime III; (c,d) m* = 20, ζ = 0.05 and Ur = 22.5 in
regime I. Here, Re = 170.

3.7.2. Effects of m* and ζ when ζ > 0
Moving on to discussing the influence of ζ on galloping, we observe that at ζ > 0, Urc
increases with the increase of ζ . Additionally, Urc shows a nonlinear relationship with
m*, initially decreasing and then increasing as m* increases. When ζ = 0 or is small, Urc
is independent of m* (≥ 5). As previously discussed with figure 7, when the cylinder
vibrates in GB without damping (ζ = 0), the phase lag between the low-pass-filtered CL
and Y* is 0° (figure 7c), while that between the high-pass-filtered CL and Y* is 180°
(figure 7d). As ζ increases from 0, taking ζ = 0.05 and m* = 20 as an example, where
Urc = 22.5, the phase lag φlow (in degrees) between the low-pass-filtered CL and Y* at
Ur = 23 (beyond the galloping onset) undergoes a shift from 0 to a positive value, i.e.
φlow ≈ 27° (figure 24a). As discussed with figure 20(a–c), in regime I of the pre-galloping
region, the cylinder vibration consists of both high- and low-frequency components.
Therefore, at ζ = 0.05, φlow ≈ 26.5° is achieved in regime I of the pre-galloping region (i.e.
Ur = 22.5) (figure 24c). The phase lag between the high-pass-filtered CL and Y* at ζ > 0,
however, remains 180° both before and after Urc (figure 24b,d). Therefore, the presence
of damping (ζ > 0) introduces a positive phase lag between the low-pass-filtered CL and
Y*, both before and after galloping, modifying the coupling between the flow and cylinder
vibration.

Figure 25(a) demonstrates the variations of m∗
ae, ζa and φlow with Ur at m* = 20,

ζ = 0.05. In GB, m∗
ae > 0, declining with increasing Ur, in a similar fashion to the case of

ζ = 0. The added damping ratio ζa compensates the structural damping ratio −ζ (dashed
line), so that ζa + ζ = 0. Notably, φlow is positive and rises with increasing Ur. Compared
with ζ = 0, it is the positive phase lag that introduces a modification in the coupling
between the cylinder vibration and the fluid dynamics.

The energy Wf transferred from fluid to the cylinder for each cycle of oscillation is given
by

Wf =
∫

FL dY =
∫ t+T

t
FL0 sin(2πfot + φ) d(Y0 sin 2πfot) = πFL0Y0 sin φ. (3.21)

When CL leads Y* (φ > 0), positive work is done on the cylinder. An increasing φ (<90°)
provides more energy to the cylinder vibration.
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Figure 25. (a) Variations of phase lag φlow (deg.), added damping ζ a and effective added mass m∗
ae with Ur at

m* = 20 and ζ = 0.05. The dashed line represents −ζ . (b) Dependence of Urc on phase lag φlow at the galloping
onset. Here, Re = 170.

The presence of damping (ζ > 0) introduces a positive phase lag, modifying energy
transfer between the flow and cylinder, so the relationship between Urc, ζ and m* becomes
more complex and it is worth understanding the influence of ζ on galloping behaviour.
The coupling in the presence of damping is crucial in determining the galloping onset,
especially for lower m* (m* < 5) where the role of vortex shedding becomes significant.

Figure 25(b) shows the dependence of Urc on φlow. At m* ≥ 5, a larger φlow corresponds
to a larger Urc overall. The value of Urc at m* = 3, however, is obviously larger than that
at m* ≥ 5, which is due to the fierce competition between SM and WM at m* = 3. As
discussed before, for ζ = 0, Urc at m* = 3 entirely depends on the competition between SM
and WM. Therefore, for ζ > 0, because of the presence of non-zero φlow, Urc at m* = 3
is influenced not only by the competition but also by the magnitude of φlow. On the other
hand, when m* ≥ 5, the competition is weak, with no influence on the galloping onset.
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ae)ζ on phase lag φlow

at the galloping onset. Here, Re = 170.

The value of Urc is, therefore, mainly influenced by φlow, while a larger m* and/or ζ yields
a larger Urc.

Overall, φlow being associated with work done is an important factor in determining
the onset of galloping, and its magnitude is influenced by both m* and ζ . Understanding
the interplay between m*, ζ and φlow provides valuable insights into the stability of the
fluid–structure system during galloping.

Figure 26(a,b) shows the effect on φlow (in degrees) of m* and ζ at the onset of
galloping. The relationship between φlow and m* or ζ is straightforward, where φlow
increases with m* (figure 26a) and/or ζ (figure 26b). In the previous sections, the
relationship of Urc with m*ζ , (m* + CA)ζ or (m∗ + m∗

a0)ζ has been made clear. Is there
any relationship of φlow with the same? Figure 26(c,d) shows the dependencies of φlow
on m*ζ and (m∗ + m∗

ae)ζ . It is evident that there is no clear relationship between φlow
and m*ζ (figure 26c) or (m∗ + m∗

ae)ζ (figure 26d), which precludes the use of m*ζ

or (m∗ + m∗
ae)ζ to predict φlow effectively. However, when (m∗ + m∗

a0)ζ is employed
(figure 27), the φlow data points collapse well on a line for all m* values, following a
quadratic polynomial relationship between φlow and (m∗ + m∗

a0)ζ . This reiterates that it
is (m∗ + m∗

a0)ζ , not m*ζ , which intrinsically combines and reflects the mass-damping
properties of the system. This relationship between φlow and (m∗ + m∗

a0)ζ can be obtained
as

φlow = −3.1[(m∗ + m∗
a0)ζ ]2 + 28.6(m∗ + m∗

a0)ζ. (3.22)
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Figure 27. Effect of combined mass-damping parameter (m∗ + m∗
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This equation allows us to predict φlow using the value of (m∗ + m∗
a0)ζ . Parameter m∗

a0 =
1.5 for a square cylinder with zero incidence angle (Chen et al. 2020). As long as m* and
ζ are provided, we can obtain the phase lag φlow between the low-pass-filtered CL and Y*
at the onset of galloping.

As discussed with figure 19, the Urc data points collapse well on (m∗ + m∗
ae)ζ at m* ≥ 5,

where the influence of φlow is significantly greater and Urc is mainly determined by φlow.
At m* = 3, however, Urc is influenced by both the competition and the magnitude of φlow.
As a result, Urc at m* = 3 deviates from the fitting curve. The competition affects Urc at
m* = 5 to some degree, where Urc at m* = 5 is 13, that is, slightly larger than 12 at m* ≥ 10.
However, the influence of φlow on Urc at m* = 5 is greater than that at m* = 3. Particularly,
at (m∗ + m∗

ae)ζ > 0.55, Urc is largely determined by φlow, so that the Urc data points fit
well on a line at m* ≥ 5 and (m∗ + m∗

ae)ζ > 0.55 (figure 19a). At (m∗ + m∗
ae)ζ ≤ 0.55,

however, the Urc data points at m* ≥ 5 all lie above the fitted curve for (m∗ + m∗
ae)ζ >

0.55 (figure 19b), as φlow at (m∗ + m∗
ae)ζ ≤ 0.55 is not large enough to curb the mode

competition.

4. Conclusions

Flow-induced vibrations of a square cylinder with mass ratio m* = 2–30, damping
ratio ζ = 0–1.0 and mass-damping ratio m*ζ = 0–50 are numerically investigated. The
investigation covers five aspects: (i) effect of m* on the vibration response, forces and
frequency response, (ii) roles of effective added mass m∗

ae in different vibration branches,
(iii) characteristic changes at the borders between different branches, (iv) combined effect
of m* and ζ on critical reduced velocity Urc and phase lag φlow for galloping onset and
(v) underlying mechanisms of the influences of m* and ζ on galloping.

The effect of m* is investigated on vibration responses, frequency responses, forces and
effective added-mass ratio. An increase in m* reduces Ur range of VIVs and advances
the galloping onset. Parameter m* has distinct influences in IB, LB and GB regimes. In
IB, a larger m* leads to a smaller A*, C′

L and C′
La0, but a larger St, C̄D and C′

Lf . In LB,
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a larger m* corresponds to a smaller A*, St, C̄D, C′
La0 and C′

Lf , but a larger C′
L. On the other

hand, in the GB regime, an increasing m* enhances A*, fr, C̄D, C′
L and C′

Lf , but reduces
St, C′

La0, fs/fo and its gradient with Ur.
The effective added-mass ratio (m∗

ae) characterizes different vibration branches, being
contingent on Ur and m*. The value of m∗

ae in IB is positive and declines parabolically
with Ur, which results from the fact that fr being <1.0 approaches 1.0. The value of
m∗

ae in LB is negative and further declines because fr being >1.0 shifts away from 1.0.
A larger m* yields a greater m∗

ae magnitude in both IB and LB. In GB, m∗
ae is positive and

decreases with increasing Ur. On the other hand, m∗
aes is negative, yet decreasing with Ur.

A larger m* corresponds to a smaller m∗
ae and m∗

aes while the effect of m* on m∗
aes is greater

than that on m∗
ae.

It is challenging to distinguish the different vibration branches. Here, several techniques
are remarked upon for identifying the borders between different branches. The IB–LB
boundary can be identified from the change in m∗

ae from +ve to −ve, jumps in St, φ and
fr or a dramatic drop in C′

L. On the other hand, the LB–GB boundary can be pinpointed
from the change in m∗

ae from −ve to +ve, and a jump in C′
L or a drop in fr.

Vibration responses undergo beating, which is linked to the difference between fs and 3fo
or 5fo, with a beating frequency of | fs − 3fo| or | fs − 5fo|. The beating amplitude in Y* or
CL grows when fs/fo approaches fs/fo = 3 or 5 but declines when fs/fo departs from fs/fo = 3
or 5. The beating phenomenon of a square cylinder in GB is derived from the modulation
between fs and (2n + 1)fo, where n = 1, 2, . . . , not directly caused by the difference between
fs and fo.

Effects of m*, ζ , m*ζ , (m∗ + m∗
a0)ζ and (m∗ + m∗

ae)ζ on Urc and φlow for galloping
onset are revealed at Ur = 1–80. Parameter m* has a negligible influence on Urc for
ζ ≤ 0.01. This is, nevertheless, not the case for ζ > 0.01 where Urc adjourns with
increasing m* and/or ζ . The competition between vortex shedding associated with
low-frequency vibration (SM) and high-frequency vibration (WM) determines Urc at low
m* (= 3) as does φlow at a large m* ≥ 5. Term (m∗ + m∗

a0)ζ successfully collapses all
φlow data on a line for all m* and ζ values, with a quadratic polynomial relationship
between φlow and (m∗ + m∗

a0)ζ . Similarly, Urc data fit well on (m∗ + m∗
ae)ζ at m* ≥ 5,

where Urc grows linearly with increasing (m∗ + m∗
ae)ζ . Term m*ζ as well as (m∗ + m∗

a0)ζ

or (m∗ + CA)ζ does not serve well to characterize a fluid–structure system. We introduce
a combined mass-damping parameter (m∗ + m∗

ae)ζ that serves as the unique criterion to
predict the galloping onset. This indicates that (m∗ + m∗

ae)ζ works well to represent the
property of a fluid–structure system.
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