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Abstract. We show that the class of unital C∗-algebras is an elementary class in
the language of operator systems and that the algebra multiplication is a definable
function in this language. Moreover, we prove a general model theoretic fact which
implies that the aforementioned class is ∀∃∀-axiomatizable. We conclude by showing
that this class is, however, neither ∀∃-axiomatizable nor ∃∀-axiomatizable.

1. Introduction. A C∗-algebra is a self-adjoint subalgebra (from here on, ∗-
subalgebra) of B(H), the ∗-algebra of bounded operators on a complex Hilbert space,
that is, closed in the operator norm topology. In this note, we assume that all C∗-
algebras are unital, namely that they contain the identity operator. As shown in [5,
Proposition 3.3], there is a natural (continuous) first-order language LC∗ in which KC∗ ,
the class of LC∗ -structures that are unital C∗-algebras, is an elementary class, meaning
that there is a (universal) LC∗ -theory TC∗ for which KC∗ is the class of models of TC∗ ; in
symbols, KC∗ = Mod(TC∗ ). (The authors only treat not necessarily unital C∗-algebras,
but one just adds a constant to name the identity with no additional complications.)

An operator system is a ∗-closed subspace of B(H) that contains the unit and is
closed in the operator norm topology, so every unital C∗-algebra is an operator system
but not vice versa. The appropriate morphisms between operator systems are the
unital completely positive linear maps (see the appendix). There is a natural first-order
language Los in which the class of operator systems is universally axiomatizable; see [3,
Section 3.3] and [7, Appendix B]. Since the operator system structure on a C∗-algebra
is uniformly quantifier-free definable, we may assume that Los ⊆ LC∗ . For a C∗-algebra
A, we let A|Los denote the reduct of A toLos, which simply means that we view A merely
as an operator system rather than as a C∗-algebra. Set KC∗ |Los := {A|Los : A ∈ KC∗ }.
In [6], the following question was raised: is KC∗ |Los an elementary class? The main
result of this note is to give an affirmative answer to this question.

2. The semantic approach. The following is the main result of this paper.

THEOREM 1. KC∗ |Los is an elementary class.
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To prove Theorem 1, we will use the semantic test for axiomatizability, that is, we
show that KC∗ |Los is closed under isomorphism, ultraproduct, and ultraroot. (See [1,
Proposition 5.14].) Closure under isomorphism and ultraproducts is clear. We thus only
need to show that KC∗ |Los is closed under ultraroots. We will actually show something
a priori more general, namely that KC∗ |Los is closed under elementary substructures.
We first need a result, which is nearly identical to [2, Theorem 6.1]. Some notation: for
a C∗-algebra B and x, y, z, b ∈ B, let ϕ(x, y, z, b) be the Los-formula

∣∣∣∣∣
∥∥∥∥
[

0 y 1B 0
2 · 1B x z b

]∥∥∥∥
2

− ∥∥[
2 · 1B x z b

]∥∥2

∣∣∣∣∣ .

PROPOSITION 2. Suppose that A is a operator subsystem of the unital C∗-algebra B.
Then, A is closed under products if and only if we have

sup
x,y∈A1

inf
z∈A1

sup
b∈B2

ϕ(x, y, z, b) = 0.

Proof. We first assume that the displayed equation holds and prove that A is closed
under products. Towards this end, fix ε ∈ (0, 1) and x, y ∈ A1. Choose z ∈ A1 such that

sup
b∈B2

ϕ(x, y, z, b) < ε,

and let b be the square root of ‖xx∗ + zz∗‖ · 1B − xx∗ − zz∗ ∈ B so that ‖b‖2 = ‖b2‖ ≤
‖xx∗ + zz∗‖ ≤ 2. Multiplying

[
2 · 1B x z b

]
by its adjoint have that

∥∥[
2 · 1B x z b

]∥∥2 = 4 · 1B + xx∗ + zz∗ + bb∗ = (4 + ‖xx∗ + zz∗‖) · 1B.

Similarly, it holds that

∥∥∥∥
[

0 y 1B 0
2 · 1B x z b

]∥∥∥∥
2

=
∥∥∥∥
[

1B + yy∗ yx∗ + z∗

xy∗ + z (4 + ‖xx∗ + zz∗‖) · 1B

]∥∥∥∥ .

Examining the second row, it follows that the norm of the right side is at least (‖xy∗ +
z‖2 + (4 + ‖xx∗ + zz∗‖)2)1/2, whence ‖xy∗ + z‖ ≤ 4

√
ε. As A is complete, it follows

that xy∗ ∈ A.
Conversely, the above calculations show that if A is closed under multiplication,

then setting z := −xy∗ suffices. �
As mentioned above, the following proposition completes the proof of

Theorem 1.

PROPOSITION 3. Let B be a C∗-algebra. If A ⊂ B is a operator subsystem of B,

which is an elementary substructure in the language of operator systems, then A is a
C∗-subalgebra of B.

Proof. Since A inherits the unit of B and A is self-adjoint, we need only check that
A is closed under products, that is, we need only verify the condition of the previous
proposition. Fixing x, y ∈ A1, we have

inf
z∈B1

sup
b∈B2

ϕ(x, y, z, b) = 0.
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Since A is an elementary substructure of B, we have

inf
z∈A1

sup
b∈A2

ϕ(x, y, z, b) = 0.

Fix ε > 0 and take z ∈ A1 such that

sup
b∈A2

ϕ(x, y, z, b) ≤ ε.

By elementarity again, we have

sup
b∈B2

ϕ(x, y, z, b) ≤ ε,

whence we have

inf
z∈A1

sup
b∈B2

ϕ(x, y, z, b) = 0,

which is what we desired. �
Now that Theorem 1 has been established, we let TC∗,os denote the Los-theory

axiomatizing KC∗ |Los.

3. The syntactic approach and quantifier upper bounds. We begin this section by
proving a general model-theoretic fact. First, we recall that, given a symbol f in a
language, we let �f denote the modulus of uniform continuity for f as provided by the
language. (We use analogous notation for predicate symbols.) In what follows we need
to make the following innocuous technical assumption: for every symbol and every
ε < ε′, we have �(ε) < �(ε′).

THEOREM 4. Suppose that T is an L-theory and L0 is a sublanguage of L. Suppose
that the following holds:
� for every predicate P ∈ L \ L0, there is an L0-formula ψP(x) such that, for every

M |= T and a ∈ M, we have PM(a) = ψM
P (a); and

� for every function symbol f ∈ L \ L0, there is an L0-formula ψf (x, y) such that, for
every M |= T and a, b ∈ M, we have f M(a) = b if and only if ψf (a, b)M = 0.

Then, the class of L0-reducts of models of T is an elementary class.

Proof. Given a quantifier-free L-formula ϕ(x1, . . . , xn), define an L0-formula
ϕ̃(x1, . . . , xn, z1) by setting ϕ′(x1, . . . , xn, z1) to be the formula one obtains by replacing
an innermost occurrence of some function symbol f (xi1 , . . . , xin ) that does not belong
to L0 by some fresh variable z1 and then setting

ϕ̃(x1, . . . , xn, z1) := max(ψf (xi1 , . . . , xik , z1), ϕ′(x1, . . . , xn, z1)).

By continuing this process until there are no occurrences of any function symbols
in L \ L0, and by replacing every predicate symbol P ∈ L \ L0 by ψP, we obtain an
L0-formula ϕ#(x, z).

For example, suppose that ϕ(x1, x2, x3) := P(g(f (x1, x2), x2, x3), x1). Then, we
would have

ϕ#(x1, x2, z1, z2) := max(ψf (x1, x2, z1), ψg(z1, x2, x3), ψP(z2, x1)).
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Next, given an axiom σ = 0 from T , where

σ := Q1x1 · · · Qnxnϕ(x1, . . . , xn)

with ϕ quantifier-free, consider the closed L0-condition σ # = 0, where

σ # := Q1x1 · · · Qnxn inf
z

ϕ#(x, z).

Now observe that, for any function symbol f and any ε > 0, there is δ = δ(ε) > 0
such that

T |= sup
x

sup
y1,y2

min
(

min
i=1,2

(δ −. ψf (x, yi)), d(y1, y2) −. ε

)
= 0. (†)

Indeed, if this were not the case, then we would have M |= T and a, b1, b2 ∈ M such
that, for i = 1, 2, ψf (a, bi) = 0 (whence f M(a) = bi) and yet d(b1, b2) > ε, yielding a
contradiction.

In a similar manner, there is η = η(ε) > 0 such that

T |= sup
x1,x2,y1,y2

min
(

�f (ε) −. d(x1, x2), η −. max
i=1,2

ψf (xi, yi), d(y1, y2) −. ε

)
= 0. (††)

Indeed, if this were not the case, then we would have M |= T and a1, a2, b1, b2 ∈ M
such that, for i = 1, 2, we have d(a1, a2) ≤ �f (ε), ψf (ai, bi) = 0 (so f (ai) = bi) but
d(b1, b2) > ε. Take ε′ > ε such that d(b1, b2) > ε′. Then, by assumption, d(a1, a2) ≤
�f (ε) < �f (ε′), whence d(b1, b2) ≤ ε′, a contradiction.

We now let T0 denote the following L0-theory:

(1) σ # = 0 whenever σ = 0 is an axiom of T ;
(2) supx infy ψf (x, y) = 0 whenever f ∈ L \ L0;
(3) for every f ∈ L \ L0 and every ε > 0, the axiom appearing in (†);
(4) for every f ∈ L \ L0 and every ε > 0, the axiom appearing in (††);
(5) for every P ∈ L \ L0 and every ε > 0, the axiom

sup
x,x′

min
(
�P(ε) −. d(x, x′), |ψP(x) − ψP(x′)| −. ε

) = 0.

We claim that the L0-structures that model T0 are exactly the L0-reducts of models
of T . It is clear that the L0-reduct of any model of T is a model of T0. Conversely,
suppose that M is an L0-structure and M |= T0. We first note that the zeroset of ψf

is the graph of a function. Indeed, fix a ∈ M and use axiom (2) to find bn ∈ M such
that ψf (a, b) ≤ 1

n . By axiom group (3), the sequence (bn) is Cauchy whence converges
to some b ∈ M. Moreover, b is unique by axiom group (3) again. We may thus define
f M(a) to be this unique b. Next, note that axiom group (4) shows that f M has �f as
its modulus of uniform continuity. Finally, note that we may set PM := ψM

P and that
PM has �P as its modulus of uniform continuity by axiom group (5).

At this point, we have expanded M to an L-structure. It remains to show that this
expanded structure is a model of T . However, this follows from the fact that, for any
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a1, . . . , an ∈ M and any quantifier-free L-formula ϕ(x1, . . . , xn), we have

ϕ(a1, . . . , an)M = 0 ⇔ inf
z

ϕ#(a, z)M = 0.

Thus, the class of L0-reducts of models of T is seen to be elementary. �
We next remark that if one is given upper bounds on the quantifier-complexity of

the axioms of T and the axioms of the formulae defining the symbols in L \ L0, then
we have upper bounds on the quantifier-complexity of the axioms of T0. First, we call
a formula in prenex normal form a ∀n-formula if it has n alternations of quantifiers
with the first group of quantifiers being sup quantifiers. We call a theory ∀n if it consists
of closed conditions of the form σ = 0 with σ a ∀n-sentence. Finally, let p : � → � be
the function p(n) = n mod 2. The proof of Theorem 4 shows the following.

COROLLARY 5. Suppose that T, L, and L0 are as in Theorem 4. Further suppose that
T is a ∀m-theory and that each symbol in L \ L0 is defined by a ∀n-formula in L0. Then,
setting T0 to be the L0-theory axiomatizing the class of L0-reducts of models of T, we
have that L0 is a ∀m+n+p(n)-theory.

We now apply the above abstract results to the setting from the previous section.
Thus, we set L := LC∗ , L0 := Los, and T := TC∗ . In this case, L \ L0 consists of a single
binary function symbol for multiplication. Let ψmult(x,y,z) := sup‖b‖≤2 ϕ(−x, y∗, z, b).
By Proposition 2, we have that the zeroset of ψmult defines multiplication in models of
T . Note also that T is a ∀1-theory and that ψmult is a ∀1-formula. Consequently, by
Corollary 5, we have the following.

COROLLARY 6. KC∗ |Los is a ∀3-axiomatizable class.

4. Quantifier lower bounds. Although we have established that TC∗ |Los is an
∀3-axiomatizable Los-theory, it is a priori possible that it is in fact two quantifier
axiomatizable. Our last two results show that this is not the case. Recall that if X is
an operator system and u ∈ X , then u is called a unitary of X if u is a unitary of the
C∗-envelope C∗

u(X), i.e., the universal unital C∗-algebra generated by X .

PROPOSITION 7. TC∗ |Los is not ∀2-axiomatizable.

Proof. If TC∗ |Los were ∀2-axiomatizable, then there would be A ∈ KC∗ |Los that
is existentially closed for KC∗ |Los. However, in [6, Section 5], it was observed that
if φ : X → Y is a complete order embedding that is also existential, then φ maps
unitaries to unitaries. Take a complete order embedding of A into a C∗-algebra B that
is not a ∗-homomorphism (see, for example, [6, Section 5]); since this embedding maps
unitaries to unitaries (since A is existentially closed for K), this contradicts a well-
known consequence of Pisier’s linearization trick. (For the convenience of the reader,
we include a proof of this fact in the appendix.) �

One defines a ∃2-axiomatizable theory in an analogous fashion using prenex
normal formula that begin with inf quantifiers.

PROPOSITION 8. TC∗ |Los is not ∃2-axiomatizable.

Proof. Fix a C∗-algebra A and an operator system X that is not a C∗-algebra
with A ⊆ X ⊆ AU . Suppose, towards a contradiction, that TC∗ |Los is ∃2-axiomatizable
and let σ := infx supy ϕ(x, y) be such an axiom. Fix ε > 0 and take a ∈ A such that
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(supy ϕ(a, y))A ≤ ε. It follows that (supy ϕ(a, y))AU ≤ ε, whence (supy ϕ(a, y))X ≤ ε.
Since a ∈ X and ε > 0 was arbitrary, we see that σ X = 0. Since σ was an arbitrary
axiom, we see that X is a C∗-algebra, yielding a contradiction. �

Appendix on Pisier’s linearization trick. If E ⊂ B(H) is an operator system, then
Mn(E) := E ⊗ Mn(�) sits naturally as an operator system inB(H) ⊗ Mn(�) ∼= B(H⊕n).
Each Mn(E) inherits a ‘positive’ cone from the cone of positive operators in B(H⊕n). A
∗-linear map φ : E → F between operator systems is said to be n-positive if φn := φ ⊗
idMn(�) : Mn(E) → Mn(F) maps positive elements to positive elements and completely
positive if it is n-positive for all n.

The following facts are well-known.

FACT 9. Suppose that φ : A → B is a unital 2-positive map between unital C∗-
algebras. Then, for all x, y ∈ A, we have

φ(x)∗φ(x) ≤ φ(x∗x)

and

‖φ(y∗x) − φ(y)∗φ(x)‖ ≤ ‖φ(y∗y) − φ(y)∗φ(y)‖1/2‖φ(x∗x) − φ(x)∗φ(x)‖1/2.

Proof. The first part follows from the fact that the matrix

(
1 x
x∗ x∗x

)
=

(
1 x
0 0

)∗ (
1 x
0 0

)

is positive in M2(A), whence so is
(

1 φ(x)
φ(x)∗ φ(x∗x)

)
in M2(B). (The inequlity works

exactly same in the general case as it does for a positive matrix in M2(�).) From the
first part, we conclude that for any positive linear functional σ ∈ B∗, the bilinear form
(x, y) := σ (φ(y∗x) − φ(y)∗φ(x)) on A is positive semidefinite. The second part then
follows from the Cauchy–Schwartz inequality and the fact that, for b ∈ B, ‖b‖ is the
supremum of |σ (b)|, where σ ranges over all contractive, positive linear functionals
on B. �

COROLLARY 10. Suppose that φ : A → B is a unital, completely positive map between
C∗-algebras that maps unitaries to unitaries. Then, φ is a ∗-homomorphism.

Proof. The previous fact shows that the set

Mφ := {a ∈ A : φ(a∗)φ(a) = φ(a∗a), φ(a)φ(a∗) = φ(aa∗)}

is a C∗-subalgebra of A on which φ is a ∗-homomorphism. By assumption, we have
that U(A) ⊂ Mφ whence Mφ = A as A is the linear span of its unitaries. �
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