THE MAXIMUM GENUS OF CARTESIAN PRODUCTS OF GRAPHS

JOSEPH ZAKS

The maximum genus $\gamma_{M}(G)$ of a connected graph G has been defined in [2] as the maximum g for which there exists an embedding $h: G \rightarrow S(g)$, where $S(g)$ is a compact orientable 2 -manifold of genus g, such that each one of the connected components of $S(g)-h(G)$ is homeomorphic to an open disk; such an embedding is called cellular. If G is cellularly embedded in $S(g)$, having V vertices, E edges and F faces, then by Euler's formula

$$
V-E+F=2-2 g
$$

Let $\beta(G)=E-V+1$ be the 1 -dimensional Betti number of G (see [1]); since $F \geqq 1$ and g is an integer, the following holds (see [2, Theorem 3]).

Theorem A. If G is a connected graph, then $\gamma_{M}(G) \leqq[\beta(G) / 2]$, with equality holding if and only if the embedding has one or two faces according to $\beta(G)$ being even or odd, respectively ($[x]$ is the largest integer $\leqq x$).

The following results are known:
Theorem B. (see [2]). The maximum genus of the complete graph K_{n} on n vertices is given by

$$
\gamma_{M}\left(K_{n}\right)=\left[\frac{(n-1)(n-2)}{4}\right] .
$$

Theorem C. (see [4]). The maximum genus of the complete bipartite graph $K_{n, m}$ on n and m vertices is given by

$$
\gamma_{M}\left(K_{n, m}\right)=\left[\frac{(n-1)(m-1)}{2}\right] .
$$

A connected graph G is called upperembeddable (see [5]) if $\gamma_{M}(G)=[\beta(G) / 2]$. Theorems B and C state that both K_{n} and $K_{n, m}$ are upperembeddable, for all $n \geqq 1$ and $m \geqq 1$.

In the recent Conference on Graph Theory and Applications, held at Kalamazoo, Michigan, May 1972, E. A. Nordhaus raised the conjecture that the graph Q_{n} of the n-cube is upperembeddable. It is the purpose of this paper to present an affirmative answer to this conjecture (Corrollary 1, here), together with some more general results.

[^0]Recall [7] that a 1 -factor F of a graph G is a subgraph of G that contains all the vertices of G, each one with valence 1 ; a maximum matching F of a graph G is a subgraph of G that contains all the vertices of G, each one with valence 0 or 1 , and has the maximum possible number of edges; a vertex of valence 0 in a maximum matching is called isolated (see [10]).

The Cartesian product $G \times H$ of the two graphs G and H has been defined in [6] (see also [8] and [9]) as follows: Let $V(K)$ and $E(K)$ denote the set of vertices and the set of edges of the graph K; then

$$
\begin{aligned}
V(G \times H)= & V(G) \times V(H)=\{(g, h) \mid g \in G, h \in H\} \\
E(G \times H)= & \left\{\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) \mid g_{1}=g_{2} \text { and } h_{1} h_{2} \in E(H)\right. \text { or else } \\
& \left.h_{1}=h_{2} \text { and } g_{1} g_{2} \in E(G)\right\} .
\end{aligned}
$$

Observe that $Q_{1}=K_{2}$ and that inductively $Q_{n+1}=Q_{n} \times K_{2}$. Let \bar{A} denote the cardinality of the set A.

The following are our main results.
Theorem 1. If G and H are nonempty connected graphs and G has a 1.factor, then

$$
\gamma_{M}(G \times H) \geqq \overline{V(H)} \gamma_{M}(G)+\frac{1}{2} \overline{E(H)} \overline{V(G)}-\overline{V(H)}+2
$$

provided that eiher
(1) $\overline{V(H)} \geqq 3$, or else
(2) $H=K_{2}$ and G has a cellular embedding into $S\left(\gamma_{M}(G)\right)$ such that one edge of G that belongs to two different faces is an edge of some 1-factor of G; in this case $\gamma_{M}\left(G \times K_{2}\right) \geqq 2 \gamma_{M}(G)+\frac{1}{2} \overline{V(G)}$.

Observe that if $\beta(G)$ is odd and every edge of G belongs to some 1 -factor of G, then G satisfies the condition as described in part 2 of Theorem 1; as a particular case of part 2 of Theorem 1, applied to $G=Q_{n-1}$ and $\mathrm{H}=K_{2}$, we get the following.

Corollary 1. $\gamma_{M}\left(Q_{n}\right)=(n-2) 2^{n-2}$, for all $n \geqq 2$.
Theorem 2. If a nonempty connected graph G has a 1-factor, then

$$
\gamma_{M}\left(G \times K_{2}\right) \geqq 2 \gamma_{M}(G)+\frac{1}{2} \overline{V(G)}-1 .
$$

Theorem 3. If G and H are nonempty connected graphs and G has a maximum matching that has exactly one isolated vertex, then

$$
\gamma_{M}(G \times H) \geqq \overline{V(H)} \cdot \gamma_{M}(G)+\frac{1}{2} \overline{E(H)}(\overline{V(G)}-1)
$$

For similar results concerning the (minimum) genus of the Cartesian products of graphs, see [8;9].

Four main lemmas. The following are the main tool for proving the stated theorems.

Lemma 1. If G_{1} and G_{2} are connected graphs, $E_{i}=u_{i} v_{i} \in E\left(G_{i}\right), i=1,2$, and $h_{i}: G_{i} \rightarrow S_{i}\left(n_{i}\right)$ are cellular embeddings, $i=1,2$, then there exists a $S\left(n_{1}+n_{2}\right)$ and a cellular embedding $\bar{h}: G_{1} \cup G_{2} \cup u_{1} u_{2} \cup v_{1} v_{2} \rightarrow S\left(n_{1}+n_{2}\right)$, such that
(a) $S\left(n_{1}+n_{2}\right) \cap S_{i}\left(n_{i}\right)=T_{i}\left(n_{i}\right)$ is just $S_{i}\left(n_{i}\right)$ minus an open disk, $i=1,2$;
(b) $\left.\bar{h}\right|_{G i}=h_{i}, i=1,2$;
(c) if $y_{i} \in T_{i}\left(n_{i}\right)-h_{i}\left(G_{i}\right), i=1,2$, then y_{1} and y_{2} are not in one face of $\bar{h}(\ldots)$ in $S\left(n_{1}+n_{2}\right)$.

Lemma 2. If $h: G \rightarrow S(n)$ is a cellular embedding, $E_{i}=u_{i} v_{i} \in E(G), i=$ 1,2 , with $E_{1} \cap E_{2}=\emptyset$, and $u_{1} u_{2} \notin E(G), v_{1} v_{2} \notin E(G)$, then there exists a $S(n+1)$, and a cellular embedding $\bar{h}: G \cup u_{1} u_{2} \cup v_{1} v_{2} \rightarrow S(n+1)$, such that
(a) $S(n+1) \cap S(n)=T(n)$ is just $S(n)$ minus two disjoint open disks;
(b) $\left.\bar{h}\right|_{G}=h$;
(c) if y_{1} and $y_{2} \in T(n)-h(G)$ and they belong to two different faces of $h(G)$, then they belong to two different faces of $\bar{h}(\ldots)$ in $S(n+1)$.

Lemma 3. If $h: G \rightarrow S(n)$ is a cellular embedding, $E_{i}=u_{i} v_{i} \in E(G)$, $i=1,2, u_{1} u_{2} \notin E(G), v_{1} v_{2} \notin E(G)$ and both $h\left(E_{1}\right)$ and $h\left(E_{2}\right)$ are in the boundary of two different faces of $h(G)$, then there exists a $S(n+2)$ and a cellular embedding $\bar{h}: G \cup u_{1} u_{2} \cup v_{1} v_{2} \rightarrow S(n+2)$, such that
(a) $S(n+2) \cap S(n)$ is just $S(n)$ less four pairwise disjoint open disks;
(b) $\left.\bar{h}\right|_{G}=h$.

Lemma 4. (compare with [3, Theorem 2]). If G_{1} and G_{2} are connected graphs, $v_{i} \in V\left(G_{i}\right), i=1,2$, and $h_{i}: G_{i} \rightarrow S_{i}\left(n_{i}\right)$ are cellular embeddings, $i=1,2$, then there exists a $S\left(n_{1}+n_{2}\right)$ and a cellular embedding $\bar{h}: G_{1} \cup G_{2} \cup v_{1} v_{2} \rightarrow$ $S\left(n_{1}+n_{2}\right)$, such that
(a) $S\left(n_{1}+n_{2}\right) \cap S_{i}\left(n_{i}\right)$ is just $S_{i}\left(n_{i}\right)$ less an open disk, $i=1,2$;
(b) $\left.\bar{h}\right|_{G i}=h_{i}, i=1,2$.

Remark 1. These Lemmas are similar to [3, Theorem 2], and [4, Theorem, p. 101], quoted from [2]; however we need them in these forms so as to be able to continue our constructions in the proofs of our theorems.

Proof of Lemma 1. Let $E_{1}{ }^{\prime}$ and $E_{2}{ }^{\prime}$ be simple paths in $S_{1}\left(n_{1}\right)$ and $S_{2}\left(n_{2}\right)$ such that $E_{i}{ }^{\prime} \cup h_{i}\left(E_{i}\right)$ is a simple closed curve, $i=1,2$, meeting $h_{i}\left(G_{i}\right)$ at $h_{i}\left(E_{i}\right)$. $E_{i}{ }^{\prime}$ has its interior in one of the connected components A_{i} of $S_{i}\left(n_{i}\right)-h_{i}\left(G_{i}\right)$, $i=1,2 . A_{i}$ is simply connected since h_{i} is a cellular embedding; let B_{i} be the disk in A_{i}, bounded by $E_{i}{ }^{\prime} \cup h_{i}\left(E_{i}\right), i=1,2$.

Let S^{1} denote a simple closed curve and let I denote the closed unit interval; the topological Cartesian product $S^{1} \times I$ is, of course, a cylinder. Let $x, y \in S^{1}$, with $x \neq y$.

Let

$$
\varphi: S^{1} \times\{0,1\} \rightarrow\left(E_{1}^{\prime} \cup h_{1}\left(E_{1}\right)\right) \cup\left(E_{2}^{\prime} \cup h_{2}\left(E_{2}\right)\right)
$$

be an orientation preserving homeomorphism (between two pairs of disjoint simple closed curves), such that $\varphi(x, 0)=u_{1}, \varphi(y, 0)=v_{1}, \varphi(x, 1)=u_{2}$ and $\varphi(y, 1)=v_{2}$.

We assume, without loss of generality, that $S_{1}\left(n_{1}\right) \cap S_{2}\left(n_{2}\right)=\emptyset . S\left(n_{1}+\right.$ $\left.n_{2}\right)$ is defined as follows: remove the interiors of B_{1} and B_{2} from $S_{1}\left(n_{1}\right) \cup$ $S_{2}\left(n_{2}\right)$ and then attach to it the cylinder $S^{1} \times I$ by identifying z of $S^{1} \times\{0,1\}$ with $\varphi(z)$.

Clearly, $S\left(n_{1}+n_{2}\right) \cap S_{i}\left(n_{i}\right)=T_{i}\left(n_{i}\right)=S_{i}\left(n_{i}\right)-B_{i}, i=1,2$. The embedding \bar{h} of $G_{1} \cup G_{2} \cup u_{1} u_{2} \cup v_{1} v_{2}$ into $S\left(n_{1}+n_{2}\right)$ is defined as follows:
$\left.\bar{h}\right|_{G_{1}}=h_{1}$ and $\left.\bar{h}\right|_{\left(G_{2}-E_{2}\right)}=h_{2}$ as maps, while on $E_{2}, u_{1} u_{2}$ and $v_{1} v_{2} \bar{h}$ is defined in such a way that (as sets)

$$
\bar{h}\left(E_{2}\right)=E_{2}^{\prime}, \bar{h}\left(u_{1} u_{2}\right)=\{x\} \times I \subset S^{1} \times I \text { and } \bar{h}\left(v_{1} v_{2}\right)=\{y\} \times I \subset S^{1} \times I
$$

To show that \bar{h} is cellular, observe that the 2 -cell A_{1} of $h_{1}\left(G_{1}\right)$ in $S_{1}\left(n_{1}\right)$ is changed into $\left(A_{1}-\operatorname{int} B_{1}\right) \cup \alpha \times[0,1)$, where α is the arc of S^{1} from x to y for which $\varphi(\alpha \times\{0\})=E_{1}{ }^{\prime}$. As for the change in A_{2}, let $A_{2}{ }^{*}$ be the other (with the possibility that $\left.A_{2}{ }^{*}=A_{2}\right) 2$-cell of $h_{2}\left(G_{2}\right)$ in $S_{2}\left(n_{2}\right)$ that has E_{2} on its boundary; if $A_{2}{ }^{*} \neq A_{2}$, then $A_{2}{ }^{*}$ is replaced by $A_{2}{ }^{*} \cup\left(\left(S^{1}-\alpha\right) \times(0,1]\right)$ and A_{2} becomes $A_{2}-B_{2}$; while if $A_{2}{ }^{*}=A_{2}$, then A_{2} is replaced by $\left(A_{2}-B_{2}\right) \cup\left(\left(S^{1}-\alpha\right) \times(0,1]\right)$; the rest of the 2 -cells of $S\left(n_{1}+n_{2}\right)-$ $\bar{h}\left(G_{1} \cup G_{2} \cup u_{1} u_{2} \cup v_{1} v_{2}\right)$ are among the 2 -cells of $\left(S_{1}\left(n_{1}\right)-h_{1}\left(G_{1}\right)\right) \cup\left(S_{2}\left(n_{2}\right)-\right.$ $\left.h_{2}\left(G_{2}\right)\right)$. It follows that \bar{h} is cellular. In addition, no face of $T_{1}\left(n_{1}\right)$ is joined to a face of $T_{2}\left(n_{2}\right)$ so as to form part of a face of $\bar{h}\left(G_{1} \cup G_{2} \cup u_{1} u_{2} \cup v_{1} v_{2}\right)$ in $S\left(n_{1}+n_{2}\right)$.

This completes the proof of Lemma 1.
Proof of Lemma 2. The proof is similar to the proof of Lemma 1 (hence the details are omitted), and it amounts to deleting two open disks B_{1} and B_{2} from $S(n)$, adding a cylinder $S^{1} \times I$ with the use of a similar identification, and shifting one edge $\left(E_{2}\right)$ around the cylinder. This shifting assures that the two halves of the cylinder are attached to two faces A_{1} and $A_{2}{ }^{*}$ (using similar notations; with $A_{1}=A_{2}{ }^{*}$ possible), such that one of them is attached along $\alpha \times\{0\}$ and the other - along $\left(S^{1}-\alpha\right) \times\{1\}$; therefore each face is cellular and no two faces of $T(n)=S(n)-\left(B_{1} \cup B_{2}\right)$ merge into one face of $S(n+1)$.

Proof of Lemma 3. Let $h\left(E_{1}\right)$ be on the boundary of the two different faces F_{1} and F_{2} of $h(G)$ in $S(n)$, and let $h\left(E_{2}\right)$ be on the boundary of the two different faces P_{1} and P_{2} of $h(G)$ in $S(n)$. $\left(\left\{F_{1}, F_{2}\right\} \cap\left\{P_{1}, P_{2}\right\}\right.$ need not be empty!). Let D_{i} be a disk in $F_{i}, i=1,2$, and let D_{2+j} be a disk in $P_{j}, j=1,2$, such that $\operatorname{bd} D_{1} \cap \operatorname{bd} F_{1}=h\left(u_{1}\right), \quad \operatorname{bd} D_{2} \cap \operatorname{bd} F_{2}=h\left(v_{1}\right), \quad \operatorname{bd} D_{3} \cap \operatorname{bd} P_{1}=$ $h\left(u_{2}\right), \operatorname{bd} D_{4} \cap \operatorname{bd} P_{2}=h\left(v_{2}\right)$, and all the disks have pairwise disjoint interiors. Since $F_{1} \neq F_{2}$ and $P_{1} \neq P_{2}$, we may assume without loss of generality that $F_{1} \neq P_{1}$ and $F_{2} \neq P_{2}$.

First operation. Let $\varphi_{1}: S^{1} \times\{0,1\} \rightarrow \operatorname{bd} D_{1} \cup \mathrm{bd} D_{3}$ be a homeomorphism, such that for some point x of $S^{1}, \varphi_{1}(x, 0)=h\left(u_{1}\right)$ and $\varphi_{1}(x, 1)=h\left(u_{2}\right)$.

Remove the interiors of D_{1} and D_{3} from $S(n)$ and attach a handle $S^{1} \times I$ by identifying z of $S^{1} \times\{0,1\}$ with $\varphi_{1}(z)$; an $S(n+1)$ is obtained (adjust $\left.\varphi_{1}\right|_{S^{1} \times\{0\}}$ and $\left.\varphi_{2}\right|_{S^{1} \times\{0\}}$, if necessary, to get an orientable surface), $h_{0}: G \cup u_{1} u_{2} \rightarrow$ $S(n+1)$ is defined by $\left.h_{0}\right|_{G}=h$ as maps, where $S(n+1) \cap S(n)=S(n)-$ $\left(\operatorname{int} D_{1} \cup \operatorname{int} D_{3}\right)$, and $h_{0}\left(u_{1} u_{2}\right)=\{x\} \times I$ as sets. The only changes in the faces are to replace F_{1} and P_{1} by exactly one face that has

$$
\left(F_{1}-\operatorname{int} D_{1}\right) \cup\left(P_{1}-\operatorname{int} D_{3}\right) \cup\left(\left(S^{1}-\{x\}\right) \times I\right)
$$

for its interior; therefore h_{0} is cellular.
Second operation. Let $\varphi_{2}: S^{1} \times\{0,1\} \rightarrow \operatorname{bd} D_{2} \cup \mathrm{bd} D_{4}$ be a homeomorphism, such that for some point y of $S^{1}, \varphi_{2}(y, 0)=h\left(v_{1}\right)$ and $\varphi_{2}(y, 1)=h\left(v_{2}\right)$. Remove the interiors of D_{2} and D_{4} from $S(n+1)$ and attach a handle $S^{1} \times I$ by identifying z of $S^{1} \times\{0,1\}$ with $\varphi_{2}(z)$; an $S(n+2)$ is obtained. A map $\bar{h}: G \cup u_{1} u_{2} \cup v_{1} v_{2} \rightarrow S(n+2)$ is defined by $\left.\bar{h}\right|_{G \cup u_{1} u_{2}}=h_{0}$ as maps and $\bar{h}\left(v_{1} v_{2}\right)=\{y\} \times I$ as sets (where $\{y\} \times I$ is taken, of course, along the second added handle). $F_{2} \neq P_{2}$ implies, as in the previous case, that \bar{h} is cellular.

This completes the proof of Lemma 3.
Proof of Lemma 4. Add one handle $S^{1} \times I$ to the disjoint union of $S_{1}\left(n_{1}\right)$ and $S_{2}\left(n_{2}\right)$, with a suitable deleting of two open disks and a corresponding identification, as done in the proof of the previous lemma. The new edge $v_{1} v_{2}$ is embedded as $\{x\} \times I$, where $\{x\} \times\{0\}$ of $S^{1} \times I$ is identified with $h_{1}\left(v_{1}\right)$ and $\{x\} \times\{1\}$ is identified with $h_{2}\left(v_{2}\right)$.

We are ready for the proofs of the main results.
Proof of Theorem 1. In case 1, let $V(H)=\left\{v_{1}, \ldots, v_{k}\right\}, k \geqq 3$, and $\gamma_{M}(G)=\lambda$. Let $h_{i}: G \rightarrow S_{i}(\lambda)$ be cellular embeddings, where $S_{i}(\lambda)$ is a $S(\lambda)$ for all $1 \leqq i \leqq k$. Let $E=x_{1} x_{2}$ be an edge of a 1 -factor F of G, and let $T_{0} \subset$ $T_{1} \subset \ldots \subset T_{k-1}$ be subtrees of a spanning tree T of H, with $\overline{E\left(T_{j}\right)}=j$, for all $0 \leqq j \leqq k-1$.

Use Lemma $1 \mathrm{k}-1$ times to get a cellular embedding of $(G \times V(H)) \cup$ ($E \times T$) into a $S(k \lambda)$, as follows: if $y_{1} y_{2} \in E\left(T_{1}\right)$, then apply Lemma 1 with $G_{i}=G \times\left\{y_{i}\right\}, i=1,2, E_{i}=E \times\left\{y_{i}\right\}$ to get a particular cellular embedding of $\left(G \times V\left(T_{1}\right)\right) \cup\left(E \times T_{1}\right)$ into $S(2 \lambda)$, and continue inductively as follows: if $\left(G \times V\left(T_{j-1}\right)\right) \cup\left(E \times T_{j-1}\right)$ has been cellularly embedded into $S(j \lambda)$, $j \geqq 2$, apply Lemma 1 once more with $G_{1}=\left(G \times V\left(T_{j-1}\right)\right) \cup\left(E \times T_{j-1}\right)$ and $G_{2}=G \times\left\{z_{2}\right\}$, where $z_{1} z_{2} \in E\left(T_{j}\right)-E\left(T_{j-1}\right)$ and $z_{2} \notin V\left(T_{j-1}\right)$, and with $E_{i}=E \times\left\{z_{i}\right\}, i=1,2$; this yields a particular cellular embedding of $\left(G \times V\left(T_{j}\right)\right) \cup\left(E \times T_{j}\right)$ into a $S((j+1) \lambda)$.

To the embedding of $(G \times V(H)) \cup(E \times T)$ into $S(k \lambda)$ we apply, again one at a time, Lemma 2 for each one of the possible $\overline{E(F)} \cdot \overline{E(H)}-(k-1)$ choices of an edge X of F and an edge Y of H, except for those $k-1$ combinations of the edge E of F and an edge of T. The two edges E_{1} and E_{2} of Lemma 2 are, of course, $X \times\left\{y_{1}\right\}$ and $X \times\left\{y_{2}\right\}$, where $y_{1} y_{2}=Y$.

We have just cellularly embedded $G \times H$ into $S(t)$, where

$$
\begin{aligned}
t & =k \lambda+\overline{E(F)} \overline{E(H)}-(k-1) \\
& =\overline{V(H)} \cdot \gamma_{M}(G)+\frac{1}{2} \overline{V(G)} \cdot \overline{E(H)}-\overline{V(H)}+1
\end{aligned}
$$

therefore

$$
\gamma_{M}(G \times H) \geqq \overline{V(H)} \cdot \gamma_{M}(G)+\frac{1}{2} \overline{V(G)} \cdot \overline{E(H)}-\overline{V(H)}+1
$$

This embedding has the additional property that if z is a vertex of H of valence $\geqq 2$ (the existence of which follows from the connectivity of H and the requirement that $\overline{V(H)} \geqq 3$), then $\{v\} \times\{z\}$ (where v is a vertex of G) is a vertex of $G \times H$ that belongs to at least three faces; to see this, consider the two edges of H incident to z and follow the construction of Lemmas 1 and/or 2. By a theorem of Duke [1] (see also [3, Theorem 3]), it follows that $G \times H$ is cellularly embeddable in a sphere with one more handle; this completes the proof of case 1 of our Theorem.

In case 2 , let $V(H)=\left\{x_{1}, x_{2}\right\}$ and let $h: G \rightarrow S\left(\gamma_{M}(G)\right)$ be a cellular embedding with $h\left(A_{1}\right)$ belonging to two different faces of $h(G)$, for some edge A_{1} of G; let F be a 1 -factor of G that contains A_{1}.

Let $h_{i}: G \rightarrow S_{i}\left(\gamma_{M}(G)\right), i=1,2$, be two reproductions of h, where $S_{i}\left(\gamma_{M}(G)\right)$ are disjoint spheres with $\gamma_{M}(G)$ handles.

In this case $\overline{V(G)} \geqq 4$, and hence $\overline{E(F)} \geqq 2$; let $A_{2} \in E(F)-A_{1}$, and apply Lemma 1 to $G_{i}=h_{i}(G), i=1,2$, with $E_{i}=h_{i}\left(A_{2}\right), i=1,2$; successively apply Lemma $2 \overline{E(F)}-2$ times for the edges $A_{j} \times\left\{x_{1}\right\}$ and $A_{j} \times\left\{x_{2}\right\}$ of

$$
\left(G \times V\left(K_{2}\right)\right) \cup\left(\bigcup_{i=2}^{j-1} V\left(A_{i}\right) \times E\left(K_{2}\right)\right)
$$

for $j=3, \ldots, \overline{E(F)}$, where $\left\{A_{2}, A_{3}, \ldots, A_{\overline{E(F)}}\right\}=E(F)-A_{1}$. The last step is to apply Lemma 3 to $\left(G \times V\left(K_{2}\right)\right) \cup\left[\left(V(G)-V\left(A_{1}\right)\right) \times E\left(K_{2}\right)\right]$, where the two edges E_{1} and E_{2} are of course $A_{1} \times\left\{x_{1}\right\}$ and $A_{1} \times\left\{x_{2}\right\}$; both of $A_{1} \times\left\{x_{1}\right\}$ and $A_{1} \times\left\{x_{2}\right\}$ belong each to two different faces, since this property is preserved under each one of the applications of Lemmas 1 and 2.

The edge A_{2} of F was used to connect $S_{1}\left(\gamma_{M}(G)\right)$ to $S_{2}\left(\gamma_{M}(G)\right)$; the remaining $\overline{E(F)}-2$ edges of F were adding one handle each, while A_{1} was used last to add two more handles; therefore

$$
\gamma_{M}\left(G \times K_{2}\right) \geqq 2 \gamma_{M}(G)+\frac{1}{2} \overline{V(G)},
$$

and the proof of Theorem 1 has been completed.
Proof of Theorem 2. The proof is similar to the proof of case 2 of Theorem 1 (hence the details are omitted), the only difference being that in the last step we apply again Lemma 2 rather than Lemma 3, so as to get one less handle.

Proof of Theorem 3. Let T be a spanning tree of H and let M be a maximum matching of G with the only isolated vertex v. Let $T_{1} \subset T_{2} \subset \ldots \subset T_{\overline{E(T)}}^{\overline{E(T)}}=T$ be subtrees of T with $\overline{E\left(T_{j}\right)}=j$ for all $1 \leqq j \leqq \overline{E(T)}$. Let $h: G \rightarrow S\left(\gamma_{M}(G)\right)$ be a cellular embedding, and take $h_{i}: G \rightarrow S_{i}\left(\gamma_{M}(G)\right)$, for $i=1, \ldots, \overline{V(H)}$, $\overline{V(H)}$ copies of h, with $S_{i}\left(\gamma_{M}(G)\right) \cap S_{j}\left(\gamma_{M}(G)\right)=\emptyset$, for all $1 \leqq i<j \leqq \overline{V(H)}$ Apply Lemma 4 to get a particular cellular embedding of $\left(G \times V\left(T_{1}\right)\right) \cup$ $\left(\{v\} \times T_{1}\right)$ into $S\left(2 \gamma_{M}(G)\right)$ and continue applying it $\overline{E(T)}-1$ more times to get a particular cellular embedding of $G \times V(H) \cup\{v\} \times T$ into a $S(\overline{V(H)}$. $\left.\gamma_{M}(G)\right)$.

If $A=a_{1} a_{2} \in E(H)-E(T)$, then we add the new edge $\{v\} \times A$ as follows: if $\{v\} \times\left\{a_{1}\right\}$ and $\{v\} \times\left\{a_{2}\right\}$ belong to the same face of the embedding (of $G \times V(H) \cup\{v\} \times T$ into $\left.S\left(\overline{V(H)} \cdot \gamma_{M}(G)\right)\right)$, then take a simple arc α in that face, connecting these two end points, to be the image of $\{v\} \times A$; if they belong to different faces, then delete two open disks, one in each of the faces, and attach a handle so as to merge the two faces into one, while embedding the extra arc $\{v\} \times A$ along that handle. Do it $\overline{E(H)}-\overline{E(T)}=\overline{E(H)}-\overline{V(H)}$ +1 times to get a particular cellular embedding of $G \times V(H) \cup\{v\} \times H$ into a $S(t)$, for some integer $t \geqq \overline{V(H)} \cdot \gamma_{M}(G)$.

Apply Lemma $2 \overline{E(M)} \cdot \overline{E(H)}$ successive times, one for each possible choice of an edge of M and an edge of H, as in the proof of Theorem 1, and a cellular embedding is obtained, taking $G \times H$ into $S(r)$, where $r \geqq \overline{V(H)} \cdot \gamma_{M}(G)+$ $\frac{1}{2}(\overline{V(G)}-1) \overline{E(H)}$. It follows that

$$
\gamma_{M}(G \times H) \geqq \overline{V(H)} \cdot \gamma_{M}(G)+\frac{1}{2}(\overline{V(G)}-1) \overline{E(H)}
$$

and Theorem 3 has been proven.
Proof of Corollary 1. The proof is by induction on n, starting with $n=2$: by Theorem A, $\gamma_{M}\left(Q_{2}\right) \leqq[(4-4+1) / 2]=0$, hence $\gamma_{M}\left(Q_{2}\right)=0$, as needed. Suppose, inductively, that for some $n, n \geqq 2, \gamma_{M}\left(Q_{n}\right)=(n-2) 2^{n-2}$. As is well-known, $Q_{n+1}=Q_{n} \times K_{2}, \overline{V\left(Q_{n}\right)}=2^{n}$ and $\overline{E\left(Q_{n}\right)}=n 2^{n-1}$; both of these two numbers are even; therefore it follows that in every cellular embedding of Q_{n} in $S(\lambda)$, the number of faces (by Euler's formula) is $\overline{E\left(Q_{n}\right)}-\overline{V\left(Q_{n}\right)}+$ $2(1-\lambda)$, which is even and $\geqq 2$. Consider a cellular embedding of Q_{n} into $S\left((n-2) 2^{n-2}\right)$; it has at least two faces; hence at least one edge E of Q_{n} in that embedding belongs to two different faces of the embedding. Every edge of Q_{n} belongs, quite elementarily, to a 1-factor of Q_{n}. Therefore case 2 of Theorem 1 is applicable to $Q_{n} \times K_{2}$, and it follows that

$$
\begin{aligned}
\gamma_{M}\left(Q_{n+1}\right) & =\gamma_{M}\left(Q_{n} \times K_{2}\right) \\
& \geqq \overline{V\left(K_{2}\right)} \cdot \gamma_{M}\left(Q_{n}\right)+\frac{1}{2} \overline{E\left(K_{2}\right)} \cdot \overline{V\left(Q_{n}\right)}-\overline{V\left(K_{2}\right)}+2 \\
& =2(n-2) 2^{n-2}+\frac{1}{2} 2^{n} \\
& =(n-2) 2^{n-1}+2^{n-1} \\
& =(n-1) 2^{n-1} .
\end{aligned}
$$

On the other hand, Theorem A implies that

$$
\begin{aligned}
\gamma_{M}\left(Q_{n+1}\right) & \leqq\left[\frac{\overline{E\left(Q_{n+1}\right)}-\overline{V\left(Q_{n+1}\right)}+1}{2}\right] \\
& =\left[\frac{(n+1) 2^{n}-2^{n+1}+1}{2}\right] \\
& =\left[\frac{(n-1) 2^{n}+1}{2}\right] \\
& =(n-1) 2^{n-1} ;
\end{aligned}
$$

as a result $\gamma_{M}\left(Q_{n+1}\right)=(n-1) 2^{n-1}$, and the proof of Corollary 1 is complete.

Corollaries.

Corollary 2. If G is a connected graph and every edge of G belongs to a 1 -factor of G, then $G \times Q_{n}$ is upperembeddable for all $n \geqq 1$, provided G is upperembeddable.

Proof. Suppose, first, that $\overline{E(G)}$ is even, G being an upperembeddable graph with a 1 -factor; any cellular embedding of G into a $S(\lambda)$ (hence, in particular, into a $S\left(\gamma_{M}(G)\right)$) has an even number of faces, as follows from Euler's Formula. Applying part 2 of Theorem 1 to $G \times K_{2}$, we get

$$
\gamma_{M}\left(G \times K_{2}\right) \geqq 2 \gamma_{M}(G)+\frac{1}{2} \overline{V(G)} .
$$

G is upperembeddable, $\overline{E(G)}$ and $\overline{V(G)}$ are even; therefore

$$
\gamma_{M}(G)=\left[\frac{\beta(G)}{2}\right]=\frac{\overline{E(G)}-\overline{V(G)}}{2}
$$

and hence

$$
\begin{aligned}
\gamma_{M}\left(G \times K_{2}\right) & \geqq 2 \frac{\overline{E(G)}-\overline{V(G)}}{2}+\frac{1}{2} \overline{V(G)} \\
& =\frac{2 \overline{E(G)}-\overline{V(G)}}{2} \\
& =\left[\frac{\beta\left(G \times K_{2}\right)}{2}\right] .
\end{aligned}
$$

On the other hand, $\gamma_{M}\left(G \times K_{2}\right) \leqq\left[\beta\left(G \times K_{2}\right) / 2\right]$, by Theorem A; therefore $G \times K_{2}$ is upperembeddable. Clearly, every edge of $G \times K_{2}$ belongs to some 1-factor of $G \times K_{2}$, and both $\overline{E\left(G \times K_{2}\right)}$ and $\overline{V\left(G \times K_{2}\right)}$ are even; hence $G \times Q_{n}$ is, by induction on n, upperembeddable for all $n \geqq 1$.

In case $\overline{E(G)}$ is odd $\gamma_{M}(G)=\frac{1}{2}(\overline{E(G)}-\overline{V(G)}+1)$ and it follows by

Theorem 2 that

$$
\begin{aligned}
\gamma_{M}\left(G \times K_{2}\right) & \geqq 2 \gamma_{M}(G)+\frac{1}{2} \overline{V(G)}-1 \\
& =\overline{E(G)}-\overline{V(G)}+\frac{1}{2} \overline{V(G)} \\
& =\frac{1}{2}(2 \overline{E(G)}+\overline{V(G)}-2 \overline{V(G)}) \\
& \left.=\frac{1}{2}\left(\overline{E\left(G \times K_{2}\right.}\right)-\overline{V\left(G \times K_{2}\right)}\right) \\
& =\left[\beta\left(G \times K_{2}\right) / 2\right],
\end{aligned}
$$

where the last equality is due to the eveness of both $\overline{E\left(G \times K_{2}\right)}$ and $\overline{V\left(G \times K_{2}\right)}$. Since the other inequality is given by Theorem A , it follows that $\gamma_{M}\left(G \times K_{2}\right)=$ $\left[\beta\left(G \times K_{2}\right) / 2\right]$, and $G \times K_{2}=G \times Q_{1}$ is upperembeddable. The rest of the proof is as in the first case; hence Corollary 2 has been proven.

As particular cases, we have
Corollary 3. $K_{2 n} \times Q_{m}$ and $K_{n, n} \times Q_{m}$ are upperembeddable for all $n \geqq 1$ and $m \geqq 1$.

Corollary 4. $K_{4 n+1} \times Q_{m}$ is upperembeddable and

$$
\begin{aligned}
& 2^{m-2}\left(16 n^{2}+\right.12 n+4 m n+2 m) \\
& \leqq \gamma_{M}\left(K_{4 n+3} \times Q_{m}\right) \leqq
\end{aligned}\left\{\begin{array}{l}
2^{m-2}\left(16 n^{2}+12 n+4 m n+3 m\right) \\
\text { if } m \text { is even } \\
2^{m-2}\left(16 n^{2}+12 n+4 m n+3 m+1\right) \\
\text { if } m \text { is odd },
\end{array}\right.
$$

for all $n \geqq 1$ and $m \geqq 1$.
Proof of Corollary 4. Using Theorems A and 3, it follows that $K_{4 n+1} \times K_{2}$ is upperembeddable, with $\gamma_{M}\left(K_{4 n+1} \times K_{2}\right)=8 n^{2}$; Corollary 2 applied to $K_{4 n+1} \times K_{2}\left(=K_{4 n+1} \times Q_{1}\right)$ shows that $K_{4 n+1} \times Q_{m}$ is upperembeddable for all $n \geqq 1$ and $m \geqq 1$. The inequalities for $\gamma_{M}\left(K_{4_{n+3}} \times Q_{m}\right)$ follow from Theorem A and Theorem 3.

Corollary 5. If G is a connected upperembeddable graph with an even number of edges and a maximum matching that has exactly one isolated vertex, then for every connected graph H

$$
\frac{\beta(G \times H)}{2}-\frac{\beta(H)}{2} \leqq \gamma_{M}(G \times H) \leqq\left[\frac{\beta(G \times H)}{2}\right]
$$

in particular, $G \times T$ is upperembeddable for all trees T (and G as stated).
Proof. It follows from Theorem 3 that

$$
\gamma_{M}(G \times H) \geqq \overline{V(H)} \cdot \gamma_{M}(G)+\frac{1}{2} \overline{E(H)} \cdot(\overline{V(G)}-1)
$$

Since $\overline{E(G)}$ is even, $\overline{V(G)}$ is odd and G is upperembeddable, we have $\gamma_{M}(G)=$
$\frac{1}{2}(\overline{E(G)}-\overline{V(G)}+1)$; hence

$$
\begin{aligned}
\gamma_{M}(G \times H) \geqq & \overline{V(H)} \frac{\overline{E(G)}-\overline{V(G)}+1}{2}+\frac{1}{2} \overline{E(H)}(\overline{V(G)}-1) \\
= & \frac{1}{2}[\overline{V(G)} \overline{E(H)}+\overline{E(G)} \overline{V(H)}-\overline{V(H)} \overline{V(G)}+1] \\
& \left.-\frac{1}{2} \overline{(E(H)}-\overline{V(H)}+1\right) \\
= & \frac{\beta(G \times H)}{2}-\frac{\beta(H)}{2} .
\end{aligned}
$$

The other inequality is obtained, again, by Theorem A.
If H is a tree, $\beta(H)=0$; hence

$$
\frac{\beta(G \times H)}{2} \leqq \gamma_{M}(G \times H) \leqq\left[\frac{\beta(G \times H)}{2}\right],
$$

and since $[x] \leqq x$ for all x, equality holds and $G \times H$ is upperembeddable (observe that $\beta(G \times H)$ is an even number in the last case). This completes the proof of Corollary 5 .

As particular cases, we have
Corollary 6. $K_{2 n+3} \times T$ and $K_{n, n+1} \times T$ are upperembeddable for all $n \geqq 1$ and all trees T.

Remark 2. If G and H are connected graphs and a maximum matching of G has m isolated vertices, $m \geqq 1$, then

$$
\gamma_{M}(G \times H) \geqq \overline{V(H)} \cdot \gamma_{M}(G)+\frac{1}{2} \overline{E(H)}(\overline{V(G)}-m)
$$

The proof is similar to the proof of Theorem 3 and is omitted.
Remark 3. The appearance of the term $\overline{V(G)} \cdot \gamma_{M}(G)$ in our theorems is quite natural, since $G \times H$ contains a connected subgraph G^{\prime} of the form $G \times V(H) \cup\{v\} \times T$, where $v \in V(G)$ and T is a spanning tree in H; $\gamma_{M}\left(G^{\prime}\right)=\overline{V(H)} \cdot \gamma_{M}(G)$, by [3, Theorem A]; hence $\gamma_{M}(G \times H) \geqq \overline{V(H)}$. $\gamma_{M}(G)$ by [2, Theorem 2].

Remark 4. The strong Cartesian product $G \overline{\times} H$ of G and H has been defined in [6] (see also [9]), as $G \times H \cup\left\{\left(u_{1}, v_{2}\right)\left(u_{2}, v_{1}\right) \mid u_{1} u_{2} \in E(G)\right.$ and $\left.v_{1} v_{2} \in E(H)\right\}$. Treating each pair of edges of $G \overline{\times} H$ of the form $\left(u_{1}, v_{2}\right)\left(u_{2}, v_{1}\right)$ and $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)$ (which, of course, are not edges of $\left.G \times H\right)$, we get, by a procedure similar to that of Theorem 1 , that the following holds:
"If G and H are connected graphs and G has a 1-factor, then

$$
\gamma_{M}(G \overline{\times} H) \geqq \overline{V(H)} \cdot \gamma_{M}(G)+\frac{1}{2} \overline{E(H)} \overline{V(G)}-\overline{V(H)}+2+\overline{E(H)} \overline{E(G)} \text { ". }
$$

Apology. In trying to keep the geometric flavor of the subject, we did not use Edmond's technique (see $[\mathbf{1 ; 2 ; 3]}$), except, of course when using results from $[1 ; 2 ; 3 ; 4]$.

References

1. R. Duke, The genus, regional number, and the Betti number of a graph, Can. J. Math. 18 (1966), 817-822.
2. E. A. Nordhaus, B. M. Stewart, and A. T. White, On the maximum genus of a graph, J. Combinatorial Theory Ser. B 11 (1971), 258-267.
3. E. A. Nordhaus, R. D. Ringeisen, B. M. Stewart, and A. T. White, A Kuratowski-type theorem for the maximum genus of a graph, J. Combinatorial Theory Ser. B 12 (1972), 260-267.
4. R. D. Ringeisen, Determining all compact orientable 2-manifolds upon which $K_{m, n}$ has 2 -cell imbeddings, J. Combinatorial Theory Ser. B 12 (1972) 101-104.
5. Upper and lower imbeddable graphs, Graph theory and applications (Y. Alavi, et al., editors), Springer-Verlag, Vol. 303, 1972
6. G. Sabidussi, Graph multiplication, Math. Z. 72 (1960), 446-457.
7. W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107-111.
8. A. T. White, The genus of the Cartesian product of two graphs, J. Combinatorial Theory Ser. B 11 (1971), 89-94.
9. On the genus of products of graphs, Recent Trends in Graph Theory (M. Capobianco, et al., editors), Springer-Verlag, Vol. 186, 1971.
10. J. Zaks, On the 1-factors of n-connected graphs, J. Combinatorial Theory Ser. B 11 (1971), 169-180.

Michigan State University, East Lansing, Michigan;
University of Haifa,
Haifa, Israel

[^0]: Received September 11, 1972 and in revised form, March 18, 1974. This research was presented to the American Mathematical Society, August 1973, in Missoula, Montana.

