
Appendix A

Analysis

In Chapters 3 and 4, we use a number of facts of analysis, and especially
complex analysis, which are not necessarily included in most introductory
graduate courses. We review them here and give some details of the proofs
(when they are sufficiently elementary and enlightening) or detailed references.

A.1 Summation by Parts

Analytic number theory makes very frequent use of “summation by parts,”
which is a discrete form of integration by parts. We state the version that
we use.

Lemma A.1.1 (Summation by parts) Let (an)n�1 be a sequence of complex
numbers and f : [0, +∞[→ C a function of class C1. For all x � 0, define

Ma(x) =
∑

1�n�x
an.

For x � 0, we then have∑
1�n�x

anf (n) = Ma(x)f (x)−
∫ x

1
Ma(t)f

′(t)dt . (A.1)

If Ma(x)f (x) tends to 0 as x →+∞, then we have∑
n�1

anf (n) = −
∫ +∞

1
Ma(t)f

′(t)dt,

provided either the series or the integral converges absolutely, in which case
both of them do.

Using this formula, one can exploit known information (upper bounds or
asymptotic formulas) concerning the summation function Ma , typically when
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158 Appendix A

the sequence (an) is irregular, in order to understand the summation function
for anf (n) for many sufficiently regular functions f .

The reader should attempt to write a proof of this lemma, but we give the
details for completeness.

Proof Let N � 0 be the integer such that N � x < N+ 1. We have∑
1�n�x

anf (n) =
∑

1�n�N

anf (n).

By the usual integration by parts formula, we then note that

Ma(x)f (x)−
∫ x

1
Ma(t)f

′(t)dt = Ma(N)f (N)−
∫ N

1
Ma(t)f

′(t)dt

(because Ma is constant on the interval N � t � x). We therefore reduce to
the case x = N. We then have∑

n�N

anf (n) =
∑

1�n�N

(Ma(n)−Ma(n− 1))f (n)

=
∑

1�n�N

Ma(n)f (n)−
∑

0�n�N−1

Ma(n)f (n+ 1)

= Ma(N)f (N)+
∑

1�n�N−1

Ma(n)(f (n)− f (n+ 1))

= Ma(N)f (N)−
∑

1�n�N−1

Ma(n)

∫ n+1

n

f ′(t)dt

= Ma(N)f (N)−
∫ N

1
Ma(t)f

′(t)dt,

which concludes the first part of the lemma. The last assertion follows
immediately by letting x → +∞, in view of the assumption on the limit of
Ma(x)f (x).

A.2 The Logarithm

In Chapters 3 and 4, we sometimes use the logarithm for complex numbers.
Since this is not a globally defined function on C×, we clarify here what we
mean.

Definition A.2.1 Let z ∈ C be a complex number with |z| < 1. We define

log(1− z) = −
∑
k�1

zk

k
.
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Proposition A.2.2 (1) For any complex number z such that |z| < 1, we have

elog(1−z) = 1− z.
(2) Let (zn)n�1 be a sequence of complex numbers such that |zn| < 1. If∑

n

|zn| < +∞,

then ∏
n�1

(1− zn) = exp

(∑
n�1

log(1− zn)
)

.

(3) For |z| � 1
2 , we have | log(1− z)| � 2|z|.

Proof Part (1) is standard since the series used in the definition is the Taylor
series of the logarithm around 1 (evaluated at −z), and this power series has
radius of convergence 1.

Part (2) is then simply a consequence of the continuity of the exponential
and the fact that the product is convergent under the assumption on (zn)n�1.

For (3), we note that for |z| < 1, we have

log(1− z) = −z
(

1+ z
2
+ z

2

3
+ · · · − z

k−1

k
+ · · ·

)
so that if |z| � 1

2 , we get

| log(1− z)| � |z|
(

1+ 1

4
+ 1

8
+ · · · + 1

2k−1
+ · · ·

)
� 2|z|.

A.3 Mellin Transform

The Mellin transform is a multiplicative analogue of the Fourier transform,
to which it can indeed in principle be reduced. We consider it only in simple
cases. Let

ϕ : [0, +∞[−→ C

be a continuous function that decays faster than any polynomial at infinity (for
instance, a function with compact support). Then the Mellin transform ϕ̂ of ϕ
is the holomorphic function defined by the integral

ϕ̂(s) =
∫ +∞

0
ϕ(x)xs

dx

x
,
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for all those s ∈ C for which the integral makes sense, which under our
assumption includes all complex numbers with Re(s) > 0.

The basic properties of the Mellin transform that are relevant for us are
summarized in the next proposition:

Proposition A.3.1 Let ϕ : [0, +∞[−→ C be smooth and assume that ϕ and
all its derivatives decay faster than any polynomial at infinity.

(1) The Mellin transform ϕ̂ extends to a meromorphic function on
Re(s) > −1, with at most a simple pole at s = 0 with residue ϕ(0).

(2) For any real numbers −1 < A < B, the Mellin transform has rapid
decay in the strip A � Re(s) � B, in the sense that for any integer k � 1,
there exists a constant Ck � 0 such that

|ϕ̂(s)| � Ck(1+ |t |)−k

for all s = σ + it with A � σ � B and |t | � 1.
(3) For any σ > 0 and any x � 0, we have the Mellin inversion formula

ϕ(x) = 1

2iπ

∫
(σ )

ϕ̂(s)x−sds.

In the last formula, the notation
∫
(σ )
(· · · )ds refers to an integral over the

vertical line Re(s) = σ , oriented upward.

Proof (1) We integrate by parts in the definition of ϕ̂(s) for Re(s) > 0 and
obtain

ϕ̂(s) =
[
ϕ(x)

xs

s

]+∞
0

− 1

s

∫ +∞

0
ϕ′(x)xs+1 dx

x
= −1

s

∫ +∞

0
ϕ′(x)xs+1 dx

x

since ϕ and ϕ′ decay faster than any polynomial at ∞. It follows that
ψ(s) = sϕ̂(s) is holomorphic for Re(s) > −1, and hence that ϕ̂(s) is
meromorphic in this region. Since

lim
s→0

sϕ̂(s) = ψ(0) = −
∫ +∞

0
ϕ′(x)dx = ϕ(0),

it follows that there is at most a simple pole with residue ϕ(0) at s = 0.
(2) Iterating the integration by parts k � 2 times, we obtain for Re(s) > −1

the relation

ϕ̂(s) = (−1)k

s(s + 1) · · · (s + k)
∫ +∞

0
ϕ(k)(x)xs+k

dx

x
.

Hence, for A � σ � B and |t | � 1, we obtain the bound

|ϕ̂(s)| � 1

(1+ |t |)k
∫ +∞

0
|ϕ(k)(x)|xB+k dx

x
� 1

(1+ |t |)k .
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(3) We interpret ϕ̂(s), for s = σ + it with σ > 0 fixed, as a Fourier
transform; by means of the change of variable x = ey , we have

ϕ̂(s) =
∫ +∞

0
ϕ(x)xσ xit

dx

x
=
∫

R
ϕ(ey)eσyeiyt dy,

which shows that t �→ ϕ̂(σ + it) is the Fourier transform (with the above
normalization) of the function g(y) = ϕ(ey)eσy . Note that g is smooth and
tends to zero very rapidly at infinity (for y → −∞, this is because ϕ is
bounded close to 0, but eσy then tends exponentially fast to 0). Therefore the
Fourier inversion formula holds, and for any y ∈ R, we obtain

ϕ(ey)eσy = 1

2π

∫
R
ϕ̂(σ + it)e−itydt .

Putting x = ey , this translates to

ϕ(x) = 1

2π

∫
R
ϕ̂(σ + it)x−σ−it dt = 1

2iπ

∫
(σ )

ϕ̂(s)x−sds.

One of the most important functions of analysis is classically defined as a
Mellin transform. This is the Gamma function of Euler, which is essentially the
Mellin transform of the exponential function, or more precisely of exp(−x). In
other words, we have

�(s) =
∫ +∞

0
e−xxs

dx

x

for all complex numbers s such that Re(s) > 0. Proposition A.3.1 shows that
� extends to a meromorphic function on Re(s) > −1, with a simple pole at
s = 0 with residue 1. In fact, much more is true:

Proposition A.3.2 The function �(s) extends to a meromorphic function on C
with only simple poles at s = −k for all integers k � 0, with residue (−1)k/k!.
It satisfies

�(s + 1) = s�(s)
for all s ∈ C, with the obvious meaning if s or s+1 is a pole, and in particular
we have

�(n) = (n− 1)!

for all integers n � 0.
Moreover, the function 1/� is entire.
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Proof It suffices to prove that �(s + 1) = s�(s) for Re(s) > 0. Indeed, this
formula proves, by induction on k � 1, that � has an analytic continuation to
Re(s) > −k, with a simple pole at −k + 1, where the residue r−k+1 satisfies

r−k+1 = r−k+2

−k + 1
.

This easily gives every statement in the proposition. And the formula we want
is just a simple integration by parts away:

�(s + 1) =
∫ +∞

0
e−xxsdx = [−e−xxs]+∞0 + s

∫ +∞

0
e−xxs−1dx = s�(s).

Since � is meromorphic, its inverse 1/� is also meromorphic; for the
proof that 1/� is in fact entire (i.e., that �(s) �= 0 for s ∈ C), we refer to
[116, p. 149] (it follows, e.g., from the formula

�(s)�(1− s) = π

sin(πs)
,

valid for all s ∈ C, since the known poles of �(1 − s) are compensated by
those of 1/ sin(πs)).

An important feature of the Gamma function, which is often quite impor-
tant, is that its asymptotic behavior in very wide ranges of the complex plane
is very clearly understood. This is the so-called Stirling formula.

Proposition A.3.3 Let α > 0 be a real number and let Xα be either the set of
s ∈ C such that Re(s) > α or the set of s ∈ C such that | Im(s)| > α. We have

log�(s) = s log s − s − 1

2
log s + 1

2
log 2π + O(|s|−1),

�′(s)
�(s)

= log s − 1

2s
+ O(s−2)

for any s ∈ Xα .

For a proof, see for instance [16, Ch. VII, Prop. 4].

A.4 Dirichlet Series

We present in this section some of the basic analytic properties of series of the
type ∑

n�1

ann
−s,

where an ∈ C for n � 1. These are called Dirichlet series, and we refer to
Titchmarsh’s book [116, Ch. 9] for basic information about these functions.
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If an = 0 for n large enough (so that there are only finitely many terms),
the series converges of course for all s, and the resulting function is called a
Dirichlet polynomial.

Lemma A.4.1 Let (an)n�1 be a sequence of complex numbers. Let s0 ∈ C. If
the series ∑

n�1

ann
−s0

converges, then the series ∑
n�1

ann
−s

converges uniformly on compact subsets of U = {s ∈ C | Re(s) > Re(s0)}.
In particular the function

f (s) =
∑
n�1

ann
−s

is holomorphic on U.

Sketch of proof We may assume (by considering ann−s0 instead of an) that
s0 = 0. For any integers N < M, let

sN,M = aN + · · · + aM.

By Cauchy’s criterion, we have sN,M → 0 as N, M → +∞. Suppose that
σ = Re(s) > 0. Let N < M be integers. By the elementary summation by
parts formula (Lemma A.1.1), we have∑

N�n�M

ann
−s = aMM−s −

∑
N�n<M

((n+ 1)−s − n−s)sN,n.

It is however also elementary that

|(n+ 1)−s − n−s | =
∣∣∣∣∣s
∫ n+1

n

x−s−1dx

∣∣∣∣∣ � |s|
σ
(n−σ − (n+ 1)−σ ). (A.2)

Hence ∣∣∣∣ ∑
N�n�M

ann
−s
∣∣∣∣ � |s|

σ
max

N�n�M
|sN,n|

(
1

Nσ
− 1

Mσ

)
.

It therefore follows by Cauchy’s criterion that the Dirichlet series f (s)
converges uniformly in any region in C defined by the condition

|s|
σ

� A
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for some A > 0. This includes, for a suitable value of A, any compact subset
of the half-plane {s ∈ C | σ > 0}.

In general, the convergence is not absolute. We can see in this lemma a
first instance of a fairly general principle concerning Dirichlet series: if some
particular property holds for some s0 ∈ C (or for all s0 with some fixed real
part), then it holds – or even a stronger property holds – for any s with Re(s) >
Re(s0).

This principle also applies in many cases to the possible analytic continua-
tion of Dirichlet series beyond the region of convergence. The next proposition
is another example, concerning the size of the Dirichlet series.

Proposition A.4.2 Let σ ∈ R be a real number and let (an)n�1 be a bounded
sequence of complex numbers such that the Dirichlet series

f (s) =
∑
n�1

ann
−s

converges for Re(s) > σ . Then, for any σ1 > σ , we have

|f (s)| � 1+ |t |

uniformly for Re(s) � σ1.

Proof We may assume that
∑
an converges by replacing (an) by (ann−τ ) for

some τ > σ . The partial sums

sN = a1 + · · · + aN

are then bounded. Let s ∈ C be such that σ = Re(s) > 0. Then we have by
partial summation

N∑
n=1

an

ns
=

M∑
n=1

an

ns
+

N∑
n=M+1

(
1

ns
− 1

(n+ 1)s

)
sn − sM

(M+ 1)s
+ sN

(N+ 1)s

for any integers M � n. Letting N →+∞, as we may, we get

f (s) =
M∑
n=1

an

ns
+
∑
n>M

(
1

ns
− 1

(n+ 1)s

)
sn − sM

(M+ 1)s
.
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Applying (A.2), this leads to

|f (s)| �
M∑
n=1

1

nσ
+ |s|
σ

∑
n>M

(
1

nσ
− 1

(n+ 1)σ

)
+ 1

(M+ 1)σ

� M+ tM−σ + 1,

and the desired bounds follow by taking M=�Im(s)� (see also [116, 9.33]).

In order to express in a practical manner a Dirichlet series outside of
its region of convergence, one can use smooth partial sums, which exploit
harmonic analysis.

Proposition A.4.3 Let ϕ : [0, + ∞[−→ [0,1] be a smooth function with
compact support such that ϕ(0) = 1. Let ϕ̂ denote its Mellin transform. Let
σ > 0 be given with 0 < σ0 < 1, and let (an)n�1 be any sequence of complex
numbers with |an| � 1 such that the Dirichlet series∑

n�1

ann
−s

extends to a holomorphic function f (s) in the region Re(s) > σ0 with at most
a simple pole at s = 1 with residue c ∈ C.

For N � 1, define

fN(s) =
∑
n�1

anϕ
( n

N

)
n−s .

Let σ be a real number such that σ0 < σ < 1. Then we have

f (s)− fN(s) = − 1

2iπ

∫
(−δ)

f (s + w)Nwϕ̂(w)dw − cN1−s ϕ̂(1− s)

for any s = σ + it and any δ > 0 such that −δ + σ > σ0.

It is of course possible that c = 0, which corresponds to a Dirichlet series
that is holomorphic for Re(s) > σ0.

This result gives a convergent approximation of f (s), inside the strip
Re(s) > σ1, using the finite sums fN(s) – the point is that |Nw| = N−δ , so
that the polynomial growth of f on vertical lines combined with the fast decay
of the Mellin transform ϕ̂ shows that the integral on the right tends to 0 as
N → +∞. Moreover, the shape of the formula makes it very accessible to
further manipulations, as done in Chapter 3.
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Proof Fix α > 1 such that the Dirichlet series f (s) converges absolutely for
Re(s)=α. By the Mellin inversion formula, followed by exchanging the order
of the sum and integral, we have

fN(s) =
∑
n�1

ann
−s × 1

2iπ

∫
(α)

Nwn−wϕ̂(w)dw

= 1

2iπ

∫
(−δ)

(∑
n�1

ann
−s−w

)
Nwϕ̂(w)dw

= 1

2iπ

∫
(−δ)

f (s + w)Nwϕ̂(w)dw,

where the absolute convergence justifies the exchange of sum and integral.
Now consider some T � 1 and some δ such that 0 < δ < 1. Let RT be the

rectangle in C with sides [α−iT,α+iT], [α+iT,−δ+iT], [−δ+iT,−δ−T],
[−δ−iT,α−iT], oriented counterclockwise. Inside this rectangle, the function

w �→ f (s + w)Nwϕ̂(w)
is meromorphic. It has a simple pole at w = 0, by our choice of δ and the
properties of the Mellin transform of ϕ given by Proposition A.3.1, and the
residue at w = 0 is ϕ(0)f (s) = f (s), again by Proposition A.3.1. If c �= 0, it
may also have a simple pole atw = 1−s, with residue equal to cN1−s ϕ̂(1−s).

Cauchy’s theorem therefore implies that

fN(s) = f (s)+ 1

2iπ

∫
RT

f (s + w)Nwϕ̂(w)dw + cN1−s ϕ̂(1− s).

Now we let T → +∞. Our assumptions imply that w �→ f (s + w) has
polynomial growth on the strip −δ � Re(w) � α, and therefore the fast decay
of ϕ̂ (Proposition A.3.1 again) shows that the contribution of the two horizontal
segments to the integral along RT tends to 0 as T →+∞. Taking into account
orientation, we get

f (s)− fN(s) = − 1

2iπ

∫
(−δ)

f (s + w)Nwϕ̂(w)dw − cN1−s ϕ̂(1− s),

as claimed.

We also recall the formula for the product of two Dirichlet series, which
involves the so-called Dirichlet convolution (see also Section C.1 for more
properties and examples of this operation).

Proposition A.4.4 Let (a(n))n�1 and (b(n))n�1 be sequences of complex
numbers. For any s ∈ C such that the Dirichlet series
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A(s) =
∑
n�1

a(n)n−s and B(s) =
∑
n�1

b(n)n−s,

converge absolutely, we have

A(s)B(s) =
∑
n�1

c(n)n−s,

where

c(n) =
∑
d|n
d�1

a(d)b
(n
d

)
.

We will denote c(n) = (a ! b)(n) and often abbreviate the definition by
writing

(a ! b)(n) =
∑
d|n
a(d)b

(n
d

)
or (a ! b)(n) =

∑
de=n

a(d)b(e).

Proof Formally, this is quite clear:

A(s)B(s) =
(∑
n�1

a(n)n−s
)(∑

n�1

b(m)m−s
)

=
∑
m,n�1

a(n)b(m)(nm)−s =
∑
k�1

k−s
( ∑
mn=k

a(n)b(m)

)
= C(s).

The assumptions are sufficient to allow us to rearrange the double series so that
these manipulations are valid.

A.5 Density of Certain Sets of Holomorphic Functions

Let D be a nonempty open disc in C and D̄ its closure. We denote by H(D) the
Banach space of all continuous functions f : D̄ −→ C that are holomorphic in
D, with the norm

‖f ‖∞ = sup
z∈D̄
|f (z)|.

We also denote by C(K) the Banach space of continuous functions on a
compact space K, also with the norm

‖f ‖∞ = sup
x∈K

|f (x)|

(so that there is no risk of confusion if K = D and we apply this to a function
that also belongs to H(D)). We denote by C(K)′ the dual of C(K), namely, the
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space of continuous linear functionals C(K) −→ C. An element μ ∈ C(K)′

can also be interpreted as a complex measure on K (by the Riesz–Markov
Theorem; see, e.g., [40, Th. 7.17]), and in this interpretation, one would write

μ(f ) =
∫

K
f (x)dμ(x)

for f ∈ C(K).

Theorem A.5.1 Let D be as above. Let (fn)n�1 be a sequence of elements of
H(D) with ∑

n�1

‖fn‖2
∞ < +∞.

Let X be the set of sequences (αn) of complex numbers with |αn| = 1 such
that the series ∑

n�1

αnfn

converges in H(D).
Assume that X is not empty and that, for any continuous linear functional

μ ∈ C(D̄)′ such that ∑
n�1

|μ(fn)| < +∞, (A.3)

the Laplace transform of μ is identically 0. Then, for any N � 1, the set of
series ∑

n�N

αnfn

for (αn) in X is dense in H(D).

Here, the Laplace transform of μ is defined by

g(z) = μ(w �→ ewz)

for z ∈ C. In the interpretation of μ as a complex measure, which can be
viewed as a complex measure on C that is supported on D̄, one would write

g(z) =
∫

C
ewzdμ(w).

Proof This result is proved, for instance, in [4, Lemma 5.2.9], except that only
the case N = 1 is considered. However, if the assumptions hold for (fn)n�1,
they hold equally for (fn)n>N, hence the general case follows.
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We will use the last part of the following lemma as a criterion to establish
that the Laplace transform is zero in certain circumstances.

Lemma A.5.2 Let K be a complex subset of C and μ ∈ C(K)′ a continuous
linear functional. Let

g(z) =
∫
ewzdμ(z) = μ(w �→ ewz)

be its Laplace transform.
(1) The function g is an entire function on C, that is, it is holomorphic on C.
(2) We have

lim sup
|z|→+∞

log |g(z)|
|z| < +∞.

(3) If g �= 0, then

lim sup
r→+∞

log |g(r)|
r

� inf
z∈K

Re(z).

Proof (1) Let z ∈ C be fixed. For h �= 0, we have

g(z+ h)− g(z)
h

= μ(fh),

where fh(w) = (ew(z+h) − ewz)/h. We have

fh(w)→ wewz

as h→ 0, and the convergence is uniform on K. Hence we get

g(z+ h)− g(z)
h

−→ μ(w �→ wewz),

which shows that g is holomorphic at z with derivative μ(w �→ wewz). Since
z is arbitrary, this means that g is entire.

(2) We have

|g(z)| � ‖μ‖ ‖w �→ ewz‖∞ � ‖μ‖e|z|M

where M = supw∈K |w|, and therefore

lim sup
|z|→+∞

log |g(z)|
|z| � M < +∞.

(3) This is proved, for instance, in [4, Lemma 5.2.2], using relatively
elementary properties of entire functions satisfying growth conditions such as
those in (2).
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Finally, we will use the following theorem of Bernstein, extending a result
of Pólya.

Theorem A.5.3 Let g : C −→ C be an entire function such that

lim sup
|z|→+∞

log |g(z)|
|z| < +∞.

Let (rk) be a sequence of positive real numbers, and let α, β be real numbers
such that

(1) we have αβ < π ;
(2) we have

lim sup
y∈R

|y|→+∞

log |g(iy)|
|y| � α;

(3) we have |rk − rl | � |k − l| for all k, l � 1, and rk/k→ β.
Then it follows that

lim sup
k→+∞

log |g(rk)|
rk

= lim sup
r→+∞

log |g(r)|
r

.

This is explained in Lemma [4, 5.2.3].

Example A.5.4 Taking g(z) = sin(πz), with α = 1, rn = nπ so that β = π ,
we see that the first condition is best possible.

We also use a relatively elementary lemma due to Hurwitz on zeros of
holomorphic functions.

Lemma A.5.5 Let D be a nonempty open disc in C. Let (fn) be a sequence of
holomorphic functions in H(D). Assume fn converges to f in H(D). If fn(z) �=
0 all n � 1 and z ∈ D, then either f = 0 or f does not vanish on D.

Proof We assume that f is not zero, and show that it has no zero in D. Let
z0 ∈ D be fixed, and let C be a circle of radius r > 0 centered at z0 such
that C ⊂ D and such that f has no zero, except possibly z0, in the disc with
boundary C. We have δ = infz∈C |f (z)| > 0. For n large enough, we get

sup
z∈C
|f (z)− fn(z)| < δ,

and then the relation f = f −fn+fn combined with Rouché’s Theorem (see,
e.g., [116, 3.42]) shows that f has the same number of zeros as fn in the disc
bounded by C. This means that f has no zeros there and, in particular, that
f (z0) �= 0.
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