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Banach Spaces

The foundations of modern Analysis were laid in the early decades of the twentieth
century, through the work of Maurice Fréchet, Ivar Fredholm, David Hilbert, Henri
Lebesgue, Frigyes Riesz, and many others. These authors realised that it is fruitful to
study linear operations in a setting of abstract spaces endowed with further structure to
accommodate the notions of convergence and continuity. This led to the introduction of
abstract topological and metric spaces and, when combined with linearity, of topological
vector spaces, Hilbert spaces, and Banach spaces. Since then, these spaces have played
a prominent role in all branches of Analysis.

Stefan Banach, 1898–1945

The main impetus came from the study of or-
dinary and partial differential equations where
linearity is an essential ingredient, as evidenced
by the linearity of the main operations involved:
point evaluations, integrals, and derivatives. It
was discovered that many theorems known at
the time, such as existence and uniqueness re-
sults for ordinary differential equations and the
Fredholm alternative for integral equations, can
be conveniently abstracted into general theorems
about linear operators in infinite-dimensional
spaces of functions.

A second source of inspiration was the discov-
ery, in the 1920s by John von Neumann, that the
– at that time brand new – theory of Quantum Mechanics can be put on a solid math-
ematical foundation by means of the spectral theory of selfadjoint operators on Hilbert
spaces. It was not until the 1930s that these two lines of mathematical thinking were
brought together in the theory of Banach spaces, named after its creator Stefan Banach
(although this class of spaces was also discovered, independently and about the same
time, by Norbert Wiener). This theory provides a unified perspective on Hilbert spaces
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2 Banach Spaces

and the various spaces of functions encountered in Analysis, including the spaces C(K)

of continuous functions and the spaces Lp(Ω) of Lebesgue integrable functions.

1.1 Banach Spaces

The aim of the present chapter is to introduce the class of Banach spaces and dis-
cuss some elementary properties of these spaces. The main classical examples are only
briefly mentioned here; a more detailed treatment is deferred to the next two chapters.
Much of the general theory applies to both the real and complex scalar field. Whenever
this applies, the symbol K is used to denote the scalar field, which is R in the case of
real vector spaces and C in the case of complex vector spaces.

1.1.a Definition and General Properties

Definition 1.1 (Norms). A normed space is a pair (X ,‖ · ‖), where X is a vector space
overK and ‖ ·‖ : X → [0,∞) is a norm, that is, a mapping with the following properties:

(i) ‖x‖= 0 implies x = 0;
(ii) ‖cx‖= |c|‖x‖ for all c ∈K and x ∈ X ;

(iii) ‖x+ x′‖6 ‖x‖+‖x′‖ for all x,x′ ∈ X .

When the norm ‖ · ‖ is understood we simply write X instead of (X ,‖ · ‖). If we wish
to emphasise the role of X we write ‖ · ‖X instead of ‖ · ‖.

The properties (ii) and (iii) are referred to as scalar homogeneity and the triangle
inequality. The triangle inequality implies that every normed space is a metric space,
with distance function

d(x,y) := ‖x− y‖.

This observation allows us to introduce notions such as openness, closedness, com-
pactness, denseness, limits, convergence, completeness, and continuity in the context of
normed spaces by carrying them over from the theory of metric spaces. For instance,
a sequence (xn)n>1 in X is said to converge if there exists an element x ∈ X such that
limn→∞ ‖xn− x‖ = 0. This element, if it exists, is unique and is called the limit of the
sequence (xn)n>1. We then write limn→∞ xn = x or simply ‘xn→ x as n→ ∞’.

The triangle inequality (ii) implies both ‖x‖−‖x′‖6 ‖x−x′‖ and ‖x′‖−‖x‖6 ‖x′−
x‖. Since ‖x′− x‖ = ‖(−1) · (x− x′)‖ = ‖x− x′‖ by scalar homogeneity, we obtain the
reverse triangle inequality ∣∣‖x‖−‖x′‖∣∣6 ‖x− x′‖.

It shows that taking norms x 7→ ‖x‖ is a continuous operation.
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1.1 Banach Spaces 3

If limn→∞ xn = x and limn→∞ x′n = x′ in X and c ∈ K is a scalar, then ‖cxn− cx‖ =
‖c(xn− x)‖= |c|‖xn− x‖ implies

lim
n→∞
‖cxn− cx‖= 0.

Likewise, ‖(xn +x′n)− (x+x′)‖= ‖(xn−x)+(x′n−x′)‖6 ‖xn−x‖+‖x′n−x′‖ implies

lim
n→∞
‖(xn + x′n)− (x+ x′)‖= 0.

This proves sequential continuity, and hence continuity, of the vector space operations.
Throughout this work we use the notation

B(x0;r) := {x ∈ X : ‖x− x0‖< r}

for the open ball centred at x0 ∈ X with radius r > 0, and

B(x0;r) := {x ∈ X : ‖x− x0‖6 r}

for the corresponding closed ball. The open unit ball and closed unit ball are the balls

BX := B(0;1) = {x ∈ X : ‖x‖< 1}, BX := B(0;1) = {x ∈ X : ‖x‖6 1}.

Definition 1.2 (Banach spaces). A Banach space is a complete normed space.

Thus a Banach space is a normed space X in which every Cauchy sequence is con-
vergent, that is, limm,n→∞ ‖xn− xm‖ = 0 implies the existence of an x ∈ X such that
limn→∞ ‖xn− x‖= 0.

The following proposition gives a necessary and sufficient condition for a normed
space to be a Banach space. We need the following terminology. Given a sequence
(xn)n>1 in a normed space X , the sum ∑n>1 xn is said to be convergent if there exists
x ∈ X such that

lim
N→∞

∥∥∥x−
N

∑
n=1

xn

∥∥∥= 0.

The sum ∑n>1 xn is said to be absolutely convergent if ∑n>1 ‖xn‖< ∞.

Proposition 1.3. A normed space X is a Banach space if and only if every absolutely
convergent sum in X converges in X.

Proof ‘Only if’: Suppose that X is complete and let ∑n>1 xn be absolutely convergent.
Then the sequence of partial sums (∑n

j=1 x j)n>1 is a Cauchy sequence, for if n > m the
triangle inequality implies∥∥∥ n

∑
j=1

x j−
m

∑
j=1

x j

∥∥∥= ∥∥∥ n

∑
j=m+1

x j

∥∥∥6 n

∑
j=m+1

‖x j‖,

which tends to 0 as m,n→ ∞. Hence, by completeness, the sum ∑n>1 xn converges.
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4 Banach Spaces

‘If’: Suppose that every absolutely convergent sum in X converges in X , and let
(xn)n>1 be a Cauchy sequence in X . We must prove that (xn)n>1 converges in X .

Choose indices n1 < n2 < .. . in such a way that ‖xi − x j‖ < 1
2k for all i, j > nk,

k = 1,2, . . . The sum xn1 +∑k>1(xnk+1 − xnk) is absolutely convergent since

∑
k>1
‖xnk+1 − xnk‖6 ∑

k>1

1
2k < ∞.

By assumption it converges to some x ∈ X . Then, by cancellation,

x = lim
m→∞

(
xn1 +

m

∑
k=1

(xnk+1 − xnk)
)
= lim

m→∞
xnm+1 ,

and therefore the subsequence (xnm)m>1 is convergent, with limit x. To see that (xn)n>1

converges to x, we note that

‖xm− x‖6 ‖xm− xnm‖+‖xnm − x‖→ 0

as m→ ∞ (the first term since we started from a Cauchy sequence and the second term
by what we just proved).

The next theorem asserts that every normed space can be completed to a Banach
space. For the rigorous formulation of this result we need the following terminology.

Definition 1.4 (Isometries). A linear mapping T from a normed space X into a normed
space Y is said to be an isometry if it preserves norms. A normed space X is isometrically
contained in a normed space Y if there exists an isometry from X into Y .

Theorem 1.5 (Completion). Let X be a normed space. Then:

(1) there exists a Banach space X containing X isometrically as a dense subspace;
(2) the space X is unique up to isometry in the following sense: If X is isometrically

contained as a dense subspace in the Banach spaces X and X, then the identity
mapping on X has a unique extension to an isometry from X onto X.

Proof As a metric space, X = (X ,d) has a completion X = (X ,d) by Theorem D.6. We
prove that X is a Banach space in a natural way, with a norm ‖ · ‖X such that d(x,x′) =
‖x− x′‖X . The properties (1) and (2) then follow from the corresponding assertions for
metric spaces.

Recall that the completion X of X , as a metric space, is defined as the set of all
equivalence classes of Cauchy sequences in X , declaring the Cauchy sequences (xn)n>1

and (x′n)n>1 to be equivalent if limn→∞ d(xn,x′n) = limn→∞ ‖xn− x′n‖ = 0. The space X
is a vector space under the scalar multiplication

c[(xn)n>1] := [c(xn)n>1]
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1.1 Banach Spaces 5

and addition

[(xn)n>1]+ [(x′n)n>1] := [(xn + x′n)n>1],

where the brackets denote the equivalence class.
If (xn)n>1 is a Cauchy sequence in X , the reverse triangle inequality implies that the

nonnegative sequence (‖xn‖)n>1 is Cauchy, and hence convergent by the completeness
of the real numbers. We now define a norm on X by

‖[(xn)n>1]‖X := lim
n→∞
‖xn‖.

Denoting by d the metric on X given by d(x,x′) := limn→∞ d(xn,x′n), where x = (xn)n>1

and x′ = (x′n)n>1, it is clear that d(x,x′) = ‖x− x′‖X .

1.1.b Subspaces, Quotients, and Direct Sums

Several abstract constructions enable us to create new Banach spaces from given ones.
We take a brief look at the three most basic constructions, namely, passing to closed
subspaces and quotients and taking direct sums.

Subspaces A subspace Y of a normed space X is a normed space with respect to the
norm inherited from X . A subspace Y of a Banach space X is a Banach space with
respect to the norm inherited from X if and only if Y is closed in X .

To prove the ‘if’ part, suppose that (yn)n>1 is a Cauchy sequence in the closed sub-
space Y of a Banach space X . Then it has a limit in X , by the completeness of X , and
this limit belongs to Y , by the closedness of Y . The proof of the ‘only if’ part is equally
simple and does not require X to be complete. If (yn)n>1 is a sequence in the complete
subspace Y such that yn→ x in X , then (yn)n>1 is a Cauchy sequence in X , hence also
in Y , and therefore it has a limit y in Y , by the completeness of Y . Since (yn)n>1 also
converges to y in X , it follows that y = x and therefore x ∈ Y .

Quotients If Y is a closed subspace of a Banach space X , the quotient space X/Y can
be endowed with a norm by

‖[x]‖ := inf
y∈Y
‖x− y‖,

where for brevity we write [x] := x+Y for the equivalence class of x modulo Y . Let us
check that this indeed defines a norm. If ‖[x]‖ = 0, then there is a sequence (yn)n>1 in
Y such that ‖x− yn‖< 1

n for all n> 1. Then

‖yn− ym‖6 ‖yn− x‖+‖x− ym‖<
1
n
+

1
m
,
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6 Banach Spaces

so (yn)n>1 is a Cauchy sequence in X . It has a limit y ∈ X since X is complete, and we
have y∈Y since Y is closed. Then ‖x−y‖= limn→∞ ‖x−yn‖= 0, so x = y. This implies
that [x] = [y] = [0], the zero element of X/Y . The identity ‖c[x]‖ = |c|‖[x]‖ is trivially
verified, and so is the triangle inequality.

To see that the normed space X/Y is complete we use the completeness of X and
Proposition 1.3. If ∑n>1 ‖[xn]‖< ∞ and the yn ∈Y are such that ‖xn−yn‖6 ‖[xn]‖+ 1

n2 ,
the proposition implies that ∑n>1(yn−xn) converges in X , say to x. Then, for all N > 1,∥∥∥[x]− N

∑
n=1

[xn]
∥∥∥= ∥∥∥[x− N

∑
n=1

xn

]∥∥∥6 ∥∥∥x−
N

∑
n=1

xn +
N

∑
n=1

yn

∥∥∥= ∥∥∥x−
( N

∑
n=1

xn− yn

)∥∥∥.
As N→ ∞, the right-hand side tends to 0 and therefore limN→∞ ∑

N
n=1[xn] = [x] in X/Y .

Direct Sums A product norm on a finite cartesian product X = X1×·· ·×XN of normed
spaces is a norm ‖ · ‖ satisfying

‖(0, . . . ,0, xn︸︷︷︸
n−th

,0, . . . ,0)
∥∥= ‖xn‖6 ‖(x1, . . . ,xN)‖

for all x = (x1, . . . ,xN)∈ X and n = 1, . . . ,N. For instance, every norm | · | onKN assign-
ing norm one to the standard unit vectors induces a product norm on X by the formula

‖(x1, . . . ,xN)‖ :=
∣∣(‖x1‖, . . . ,‖xN‖)

∣∣. (1.1)

As a normed space endowed with a product norm, the cartesian product will be denoted

X = X1⊕·· ·⊕XN

and called a direct sum of X1, . . . ,XN . If every Xn is a Banach space, then the normed
space X is a Banach space. Indeed, from

‖x‖=
∥∥∥ N

∑
n=1

(0, . . . ,0,xn,0, . . . ,0)
∥∥∥6 N

∑
n=1
‖xn‖6 N‖x‖ (1.2)

we see that a sequence (x(k))k>1 in X is Cauchy if and only if all its coordinate sequences
(x(k)n )k>1 are Cauchy. If the spaces Xn are complete, these coordinate sequences have
limits xn in Xn, and these limits serve as the coordinates of an element x = (x1, . . . ,xN)

in X which is the limit of the sequence (x(k))k>1.

1.1.c First Examples

The purpose of this brief section is to present a first catalogue of Banach spaces. The
presentation is not self-contained; the examples will be revisited in more detail in the
next chapter, where the relevant terminology is introduced and proofs are given.
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1.1 Banach Spaces 7

Figure 1.1 The open unit balls of R2 with respect to the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞.

Example 1.6 (Euclidean spaces). On Kd we may consider the euclidean norm

‖a‖2 :=
( d

∑
j=1
|a j|2

)1/2
,

and more generally the p-norms

‖a‖p :=
( d

∑
j=1
|a j|p

)1/p
, 16 p < ∞,

as well as the supremum norm

‖a‖∞ := sup
16 j6d

|a j|.

It is not immediately obvious that the p-norms are indeed norms; the triangle inequal-
ity ‖a+ b‖p 6 ‖a‖p + ‖b‖p will be proved in the next chapter. It is an easy matter to
check that the above norms are all equivalent in the sense defined in Section 1.3. In
what follows the euclidean norm of an element x ∈ Kd is denoted by |x| instead of the
more cumbersome ‖x‖2.

Example 1.7 (Sequence spaces). Thinking of elements of Kd as finite sequences, the
preceding example may be generalised to infinite sequences as follows. For 16 p < ∞

the space `p is defined as the space of all scalar sequences a = (ak)k>1 satisfying

‖a‖p :=
(

∑
k>1
|ak|p

)1/p
< ∞.

The mapping a 7→ ‖a‖p is a norm which turns `p into a Banach space. The space `∞ of
all bounded scalar sequences a = (ak)k>1 is a Banach space with respect to the norm

‖a‖∞ := sup
k>1
|ak|< ∞.

The space c0 consisting of all bounded scalar sequences a = (ak)k>1 satisfying

lim
k→∞

ak = 0

1

1

1

1

1

1
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8 Banach Spaces

Figure 1.2 The open ball B( f ;1) in C[0,1] consists of all functions in C[0,1] whose graph
lies inside the shaded area.

is a closed subspace of `∞. As such it is a Banach space in its own right.

Example 1.8 (Spaces of continuous functions). Let K be a compact topological space.
The space C(K) of all continuous functions f : K→ K is a Banach space with respect
to the supremum norm

‖ f‖∞ := sup
x∈K
| f (x)|.

This norm captures the notion of uniform convergence: for functions in C(K) we have
limn→∞ ‖ fn− f‖∞ = 0 if and only if limn→∞ fn = f uniformly.

Example 1.9 (Spaces of integrable functions). Let (Ω,F,µ) be a measure space. For
16 p < ∞, the space Lp(Ω) consisting of all measurable functions f : Ω→K such that

‖ f‖p :=
(∫

Ω

| f |p dµ

)1/p
< ∞,

identifying functions that are equal µ-almost everywhere, is a Banach space with respect
to the norm ‖ · ‖p. The space L∞(Ω) consisting of all measurable and µ-essentially
bounded functions f : Ω→K, identifying functions that are equal µ-almost everywhere,
is a Banach space with respect to the norm given by the µ-essential supremum

‖ f‖∞ := µ-esssup
ω∈Ω

| f (ω)| := inf
{

r > 0 : | f |6 r µ-almost everywhere
}
.

Example 1.10 (Spaces of measures). Let (Ω,F ) be a measurable space. The space

0.5 1

1

2

3

4

5

f (x)

x

y
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1.2 Bounded Operators 9

M(Ω) consisting of all K-valued measures of bounded variation on (Ω,F ) is a Banach
space with respect to the variation norm

‖µ‖ := |µ|(Ω) := sup
A ∈F

∑
A∈A

|µ(A)|,

where F denotes the set of all finite collections of pairwise disjoint sets in F .

Example 1.11 (Hilbert spaces). A Hilbert space is an inner product space (H,(·|·)) that
is complete with respect to the norm

‖h‖ := (h|h)1/2.

Examples include the spaces Kd with the euclidean norm, `2, and the spaces L2(Ω).
Further examples will be given in later chapters.

1.1.d Separability

Most Banach spaces of interest in Analysis are infinite-dimensional in the sense that
they do not have a finite spanning set. In this context the following definition is often
useful.

Definition 1.12 (Separability). A normed space is called separable if it contains a
countable set whose linear span is dense.

Proposition 1.13. A normed space X is separable if and only if X contains a countable
dense set.

Proof The ‘if’ part is trivial. To prove the ‘only if’ part, let (xn)n>1 have dense span
in X . Let Q be a countable dense set in K (for example, one could take Q =Q if K=R
and Q = Q+ iQ if K = C). Then the set of all Q-linear combinations of the xn, that is,
all linear combinations involving coefficients from Q, is dense in X .

Finite-dimensional spaces, the sequence spaces c0 and `p with 16 p < ∞, the spaces
C(K) with K compact metric, and Lp(D) with 1 6 p < ∞ and D ⊆ Rd open, are sepa-
rable. The separability of C(K) and Lp(D) follows from the results proved in the next
chapter.

1.2 Bounded Operators

Having introduced normed spaces and Banach spaces, we now introduce a class of linear
operators acting between them which interact with the norm in a meaningful way.
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10 Banach Spaces

1.2.a Definition and General Properties

Let X and Y be normed spaces.

Definition 1.14 (Bounded operators). A linear operator T : X → Y is bounded if there
exists a finite constant C > 0 such that

‖T x‖6C‖x‖, x ∈ X .

Here, and in the rest of this work, we write T x instead of the more cumbersome T (x).
A bounded operator is a linear operator that is bounded.

The infimum CT of all admissible constants C in Definition 1.14 is itself admissible.
Thus CT is the least admissible constant. We claim that it equals the number

‖T‖ := sup
‖x‖61

‖T x‖.

To see this, let C be an admissible constant in Definition 1.14, that is, we assume that
‖T x‖ 6 C‖x‖ for all x ∈ X . Then ‖T‖ = sup‖x‖61 ‖T x‖ 6 C. This being true for all
admissible constants C, it follows that ‖T‖ 6 CT . The opposite inequality CT 6 ‖T‖
follows by observing that for all x ∈ X we have

‖T x‖6 ‖T‖‖x‖,

which means that ‖T‖ an admissible constant. This inequality is trivial for x = 0, and
for x 6= 0 it follows from scalar homogeneity, the linearity of T and the definition of the
number ‖T‖:

‖T x‖=
∥∥∥ 1
‖x‖

T x
∥∥∥‖x‖= ∥∥∥T

x
‖x‖

∥∥∥‖x‖6 ‖T‖‖x‖.
Proposition 1.15. For a linear operator T : X → Y the following assertions are equiv-
alent:

(1) T is bounded;
(2) T is continuous;
(3) T is continuous at some point x0 ∈ X.

Proof The implication (1)⇒(2) follows from

‖T x−T x′‖= ‖T (x− x′)‖6 ‖T‖‖x− x′‖

and the implication (2)⇒(3) is trivial. To prove the implication (3)⇒(1), suppose that
T is continuous at x0. Then there exists a δ > 0 such that ‖x0− y‖< δ implies ‖T x0−
Ty‖ < 1. Since every x ∈ X with ‖x‖ < δ is of the form x = x0− y with ‖x0− y‖ < δ

(take y = x0− x) and T is linear, it follows that ‖x‖ < δ implies ‖T x‖ < 1. By scalar
homogeneity and the linearity of T we may scale both sides with a factor δ , and obtain
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1.2 Bounded Operators 11

that ‖x‖ < 1 implies ‖T x‖ < 1/δ . From this, and the continuity of x 7→ ‖x‖, it follows
that ‖x‖6 1 implies ‖T x‖6 1/δ , that is, T is bounded and ‖T‖6 1/δ .

Easy manipulations involving the properties of norms and linear operators, such as
those used in the above proofs, will henceforth be omitted.

The set of all bounded operators from X to Y is a vector space in a natural way with
respect to pointwise scalar multiplication and addition by putting

(cT )x := c(T x), (T +T ′)x := T x+T x′.

This vector space will be denoted by L (X ,Y ). We further write L (X) := L (X ,X).
For all T,T ′ ∈L (X ,Y ) and c ∈K we have

‖cT‖= |c|‖T‖, ‖T +T‖6 ‖T‖+‖T ′‖.

Let us prove the second assertion; the proof of the first is similar. For all x ∈ X , the
triangle inequality gives

‖(T +T )x‖6 ‖T x‖+‖T ′x‖6 (‖T‖+‖T ′‖)‖x‖,

and the result follows by taking the supremum over all x ∈ X with ‖x‖6 1.
Noting that ‖T‖ = 0 implies T = 0, it follows that T 7→ ‖T‖ is a norm on L (X ,Y ).

Endowed with this norm, L (X ,Y ) is a normed space. If T : X → Y and S : Y → Z are
bounded, then so is their composition ST and we have

‖ST‖6 ‖S‖‖T‖.

Indeed, for all x ∈ X we have

‖ST x‖6 ‖S‖‖T x‖6 ‖S‖‖T‖‖x‖

and the result follows by taking the supremum over all x ∈ X .

Proposition 1.16. If Y is complete, then L (X ,Y ) is complete.

Proof Let (Tn)n>1 be a Cauchy sequence in L (X ,Y ). From ‖Tnx− Tmx‖ 6 ‖Tn −
Tm‖‖x‖ we see that (Tnx)n>1 is a Cauchy sequence in Y for every x ∈ X . Let T x denote
its limit. The linearity of each of the operators Tn implies that the mapping T : x 7→
T x is linear and we have ‖T x‖ = limn→∞ ‖Tnx‖ 6 M‖x‖, where M := supn>1 ‖Tn‖ is
finite since Cauchy sequences in normed spaces are bounded. This shows that the linear
operator T is bounded, so it is an element of L (X ,Y ). To prove that limn→∞ ‖Tn−T‖=
0, fix ε > 0 and let N > 1 be so large that ‖Tn− Tm‖ < ε for all m,n > N. Then, for
m,n> N, from

‖Tnx−Tmx‖6 ε‖x‖
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12 Banach Spaces

it follows, upon letting m→ ∞, that

‖Tnx−T x‖6 ε‖x‖.

This being true for all x ∈ X and n> N, it follows that ‖Tn−T‖6 ε for all n> N.

The important special case Y =K leads to the following definition.

Definition 1.17. The dual space of a normed space X is the Banach space

X∗ := L (X ,K).

For x ∈ X and x∗ ∈ X∗ one usually writes 〈x,x∗〉 := x∗(x). The elements of the dual
space X∗ are often referred to as bounded functionals or simply functionals. Duality is
a subject in its own right which will be taken up in Chapter 4. In that chapter, explicit
representations of duals of several classical Banach spaces are given. For Hilbert spaces
this duality takes a particularly simple form, described by the Riesz representation the-
orem, to be proved in Chapter 3.

It often happens that a linear operator can be shown to be well defined and bounded on
a dense subspace. In such cases, a density argument can be used to extend the operator
to the whole space.

Proposition 1.18 (Density argument – extending operators). Let X be a normed space
and Y be a Banach space, and let X0 be a dense subspace of X. If T0 : X0 → Y is a
bounded operator, there exists a unique bounded operator T : X →Y extending T0. The
norm of this extension satisfies ‖T‖= ‖T0‖.

Proof Fix x ∈ X , and suppose that limn→∞ xn = x with xn ∈ X0 for all n > 1. The
boundedness of T0 implies that ‖T0xn−T0xm‖ 6 ‖T0‖‖xn− xm‖ → 0 as m,n→ ∞, so
(T0xn)n>1 is a Cauchy sequence in Y . Since Y is complete, we have T0xn→ y for some
y ∈ Y .

If also x′n→ x, the same argument shows that T0x′n→ y′ for some (possibly different)
y′ ∈ Y . From

‖T0x′n−T0xn‖6 ‖T0‖‖x′n− xn‖6 ‖T0‖(‖x′n− x‖+‖x− xn‖)

it follows that

‖y′− y‖= lim
n→∞
‖T0x′n−T0xn‖= 0

and therefore y′ = y.
Denoting the common limit y = y′ by T x, we thus obtain a well-defined mapping

x 7→ T x. It is evident that this mapping extends T0, for if x ∈ X0 we may take xn = x and
then T x = limn→∞ T0xn = T0x.
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1.2 Bounded Operators 13

It is easily checked that T is linear. To show that it is bounded, with ‖T‖6 ‖T0‖, we
just note that

‖T x‖= lim
n→∞
‖T0xn‖6 ‖T0‖ lim

n→∞
‖xn‖= ‖T0‖‖x‖.

The converse inequality ‖T‖> ‖T0‖ trivially holds since T extends T0.
Finally, if the bounded operators T and T ′ both extend T0, then the bounded operator

T −T ′ equals 0 on the dense subspace X0 and hence, by continuity, on all of X .

Under a uniform boundedness assumption, a similar density argument can be used to
extend the existence of limits from a dense subspace to the whole space.

Proposition 1.19 (Density argument – extending convergence of operators). Let X be
a normed space and Y a Banach space, and let X0 be a dense subspace of X. Let
(Tn)n>1 be a sequence of operators in L (X ,Y ) satisfying supn>1 ‖Tn‖< ∞. If the limit
limn→∞ Tnx0 exists in Y for all x0 ∈ X0, then the limit T x := limn→∞ Tnx exists in Y for
all x ∈ X. Moreover, the operator T : x 7→ T x is linear and bounded from X to Y , and

‖T‖6 liminf
n→∞

‖Tn‖.

Proof We will show that the sequence (Tnx)n>1 is Cauchy for every x∈X . Fix arbitrary
x ∈ X and ε > 0 and choose x0 ∈ X0 in such a way that ‖x− x0‖ < ε/M, where M :=
supn>1 ‖Tn‖. Since (Tnx0)n>1 is a Cauchy sequence, there is an N > 1 such that ‖Tnx0−
Tmx0‖< ε for all m,n> N. Then, for all m,n> N,

‖Tnx−Tmx‖6 ‖Tnx−Tnx0‖+‖Tnx0−Tmx0‖+‖Tmx0−Tmx‖
6M‖x− x0‖+ ε +M‖x0− x‖< 3ε.

The sequence (Tnx)n>1 is thus Cauchy. Since Y is complete this sequence has a limit,
which we denote by T x. Linearity of T : x 7→ T x is clear, and boundedness along with
the estimate for the norm follow from

‖T x‖= lim
n→∞
‖Tnx‖= liminf

n→∞
‖Tnx‖6 liminf

n→∞
‖Tn‖‖x‖.

This proposition should be compared with Proposition 5.3, which provides the fol-
lowing partial converse: if X is a Banach space, Y is a normed space, and (Tn)n>1

is a sequence in L (X ,Y ) such that T x := limn→∞ Tnx exists in Y for all x ∈ X , then
supn>1 ‖Tn‖< ∞.

Definition 1.20 (Null space and range). The null space of a bounded operator T ∈
L (X ,Y ) is the subspace

N(T ) := {x ∈ X : T x = 0}.
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14 Banach Spaces

The range of T is the subspace

R(T ) := {T x : x ∈ X}.

By linearity, both the null space N(T ) and the range R(T ) are subspaces. By continu-
ity, the null space of a bounded operator is closed. The following result gives a useful
sufficient criterion for the range of a bounded operator to be closed.

Proposition 1.21. Let X be a Banach space and Y be a normed space. If T ∈L (X ,Y )
satisfies ‖T x‖>C‖x‖ for some C > 0 and all x ∈ X, then T is injective and has closed
range.

Proof Injectivity is clear. Suppose that T xn → y in Y ; we must prove that y ∈ R(T ).
From ‖xn− xm‖ 6C−1‖T xn−T xm‖ it follows that (xn)n>1 is a Cauchy sequence in X
and therefore converges to some x ∈ X . Then y = limn→∞ T xn = T x.

We conclude by introducing some terminology that will be used throughout this work.
In the next four definitions, X and Y are normed spaces.

Definition 1.22 (Isomorphisms). An isomorphism is a bijective operator T ∈L (X ,Y )
whose inverse is bounded as well. An isometric isomorphism is an isomorphism that is
also isometric. The spaces X and Y are called (isometrically) isomorphic if there exists
an (isometric) isomorphism from X to Y .

Definition 1.23 (Contractions). A contraction is an operator T ∈ L (X ,Y ) satisfying
‖T‖6 1.

Definition 1.24 (Uniform boundedness). A subset T of L (X ,Y ) is said to be uniformly
bounded if it is a bounded subset of L (X ,Y ), i.e., if supT∈T ‖T‖< ∞.

Definition 1.25 (Uniform, strong, and weak convergence of operators). A sequence
(Tn)n>1 in L (X ,Y ) is said to:

(1) converge uniformly to an operator T ∈L (X ,Y ) if

lim
n→∞
‖Tn−T‖= 0;

(2) converge strongly to an operator T ∈L (X ,Y ) if

lim
n→∞
‖Tnx−T x‖= 0, x ∈ X ;

(3) converge weakly to an operator T ∈L (X ,Y ) if

lim
n→∞
〈Tnx−T x,y∗〉= 0, x ∈ X , y∗ ∈ Y ∗,

https://doi.org/10.1017/9781009232487.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009232487.003


1.2 Bounded Operators 15

where Y ∗ is the dual of Y and 〈y,y∗〉 := y∗(y) for y ∈ Y . In these situations we call
T the uniform limit, respectively the strong limit, respectively the weak limit, of the
sequence (Tn)n>1. Uniqueness of weak limits is assured by the Hahn–Banach theorem
(see Corollary 4.11).

Uniform convergence implies strong convergence and strong convergence implies
weak convergence, but the converses generally fail. For instance, the projections onto
the first n coordinates in `p, 16 p<∞, converge strongly to the identity operator, but not
uniformly; and the operators T n, where T is the right shift in `p, 1 < p < ∞, converges
weakly to the zero operator but not strongly (for the case p = 1 see Problem 4.33).

1.2.b Subspaces, Quotients, and Direct Sums

Restrictions If T is a bounded operator from a normed space X into a normed space Y ,
then the restriction of T to a subspace X0 of X defines a bounded operator T |X0 from X0

into Y of norm ‖T |X0‖6 ‖T‖.

Quotients Let Y be a closed subspace of a Banach space X . By the definition of the
quotient norm, the quotient map q : x 7→ x +Y is bounded from X to X/Y of norm
‖q‖6 1.

Let Z be a normed space and let T ∈L (X ,Z) be a bounded operator with the property
that Y is contained in the null space N(T ). We claim that

T/Y (x+Y ) := T x, x ∈ X ,

defines a well-defined and bounded quotient operator T/Y : X/Y → Z of norm ‖T/Y‖=
‖T‖. Well-definedness of T/Y is clear, and for all x ∈ X and y ∈ Y we have ‖T x‖ =
‖T (x+ y)‖6 ‖T‖‖x+ y‖. Taking the infimum over all y ∈ Y gives the bound

‖T/Y (x+Y )‖= ‖T x‖6 ‖T‖ inf
y∈Y
‖x+ y‖= ‖T‖‖x+Y‖.

Hence T/Y is bounded and ‖T/Y‖6 ‖T‖. For the converse inequality we note that

‖T x‖= ‖T/Y (x+Y )‖6 ‖T/Y‖‖x+Y‖= ‖T/Y‖ inf
y∈Y
‖x− y‖6 ‖T/Y‖‖x‖.

Direct Sums If Xn is a normed space and Tn ∈L (Xn) for n = 1, . . . ,N, then the direct
sum operator

T =
N⊕

n=1

Tn : (x1, . . . ,xN) 7→ (T1x1, . . . ,TNxN)

is bounded on X =
⊕N

n=1 Xn with respect to any product norm; this follows from (1.2).
If the product norm is of the form (1.1), then ‖T‖= max16n6N ‖Tn‖.
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16 Banach Spaces

1.2.c First Examples

We revisit the examples of Section 1.1.c and discuss how various natural operations
used in Analysis give rise to bounded operators.

Example 1.26 (Matrices). Every m×n matrix A= (ai j)
m,n
i, j=1 defines a bounded operator

in L (Kn,Km) and its norm satisfies

‖A‖2 = sup
|x|61
|Ax|2 = sup

|x|61

m

∑
i=1

∣∣∣ n

∑
j=1

ai jx j

∣∣∣2 6 m

∑
i=1

n

∑
j=1
|ai j|2, (1.3)

where the last step follows from the Cauchy–Schwarz inequality. More generally, every
linear operator from a finite-dimensional normed space X into a normed space Y is
bounded; this will be shown in Corollary 1.37.

The upper bound (1.3) for the norm of a matrix A is not sharp. An explicit method to
determine the operator norm of a matrix is described in Problem 4.14.

Example 1.27 (Point evaluations). Let K be a compact topological space. For each
x0 ∈ K the point evaluation Ex0 : f 7→ f (x0) is bounded as an operator from C(K) into
K with norm ‖Ex0‖= 1. Boundedness with norm ‖Ex0‖6 1 follows from

|Ex0 f |= | f (x0)|6 sup
x∈K
| f (x)|= ‖ f‖∞.

By considering f = 1, the constant-one function on K, it is seen that ‖Ex0‖= 1.

Example 1.28 (Integration). Let (Ω,F,µ) be a measure space. The mapping Iµ : f 7→∫
Ω

f dµ is bounded from L1(Ω) to K with norm ‖Iµ‖ = 1. Boundedness with norm
‖Iµ‖6 1 follows from

|Iµ f |=
∣∣∣∫

Ω

f dµ

∣∣∣6 ∫
Ω

| f |dµ = ‖ f‖1.

By considering nonnegative functions it is seen that ‖Iµ‖= 1.

Example 1.29 (Pointwise multipliers). Let (Ω,F,µ) be a measure space and fix 1 6
p 6 ∞. For any m ∈ L∞(Ω), the pointwise multiplier Tm : f 7→ m f defines a bounded
operator on Lp(Ω) with norm ‖Tm‖= ‖m‖∞. Indeed, for µ-almost all ω ∈Ω we have

|(m f )(ω)|= |m(ω)|| f (ω)|6 ‖m‖∞| f (ω)|.

For 16 p < ∞, upon integration we obtain

‖Tm f‖p
p =

∫
Ω

|m f |p dµ 6 ‖m‖p
∞

∫
Ω

| f |p dµ = ‖m‖p
∞‖ f‖p

p,

Tm is bounded on Lp(Ω) and ‖Tm‖ 6 ‖m‖∞. For p = ∞ the analogous bound follows
by taking essential suprema. Equality ‖Tm‖ = ‖m‖∞ is obtained by considering, for
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1.2 Bounded Operators 17

0 < ε < 1, functions supported on measurable sets Fε ∈F where |m| > (1− ε)‖m‖∞

µ-almost everywhere.

Example 1.30 (Integral operators). Let µ be a finite Borel measure on a compact metric
space K. With respect to the product metric d((s, t),(s′, t ′)) := d(s, t)+d(s′, t ′), K×K
is a compact metric space (see Proposition D.13). Let k ∈ C(K ×K) and define, for
f ∈C(K), the function T f : K→K by

T f (s) :=
∫

K
k(s, t) f (t)dµ(t), s ∈ K.

Using the uniform continuity of k (see Theorem D.12), it is easy to see that T f is a
continuous function. Indeed, given ε > 0, choose δ > 0 so small that d((s, t),(s′, t ′))< δ

implies |k(s, t)− k(s′, t ′)|< ε . Then d(s,s′)< δ implies

|T f (s)−T f (s′)|6 ε

∫
K
| f (t)|dµ(t)6 εµ(K)‖ f‖∞.

As a result, T acts as a linear operator on C(K). To prove boundedness, we estimate

|T f (s)|6
∫

K
|k(s, t)|| f (t)|dµ(t)6 µ(K)‖k‖∞‖ f‖∞.

Taking the supremum over s ∈ K, this results in

‖T f‖∞ 6 µ(K)‖k‖∞‖ f‖∞.

It follows that T is bounded and ‖T‖6 µ(K)‖ f‖∞.
For kernels k ∈ L∞(K×K,µ × µ) the same prescription defines a bounded opera-

tor on L∞(K,µ) satisfying the same estimate. If one takes k ∈ L2(K×K,µ × µ), this
prescription gives a bounded operator T on L2(K,µ) satisfying

‖T‖6 ‖k‖2. (1.4)

Indeed, by the Cauchy–Schwarz inequality (its abstract version for Hilbert spaces will
be proved in Chapter 3) and Fubini’s theorem we obtain∫

K

∣∣∣∫
K

k(s, t) f (t)dµ(t)
∣∣∣2 dµ(s)

6
∫

K

(∫
K
|k(s, t)|2 dµ(t)

)(∫
K
| f (t)|2 dµ(t)

)
dµ(s) = ‖k‖2

2‖ f‖2
2

and the claim follows. This inequality generalises the one of Example 1.26.

Example 1.31 (Volterra operator). For all f ∈ L2(0,1), the Cauchy–Schwarz inequality
implies that the indefinite integral

T f (s) :=
∫ s

0
f (t)dt, s ∈ [0,1],

is well defined and that |T f (s)−T f (s′)|6 |s− s′|1/2‖ f‖2 for all s,s′ ∈ [0,1]. From this
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we infer that T f ∈C[0,1] and, by taking s′ = 0, that ‖T f‖∞ 6 ‖ f‖2. This implies that
T is bounded from L2(0,1) into C[0,1] with norm ‖T‖6 1.

Composing T with the natural inclusion mapping from C[0,1] into L2(0,1), the in-
definite integral can be viewed as a bounded operator on L2(0,1) of norm at most 1.
A sharper bound is obtained by applying the last part of the preceding example (with
k(s, t) = 1(0,s)(t)). This gives that T is bounded as an operator on L2(0,1) with norm

‖T‖6 ‖k‖2 = 1/
√

2≈ 0.7071 . . . .

Interestingly, this norm bound is not sharp; it can be shown that the norm of this operator
equals

‖T‖= 2/π ≈ 0.6366 . . .

This will be proved using the spectral theory of selfadjoint operators in Chapter 8.

As this brief list of examples already shows, operators occurring naturally in Analysis
have a tendency to be bounded. This raises the natural question whether linear operators
acting between Banach spaces X and Y are always bounded. If one is willing to accept
the Axiom of Choice the answer is negative, even for separable Hilbert spaces X and Y =

K (see Problem 3.23). In Zermelo–Fraenkel Set Theory without the Axiom of Choice,
it is consistent that every linear operator acting between Banach spaces is bounded. The
reader is referred to the Notes to Chapter 3 for a further discussion of this topic.

1.3 Finite-Dimensional Spaces

The aim of this section is to prove that every finite-dimensional normed space is a
Banach space. This will be deduced as an easy consequence of the fact that every two
norms on a finite-dimensional normed space are equivalent, in the sense made precise
in the next definition.

Definition 1.32 (Equivalent norms). Two norms ‖ · ‖ and ||| · ||| on a vector space X are
equivalent if there exist constants 0 < c6C < ∞ such that for all x ∈ X we have

c‖x‖6 |||x|||6C‖x‖.

Example 1.33. Any two product norms on the product X = X1× ·· ·×XN of normed
spaces are equivalent. Indeed, (1.2) shows that every product norm on X is equivalent
to the product norm ‖x‖1 := ∑

N
n=1 ‖xn‖ on X .

In the above situation we have the inclusions of open balls

B‖·‖(x;r/C)⊆ B|||·|||(x;r)⊆ B‖·‖(x;r/c).
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1.3 Finite-Dimensional Spaces 19

Hence if two norms on a given vector space are equivalent the resulting normed spaces
have the same open sets. This implies that topological notions such as openness, closed-
ness, compactness, convergence, and so forth, are preserved under passing to an equiv-
alent norm.

Theorem 1.34 (Equivalence of norms in finite dimensions). Every two norms on a
finite-dimensional vector space are equivalent.

Proof Let (X ,‖ · ‖) be a finite-dimensional normed space, say of dimension d, and let
(x j)

d
j=1 be a basis for X . Relative to this basis, every x ∈ X admits a unique representa-

tion x = ∑
d
j=1 c jx j. We may use this to define a norm ‖ · ‖2 on X by∥∥∥ d

∑
j=1

c jx j

∥∥∥
2

:=
( d

∑
j=1
|c j|2

)1/2
.

The theorem follows once we have shown that the norms ‖ · ‖ and ‖ · ‖2 are equivalent.
Let M =max16 j6d ‖x j‖. By the triangle inequality and the Cauchy–Schwarz inequal-

ity, for all x = ∑
d
j=1 c jx j we have

‖x‖6
d

∑
j=1
|c j|‖x j‖6M

d

∑
j=1
|c j|6Md1/2

( d

∑
j=1
|c j|2

)1/2
= Md1/2‖x‖2. (1.5)

This gives one of the two inequalities in the definition of equivalence of norms.
To prove that a similar inequality holds in the opposite direction, let S2 denote the

unit sphere in (X ,‖ ·‖2). Since (c1, . . . ,cd) 7→∑
d
j=1 c jx j maps the unit sphere ofKd iso-

metrically (hence continuously) onto S2, S2 is compact. Consider the identity mapping
I : x 7→ x, viewed as a mapping from (X ,‖ ·‖2) to (X ,‖ ·‖). The inequality (1.5) implies
that I is bounded and therefore continuous. Since taking norms is continuous as well
and S2 is compact, the mapping x 7→ ‖Ix‖ is continuous from S2 to [0,∞) and takes a
minimum at some point x0 ∈ S2.

Denoting this minimum by m, we claim that m > 0. It is clear that m> 0. Reasoning
by contradiction, if we had m = ‖Ix0‖ = 0, then Ix0 = 0 in X , hence x0 = 0 as an
element of S2. Then ‖x0‖2 = 0, while at the same time ‖x0‖2 = 1 because x0 ∈ S2. This
contradiction proves the claim.

For any nonzero x ∈ X we have x
‖x‖2
∈ S2 and therefore ‖I x

‖x‖2
‖ > m. This gives the

estimate

m‖x‖2 6 ‖Ix‖= ‖x‖

for nonzero x ∈ X ; for trivial reasons it also holds for x = 0.

Corollary 1.35. Every d-dimensional normed space is isomorphic to Kd. In particular,
every finite-dimensional normed space is a Banach space.
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Proof The first assertion has been proved in the course of the proof of Theorem 1.34,
and the second assertion follows from it since Kd is complete.

Corollary 1.36. Every finite-dimensional subspace of a normed space is closed.

Proof By Corollary 1.35, every a finite-dimensional subspace of a normed space is
complete, and it has been shown in the first paragraph of Section 1.1.b that every com-
plete subspace of a normed space is closed.

Corollary 1.37. Every linear operator from a finite-dimensional normed space X into
a normed space Y is bounded.

Proof Let(x j)
d
j=1 be a basis for X . If T : X → Y is linear, for x = ∑

d
j=1 c jx j we obtain,

by the Cauchy–Schwarz inequality,

‖T x‖=
∥∥∥ d

∑
j=1

c jT x j

∥∥∥6 d

∑
j=1
|c j|‖T x j‖6Md1/2‖x‖2,

where ‖x‖2 := (∑d
j=1 |c j|2)1/2 as in Theorem 1.34 and M := max16n6d ‖T xn‖. By The-

orem 1.34 there exists a constant K > 0 such that ‖x‖2 6K‖x‖ for all x∈ X . Combining
this with the preceding estimate we obtain

‖T x‖6Md1/2‖x‖2 6 KMd1/2‖x‖.

This means that T is bounded with norm at most KMd1/2.

Every bounded subset of a finite-dimensional normed space X is relatively compact;
this follows from the corresponding result for Kd and the fact that X is isomorphic to
Kd for some d > 1 by Corollary 1.35. Conversely, a normed space with the property
that every bounded subset is relatively compact is finite-dimensional:

Theorem 1.38 (Finite-dimensional Banach spaces). The unit ball of a normed space X
is relatively compact if and only if X is finite-dimensional.

The proof depends on the following lemma:

Lemma 1.39 (Riesz). If Y is a proper closed subspace of a normed space X, then for
every ε > 0 there exists a norm one vector x ∈ X with d(x,Y )> 1− ε .

Here, d(x,Y ) = infy∈Y ‖x− y‖ is the distance from x to Y .

Proof Fix any x0 ∈ X \Y ; such x0 exists since Y is a proper subspace of X . Fix ε > 0
and choose y0 ∈Y such that ‖x0−y0‖6 (1+ε)d(x0,Y ). The vector (x0−y0)/‖x0−y0‖
has norm one, and for all y ∈ Y we have∥∥∥ x0− y0

‖x0− y0‖
− y
∥∥∥= ∥∥∥x0− y0− y‖x0− y0‖

‖x0− y0‖

∥∥∥> d(x0,Y )
(1+ ε)d(x0,Y )

=
1

1+ ε
.
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1.4 Compactness 21

It follows that

d
( x0− y0

‖x0− y0‖
,Y
)
>

1
1+ ε

.

Since (1+ ε)−1→ 1 as ε ↓ 0, this completes the proof.

Proof of Theorem 1.38 It remains to prove the ‘only if’ part. Suppose that X is infinite-
dimensional and pick an arbitrary norm one vector x1 ∈ X . Proceeding by induction,
suppose that norm one vectors x1, . . . ,xn ∈ X have been chosen such that ‖xk− x j‖> 1

2
for all 1 6 j 6= k 6 n. Choose a norm one vector xn+1 ∈ X by applying Riesz’s lemma
to the proper closed subspace Yn = span{x1, . . . ,xn} and ε = 1

2 (that Yn is closed follows
from Corollary 1.36). Then ‖xn+1− x j‖> 1

2 for all 16 j 6 n.
The resulting sequence (xn)n>1 is contained in the closed unit ball of X and satisfies
‖x j− xk‖ > 1

2 for all j 6= k > 1, so (xn)n>1 has no convergent subsequence. It follows
that the closed unit ball of X is not compact.

1.4 Compactness

Let X be a normed space. By Theorem 1.38, the collections of bounded subsets of X
and relatively compact subsets of X coincide if and only if X is finite-dimensional. Thus,
in infinite-dimensional spaces, relative compactness is a stronger property than bound-
edness. The purpose of the present section is to record some easy but useful general
results on compactness that will be frequently used. Compactness in the spaces C(K)

and Lp(Ω) will be studied in the next chapter, and compact operators, that is, operators
which map bounded sets into relatively compact sets, are studied in Chapter 7.

By a general result in the theory of metric spaces (Theorem D.10), every relatively
compact set in a normed space is totally bounded, and the converse holds in Banach
spaces. This fact is used in the proof of the following necessary and sufficient condition
for compactness. For sets A and B in a vector space V we write

A+B := {u+ v : u ∈ A, v ∈ B}.

Proposition 1.40. A subset S of a Banach space X is relatively compact if and only if
for all ε > 0 there exists a relatively compact set Kε ⊆ X such that S⊆ Kε +B(0;ε).

Proof ‘If’: The existence of the sets Kε implies that S is totally bounded and hence
relatively compact, for if the balls B(x1,ε ;ε), . . . ,B(xnε ,ε ;ε) cover Kε , then the balls
B(x1,ε ;2ε), . . . ,B(xnε ,ε ;2ε) cover S.

‘Only if’: This is trivial (take Kε = S for all ε > 0).

The convex hull of a subset F of a vector space V is the smallest convex set in V
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containing F . This set is denoted by co(F). When F is a subset of a normed space, the
closure of co(F) is denoted by co(F) and is referred to as the closed convex hull of F .

As a first application of Proposition 1.40 we have the following result.

Proposition 1.41. The closed convex hull of a compact set in a Banach space is com-
pact.

Proof Let K be a compact subset of the Banach space X . For every N > 1 the set

coN(K) :=
{ N

∑
n=1

λnxn : xn ∈ K and 06 λn 6 1 for all n = 1, . . . ,N,
N

∑
n=1

λn = 1
}

is contained in the image of the compact set [0,1]N×KN under the continuous mapping
that sends ((λ1, . . . ,λN),(x1, . . . ,xN)) to ∑

N
n=1 λnxn.

Let ε > 0 be arbitrary, let the open balls B(ξ1;ε), . . . ,B(ξM;ε) cover K, and consider
an element x ∈ co(K), say ∑

k
j=1 λ jx j. For each j = 1, . . . ,k let 16 m j 6M be an index

such that

‖x j−ξm j‖= min
m=1,...,M

‖x j−ξm‖.

Then ∥∥∥x−
k

∑
j=1

λ jξm j

∥∥∥6 k

∑
j=1

λ j‖x j−ξm j‖<
k

∑
j=1

λ jε = ε.

Since ∑
k
j=1 λ jξm j = ∑

M
m=1(∑ j:m j=m λ j)ξm ∈ coM(K), this implies that x ∈ coM(K) +

B(0;ε). This shows that co(K) ⊆ coM(K)+B(0;ε). It now follows from Proposition
1.40 that co(K) is relatively compact.

The second result asserts that strong convergence implies uniform convergence on
relatively compact sets.

Proposition 1.42. Let X and Y be normed spaces, let the operators Tn ∈ L (X ,Y ),
n> 1, be uniformly bounded, and let T ∈L (X ,Y ). If limn→∞ Tn = T strongly, then for
all relatively compact subsets K of X we have

lim
n→∞

sup
x∈K
‖Tnx−T x‖= 0.

It will be shown in Proposition 5.3 that if X is a Banach space, strong convergence
Tn→ T already implies uniform boundedness of the operators Tn.

Proof Let K be a relatively compact subset of X , let ε > 0 be arbitrary, and select
finitely many open balls B(x1;ε), . . . ,B(xk;ε) covering K. Choose N > 1 so large that
‖Tnx j−T x j‖ < ε for all n > N and j = 1, . . . ,k. Let M := supn>1 ‖Tn‖; this number is
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finite by assumption. Fixing an arbitrary x ∈ K, choose 16 j0 6 k such that ‖x−x j0‖<
ε . Then, for n> N,

‖Tnx−T x‖6 ‖Tnx−Tnx j0‖+‖Tnx j0 −T x j0‖+‖T x j0 −T x‖
6Mε + ε +Mε = (2M+1)ε.

Taking the supremum over x ∈ K, it follows that if n> N, then

sup
x∈K
‖Tnx−T x‖6 (2M+1)ε.

Since ε > 0 was arbitrary, this proves the final assertion.

1.5 Integration in Banach Spaces

In a variety of circumstances, some of which will be encountered in later chapters, one
wishes to integrate X-valued functions, where X is a Banach space. In order to have
the tools available when they are needed, we insert a brief discussion of the X-valued
counterparts of the Riemann and Lebesgue integrals.

1.5.a The Riemann Integral

Bernhard Riemann, 1826–1866

Let K be a compact metric space and let µ be
a finite Borel measure on K. We will set up the
Riemann integral with respect to µ for continu-
ous functions f : K→ X . To this end we need the
following terminology. A partition of K is a fi-
nite collection of pairwise disjoint Borel subsets
of K whose union equals K. The mesh of a par-
tition is the diameter of the largest subset in the
partition.

Proposition 1.43 (Riemann integral). Let µ be a
finite Borel measure on a compact metric space
K, let X be a Banach space, and let f : K → X
be a continuous function. There exists a unique
element in X, denoted by

∫
K f dµ , with the fol-

lowing property: for every ε > 0 there exists a δ > 0 such that whenever (Kn)
N
n=1 is a

partition of K of mesh less than δ and (tn)N
n=1 is a collection of points in K with tn ∈ Kn

for all n = 1, . . . ,N, then ∥∥∥∫
K

f dµ−
N

∑
n=1

µ(Kn) f (tn)
∥∥∥< ε.
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24 Banach Spaces

The proof of this theorem follows the undergraduate construction of the Riemann
integral for continuous functions f : [0,1]→ K step-by-step and is therefore omitted.
The element

∫
K f dµ is called the Riemann integral of f with respect to µ . Whenever

this is convenient we use the more elaborate notation
∫

K f (t)dµ(t).

Proposition 1.44. Let µ be a finite Borel measure on a compact metric space K, let X
be a Banach space, and let f : K→ X be a continuous function. Then∥∥∥∫

K
f dµ

∥∥∥6 ∫
K
‖ f‖dµ.

Proof For any partition (Kn)
N
n=1 of K and any collection of points (tn)N

n=1 in K with
tn ∈ Kn for all n = 1, . . . ,N we have∥∥∥ N

∑
n=1

µ(Kn) f (tn)
∥∥∥6 N

∑
n=1

µ(Kn)‖ f (tn)‖

by the triangle inequality. The result follows by taking the limit along any sequence of
partitions whose meshes tend to zero.

In the special case where K = [0,1] and µ is the Lebesgue measure, the usual calculus
rules apply (defining differentiability of an X-valued function in the obvious way):

Proposition 1.45. Let X be a Banach space and let f : [0,1]→ X be a function. Then:

(1) if f is differentiable at the point t0 ∈ [0,1], then f is continuous at t0;
(2) if f is differentiable on (0,1) and f ′ ≡ 0 on (0,1), then f is constant on (0,1);
(3) if f is continuously differentiable on [0,1], then∫ 1

0
f ′(t)dt = f (1)− f (0).

Proof (1): Fix an arbitrary ε > 0. The assumption implies there exists δ > 0 such that
if t ∈ [0,1] with |t− t0|< δ , then∥∥∥ f (t)− f (t0)

t− t0
− f ′(t0)

∥∥∥< ε.

Then ‖ f (t)− f (t0)‖< (ε +‖ f ′(t0)‖)|t− t0| and continuity at t0 follows.

(2): The usual calculus proof via Rolle’s theorem does not extend to the present
setting, as it uses the order structure of the real numbers.

Fix an arbitrary ε > 0. For each t ∈ (0,1), the assumption f ′(t) = 0 implies that there
exists h(t)> 0 such that the interval It := (t−h(t), t +h(t)) is contained in (0,1) and

‖ f (t)− f (s)‖6 ε|t− s|, s ∈ It .

Fix a closed subinterval [a,b]⊆ (0,1). The intervals It , t ∈ [a,b], cover the compact set

https://doi.org/10.1017/9781009232487.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009232487.003
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[a,b] and therefore this set is contained in the union of finitely many intervals It1 , . . . , ItN .
By adding the intervals Ia and Ib and relabelling (and perhaps discarding some of the
intervals), we may assume that a = t1, b = tN , and Itn ∩ Itn+1 6= ∅ for n = 1, . . . ,N− 1.
Choosing sn ∈ Itn ∩ Itn+1 we have

‖ f (tn+1)− f (tn)‖6 ‖ f (tn+1)− f (sn)‖+‖ f (sn)− f (tn)‖
6 ε(tn+1− sn)+ ε(sn− tn) = ε(tn+1− tn).

Now let t ∈ [a,b], say t ∈ Itk . Then

‖ f (t)− f (a)‖6 ‖ f (t)− f (tk)‖+‖ f (tk)− f (tk−1)‖+ · · ·+‖ f (t2)− f (t1)‖
6 ε(t− tk)+ ε(tk− tk−1)+ · · ·+ ε(t2− t1) = ε(t−a).

This being true for all ε > 0 it follows that f (t) = f (a) for all t ∈ [a,b]. This proves that
f is constant on every subinterval [a,b]⊆ (0,1) and therefore on (0,1).

(3): For the function g : [0,1]→ X , g(t) := f (t)−
∫ t

0 f ′(s)ds, we have

lim
h→0

1
h
(g(t +h)−g(t)) = f ′(t)− lim

h→0

1
h

∫ t+h

t
f ′(s)ds = 0

by continuity, and therefore g is continuously differentiable on [0,1] with derivative
g′ = 0. It follows from (2) that g is constant on (0,1), hence on [0,1] by continuity, and
then g(0) = f (0) implies

f (t)−
∫ t

0
f ′(s)ds = g(t) = g(0) = f (0), t ∈ [0,1].

Taking t = 1 gives the result.

In Chapter 4 we will sketch a different proof using duality.

1.5.b The Bochner Integral

We turn next to the more delicate problem of generalising the Lebesgue integral to
functions taking values in a Banach space X . The results of this section will be needed
only in Chapter 13.

In what follows we fix a measure space (Ω,F ). It is a matter of experience that
if one attempts to define the measurability of a function f : Ω→ X by imposing that
f−1(B) be in F for all Borel (equivalently, for all open) subsets of X , one arrives at
a notion of measurability that is not very practical, the problem being that it does not
connect well with approximation theorems such as the dominated convergence theorem.
It turns out that it is better to start from the following necessary and sufficient condition
for measurability in the scalar-valued setting: A scalar-valued function is measurable if
and only if it is the pointwise limit of a sequence of simple functions.
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For a function f : Ω→K and x ∈ X we define f ⊗ x : Ω→ X by

( f ⊗ x)(ω) := f (ω)x. (1.6)

Definition 1.46 (Simple functions, strong measurability). A function f : Ω → X is
called simple if it is a finite linear combination of functions of the form 1F ⊗ x with
F ∈F and x ∈ X , and strongly measurable if it is the pointwise limit of a sequence of
simple functions.

A scalar-valued function is strongly measurable if and only if it is measurable, and
for such functions we omit the adjective ‘strongly’.

Theorem 1.47 (Pettis measurability theorem, first version). A function f : Ω→ X is
strongly measurable if and only if f takes its values in a separable closed subspace X0

of X and the nonnegative functions ‖ f (·)− x0‖ are measurable for all x0 ∈ X0.

A second version of this theorem will be proved in Chapter 4 (see Theorem 4.19).

Proof ‘If’: Let (xn)n>1 be dense in X0 and define the functions φn : X0→{x1, . . . ,xn}
as follows. For each y ∈ X0 let k(n,y) be the least integer 16 k 6 n such that

‖y− xk‖= min
16 j6n

‖y− x j‖,

and put φn(y) := xk(n,y). Since (xn)n>1 is dense in X0 we have

lim
n→∞
‖φn(y)− y‖= 0, y ∈ X0.

Now define ψn : Ω→ X by

ψn(ω) := φn( f (ω)), ω ∈Ω.

We have

{ω ∈Ω : ψn(ω) = x1}=
{

ω ∈Ω : ‖ f (ω)− x1‖= min
16 j6n

‖ f (ω)− x j‖
}

and, for 26 k 6 n,

{ω ∈Ω : ψn(ω) = xk}

=
{

ω ∈Ω : ‖ f (ω)− xk‖= min
16 j6n

‖ f (ω)− x j‖< min
16 j<k−1

‖ f (ω)− x j‖
}
.

In both identities, the set on the right-hand side is in F. Hence each ψn is simple, takes
values in X0, and for all ω ∈Ω we have

lim
n→∞
‖ψn(ω)− f (ω)‖= lim

n→∞
‖φn( f (ω))− f (ω)‖= 0.

‘Only if’: Let fn→ f pointwise with each fn simple. Let X0 be the closed linear span
of the ranges of the functions fn. Then X0 is separable and f takes its values in X0.
Moreover, ω 7→ ‖ f (ω)− x0‖= limn→∞ ‖ fn(ω)− x0‖ is measurable.
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Corollary 1.48. If limn→∞ fn = f pointwise, with each fn strongly measurable, then f
is strongly measurable.

Proof We check the conditions of the Pettis measurability theorem. Every function fn :
Ω→ X is the pointwise limit of a sequence of simple functions fnm : Ω→ X , and every
fnm takes at most finitely many different values. It follows that f takes its values in the
closed linear span of these countably many finite sets, which is a separable subspace of
X . The measurability of the functions ‖ fn−x0‖ implies that ‖ f −x0‖ is measurable.

Definition 1.49 (µ-Simple functions). A simple function f = ∑
N
n=1 1Fn ⊗ xn is called

µ-simple if µ(Fn)< ∞ for all n = 1, . . . ,N. For such functions we define∫
Ω

f dµ :=
N

∑
n=1

µ(Fn)xn.

We leave it as a simple exercise to verify that
∫

Ω
f dµ is well defined in the sense

that it does not depend on the representation of f as a linear combination of functions
1Fn ⊗ xn with µ(Fn)< ∞. If f is µ-simple, the triangle inequality implies∥∥∥∫

Ω

f dµ

∥∥∥6 ∫
Ω

‖ f‖dµ. (1.7)

Definition 1.50 (Bochner integral). A strongly measurable function f : Ω→ X is said
to be Bochner integrable with respect to µ if there is a sequence of µ-simple functions
fn : Ω→ X such that

lim
n→∞

∫
Ω

‖ f − fn‖dµ = 0. (1.8)

In that case we define the Bochner integral of f by∫
Ω

f dµ := lim
n→∞

∫
Ω

fn dµ. (1.9)

The nonnegative functions ‖ f − fn‖ are measurable by the Pettis measurability theo-
rem, so the integral in (1.8) is well defined. The limit in (1.9) exists since the assumption
together with (1.7) (applied to fn− fm) implies that (

∫
Ω

fn dµ)n>1 is a Cauchy sequence
in X . We leave it as another simple exercise to verify that

∫
Ω

f dµ is well defined in
the sense that it does not depend on the sequence of approximating functions fn. It is
equally elementary to verify that if Ω = K is a compact metric space and F is its Borel
σ -algebra, then every continuous function f : K→ X is Bochner integrable with respect
to µ and the Bochner integral coincides with the Riemann integral.

Proposition 1.51. A strongly measurable function f : Ω→ X is Bochner integrable
with respect to µ if and only if ∫

Ω

‖ f‖dµ < ∞.
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In this situation we have ∥∥∥∫
Ω

f dµ

∥∥∥6 ∫
Ω

‖ f‖dµ.

Proof ‘If’: Let f be a strongly measurable function satisfying
∫

Ω
‖ f‖dµ < ∞. Let gn

be simple functions such that limn→∞ gn = f pointwise and define

fn := 1{‖gn‖62‖ f‖}gn.

Then each fn is simple and we have limn→∞ fn = f pointwise. Since ‖ fn‖6 2‖ f‖ point-
wise and

∫
Ω
‖ f‖dµ < ∞, each fn is µ-simple and by dominated convergence we obtain

lim
n→∞

∫
Ω

‖ f − fn‖dµ = 0.

‘Only if’: If f is Bochner integrable and the µ-simple function g : Ω→ X is such that∫
Ω
‖ f −g‖dµ 6 1, then ∫

Ω

‖ f‖dµ 6 1+
∫

Ω

‖g‖dµ < ∞.

The final assertion follows from (1.7) by approximation.

Problems

1.1 Show that in any normed space X , for all x0 ∈X and r > 0 the following assertions
hold:

(a) B(x0;r) = {x ∈ X : ‖x− x0‖< r} is an open set.
(b) B(x0;r) = {x ∈ X : ‖x− x0‖6 r} is a closed set.
(c) B(x0;r) = B(x0;r), that is, B(x0;r) is the closure of B(x0;r).

1.2 Let X be a normed space.

(a) Show that if x,y ∈ X satisfy ‖x− y‖< ε with 0 < ε < ‖x‖, then y 6= 0 and∥∥∥x− ‖x‖
‖y‖

y
∥∥∥< 2ε.

(b) Show that the constant 2 in part (a) is the best possible.

1.3 Show that a norm ‖ · ‖ on the product X = X1× ·· ·×XN of normed spaces is a
product norm if and only if ‖x‖∞ 6 ‖x‖6 ‖x‖1 for all x = (x1, . . . ,xN)∈ X , where

‖x‖∞ := max
16n6N

‖xn‖, ‖x‖1 :=
N

∑
n=1
‖xn‖.

1.4 Show that if X = X1⊕·· ·⊕XN is a direct sum of normed spaces, then each sum-
mand Xn is closed as a subspace of X .

https://doi.org/10.1017/9781009232487.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009232487.003


Problems 29

1.5 Prove that if T ∈L (X ,Y ) is bounded, then

‖T‖= sup
‖x‖=1

‖T x‖= sup
‖x‖<1

‖T x‖.

1.6 Let X and Y be normed spaces and let T ∈L (X ,Y ). Prove that for all x ∈ X and
r > 0 we have

sup
y∈B(x;r)

‖Ty‖> r‖T‖.

1.7 Let X0 := C1
c (0,1) be the vector space of all C1-functions f : (0,1)→ K with

compact support in (0,1).

(a) Show that X := { f ∈C[0,1] : f (0) = f (1) = 0} is a Banach space and that
X0 can be naturally identified with a dense subspace in X .

(b) Show that for each f ∈ X0 the limit limn→∞ Tn f exists with respect to the
norm of X and equals f ′, where

Tn f (t) =
f (t +1/n)− f (t)

1/n
.

(c) Show that there are functions f ∈ X for which the limit limn→∞ Tn f does not
exist in X .

This example shows that the uniform boundedness assumption cannot be omitted
in Proposition 1.19.

1.8 Show that if two norms ‖ · ‖ and ‖ · ‖′ on a normed space X are equivalent, then
the norms of the completions of (X ,‖ · ‖) and (X ,‖ · ‖′) are equivalent.

1.9 Let ‖ · ‖ and ‖ · ‖′ be two norms on a vector space X . Show that the following
assertions are equivalent:

(1) there exists a constant C > 0 such that ‖x‖6C‖x‖′ for all x ∈ X ;
(2) every open set in (X ,‖ · ‖) is open in (X ,‖ · ‖′);
(3) every convergent sequence in (X ,‖ · ‖′) is convergent in (X ,‖ · ‖);
(4) every Cauchy sequence in (X ,‖ · ‖′) is Cauchy in (X ,‖ · ‖).

1.10 Let X be a Banach space with respect to the norms ‖ · ‖ and ‖ · ‖′. Suppose that
‖ ·‖ and ‖ ·‖′ agree on a subspace Y that is dense in X with respect to both norms.
We ask whether the norms agree on all of X .

(a) Comment on the following attempt to prove this: Apply Proposition 1.18
to the identity mapping on Y , viewed as a mapping from the normed space
(Y,‖ · ‖) to the normed (Y,‖ · ‖′) and as a mapping in the opposite direction.

(b) Comment on the following attempt to prove this: Let x ∈ X be fixed and,
using density, choose a sequence xn → x with xn ∈ Y for all n > 1. Then
‖x‖= limn→∞ ‖xn‖= limn→∞ ‖xn‖′ = ‖x‖′.

(c) Comment on Problem 2.8 as an attempt to disprove this.
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(d) Prove that the answer is affirmative if we make the additional assumption
that ‖ · ‖6C‖ · ‖′ for some constant 0 <C < ∞.

1.11 Provide the details to the ‘if’ part of the proof of Proposition 1.13.
1.12 Let X be a normed space.

(a) Show that if X is separable, then the completion of X is separable.
(b) Show that if X is a Banach space and Y is a closed subspace of X , then X is

separable if and only if both Y and X/Y are separable.

1.13 Determine whether the following sets are open and/or closed in C[0,1]:

(a) { f ∈C[0,1] : f (t)> 0 for all t ∈ [0,1]};
(b) { f ∈C[0,1] : f (t)> 0 for all t ∈ [0,1]}.

Consider the set S := { f ∈ L1(0,1) : f (t)> 0 for almost all t ∈ (0,1)}.
(c) Determine whether S is a closed subset of L1(0,1).
(d) Characterise the functions belonging to the interior S◦.

1.14 This problem gives an example of a bounded operator that does not attain its norm.
Let X be the space of continuous functions f : [0,1]→K satisfying f (0) = 0.

(a) Show that X is a closed subspace of C[0,1].

Thus, with the norm inherited from C[0,1], X is a Banach space.

(b) Show that the operator T : X →K,

T f :=
∫ 1

0
f (t)dt,

is bounded and has norm ‖T‖= 1.
(c) Prove that |T f |< 1 for all f ∈ X with ‖ f‖∞ 6 1.

1.15 This problem gives an example of a bounded operator whose range is not closed.
Consider the linear operator T on C[0,1] given by the indefinite integral

T f (t) =
∫ t

0
f (s)ds, t ∈ [0,1].

(a) Show that T is bounded and compute its norm.
(b) Show that R(T ) is not closed in C[0,1].

1.16 Let X be a Banach space and Y be a normed space. Show that if T : X → Y is a
bounded operator satisfying ‖T x‖>C‖x‖ for some C > 0 and all x ∈ X , then its
range R(T ) is complete and T is an isomorphism from X to R(T ).

1.17 Let X and Y be finite-dimensional normed spaces. Prove that if Tn,T ∈L (X ,Y ),
then the following assertions are equivalent:

(1) limn→∞ Tn = T uniformly;
(2) limn→∞ Tn = T strongly;
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(3) limn→∞ Tn = T weakly.

1.18 Let 16 p < ∞.

(a) Show that `p is a dense subspace of c0.
(b) Show that the inclusion mapping of `p into c0 is bounded.

1.19 Show that a normed space X and its completion X have the same dual, that is, the
restriction mapping x∗ 7→ x∗|X is an isometric isomorphism from X∗ onto X∗.

1.20 Let X be a real vector space. The product X ×X can be given the structure of a
complex vector space by introducing a complex scalar multiplication as follows:

(a+ ib)(x,y) := (ax−by,bx+ay).

The idea is to think of the pair (x,y) ∈ X×X as “x+ iy”.

(a) Check that this formula for the scalar multiplication does indeed turn X ×X
into a complex vector space.

The resulting complex vector space is denoted by XC.
Suppose now that X is a real normed space.

(b) Prove that the formula

‖(x,y)‖ := sup
θ∈[0,2π]

‖(cosθ)x+(sinθ)y‖

defines a norm on XC which turns it into a complex normed space. Show that
XC is a Banach space if and only if X is a Banach space.

(c) Show that this norm on XC extends the norm of X in the sense that ‖(x,0)‖=
‖(0,x)‖= ‖x‖ for all x ∈ X .

(d) Show that ‖(x,y)‖= ‖(x,−y)‖ for all x,y ∈ X .

(e) Show that any two norms on XC which satisfy the identities in parts (c) and
(d) are equivalent.

1.21 Let X be a real Banach space and let XC be the complex Banach space constructed
in Problem 1.20.

(a) Show that if T is a (real-)linear bounded operator on X , then T extends to a
bounded (complex-)linear operator TC on XC by putting TC(x,y) := (T x,Ty).

(b) Show that ‖TC‖= ‖T‖.
1.22 As a variation on Proposition 1.40, show that a bounded subset S of a Banach

space X is relatively compact if and only if for every ε > 0 there exists a finite-
dimensional subspace Xε of X such that S⊆ Xε +B(0;ε).

1.23 Show that a subset K of a Banach space X is relatively compact if and only if
K is contained in the closed convex hull of a sequence (xn)n>1 in X satisfying
limn→∞ xn = 0.
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Hint: For the ‘only if’ part, cover K with finitely many balls of radius 3−n and let
Cn be the set of their centres; n = 1,2, . . . Let D1 :=C1 and, for n> 2,

Dn := {cn− cn−1 : cn ∈Cn, cn−1 ∈Cn−1, ‖cn− cn−1‖< 3−n+1}.

Check that each x ∈ K can be represented as an absolutely convergent sum x =

∑n>1 dn with dn ∈ Dn. Consider the sequence (xn)n>1 given by xn := 2ndn.
1.24 Let (Ω,F ) be a measurable space. Adapting the proof of Theorem 1.47 show that

if f : Ω→ X is strongly measurable, there are simple functions fn : Ω→ X such
that fn→ f and ‖ fn‖6 ‖ f‖ pointwise.

1.25 Let K be a compact metric space, let µ a finite Borel measure on K, and let X be
a Banach space. Prove that every continuous function f : K→ X is Bochner inte-
grable with respect to µ and that its Bochner integral equals its Riemann integral.

1.26 Let (Ω,F,µ) be a measure space and let X0 be a closed subspace of the Banach
space X . Let f : Ω→ X satisfy f (ω) ∈ X0 for all ω ∈Ω.

(a) Show that if f is strongly measurable as an X-valued function, then f is
strongly measurable as an X0-valued function.

Assume now that f : Ω→ X satisfies f (ω) ∈ X0 for almost all ω ∈Ω.

(b) Show that if f is strongly measurable as an X-valued function, then f is
strongly measurable as an X0-valued function.

(c) Show that if f is Bochner integrable as an X-valued function, then f is
Bochner integrable as an X0-valued function.

1.27 Let (Ω,F,µ) be a measure space. Show that if T : X → Y is a bounded opera-
tor and f : Ω→ X is Bochner integrable with respect to µ , then T f : Ω→ Y is
Bochner integrable with respect to µ and

T
∫

Ω

f dµ =
∫

Ω

T f dµ.

1.28 Let (Ω,F,µ) be a measure space and let (Ω′,F ′) be a measurable space. Let
φ : Ω→ Ω′ be measurable and let f : Ω′ → X be strongly measurable. Let ν =

µ ◦φ−1 be the image measure of µ under φ .

(a) Show that f ◦φ is strongly measurable.
(b) Show that f ◦ φ is Bochner integrable with respect to µ if and only if f is

Bochner integrable with respect to ν , and that in this situation we have∫
Ω

f ◦φ dµ =
∫

Ω′
f dν .

1.29 Let (Ω,F,µ) be a probability space. Prove that if f : Ω→ X is Bochner inte-
grable, then

∫
Ω

f dµ is contained in the closed convex hull of { f (ω) : ω ∈Ω}.
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