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Abstract. For an arbitrary countable discrete infinite group G, non-singular rank-one
actions are introduced. It is shown that the class of non-singular rank-one actions coincides
with the class of non-singular (C, F)-actions. Given a decreasing sequence�1 � �2 � · · ·
of cofinite subgroups in G with

⋂∞
n=1

⋂
g∈G g�ng−1 = {1G}, the projective limit of

the homogeneous G-spaces G/�n as n→∞ is a G-space. Endowing this G-space
with an ergodic non-singular non-atomic measure, we obtain a dynamical system which
is called a non-singular odometer. Necessary and sufficient conditions are found for
a rank-one non-singular G-action to have a finite factor and a non-singular odometer
factor in terms of the underlying (C, F)-parameters. Similar conditions are also found
for a rank-one non-singular G-action to be isomorphic to an odometer. Minimal Radon
uniquely ergodic locally compact Cantor models are constructed for the non-singular
rank-one extensions of odometers. Several concrete examples are constructed and several
facts are proved that illustrate a sharp difference of the non-singular non-commutative
case from the classical finite measure preserving one: odometer actions which are not
of rank-one and factors of rank-one systems which are not of rank one; however, each
probability preserving odometer is a factor of an infinite measure preserving rank-one
system, etc.
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1. Introduction
This work is motivated by a recent paper [Fo–We], where Foreman et al describe odometer
factors of rank-one transformations in terms of the underlying cutting-and-stacking
parameters. This description is considered as a step towards classification of the rank-one
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2 A. I. Danilenko and M. I. Vieprik

transformations up to isomorphism relation. Our purpose here is to generalize the main
results of [Fo–We] in the following three directions:
• to consider actions of arbitrary countable infinite groups including non-amenable ones

([Fo–We] deals only with Z-actions);
• to consider arbitrary non-singular group actions ([Fo–We] deals only with probability

preserving actions); and
• to consider rank-one actions along an arbitrary sequence of shapes ([Fo–We] deals

only with the classical rank one, that is, rank one along a sequence of intervals in Z.
In particular, our results hold for the funny rank-one probability preserving Z-actions
which were not studied in [Fo–We]).

We now briefly outline the content of the paper, which consists of six sections. Section 2
is divided into seven subsections. In §2.1, we define, for an arbitrary countable group G,
non-singular G-actions of rank one. According to this definition, a non-singular G-action
T is of rank one if T is free and T admits a refining sequence of Rokhlin towers
that approximate both the entire σ -algebra of Borel subsets and the G-orbits and, in
addition, the Radon–Nikodym derivative of T is constant on each transposition of the
levels within every tower (see Definition 2.1). This extends the concept given in [RuSi]
for Z-actions. Definition 2.1 can be considered as an abstract definition of rank one. In
the case of probability preserving Z-actions, there exist several equivalent constructive
definitions of this concept [Fe]. One of the most useful of these is the cutting-and-stacking
construction, which explicitly associates a rank-one transformation to a sequence of
integer-valued parameters. (Thus, the class of rank-one transformations is parametrized
with a nice Polish space of integer parameters. However, different sequences of parameters
can define isomorphic rank-one maps. A challenging open problem in this field is to
find necessary and sufficient conditions for the parameters that determine isomorphic
transformations.) This transformation is defined on the unit interval. It preserves the
Lebesgue measure. A natural generalization of this construction for general countable
groups was suggested in [Da1, dJ2] in similar but non-equivalent versions. We call it
the (C, F)-construction. The most general version of the (C, F)-construction, including
the versions from [Da1, dJ2] as particular cases, appeared in [Da3]. However, [Da3]
deals only with measure preserving actions. In §§2.2–2.3 here, we define non-singular
(C, F)-actions. Section 2.2 is preliminary: we define (C, F)-equivalence relations and
related quasi-invariant (C, F)-measures. The non-singular (C, F)-actions related to the
(C, F)-equivalence relations and (C, F)-measures appear in §2.3. They include all the
non-singular rank-one transformations (and actions of Abelian groups) that have been
studied earlier in the literature: see [Aa, AdFrSi, Da1, Da2, DaSi, HaSi] and references
therein. The main result of §2 is the following (see Theorem 2.13).

THEOREM A. Each non-singular (C, F)-action of G is of rank one and each rank-one
non-singular action of G is isomorphic to a (C, F)-action.

It is worth noting that if a probability preserving G-action is of rank one along a
sequence (Fn)∞n=1 of subsets in G, then G is amenable and (Fn)∞n=1 is left Følner (see
Corollary 2.11(ii)).
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Rank-one non-singular actions of countable groups 3

Important concepts of telescoping and reduction for the parameters of (C, F)-actions
are introduced in §2.4. They are used in §2.5 to construct continuous models of the
non-singular (C, F)-actions. We remind that the famous Jewett–Krieger theorem provides
strictly ergodic models for the ergodic probability preserving Z-actions. In [Yu], an
analogue of this theorem was proved for the infinite measure preserving ergodic transfor-
mations. In the present paper, we prove the existence of Radon uniquely ergodic minimal
topological models for the rank-one non-singular actions (see Theorem 2.19).

THEOREM B. If (X, μ, (Tg)g∈R) is a non-singular G-action of rank one, then there are a
Radon uniquely ergodic minimal free continuous G-action (Rg)g∈G on a locally compact
Cantor space Y, an R-quasi-invariant Radon measure ν on Y and a measure preserving
isomorphism φ of (X, μ) onto (Y , ν) such that φTgφ−1 = Rg almost everywhere and the
Radon–Nikodym derivative ρg := dν ◦ Rg/dν is a continuous mapping from Y to R∗+ for
each g ∈ G. Moreover, ν is the only (up to scaling) R-quasi-invariant Radon measure on
Y whose Radon–Nikodym cocycle equals (ρg)g∈G.

We note that the continuity of the Radon–Nikodym derivatives was used essentially in
[DadJ] for the almost continuous orbit classification of non-singular homeomorphisms
of Krieger type III. Theorems A and B generalize respectively [Da3, Theorem 1.6 and
Corollary 1.9], where only measure preserving systems were under consideration.

In §§2.6 and 2.7, we discuss the case of non-singular Z-actions of rank one along
intervals in more detail. It is shown in §2.6 that the (C, F)-construction in this
case is equivalent to the classical cutting-and-stacking with a single tower at every
step of the construction. However, in contrast with the measure preserving case, the
towers are now divided into subtowers of different width. It is explained in §2.7
how the underlying (C, F)-parameters are used to present a rank-one non-singular
transformation as a transformation built over a classical non-singular odometer of
product type (called also Krieger’s adding machine) and under a piecewise constant
function.

Section 3 is devoted to the description of finite factors of rank-one non-singular
actions. We remind that a factor of a dynamical system is an invariant sub-σ -algebra of
measurable subsets. Equivalently, a factor of a system is a dynamical system which appears
as the image of the original system under a non-singular equivariant mapping. Hence,
the finite factors of an ergodic G-action correspond to the G-equivariant mappings onto
homogeneous G-spaces G/�, where � is a cofinite subgroup in G. Each non-singular
(C, F)-action is parametrized by an underlying sequence T = (Cn, Fn−1, κn, νn−1)

∞
n=1

of (C, F)-parameters, where Cn and Fn−1 are finite subsets of G, κn is a probability on
Cn and νn−1 is measure on Fn−1 for each n ∈ N. These parameters have to satisfy some
conditions listed in §2.3. The following is the main result of §3 (a stronger version of it is
proved as Theorem 3.3; see also Remark 3.4).

THEOREM C. A non-singular (C, F)-action T of G has a finite factor G/� if and only
there is a telescoping T = (Cn, Fn−1, κn, νn−1)

∞
n=1 of the (C, F)-parameters of T and a

coset g� ∈ G/� such that
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4 A. I. Danilenko and M. I. Vieprik

∞∑
n=1

κn({c ∈ Cn | c �∈ g�g−1}) <∞.

An explicit formula for the factor mapping is obtained.

We note that if G is Abelian, � ⊂ G is a cofinite subgroup and the homogeneous
G-space G/� is a factor-space of an ergodic G-action T, then the corresponding
factor-algebra of T is defined uniquely. This is no longer true for non-Abelain G: we provide
an example of a rank-one G-action T and two T-invariant sub-σ -algebras F1 �= F2 such that
T � F1 and T � F2 are isomorphic G-actions on finite spaces (Example 3.5).

A criterion of total ergodicity for a non-singular (C, F)-action in terms of the underly-
ing (C, F)-parameters is obtained as a corollary from Theorem C (see Corollary 3.6).

Starting from §4, we assume that G is residually finite. Section 4 consists of two
subsections. In §4.1, we consider topological G-odometers as the projective limits of
homogeneous G-spaces G/�n for a decreasing sequence �1 � �2 � · · · of cofinite sub-
groups in G such that

⋂∞
n=1

⋂
g∈G g�ng−1 = {1G}. By a non-singular G-odometer, we

mean a topological G-odometer endowed with a G-quasi-invariant measure. Topological
properties of odometers are not of our primary interest in the present work. Measure
theoretical odometers (for general groups) were under study in [DaLe, LiSaUg], but only
in the finite measure preserving case. In this paper, we study non-singular G-odometers.
Some sufficient conditions for a non-singular odometer to be of rank one are found in
Proposition 4.2. These conditions are satisfied for all known non-singular odometers (see
Example 4.3). It is worth noting that there exist odometers which are not of rank one.
Examples of non-rank-one probability preserving G-odometers for non-amenable G are
given in Example 4.4 and for amenable G (including the Grigorchuk group) in Examples
4.5 and 4.6. However, each probability preserving G-odometer is a factor of an infinite
measure preserving rank-one G-action (see Theorem 4.9 for a slightly stronger result):

THEOREM D. For a topological G-odometer O defined on a compact space Y, there
exist:
• a rank-one measure preserving continuous G-action T on a locally compact Cantor

space X equipped with a σ -finite measure μ; and
• a G-equivariant continuous mapping π : X→ Y

such that O is a factor of T and the measure μ ◦ π−1 is equivalent (that is, has the same
ideal of subsets of zero measure) to the Haar measure on Y.

Thus, a factor of a rank-one non-singular action is not necessarily of rank one. This is
in contrast with the classical case of rank-one finite measure preserving Z-actions [Fe].
Theorem 4.9 is about an interplay between odometer factors and an ‘unordered’ sequence
of finite factors for an ergodic G-action. This theorem is trivial in the case where G is
Abelian.

Non-singular normal covers for non-singular odometers are introduced in §4.2. The
existence of non-singular normal covers is proved in Proposition 4.11.

In §4, we study odometer factors of non-singular (C, F)-actions. The main result of the
paper is the following (see Theorem 5.4).
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Rank-one non-singular actions of countable groups 5

THEOREM E. Let (X, μ, T ) be the non-singular (C, F)-action of G associated with
a sequence of (C, F)-parameters T . Let O be the topological G-odometer defined
on the projective space Y = proj limn→∞ G/�n corresponding to a nested sequence
�1 � �2 � · · · of cofinite subgroups in G such that

⋂∞
n=1

⋂
g∈G g�ng−1 = {1G}. A

measurable G-equivariant mapping π : X→ Y exists if and only if there are a telescoping
T ′ = (Cn, Fn−1, κn, νn−1)

∞
n=1 of T and an element (gn�n)∞n=1 ∈ Y such that

∞∑
n=1

κn({c ∈ Cn | c �∈ gn�ng−1
n }) <∞.

An explicit formula for π is obtained. Necessary and sufficient conditions for π to be an
isomorphism of (X, μ, T ) onto (Y , O, μ ◦ π−1) are given in terms of T ′.

It is worth noting that each rank-one non-singular action T is parametrized by
the (C, F)-parameters T (see Theorem A) in a highly non-unique way. However, the
properties of T specified in the statement of Theorem E (to determine an odometer factor O
or an isomorphism of T with O) are independent on the choice of T . Hence, Theorem E can
be considered as a contribution to the classification problem for the rank-one non-singular
systems.

As a corollary from Theorem E, criteria for a (C, F)-action to have an odometer factor
or to be isomorphic to an odometer factor in terms of the underlying (C, F)-parameters
are obtained in Corollaries 5.6 and 5.7, respectively. Corollary 5.8 provides minimal
Radon uniquely ergodic models for the rank-one non-singular extensions of non-singular
odometers. This corollary can be interpreted as a ‘relative’ counterpart of Theorem B.

THEOREM F. Let (X, μ, T ) be a rank-one non-singular G-action, (Y , ν, O) a
non-singular G-odometer and π : X→ Y a G-equivariant mapping with μ ◦ π−1 = ν.
Then there exist a locally compact Cantor space X̃, a minimal Radon uniquely
ergodic free continuous G-action T̃ on X̃, a continuous G-equivariant mapping
π̃ : X→ Y and a Borel isomorphism R : X→ X̃ such that μ ◦ R−1 is a Radon
measure on X̃, RTgR−1 = T̃g for each g ∈ G, the Radon–Nikodym derivative ρg :=
d(μ ◦ R−1) ◦ T̃g/d(μ ◦ R−1) is a continuous mapping from X̃ to R∗+ for each g ∈ G and
π̃ ◦ R = π . Moreover, T̃ is also Radon (ρg)g∈G-uniquely ergodic.

It follows from the Glimm–Effros theorem (see [DaSi, Ef]) that each topological
odometer (Y , O) (in fact, each topological G-action with a recurrent point) has uncount-
ably many ergodic quasi-invariant measures. However, the space of these measures is huge
and ‘wild’ to describe it in good parameters. Using Theorems E and F, we can isolate a
good class of ergodic finite quasi-invariant measures that admits a good parametrization.
This is the class of factor measures on Y for all rank-one non-singular G-actions for which
Y is a factor. Every such measure can be parametrized by the (C, F)-parameters (see
Corollary 5.9).

Section 6 is devoted completely to construction of five concrete rank-one actions with
odometer factors and interesting properties. In §6.1, we continue studying the example
of non-odometer rank-one probability preserving Z-action (X, μ, T ) from [Fo–We]. It
was shown there that the maximal odometer factor F of T is non-trivial and isomorphic
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6 A. I. Danilenko and M. I. Vieprik

to the classical 2-adic odometer. We prove that F is the Kronecker factor of T and that
T is an uncountable-to-one extension of F. It follows, in particular, that the spectrum
of T has a continuous component. In §6.2, we consider non-singular counterparts of the
aforementioned system (X, μ, T ). In particular, for each λ ∈ [0, 1], we construct a measure
μλ on X such that:
• the triple (X, μλ, T ) is a rank-one non-singular system of Krieger type IIIλ;
• (X, μλ, T ) has a factor F which is isomorphic to the probability preserving 2-adic

odometer;
• F is the maximal (in the class of non-singular odometers) factor of (X, μλ, T );
• the extension X→ F is uncountable-to-one (mod μλ).
In the III0-case, we extend this result to systems whose associated flow is an arbitrary
finitary AT in the sense of Connes and Woods [CoWo]. In §6.3, we provide an example
of rank-one Z2-action T = (Tg)g∈Z2 such that the generators T(0,1) and T(1,0) have
Z-odometer factors, but T has no Z2-odometer factor. Another construction of such an
action has appeared earlier in [JoMc, §6], but our example is much simpler. In §6.4, we
construct a rank-one action T of the Heisenberg group H3(Z) which has an odometer
factor F, but which is not isomorphic to any odometer action. We show there that F is the
maximal odometer factor of T and the extension T → F is uncountable-to-one. In §6.5,
we provide an example of non-normal H3(Z)-odometer which is canonically isomorphic
to a normal odometer.

The final §7 is devoted to the article [JoMc] which appeared in the course of our work
on the present paper. The purpose of [JoMc] is the same as ours: to generalize [Fo–We].
However, only finite measure preserving actions of amenable groups and only normal
odometers are studied in [JoMc]. Therefore, in §7, we discuss the results of [JoMc] and
compare them with results of the present paper.

2. Rank-one non-singular actions of countable groups and (C, F)-construction
2.1. Non-singular actions of rank one. Let G be a discrete infinite countable group. Let
T = (Tg)g∈G be a free non-singular action of G on a standard σ -finite non-atomic measure
space (X, B, μ). By a Rokhlin tower for T, we mean a pair (B, F), where B ∈ B with
0 < μ(B) <∞ and F is a finite subset of G with 1G ∈ F such that:
• the subsets Tf B, f ∈ F , are mutually disjoint;
• the Radon–Nikodym derivative dμ ◦ Tf /dμ is constant on B for each f ∈ F .

Given a Rokhlin tower (B, F), we let XB,F :=⊔f∈F Tf B ∈ B. Of course,
μ(XB,F ) <∞. By ξB,F , we mean the finite partition of XB,F into the subsets Tf B,
f ∈ F . If x ∈ Tf B, then we set OB,F (x) := {Tgx | g ∈ Ff−1}.
Definition 2.1. Let {1G} = F0 ⊂ F1 ⊂ F2 ⊂ · · · be an increasing sequence of finite
subsets in G. We say that T is of rank-one along (Fn)∞n=0 if there is a decreasing sequence
B0 ⊃ B1 ⊃ · · · of subsets of positive measure in X such that (Bn, Fn) is a Rokhlin tower
for T for each n ∈ N and:
(i) ξBn,Fn ≺ ξBn+1,Fn+1 for each n ≥ 0 and

∨∞
n=0 ξBn,Fn is the partition of X into

singletons (mod 0);
(ii) {Tgx | g ∈ G} =⋃∞n=1 OBn,Fn(x) for almost every (a.e.) x ∈ X.
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Rank-one non-singular actions of countable groups 7

It follows from property (i) thatXB0,F0 ⊂ XB1,F1 ⊂ XB2,F2 ⊂ · · · and
⋃∞
n=0 XBn,Fn = X.

The piecewise constant property of the Radon–Nikodym derivative on the Rokhlin towers
yields that:
(iii) if TcBn+1 ⊂ Bn for some c ∈ Fn+1, then

μ(Tf cBn+1)

μ(Tf Bn)
= μ(TcBn+1)

μ(Bn)
for each f ∈ Fn and n ≥ 0.

PROPOSITION 2.2. Let T satisfy condition (i) from Definition 2.1. Then T is ergodic. In
particular, every rank-one non-singular action is ergodic.

Proof. Let two subsets A1, A2 ∈ B be of positive measure. It follows from condition (i)
that there are n > 0 and f1, f2 ∈ Fn such that

μ(A1 ∩ Tf1Bn) > 0.9μ(Tf1Bn) and μ(A2 ∩ Tf2Bn) > 0.9μ(Tf2Bn).

As (Bn, Fn) is a Rokhlin tower, T
f2f
−1
1
Tf1Bn = Tf2Bn and

dμ ◦ T
f2f
−1
1

dμ
(x) = μ(Tf2Bn)

μ(Tf1Bn)
at a.e. x ∈ A1.

It follows that

μ(T
f2f
−1
1
A1 ∩ Tf2Bn) = μ(Tf2f

−1
1
(A1 ∩ Tf1Bn))

= μ(A1 ∩ Tf1Bn)
μ(Tf2Bn)

μ(Tf1Bn)

> 0.9μ(Tf2Bn).

Therefore, μ(T
f2f
−1
1
A1 ∩ Tf2Bn ∩ A2) > 0.8μ(Tf2Bn). Hence, μ(T

f2f
−1
1
A1 ∩ A2) > 0,

as desired.

2.2. (C, F)-equivalence relations and non-singular (C, F)-measures. Fix two
sequences (Fn)n≥0 and (Cn)n≥1 of finite subsets in G such that F0 = {1G} and for each
n > 0,

1G ∈ Fn ∩ Cn, #Cn > 1,

FnCn+1 ⊂ Fn+1,

Fnc ∩ Fnc′ = ∅ if c, c′ ∈ Cn+1 and c �= c′.
(2.1)

We let Xn := Fn × Cn+1 × Cn+2 × · · · and endow this set with the infinite product
topology. Then Xn is a compact Cantor space. The mapping

Xn � (fn, cn+1, cn+2, . . .) �→ (fncn+1, cn+2, . . .) ∈ Xn+1

is a continuous embedding of Xn into Xn+1. Therefore, the topological inductive limit X
of the sequence (Xn)n≥0 is well defined. Moreover, X is a locally compact Cantor space.
Given a subset A ⊂ Fn, we let

[A]n := {x = (fn, cn+1, . . .) ∈ Xn, fn ∈ A}
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8 A. I. Danilenko and M. I. Vieprik

and call this set an n-cylinder in X. It is open and compact in X. For brevity, we will write
[f ]n for [{f }]n for an element f ∈ Fn.

We remind that two points x = (fn, cn+1, . . .) and x′ = (f ′n, c′n+1, . . .) of Xn are tail
equivalent if there is N > n such that cl = c′l for each l > N . We thus obtain the tail
equivalence relation on Xn.

Definition 2.3. [Da3] The (C, F)-equivalence relation (or the tail equivalence relation) R
on X is defined as follows: for each n ≥ 0, the restriction of R to Xn is the tail equivalence
relation on Xn.

The following properties of R are easy to check:
• each R-class is countable;
• R is minimal, that is, the R-class of every point is dense in X;
• R is hyperfinite, that is, there is a sequence (Sn)∞n=1 of subrelations of R such that

S1 ⊂ S2 ⊂ · · · , ⋃∞n=1 Sn = R and #Sn(x) <∞ for each x ∈ X and n > 0. Indeed,
we can define Sn by the following: (x, y) ∈ Sn if either x, y �∈ Xn and x = y or
x = (fn, cn+1, . . .) ∈ Xn, y = (f ′n, c′n+1, . . .) ∈ Xn and cm = c′m for all m > n.

We recall that the full group [R] of R is the group of all Borel bijections γ : X→ X

such that (x, γ x) ∈ R for each x ∈ X. A Borel measure μ on X is called R-quasi-invariant
if μ ◦ γ ∼ μ for each γ ∈ [R]. Then there is a Borel mapping ρμ : R→ R∗+ such that

ρμ(x, y)ρμ(y, z) = ρμ(x, z) for all (x, y), (y, z) ∈ R

and ρμ(γ x, x) = (dμ ◦ γ /dμ)(x) at a.e. x ∈ X for each γ ∈ [R]. The mapping ρμ is
called the Radon–Nikodym cocycle of (R, μ).

Suppose that for each n ∈ N, a non-degenerated probability measure κn on Cn is given.
We now let μ0 := ν0 ⊗ κ1 ⊗ κ2 ⊗ · · · , where ν0 is the Dirac measure supported at 1G.
Then, μ0 is an (R � X0)-quasi-invariant probability on X0. Of course, μ0 is non-atomic if
and only if ∏

n>0

max
c∈Cn

κn(c) = 0. (2.2)

By the Kolmogorov 0-1 law, (R � X0) is ergodic on the probability space (X0, μ0). There
are many ways to extend μ0 to an R-quasi-invariant measure on X. However, all such
measures will be mutually equivalent. Select for each n ∈ N a non-degenerated finite
measure νn on Fn such that

νn+1(f c) = νn(f )κn+1(c) for each f ∈ Fn and c ∈ Cn+1. (2.3)

It is often convenient to consider νn and κn as finite measures on G supported on Fn and
Cn, respectively. Then equation (2.3) means that νn+1 � FnCn+1 = νn ∗ κn+1, where the
symbol ∗ means the convolution. We now define a Borel measure μ on X by setting

μ([f ]n) := νn(f ) for each g ∈ Fn and every n ∈ N.
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Rank-one non-singular actions of countable groups 9

It is straightforward to verify that μ is a well-defined σ -finite Radon measure. Moreover,
μ is R-quasi-invariant and

ρμ(x, y) = νn(fn)

νn(f ′n)
∏
m>n

κm(cm)

κm(c′m)
,

whenever x = (fn, cn+1, . . .) and y = (f ′n, c′n+1, . . .) are R-equivalent points that belong
to Xn = Fn × Cn+1 × Cn+2 × · · · for some n > 0.

The following definition extends [Da1, Definition 4.2], where the case of Abelian G
was considered.

Definition 2.4. If equations (2.2) and (2.3) hold, then we call μ the (C, F)-measure on X
determined by (κn)∞n=1 and (νn)∞n=0.

Consider another sequence (ν′n)∞n=0 of non-degenerated measures on (Fn)∞n=0 (in n)
such that ν′0 is the Dirac measure supported at 1G and ν′n+1(f c) = ν′n(f )κn+1(c) for each
f ∈ Fn and c ∈ Cn+1 for each n > 0. Then, the (C, F)-measureμ′ determined by (κn)∞n=1,
and (ν′n)∞n=0 is equivalent to μ and

dμ′

dμ
(x) = ν′n(fn)

νn(fn)
if x = (fn, . . .) ∈ Xn.

Another useful observation is that given (κn)∞n=1, we can always find (νn)∞n=0 satisfying
equation (2.3). Thus, the equivalence class of a non-singular (C, F)-measure is completely
determined by (κn)∞n=1 alone. In particular, we may always replace a σ -finite non-singular
(C, F)-measure with an equivalent finite non-singular (C, F)-measure.

Remark 2.5. We note that R is Radon uniquely ergodic, that is, there is a unique
R-invariant Radon measure ξ on X such that ξ(X0) = 1. We call it the Haar measure
for R. It is σ -finite. Let kn be the equidistribution on Cn and let νn(f ) =∏n

k=1 κk(1G) for
each f ∈ Fn and n ≥ 0. Then, equations (2.2) and (2.3) hold for (κn)∞n=1 and (νn)∞n=0. Of
course, the Haar measure for R is a (C, F)-measure determined by (κn)∞n=1 and (νn)∞n=0.
The Haar measure is finite if and only if

∞∏
n=1

#Fn+1

#Fn#Cn+1
<∞.

It is easy to verify that R is conservative and ergodic on the σ -finite measure
space (X, μ). This means that for each R-invariant subset A ⊂ X, either μ(A) = 0 or
μ(X \ A) = 0.

Since the set of quasi-invariant probability measures with a fixed Radon–Nikodym
derivative is a simplex [GrSc], it makes sense to introduce the following definition.

Definition 2.6. Let S be a Borel countable equivalence relation on a locally compact Polish
space Z. Given a Borel cocycle ρ : S → R∗+, we say that S is Radon ρ-uniquely ergodic if
there is a unique (up to scaling) Radon S-quasi-invariant measure λ on Z such that ρλ = ρ.
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10 A. I. Danilenko and M. I. Vieprik

PROPOSITION 2.7. Let μ be a (C, F)-measure on X determined by two sequences (κn)∞n=1
and (νn)∞n=0 of finite measures satisfying equations (2.2) and (2.3). Then, R is Radon
ρμ-uniquely ergodic.

Proof. Let λ be a Radon measure on X such that ρλ = ρμ and λ(X0) = 1. We will
prove that λ = μ. For that, it suffices to show that λ([f ]n) = μ([f ]n) for all f ∈ Fn and
n ≥ 0. As

μ([f ]n) = νn(f )

νn(1G)
μ([1G]n) and λ([f ]n) = νn(f )

νn(1G)
λ([1G]n),

it is enough to prove that μ([1G]n) = λ([1G]n) for each n ≥ 0. This will be done induc-
tively. Of course, μ(X0) = μ([1G]0) = λ([1G]0) = λ(X0) = 1. Suppose that μ([1G]n) =
λ([1G]n) for some n. Then, for each c ∈ Cn+1,

λ([c]n+1) = νn(c)

νn(1G)
λ([1G]n+1) = νn(1G)κn+1(c)

νn(1G)κn+1(1G)
λ([1G]n+1).

Since [1G]n =⊔c∈Cn+1
[c]n+1, we obtain that

λ([1G]n)
λ([1G]n+1)

=
∑
c∈Cn+1

λ([c]n+1)

λ([1G]n+1)
=
∑
c∈Cn+1

κn+1(c)

κn+1(1G)
= 1
κn+1(1G)

= μ([1G]n)
μ([1G]n+1)

.

Hence, λ([1G]n+1) = μ([1G]n+1), as desired.

2.3. Non-singular (C, F)-actions. Non-singular (C, F)-actions were defined in [Da1,
Da2] for Abelian groups only. We extend this definition to arbitrary countable groups.
Given g ∈ G, let

X
g
n := {(fn, cn+1, cn+2, . . .) ∈ Xn | gfn ∈ Fn}.

Then, Xgn is a compact open subset of Xn and X
g
n ⊂ Xgn+1. Hence, the union

Xg :=⋃n≥0 X
g
n is an open subset of X. Let XG :=⋂g∈G Xg . Then, XG is a Gδ-subset

of X. Hence, XG is Polish and totally disconnected in the induced topology. Given g ∈ G
and x ∈ XG, there is n > 0 such that x = (fn, cn+1, . . .) ∈ Xn and gfn ∈ Fn. We now let
Tgx := (gfn, cn+1, . . .) ∈ Xn ⊂ X. It is straightforward to verify that:

(i) Tgx ∈ XG;
(ii) the mapping Tg : XG � x �→ Tgx ∈ XG is a homeomorphism of XG; and

(iii) TgTg′ = Tgg′ for all g, g′ ∈ G.
Hence, T := (Tg)g∈G is a continuous G-action on XG.

Definition 2.8. [Da3] The action T is called the topological (C, F)-action of G associated
with (Cn, Fn−1)

∞
n=1.

This action is free. The subset XG is R-invariant. The T-orbit equivalence relation
coincides with the restriction of R to XG.

PROPOSITION 2.9. [Da3, Proposition 1.2] XG = X if and only if for each g ∈ G and
n > 0, there is m > n such that

gFnCn+1Cn+2 · · · Cm ⊂ Fm. (2.4)
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Rank-one non-singular actions of countable groups 11

Thus, if equation (2.4) holds, then T is a minimal continuous G-action on a locally
compact Cantor space X. Moreover, T is Radon uniquely ergodic, that is, there exists a
unique T-invariant Radon measure ξ on X such that ξ(X0) = 1.

From now on, T is a topological (C, F)-action of G on XG and μ is the non-singular
(C, F)-measure on X determined by (κn)∞n=1 and (νn)∞n=0 satisfying equations (2.2) and
(2.3). Since XG is R-invariant, we obtain that either μ(XG) = 0 or μ(X \XG) = 0. In
the latter case, T is μ-non-singular, conservative and ergodic.

PROPOSITION 2.10. The following are equivalent.
(i) μ(X \XG) = 0.

(ii) For each g ∈ G and every n ≥ 0,

lim
m→∞ νm((FnCn+1Cn+2 · · · Cm) ∩ g−1Fm) = νn(Fn).

(iii) For each g ∈ G,

lim
m→∞ κ1 ∗ · · · ∗ κm(g−1Fm) = 1.

Proof. (i)⇔(ii) Since μ(X \XG) = 0 if and only if μ(Xn ∩Xgm)→ μ(Xn) as m→∞
for each g ∈ G and n ≥ 0, it suffices to note that

μ(Xn ∩Xgm) = μ([Fn]n ∩ [Fm ∩ g−1Fm]m)

= μ([FnCn+1 · · · Cm]m ∩ [Fm ∩ g−1Fm]m)

= μ([FnCn+1 · · · Cm ∩ Fm ∩ g−1Fm]m)

= νm((FnCn+1 · · · Cm) ∩ g−1Fm)

and μ(Xn) = μ([Fn]n) = νn(Fn).
(ii)⇒(iii) We set κ1,m := κ1 ∗ · · · ∗ κm. Then,

κ1,m((C1 · · · Cm) \ g−1Fm) = νm((F0C1 · · · Cm) \ g−1Fm)

= νm(F0C1 · · · Cm)− νm((F0C1 · · · Cm) ∩ g−1Fm)

= ν0(F0)− νm((F0C1 · · · Cm) ∩ g−1Fm).

Hence, limm→∞ κ1,m((C1 · · · Cm) \ g−1Fm) = 0 according to item (ii). As κ1,m is sup-
ported on C1 · · · Cm, it follows that

lim
m→∞ κ1,m(g

−1Fm) = lim
m→∞ κ1,m((C1 · · · Cm) ∩ g−1Fm)

= lim
m→∞ κ1,m(C1 · · · Cm) = 1,

as desired.
(iii)⇒(i) Fix g ∈ G. Take arbitrary n ≥ 0 and f ∈ Fn. Then, it follows from property

(iii) that for μ-a.e. x = (1G, cn+1, cn+2, . . .) ∈ [1G]n, there exists m > 0 such that
gf cn+1 · · · cm ∈ Fm. This means that for μ-a.e. y = (fn, cn+1, cn+2, . . .) ∈ Xn,

gfncn+1 · · · cm ∈ Fm eventually in m,

that is, y ∈ Xg . Hence, μ(X \Xg) = 0 and property (i) follows.
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12 A. I. Danilenko and M. I. Vieprik

In the case where μ is the Haar measure for R, the equivalence (i)⇔(ii) of Proposition
2.10 was proved in [Da3].

COROLLARY 2.11.
(i) If μ(X \XG) = 0 and μ(X) <∞, then νn(Fn�gFn)→ 0 as n→∞ for each

g ∈ G.
(ii) If μ(X \XG) = 0, μ(X) <∞ and μ is the Haar measure for R, then G is

amenable and (Fn)∞n=1 is a left Følner sequence in G.
(iii) If μ(X \XG) = 0, μ(X) <∞, μ is the Haar measure for R and there exists a

subgroup H of G such that Cn ⊂ H eventually in n, then H is of finite index in G.

Proof. (i) We note that νn(Fn) = μ([Fn]n) = μ(Xn)→ μ(X) as n→∞. Hence, it
follows from Proposition 2.10(ii) that for each ε > 0, there is n > 0 such that if m > n,
then

νm(FnCn+1Cn+2 · · · Cm) > (1− ε)νm(Fm) and

νm((FnCn+1Cn+2 · · · Cm) ∩ gFm) > (1− ε)νm(Fm).
Hence, νm(Fm ∩ gFm) > (1− 2ε)νm(Fm). It follows that limm→∞ νm(Fm�gFm) = 0, as
desired.

(ii) Since μ is the Haar measure for R, it follows that νn(A) = #A/#C1 · · · #Cn for
each subset A ⊂ Fn. Since μ is finite, there exists a limit

lim
n→∞

#Fn
#C1 · · · #Cn = μ(X).

This fact and condition (i) yield that for each g ∈ G,

0 = lim
m→∞ νn(Fn�gFn) = lim

m→∞
#(Fn�gFn)
#C1 · · · #Cn = μ(X) lim

m→∞
#(Fn�gFn)

#Fn
.

Hence, (Fn)∞n=1 is a left Følner sequence in G. Therefore, G is amenable.
(iii) Suppose that H is of infinite index in G. We first prove an auxiliary claim.

Claim A. For each finite subset S ⊂ G, there exists an element g ∈ G such that
g �∈⋃a,b∈S aHb−1.

By condition (ii), G is amenable. Hence, there exists a left-invariant finitely additive
measure ξ on the σ -algebra of all subsets of G such that ξ(G) = 1. We first observe
that since H is of infinite index, ξ(H) = 0. Indeed, for each n > 0, there are elements
g1, . . . , gn ∈ G such that the cosets g1H , . . . , gnH are mutually disjoint. Hence,

1 ≥ ξ
( n⊔
j=1

gjH

)
=

n∑
j=1

ξ(gjH) =
n∑
j=1

ξ(H) = nξ(H).

This yields that ξ(H) = 0, as desired. As g−1Hg is also a subgroup of infinite index in
G, it follows that ξ(g−1Hg) = 0 for each g ∈ G. Since ξ is left-invariant, ξ(kHg) = 0 for
all k, g ∈ G. This implies that ξ(

⋃
a,b∈S aHb−1) = 0. Therefore, G �=⋃a,b∈S aHb−1.

Thus, Claim A is proved.
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Rank-one non-singular actions of countable groups 13

Since μ(X) <∞, there exists n such that νn(Fn) > 0.5νm(Fm) and Cm ⊂ H for each
m ≥ n. Hence,

νm((FnH) ∩ Fm) ≥ νm((FnCn+1Cn+2 · · · Cm) ∩ Fm) = νn(Fn) > 0.5νm(Fm)

for each m ≥ n. By Claim A, there is g ∈ G such that gFnH ∩ FnH = ∅. Since μ is the
Haar measure, it follows that

νm((gFnH) ∩ Fm) ≥ νm((gFnCn+1Cn+2 · · · Cm) ∩ Fm)
= νm((FnCn+1Cn+2 · · · Cm) ∩ g−1Fm).

This inequality and condition (i) yield that νm((gFnH) ∩ Fm) > 0.5νm(Fm) eventually in
m. Therefore, νm(FnH ∩ gFnH) > 0 eventually in m, which is a contradiction.

Definition 2.12. If μ(X \XG) = 0, then the dynamical system (X, μ, T ) (or simply T) is
called the non-singular (C, F)-action associated with (Cn, Fn−1, κn, νn−1)

∞
n=1.

From now on, we consider only the case where μ(X \XG) = 0. As X = XG mod 0,
we will assume that T is defined on the entire space X. Then for each n and every two
elements g, h ∈ Fn, we have that Thg−1 [g]n = [h]n and the Radon–Nikodym derivative
of the transformation Thg−1 is constant on the subset [g]n. More precisely, this constant
equals νn(h)/νn(g).

We now prove the main result of this section.

THEOREM 2.13. Each non-singular (C, F)-action is of rank one. Conversely, each
rank-one non-singular G-action is isomorphic (via a measure preserving isomorphism)
to a (C, F)-action.

Proof. Let a sequence (Cn, Fn−1, κn, νn−1)
∞
n=1 satisfy equations (2.1)–(2.3) and

Proposition 2.10(ii). We claim that the (C, F)-action T = (Tg)g∈G associated with this
sequence is of rank one along (Fn)∞n=0. Let X be the space of this action and let μ be
the (C, F)-measure on X determined by (κn)∞n=1 and (νn)∞n=0. Then, X =⋃n≥0 Xn and
R =⋃n≥1 Sn, where Xn and Sn were introduced in §2.2. Of course, for each n ∈ N, the
pair ([1G]n, Fn) is a Rokhlin tower for T. Moreover:
(a) X[1G]n,Fn = Xn;
(b) ξ[1G]n,Fn is the partition of Xn into cylinders [f ]n, f ∈ Fn; and
(c) if x = (fn, cn+1, . . .) ∈ Xn ∩XG, then O[1G]n,Fn(x) = {Tgx | g ∈ Fnf−1

n } =
Sn(x).

We note that items (a) and (b) imply that Definition 2.1(i) holds. It follows from
Proposition 2.10 that for a.e. x ∈ X (or, more precisely, for each x ∈ XG), the T-orbit
of x equals R(x). As R(x) =⋃∞n=1 Sn(x), it follows that item (c) implies condition (ii)
from Definition 2.1. Hence, T is of rank one along (Fn)∞n=1.

Conversely, suppose that T is a non-singular G-action of rank one along an increasing
sequence (Qn)

∞
n=0 of finite subsets in G with Q0 = {1G}. Let (Bn, Qn)

∞
n=0 be the

corresponding generating sequence of Rokhlin towers such that conditions (i) and (ii)
of Definition 2.1 hold. We have to define a sequence (Cn, Fn−1, κn, νn−1)

∞
n=1, satisfying

equations (2.1)–(2.3) and Proposition 2.10(ii) such that the associated (C, F)-action is
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14 A. I. Danilenko and M. I. Vieprik

isomorphic to T. We first set Fn := Qn for each n ≥ 0. By Definition 2.1(i), for each
n ≥ 0, there is a subset Rn+1 ⊂ Qn+1 such that Bn =⊔f∈Rn+1

Tf Bn+1. Without loss
of generality, we may assume that 1G ∈ Rn+1. Indeed, if this is not the case, we replace
(Bn+1, Qn+1) with another Rokhlin tower (TsBn+1, Qn+1s

−1) for an element s ∈ Rn+1.
Then, ξBn+1,Qn+1 = ξTsBn+1,Qn+1s−1 and OBn+1,Qn+1(x) = OTsBn+1,Qn+1s−1(x) for each x ∈
X. Hence, such replacements will not affect conditions (i) and (ii) of Definition 2.1.
We now set Cn+1 := Rn+1. Thus, we defined the entire sequence (Cn, Fn−1)n≥1. It is
straightforward to verify that equation (2.1) holds. Let ν0 be the Dirac measure supported
at 1G. Next, for each n > 0 and f ∈ Fn, we let νn(f ) := μ(Tf Bn). Thus, we obtain a
non-degenerated measure νn on Fn. Finally, we define a probability κn+1 on Cn+1 by
setting

κn+1(c) := νn+1(c)

νn(1G)
for each c ∈ Cn+1 and n ≥ 0.

Thus, the entire sequence of measures (κn, νn−1)n≥1 is defined. It follows from condition
(iii) which is below Definition 2.1 that

νn+1(f c)

νn(f )
= νn+1(c)

νn(1G)
= κn+1(c) for each c ∈ Cn+1 and f ∈ Fn,

that is equation (2.3) holds. We note that for each n > 0, the restrictions of ξBn,Qn to the
subset XB0,Q0 = B0 is the finite partition of B0 into subsets Tc1···cnBn, where (c1, . . . , cn)
runs the subset C1 × · · · × Cn. As ξBn,Qn � B0 converges to the partition into singletons,
we obtain that

max
c1∈C1,...,cn∈Cn

μ(Tc1···cnBn)→ 0 as n→∞.

Since μ(Tc1···cnBn) = μ(XB0)
∏n
j=1 κj (cj ), equation (2.2) follows.

Fix n > 0, g ∈ G and ε > 0. It follows from Definition 2.1(ii) that there exists M > n

such that for each m > M , there is a subset A ⊂ XBn,Qn such that μ(XBn,Qn \ A) <
ε and Tgx ∈ OBm,Qm(x) for each x ∈ A. Hence, there exist f1, f2 ∈ Qm such that
Tgx = Tf1f

−1
2
x and T

f−1
2
x ∈ Bm. As T is free, gf2 = f1 ∈ Qm = Fm. It follows that

Tgf2Bm = Tf1Bm ⊂ XBm,Qm . Since Tf2Bm � x and x ∈ XBn,Qn , we obtain that Tf2Bm ⊂
XBn,Qn because ξBm,Qm is finer than ξBn,Qn . Thus, without loss of generality, we may
assume that A is measurable with respect to the partition ξBm,Qm . Since

XBn,Qn =
⊔
f∈Fn

Tf Bn =
⊔
f∈Fn

Tf

( ⊔
c∈Cn+1···Cm

TcBm

)
,

it follows that Tf2Bm ⊂ XBn,Qn if and only if f2 ∈ FnCn+1 · · · Cm. Hence,

νm({f2 ∈ Fm | gf2 ∈ Fm, f2 ∈ FnCn+1 · · · Cm}) ≥ μ(A) > μ(XBn,Qn)− ε.

This implies Proposition 2.10(ii).
Thus, (Cn, Fn−1, κn, νn−1)

∞
n=1, satisfies equations (2.1)–(2.3) and Proposition 2.10(ii).

Denote by R the non-singular (C, F)-action associated with (Cn, Fn−1, κn, νn−1)
∞
n=1. Let

(Y , ν) be the space of this action. The correspondence

Tf Bn←→ Rf [1G]n where f runs Fn and n runs N,
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Rank-one non-singular actions of countable groups 15

gives rise to a Boolean measure preserving isomorphism of the underlying algebras of
measurable subsets on X and Y. The Boolean isomorphism is generated by a certain
pointwise measure preserving isomorphism θ of (X, μ) onto (Y , ν). We claim that θ
intertwines T with R. Indeed, take g ∈ G. As was shown above, for each n > 0 and
ε > 0, there exists M > n such that for each m > M , there is a subset Q′ ⊂ Qm such
that

⊔
f∈Q′ Tf Bm ⊂ XBn,Qn , μ(XBn,Qn \

⊔
f∈Q′ Tf Bm) < ε and gQ′ ⊂ Qm. Hence,

θ(TgTf Bm) = Rgθ(Tf Bm) for all f ∈ Q′.
Passing to the limit as ε → 0 and using the fact that ν ◦ θ = μ, we obtain that
θ(Tgx) = Rgθx for a.e. x ∈ Xn. Since n is arbitrary, θTg = Rgθ , as claimed.

Remark 2.14.
(a) Theorem 2.13 corrects [Da3, Theorem 1.6], where the particular case of σ -finite

measure preserving rank-one actions was under consideration: the condition (ii)
(see Definition 2.1) is missing in the definition of rank one in [Da3]. However,
this condition cannot be omitted: counterexamples of non-rank-one action satisfying
condition (i) (and hence not satisfying condition (ii)) is provided in Examples 4.4–4.6
below.

(b) It is worth noting that the condition on the Radon–Nikodym derivatives in the
definition of Rokhlin tower in §2.1 is important and cannot be omitted either. Indeed,
the associated flow of each non-singular (C, F)-system is AT in the sense of Connes
and Woods [CoWo] (see also [Ha]). In [DoHa], Dooley and Hamachi constructed
explicitly a Markov non-singular odometer (Z-action) whose associated flow is
non-AT. Hence, this Markov odometer is not isomorphic (if fact, it is not even orbit
equivalent) to any rank-one non-singular Z-action. (We do not provide definitions of
orbit equivalence, associated flow and AT-flow because we will not use it anywhere
below in this paper. Instead, we refer the interested reader to the survey [DaSi].)
However, it is easy to see that this odometer satisfies a ‘relaxed version’ of Definition
2.1 in which we drop only the condition on the Radon–Nikodym derivatives.

2.4. Telescopings and reductions. Let a sequence T = (Cn, Fn−1, κn, νn−1)
∞
n=1 satisfy

equations (2.1)–(2.3) and Proposition 2.10(ii). Denote by T = (Tg)g∈G the (C, F)-action
of G on X associated with T . Let μ stand for the non-singular (C, F)-measure on X
determined by (κn)∞n=1 and (νn)∞n=0.

Given a strictly increasing infinite sequence of integers l = (ln)∞n=0 such that l0 = 0, we
let

F̃n := Fln , C̃n+1 := Cln+1 · · · Cln+1 , ν̃n := νn, κ̃n+1 := κln+1 ∗ · · · ∗ κln+1

for each n ≥ 0.

Definition 2.15. We call the sequence T̃ := (C̃n, F̃n−1, κ̃n, ν̃n−1)
∞
n=1 the l-telescoping

of T .

It is easy to check that T̃ satisfies equations (2.1)–(2.3) and Proposition 2.10(ii). Hence,
a non-singular (C, F)-action T̃ = (T̃g)g∈G of G associated with T̃ is well defined. Let X̃
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16 A. I. Danilenko and M. I. Vieprik

denote the space of T̃ and let μ̃ denote the non-singular (C, F)-measure on X̃ determined
by (̃κn)∞n=1 and (̃νn)∞n=0. There is a canonical measure preserving isomorphism ιl of (X, μ)
onto (X̃, μ̃) that intertwines T with T̃ . Indeed, if x ∈ X, then we select the smallest n ≥ 0
such that x = (fln , cln+1, cln+2, . . .) ∈ Xln . Let

ιl(x) := (fln , cln+1 · · · cln+1 , cln+1+1 · · · cln+2 , . . .) ∈ X̃n ⊂ X̃,

where X̃n = F̃n × C̃n+1 × C̃n+2 × · · · . It is a routine to verify that ιl is a homeomor-
phism of X onto X̃ such that ιlTg = T̃gιl for each g ∈ G, as desired.

Let l = (ln)∞n=0 and m = (mn)∞n=0 be two strictly increasing sequences of integers such
that l0 = m0 = 0. If T̃ is the l-telescoping of T and S is the m-telescoping of T̃ , then S
is the l ◦m-telescoping of T , where l ◦m := (lmn)∞n=1 and ιm ◦ ιl = ιl◦m.

Given a sequence A = (An)∞n=1 of subsets An ⊂ Cn such that 1G ∈ An for each n ∈ N

and
∑∞
n=1(1− κn(An)) <∞, we let

κ ′n(a) := κn(a)

κn(An)
, a ∈ An.

Then, κ ′n is a non-degenerated probability on An for each n ∈ N. We also define a measure
ν′n on Fn by setting

ν′n =
1∏n

j=1 κj (Aj )
· νn

if n > 0 and ν′0 := ν0. Let T ′ := (An, Fn−1, κ ′n, ν′n−1)
∞
n=1.

Definition 2.16. We call T ′ an A-reduction of T .

It is easy to check that T ′ satisfies equations (2.1)–(2.3). We note that

(κ ′1 ∗ · · · ∗ κ ′m)(G \ g−1Fm) ≤ (κ1 ∗ · · · ∗ κm)(G \ g−1Fm)∏m
j=1 κ(Aj )

for each g ∈ G. Passing to the limit and using Proposition 2.10(iii) for T , we obtain that
(κ ′1 ∗ · · · ∗ κ ′m)(G \ g−1Fm)→ 0 as m→∞. In other words,

lim
m→∞(κ

′
1 ∗ · · · ∗ κ ′m)(g−1Fm) = 1,

that is, Proposition 2.10(iii) holds for T ′. Hence, a non-singular (C, F)-action
T ′ = (T ′g)g∈G of G associated with T ′ is well defined. Let X′ denote the space of T ′
and let μ′ denote the non-singular (C, F)-measure on X′ determined by (κ ′n)∞n=1 and
(ν′n)∞n=0.

PROPOSITION 2.17. There is a canonical measure scaling isomorphism ιA of (X, μ) onto
(X′, μ′) that intertwines T with T ′ and μ ◦ ι−1

A =
∏
m>0 κm(Am) · μ′.

Proof. Indeed, fix n ∈ N. Since μ � Xn = νn ⊗ κn+1 ⊗ κn+2 ⊗ · · · , it follows from the
Borel–Cantelli lemma that for a.e. x = (fn, cn+1, cn+2, . . .) ∈ Xn, there is N = Nx > n

such that cm ∈ Am for each m > N . We then let

ιA,n(x) := (fncn+1 · · · cN , cN+1, cN+2, . . .) ∈ X′N ⊂ X′.
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It is routine to verify that ιA,n : Xn � x �→ ιA,n(x) ∈ X′ is a well-defined non-singular
mapping and

dμ′ ◦ ιA,n

dμ
(x) = ν′N(fncn+1 · · · cN)

νN(fncn+1 · · · cN)
∏
m>N

1
κm(Am)

=
∏
m>0

1
κm(Am)

.

Moreover, ιA,n+1 � Xn = ιA,n for each n ∈ N. Hence, a measurable mapping ιA : X→ X′
is well defined by the restrictions ιA � Xn = ιA,n for all n ∈ N. It is straightforward to
verify that ιA is an isomorphism of (X, μ) onto (X′, μ′) with μ ◦ ι−1

A =
∏
m>0 κm(Am) ·

μ′ and ιATg = T ′gιA for each g ∈ G.

2.5. Locally compact models for rank-one non-singular systems. Let Z be a locally
compact Polish G-space. We remind that a Borel mapping ρ : G× Z→ R∗+ is called a
G-cocycle if

ρ(g2, g1z)ρ(g1, z) = ρ(g2g1, z) for all g1, g2 ∈ G and z ∈ Z.

The following definition is a dynamical analogue of Definition 2.6.

Definition 2.18. Fix a G-cocycle ρ. We say that the G-action on Z is Radon ρ-uniquely
ergodic if there exists a unique (up to scaling) Radon G-quasi-invariant measure γ on Z
such that

dγ ◦ g
dγ

(z) = ρ(g, z) for all g ∈ G and z ∈ Z.

We now show that each rank-one non-singular action has a uniquely ergodic continuous
realization on a locally compact Cantor space.

THEOREM 2.19. Let a non-singular action R of G on a σ -finite standard non-atomic
measure space (Z, η) be of rank one along a sequence (Qn)

∞
n=1. Then there exist:

(i) a continuous, minimal, Radon uniquely ergodic G-action T ′ = (T ′g)g∈G defined on
a locally compact Cantor space X′;

(ii) a T ′-quasi-invariant Radon measure μ′ on X′ such that the Radon–Nikodym
derivative dμ′ ◦ T ′g/dμ′ : X′ → R∗+ is continuous for each g ∈ G;

(iii) a measure preserving Borel isomorphism of (Z, η) onto (X′, μ′) that intertwines R
with T ′;

(iv) a sequence T ′ = (C′n, F ′n−1, κ ′n, ν′n−1)
∞
n=1 satisfying equations (2.1)–(2.4) such that

(X′, μ′, T ′) is the (C, F)-action associated with T ′; and
(v) a sequence (zn)∞n=1 such that zn ∈ Qn for each n and (F ′n)∞n=1 is a subsequence of

(z−1
n Qn)

∞
n=1.

Moreover, T ′ is Radon (dμ′ ◦ T ′g/dμ′)g∈G-uniquely ergodic.

Proof. By Theorem 2.13, there is a sequence T = (Cn, Fn−1, κn, νn−1)
∞
n=1 satisfying

equations (2.1)–(2.3) and Proposition 2.10(ii) such that the (C, F)-action T of G associated
with T is isomorphic to R via a measure preserving isomorphism. Denote by (X, μ) the
space of T. Let G = {gj | j ∈ N}. It follows from Proposition 2.10(ii) that there are an
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18 A. I. Danilenko and M. I. Vieprik

increasing sequence l = (ln)∞n=0 of integers and a sequence (Dn)∞n=1 of subsets in G such
that l0 = 0, Dn+1 := (Cln+1 · · · Cln+1) ∩

⋂n
j=1 g

−1
j Fln+1 and

κln+1 ∗ · · · ∗ κln+1(Dn+1) > 1− 1
(n+ 1)2

for each n ≥ 0. Denote by T̃ = (C̃n, F̃n−1, κ̃n, ν̃n−1)
∞
n=1 the l-telescoping of T . Let

(X̃, μ̃, T̃ ) stand for the (C, F)-action of G associated with T̃ . Then, Dn ⊂ C̃n and
κ̃n(Dn) > 1− n−2 for each n > 0. Denote by ιl the canonical measure preserving
isomorphism intertwining T with T̃ . In general, 1G �∈ Dn. Therefore, we need to modify
the (C, F)-parameters T̃ . First, we choose, for each n > 0, an element cn ∈ Dn. Then,
we let z0 := 1G and zn := c1 · · · cn for each n > 0. Finally, we define a new sequence
T̂ = (Ĉn, F̂n−1, κ̂n, ν̂n−1)

∞
n=1 by setting

Ĉn := zn−1C̃nz
−1
n , F̂n−1 := F̃n−1z

−1
n−1,

κ̂n is the image of κn under the bijection C̃n � c �→ zn−1cz
−1
n ∈ Ĉn and ν̂n−1 is the image

of νn−1 under the bijection F̃n−1 � f �→ f z−1
n−1 ∈ F̂n−1. It is straightforward to verify

that T̂ satisfies equations (2.1)–(2.3) and Proposition 2.10(ii). Denote by (X̂, μ̂, T̂ ) the
(C, F)-action of G associated with T̂ . Then there is a canonical continuous measure
preserving isomorphism ϑ : (X̃, μ̃)→ (X̂, μ̂) that intertwines T̃ with T̂ :

X̃ ⊃ X̃n � (fn, cn+1, . . .) �→ (fnz
−1
n , zncn+1z

−1
n+1, zn+1cn+2z

−1
n+2, . . .) ∈ X̂n ⊂ X̂.

Let D̂n be the image of Dn under the bijection C̃n � c �→ zn−1cz
−1
n ∈ Ĉn. Then, 1 ∈ D̂n

and κ̂n(D̂n) > 1− n−2 for each n ∈ N. Hence,
∑∞
n=1(1− κ̂n(D̂n)) <∞. We now set

D := (Dn)∞n=1. Denote by T ′ the D-reduction of T̂ . Then, T ′ satisfies not only equations
(2.1)–(2.3) and Proposition 2.10(ii), but also equation (2.4). Let (X′, μ′, T ′) denote the
(C, F)-action of G associated with T ′ and let ιD stand for the canonical measure scaling
isomorphism of (X̂, μ̂) onto (X′, μ′) that intertwines T̂ with T ′. Then, ιD ◦ ϑ ◦ ιl is a
measure-scaling isomorphism of (X, μ, T ) onto (X′, μ′, T ′). Replacing μ′ with a · μ′ for
an appropriate a > 0, we obtain that ιD ◦ ϑ ◦ ιl is measure preserving. It follows from
Proposition 2.9 that T ′ is a Radon uniquely ergodic minimal continuous action of G on
the locally compact Polish space X′. Thus, we proved conditions (i), (iii), (iv) and (v). The
condition (ii) follows easily from equation (2.4) and the definition of μ′.

The final claim of the theorem follows from condition (iv) and Proposition 2.7.

2.6. Non-singular Z-actions of rank one along intervals and (C, F)-construction.
Let G = Z. Suppose that a sequence T = (Cn, Fn−1, κn, νn−1)

∞
n=1 satisfies equations

(2.1)–(2.3) and Proposition 2.10(ii), and there is a sequence (hn)∞n=0 of positive integers
such that Fn = {0, 1, . . . , hn − 1}. Denote by (X, μ, T ) the (C, F)-dynamical system
associated with T .

We now show how to obtain (X, μ, T ) via the classical inductive geometric
cutting-and-stacking in the case of Z-actions. On the initial step of the construction,
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Rank-one non-singular actions of countable groups 19

we define a column Y0 consisting of a single interval [0, 1) equipped with Lebesgue
measure. Assume that at the nth step, we have a column

Yn = {I (i, n) | i = 0, . . . , hn − 1}
consisting of disjoint intervals I (i, n) ⊂ R such that

⊔hn−1
i=0 I (i, n) = [0, νn(Fn)). Then

we define a continuous nth column mapping

T (n) : [0, νn(Fn)) \ I (hn − 1, n)→ [0, νn(Fn)) \ I (0, n)

such that T (n) � I (i, n) is the orientation preserving affine mapping of I (i, n) onto
I (i + 1, n) for i = 0, . . . , hn − 2. It is convenient to think of I (i, n) as a level of Yn.
The levels may be of different length, but they are parallel to each other and the ith level is
above the jth level if i > j . The nth column mapping moves every level, except the highest
one, one level up. By the move here, we mean the orientation preserving affine mapping.
On the highest level, T (n) is not defined.

On the (n+ 1)th step of the construction, we first cut each I (i, n) into subintervals
I (i + c, n+ 1), c ∈ Cn+1, such that I (i + c, n+ 1) is from the left of I (i + c′, n+ 1)
whenever c < c′ and

the length of I (i + c, n+ 1)
the length of I (i, n)

= κn+1(c) for each c ∈ Cn+1.

Hence, we obtain that
⊔
j∈Fn+Cn+1

I (j , n+ 1) = [0, νn(Fn)). Next, we cut the interval
[νn(Fn), νn+1(Fn+1)) into subintervals I (j , n+ 1), j ∈ Fn+1 \ (Fn + Cn+1), such that
the length of I (j , n+ 1) is νn+1(j) for each j. These new levels are called spacers. Thus,
we obtain a new column Yn+1 = {I (j , n+ 1) | j ∈ Fn+1} with

⊔
i∈Fn+1

I (i, n+ 1) =
[0, νn+1(Fn+1)). If an element c ∈ Cn+1 is not maximal in Cn+1, then we denote by
c+ the least element of Cn+1 that is greater than c. We define a spacer mapping
sn+1 : Cn+1 → Z+ by setting

sn+1(c) :=
{
c+ − c − hn if c �= max Cn+1,

hn+1 − c − hn if c = max Cn+1.

The subcolumn Yn,c := {I (i + c, n+ 1) | i ∈ Fn} ⊂ Yn+1 is called the c-copy of Yn,
c ∈ Cn+1. Thus, Yn+1 consists of #Cn+1 copies of Yn, and spacers between them and
above the highest copy of Yn. More precisely, there are exactly sn+1(c) spacers above the
c-copy of Yn in Yn+1. The (n+ 1)th column mapping

T (n+1) : [0, νn+1(Fn+1)) \ I (hn+1 − 1, n+ 1)→ [0, νn+1(Fn+1)) \ I (0, n+ 1)

is defined in a similar way as T (n). Of course,

T (n+1) � ([0, νn(Fn)) \ I (hn − 1, n)) = T (n).
Passing to the limit as n→∞, we obtain a well-defined non-singular (piecewise
affine) transformation Q of the interval [0, limn→∞ νn(Fn)) ⊂ R equipped with Lebesgue
measure such that

Q � ([0, νn(Fn)) \ I (hn − 1, n)) = T (n) for each n ∈ N.
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20 A. I. Danilenko and M. I. Vieprik

It is possible that limn→∞ νn(Fn) = ∞ and then T is defined on [0, +∞). Of course,
this transformation (or, more precisely, the Z-action generated by Q) is isomorphic
to (X, μ, T ). The according non-singular isomorphism is generated by the following
correspondence:

X ⊃ [i]n←→ I (i, n) ⊂ [0, lim
n→∞ νn(Fn)), i ∈ Fn, n ∈ N.

Without loss of generality, we may assume sn(max Cn) = 0 for each n > 0 (see, for
instance, [Da4]). This means that there are no spacers over the highest copy of Yn in Yn+1.

2.7. Non-singular rank-one Z-actions as transformations built under function over
non-singular odometer base. Let (X, μ, T ) be as in the previous subsection. We will
assume that max Fn+1 = max Fn +max Cn+1 for each n ≥ 0. In terms of the geometrical
cutting-and-stacking (see §2.6), this means exactly that there are no spacers on the top of
the (n+1)th column. We remind that X0=C1×C2× · · · , μ � X0= κ1⊗κ2⊗ · · · and

c+ := min{d ∈ Cn | d > c}
for each n > 0 and c ∈ Cn such that c �= max Cn. Denote by R the transformation
induced by T1 on (X0, μ � X0). Since T1 is conservative, R is a well-defined non-singular
transformation of X0. Take x = (c1, c2, . . .) ∈ X0. Choose n ≥ 0 such that ci = max Ci
for each i = 1, . . . , n and cn+1 �= max Cn+1. It is straightforward to verify that

Rx := (0, . . . , 0︸ ︷︷ ︸
n times

, c+n+1, cn+2, cn+3 . . .)

Thus, R is a classical non-singular odometer of product type (see [Aa, DaSi] and
references therein). Let xmax := (max C1, max C2, . . .) ∈ X0. We now define a function
ϑ : X0 \ {xmax} → Z+ by setting

ϑ(x) := sn(cn)
if x = (c1, c2, . . .), ci = max Ci for i = 1, . . . , n− 1 and cn �= max Cn, where sn is the
spacer mapping (see §2.6). Of course, ϑ is continuous. Then (X, μ, T1) is isomorphic to
the transformation Rθ built under ϑ over the base R. We do not provide a proof of this fact
which is essentially folklore.

3. Finite factors of non-singular (C, F)-actions
Let a sequence T = (Cn, Fn−1, κn, νn−1)

∞
n=1 satisfy equations (2.1)–(2.3) and Proposition

2.10(ii), and let limn→∞ νn(Fn) <∞. Let � be a cofinite subgroup of G. We consider the
left coset space G/� as a homogeneous G-space on which G acts by left translations. It is
obvious that for each coset g� ∈ G/�, the subgroup g�g−1 ⊂ G is the stabilizer of g�
in G.

Definition 3.1. Given a coset g� ∈ G/�, we say that T is compatible with g� if
∞∑
n=1

κn({c ∈ Cn | c �∈ g�g−1}) <∞.
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Denote by (X, μ, T ) the (C, F)-action of G associated with T . Then,
μ(X) = limn→∞ νn(Fn) <∞. For a point x = (c1, c2, . . .) ∈ X0 = C1 × C2 × · · · ,
we let

π(T ,g�)(x) := lim
n→∞ c1c2 · · · cng� ∈ G/�

whenever this limit exists. (The quotient space G/� is endowed with the discrete topol-
ogy.) It follows from the Borel–Cantelli lemma that if T is compatible with g� ∈ G/�,
then π(T ,g�)(x) is well defined for μ-a.e. x ∈ X0. It is straightforward to verify that for
each h ∈ G,

π(T ,g�)(Thx) = hπ(T ,g�)(x)

whenever π(T ,g�)(x) is well defined and Thx ∈ X0. It follows that the mapping

π(T ,g�) : X0 � x �→ π(T ,g�)(x) ∈ G/�
extends uniquely (mod 0) to a measurable G-equivariant mapping from X to G/�.
We denote the extension by the same symbol π(T ,g�). It is routine to verify that if
x = (fn, cn+1, cn+2, . . .) ∈ Xn for some n ∈ N, then

π(T ,g�)(x) := lim
m→∞ fncn+1cn+2 · · · cmg�. (3.1)

Definition 3.2. We call π(T ,g�) the (T , g�)-factor mapping for T.

We need some notation. Given 1 < n < m, we denote the subset Cn · · · Cm of G
by Cn,m. Let κn,m stand for the probability measure κn ∗ · · · ∗ κm. It is supported on
Cn · · · Cm. We now state the main result of the section.

THEOREM 3.3. The following are equivalent.
(i) There is a measurable factor map τ : X→ G/�, that is, for each g ∈ G,

τ(Tgx) = gτ(x) at μ− a.e. x ∈ X.

(ii) There exists a sequence (gn)n>0 of elements of G such that

lim
N→∞ sup

m>n≥N
κn+1,m({c ∈ Cn+1,m | c /∈ g−1

n �gm}) = 0.

(iii) There exist a coset g0� ∈ G/� and a g0�-compatible telescoping of T .
It follows that T has no factors isomorphic to G/� if and only if there is no telescoping of
T compatible with g�g−1 for any g ∈ G.

Proof. (i)�⇒ (ii) Let Yj := τ−1(j) for each j ∈ G/�. Then,X =⊔j∈G/� Yj . Consider
n large so thatμ(Yj ∩Xn) > 0 for each j ∈ G/�. Let g, h ∈ Fn. Since τ is G-equivariant,
it follows that Thg−1Yj = Yhg−1j and hence,

Thg−1([g]n ∩ Yj ) = [h]n ∩ Yhg−1j . (3.2)
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For each j ∈ G/� and g ∈ Fn, let

dn,g(j) := μ([g]n ∩ Yj )/μ([g]n).

Then, the set {dn,g(j) | j ∈ G/�} ⊂ (0, 1) does not depend on g ∈ Fn. Indeed, for each
h ∈ Fn, the Radon–Nikodym derivative of the transformation Tgh−1 is constant on [h]n
and we deduce from equation (3.2) that

dn,h(j) := μ([h]n ∩ Yj )
μ([h]n)

= μ([g]n ∩ Ygh−1j )

μ([g]n)
= dn,g(gh

−1j). (3.3)

Hence, {dn,h(j) : j ∈ G/�} = {dn,g(j) : j ∈ G/�}. Let

δn := max
j∈G/� dn,g(j).

We claim that δm→ 1 as m→∞. Indeed, for m ≥ n, let Pm denote the finite σ -algebra
generated by the m-cylinders (which are compact and open subsets of X) that are contained
inXn. Then, Pn ⊂ Pn+1 ⊂ · · · and

∨
m>n Pm is the entire Borel σ -algebra onXn. Hence,

for each j ∈ G/�, there is gm ∈ Fm such that

μ([gm]m ∩ Yj )
μ([gm]m)

→ 1 as m→∞.

This implies that δm→ 1 as m→∞, as claimed. In what follows, we consider n large
so that δn > 0.9. Then for each g ∈ Fn, there is a unique �-coset jn(g) ∈ G/� such that
δn = dn,g(jn(g)). It is convenient to consider G/� as a set of colours. Then, jn(g) is
the dominating colour on [g]n. It follows from equation (3.3) that jn(g) = gh−1jn(h)

for all g, h ∈ Fn. Choose gn ∈ Fn such that jn(gn) = �. Then, jn(g) = gg−1
n � for each

g ∈ Fn. Given ε < 1
2 , there is N > 0 such that δn > 1− ε2 for all n > N . Hence, for all

m > n > N ,

(1− ε2)μ([1G]n) < μ([1G]n ∩ Yjn(1G)). (3.4)

We recall that [1G]n =⊔c∈Cn+1,m
[c]m. Let

D := {c ∈ Cn,m | μ([c]m ∩ Yjn(1G)) > (1− ε)μ([c]m)}.
It follows from equation (3.4) that

(1− ε2)μ([1G]n) <
∑
c∈D

μ([c]m)+ (1− ε)
∑

c∈Cn+1,m\D
μ([c]m)

=
∑
c∈D

μ([c]m)+ (1− ε)
(
μ([1G]n)−

∑
c∈D

μ([c]m)
)

.

This yields that
∑
c∈D μ([c]m) > (1− ε)μ([1G]n) or, equivalently,∑

c∈D
κn+1,m(c) > (1− ε)κn(1G). (3.5)
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By the definition of D, an element c ∈ Cn+1,m belongs to D if and only if jn(1G) is the
dominating colour on [c]m, that is, jm(c) = jn(1G). Therefore, cg−1

m � = g−1
n �, that is,

c ∈ g−1
n �gm. Hence, equation (3.5) yields that

κn+1,m({c ∈ Cn+1,m | c �∈ g−1
n �gm}) ≤ ε

and property (ii) follows.
(ii) �⇒ (iii) As � is cofinite and property (ii) holds, there exist an increasing sequence

0 = q0 < q1 < q2 < · · · of positive integers and an element g0 ∈ G such that g−1
n ∈ g0�

and

κqn+1,qn+1({c ∈ Cqn+1,qn+1 | c /∈ g0�g
−1
0 }) < 2−n

for each n ∈ N. Let q := (qn)∞n=0. Then g0� is compatible with the q-telescoping of T .
This implies property (iii).

(iii)�⇒ (i) Denote by T̃ the q-telescoping of T . Then π(T̃ ,g0�)
◦ ιq is a factor mapping

of T onto G/�.
Thus, the first statement of the theorem is proved completely. The second statement

follows from the first one and a simple observation that given two subgroups � and �′ of
G, the corresponding G-actions by left translations on G/� and G/�′ are isomorphic if
and only if � and �′ are conjugate.

The following important remark will be used essentially in the proof of the main result
of §4.

Remark 3.4. In fact, we obtained more than what is stated in Theorem 3.3. We proved
indeed that given a factor mapping τ : X→ G/�, there exist a coset g0� and a
g0�-compatible q-telescoping T̃ of T such that τ = π(T̃ ,g0�)

◦ ιq . To explain this fact,
we use below the notation from the proof of Theorem 3.3. For n ∈ N, let

X′n :=
⊔
fn∈Fn

([fn]n ∩ Yjn(fn)) ⊂ Xn.

We remind that μ(X) <∞. Since δn→ 1 and μ(Xn)→ μ(X) as n→∞, it follows
that μ(X′qn)→ μ(X) as n→∞. We can assume (passing to a subsequence of (qn)∞n=1

if needed) that
∞∑
n=1

μ(X \X′qn) <∞. Then, the Borel–Cantelli lemma yields that for a.e.

x ∈ X, we have that x ∈ X′qn eventually in n. Hence, for a.e. x ∈ X,

τ(x) = lim
m→∞ jqm(fqm) = lim

m→∞ fqmg
−1
qm
� = lim

m→∞ fqng0�, (3.6)

where fqm is the first coordinate of x in Xqm , that is, x = (fqm , cqm+1, . . .) ∈ Xqm .
Howerver, it follows from equations (3.1) and (3.2) that

π(̃T ,g0�)
(ιq(x)) = lim

m→∞ fqmg0� (3.7)

at a.e. x ∈ X. Therefore, equations (3.6) and (3.7) yield that τ = π(T̃ ,g0�)
◦ ιq almost

everywhere, as desired.
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We note in this connection that if:
• G is Abelian or G is arbitrary but � is normal in G; and
• the homogeneous space G/� is a factor of an ergodic non-singular free action of G

on a standard measure space (Y , Y, ν),
then this factor (considered as an invariant sub-σ -algebra of Y) is defined uniquely by �.
Indeed, if π1, π2 : Y → G/� are two G-equivariant measurable maps, then the mapping
Y � y �→ π1(y)π2(y)

−1 ∈ G/� is invariant under G. Hence, it is constant. Therefore,
there is a ∈ G/� such that π1(y) = aπ2(y) for a.e. y ∈ Y . It follows that

{π−1
1 (j) ∈ Y | j ∈ G/�} = {π−1

2 (j) ∈ Y | j ∈ G/�}.
Therefore, the equality τ = π(T̃ ,g0�)

◦ ιq (at least, up to a rotation of G/�) stated in
Remark 3.4 is a trivial fact. However, it is no longer true if � is not normal.

Example 3.5. Let Z3 := Z/3Z, Z2 := Z/2Z, G = Z3 � Z2 and � = {0} × Z2. Then
� is a non-normal cofinite subgroup of G of index 3. We consider Z3 as a quotient
G/�. Then Z3 is a G-space. Hence, the product space Z3 × Z3 is also a G-space
(we consider the diagonal G-action). Since the diagonal D = {(j , j) | j ∈ G/�} is an
invariant subspace of Z3 × Z3, the complement Y := (Z3 × Z3) \D of D in Z3 × Z3

is also G-invariant. It is easy to verify that the G-action on Y is transitive and free.
Endow Y with the (unique) G-invariant probability measure ν. Of course, the coordinate
projections π1, π2 : Y → Z3 are two-to-one G-equivariant maps. However, the corre-
sponding σ -algebras of π1-measurable and π2-measurable subsets in Y are different.
Consider a rank-one Z-action on a standard probability space (Z, Z, κ). Then the product
(Z×G)-action on (Z × Y , κ ⊗ ν) is of rank one. Denote it by R. The subgroup Z× �
of Z×G is non-normal. It is of index 3. Hence, we can consider the corresponding finite
quotient space Z3 as a (Z×G)-space. The mappings 1⊗ π1 and 1⊗ π2 from Z × Y onto
Z3 are (Z×G)-equivariant. However, the corresponding factors of R, that is, the invariant
sub-σ -algebras, are different.

A non-singular G-action is totally ergodic if and only if it has no non-trivial finite
factors or, equivalently, each cofinite subgroup of G acts ergodically. We thus deduce
from Theorem 3.3 the following criterion of total ergodicity for the rank-one non-singular
actions.

COROLLARY 3.6. Let T be a (C, F)-action of G associated with a sequence T satisfying
equations (2.1)–(2.3) and Proposition 2.10(ii). Then, T is totally ergodic if no telescoping
of T is compatible with any proper cofinite subgroup of G, that is, for each increasing
sequence n1 < n2 < · · · of integers and each proper cofinite subgroup � in G,

∞∑
k=1

κnk+1 ∗ · · · ∗ κnk+1({c ∈ Cnk+1 · · · Cnk+1 | c �∈ �}) = ∞.

4. Non-singular odometer actions of residually finite groups
4.1. Non-singular odometers. From now on, G is residually finite. If � is a cofinite
subgroup in G, then the largest subgroup �̃ of � which is normal in G is also cofinite

Downloaded from https://www.cambridge.org/core. 05 Oct 2024 at 01:25:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Rank-one non-singular actions of countable groups 25

in G. Of course, �̃ =⋂g∈G g�g−1. If � is cofinite subgroup in �, then �̃ ⊂ �̃. We now
fix a decreasing sequence �1 � �2 � · · · of cofinite subgroups �n in G such that

∞⋂
n=1

⋂
g∈G

g�ng
−1 = {1G}. (4.1)

It exists because G is residually finite. We note that equation (4.1) means that the
intersection of the maximal normal (in G) subgroups of �n, n ∈ N, is trivial. At the same
time, the intersection of all �n can be non-trivial. Consider the natural inverse sequence of
homogeneous G-spaces and G-equivariant mappings intertwining them:

G/�1 ←− G/�2 ←− · · · . (4.2)

Denote by Y the projective limit of this sequence. A point of Y is a sequence (gn�n)∞n=1
such that gn�n = gn+1�n, that is, g−1

n gn+1 ∈ �n for each n > 0. Endow Y with the
topology of projective limit. Then Y is a compact Cantor G-space. Of course, the G-action
on Y is minimal and uniquely ergodic. Denote this action byO = (Og)g∈G. It follows from
equation (4.1) that O is faithful, that is,Og �= I if g �= 1G. We note that a faithful action is
not necessarily free.

Definition 4.1. The dynamical system (Y , O) is called the topological G-odometer asso-
ciated with (�n)∞n=1. If ν is a non-atomic Borel measure on Y which is quasi-invariant and
ergodic under O, then we call the dynamical system (Y , ν, O) a non-singular G-odometer.
By the Haar measure for (Y , O), we mean the unique G-invariant probability on Y.

In the finite measure preserving case, one can find the above definition in [DaLe] (see
also [LiSaUg], where odometers are called ‘subodometers’.)

We note that equation (4.1) is in no way restrictive. Indeed, let
⋂∞
n=1

⋂
g∈G g�ng−1 =

N �= {1G}. Define (Y , O) as above. Then, N is a proper normal subgroup of G and
N = {g ∈ G | Og = I }. We now let G̃ := G/N and �̃n := �n/N . Then, �̃n is a cofinite
subgroup in G̃ for each n ∈ N, �̃1 � �̃2 � · · · and

⋂∞
n=1

⋂
g∈G̃ g�̃ng−1 = {1G̃}. Let

(Ỹ , Õ) denote the topological G̃-odometer associated with the sequence (�̃n)∞n=1. Then,
of course, Y = Ỹ and Og = ÕgN for each g ∈ G.

We now isolate a class of non-singular odometers of rank one. For each n > 0, we
choose a finite subset Dn ⊂ �n−1 such that 1G ∈ Dn and each �n-coset in �n−1 intersects
Dn exactly once. (For consistency of the notation, we let �0 := G.) We then call Dn a
�n-cross-section in �n−1. Then, the productD1 · · · Dn is a �n-cross-section in G. Hence,
there is a unique bijection

ωn : G/�n→ D1 · · · Dn
such that ωn(g�n)�n = g�n for each g ∈ G and ωn(�n) = 1G. It follows, in particular,
that

if ωn(g�n) = hωn(g′�n) for some g, g′, h ∈ G, then g�n = hg′�n. (4.3)
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It is straightforward to verify that the diagram

G/�1 ←−−−− G/�2 ←−−−− G/�3 ←−−−− · · ·
ω1

⏐⏐� ω2

⏐⏐� ω3

⏐⏐�
D1

φ1←−−−− D1D2
φ2←−−−− D1D2D3

φ3←−−−− · · ·
ψ1

⏐⏐� ψ2

⏐⏐� ψ3

⏐⏐�
D1

φ′1←−−−− D1 ×D2
φ′2←−−−− D1 ×D2 ×D3

φ′3←−−−− · · ·

(4.4)

commutes. The horizontal arrows in the upper line denote the natural projections. The
other mappings in the diagram are defined as follows:

φn(d1 · · · dn+1) := d1 · · · dn,

φ′n(d1, . . . , dn+1) := (d1, . . . , dn) and

ψn(d1 · · · dn) := (d1, . . . , dn)

for each (d1, . . . , dn+1) ∈ D1 × · · · ×Dn+1 and n ≥ 0. It follows from equation (4.3)
that there exists a natural homeomorphism of Y onto the infinite product space D :=
D1 ×D2 × · · · . (The homeomorphism pushes down to a bijection between G/�n and
D1 × · · · ×Dn for each n.)

PROPOSITION 4.2. If, for each n ∈ N, there is a �n-cross-section Dn in �n−1 and a
probability κn on G such that:

(i) supp κn = Dn for each n;
(ii)

∏∞
n=1 maxd∈Dn κn(d) = 0; and

(iii) limn→∞(κ1 ∗ · · · ∗ κn)(gD1 · · · Dn) = 1 for each g ∈ G,
then there is a non-atomic probability Borel measureμ on Y which is quasi-invariant under
O and such that the non-singular odometer (Y , μ, O) is of rank one along the sequence
(D1 · · · Dn)∞n=1.

Proof. We set F0 := {1G}, Fn := D1 · · · Dn, Cn := Dn and νn := κ1 ∗ · · · ∗ κn for
each n ∈ N. Then equations (2.1)–(2.3) hold for the sequence (Cn, Fn−1, κn, νn−1)

∞
n=1.

Moreover, Proposition 2.10(iii) is exactly property (iii) in the case under consideration.
Hence, the (C, F)-action T of G associated with (Cn, Fn−1, κn, νn−1)

∞
n=1 is well defined.

Let (X, μ) stand for the space of this action. It follows from the (C, F)-construction that

X = D1 ×D2 × · · · = D,

μ is non-atomic and T is free (mod μ). In view of equation (4.3), we can identify X
with Y. Hence, we consider μ as a probability on Y. Moreover, equation (4.2) yields
that T is conjugate to O. Thus, (Y , μ, O) is a non-singular odometer. It remains to apply
Theorem 2.13.

We now show that the classical non-singular Z-odometers of product type are covered
by Definition 4.1.
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Example 4.3. Let G = Z and let (an)∞n=1 be a sequence of integers such that an > 1 for
each n ∈ N. We set �n := a1 · · · anZ. Then, �1 � �2 � · · · and

⋂∞
n=1 �n = {0}. The

set Dn := a1 · · · an−1 · {0, 1, . . . , an − 1} is a �n-cross-section in �n−1. Hence, in view
of equation (4.4), the space Y of the Z-odometer O = (On)n∈Z associated with (�n)∞n=1
is homeomorphic to the infinite product D = D1 ×D2 × · · · . We identify Dn naturally
with the set {0, 1, . . . , an − 1}. Then,

D = {0, 1, . . . , a1 − 1} × {0, 1, . . . , a2 − 1} × · · · .

To define O explicitly on this space, we take y = (yn)∞n=1 ∈ D. It is a routine to check that
if there is k > 0 such that yj = aj − 1 for each j < k and yk �= ak − 1, then

O1y = (0, . . . , 0, yk + 1, yk+1, yk+2, . . .).

If such a k does not exist, that is, yj = aj − 1 for each j > 0, then O1y = (0, 0, . . .).
Let κn be a non-degenerated probability measure on {0, 1, . . . , an − 1} and let∏
n>0 max0≤d<an κn(d) = 0. This means that properties (i) and (ii) of Proposition 4.2

hold. Of course, Proposition 4.2(iii) holds also. Hence, by Proposition 4.2, the non-singular
odometer ( ∞⊗

n=1

{0, . . . , an − 1},
∞⊗
n=1

κn, O
)

is of rank one. Thus, in this case, our definition of non-singular odometer coincides with
the classical definition of non-singular Z-odometers of product type (see [Aa, DaSi]).
Moreover, the Z-odometers of product type are of rank one.

It is routine to verify that if G = Zd with d ∈ N, then each probability preserving
G-odometer is of rank one. This follows from Proposition 4.2 if one chooses the
�n-cross-sections Dn in �n−1 in such a way that the sum D1 + · · · +Dn is a par-
allelepiped {0, 1, . . . , a1,n} × · · · × {0, 1, . . . , ad,n} for some a1,n, . . . , ad,n ∈ N with
limn→∞ aj ,n = ∞ for each j. We leave details to the reader (see also [JoMc, Theorem
2.11]).

Note, however, that there exist probability preserving free G-odometers which are not
of rank one.

Example 4.4. The free group with two generators F 2 is residually finite. Hence, there
is a sequence N1 � N2 � · · · of normal subgroups in F 2 such that

⋂∞
n=1 Nn = {1F 2}.

Then, the topological F 2-odometer associated with (Nn)∞n=1 is a free minimal F 2-action
by translation on a compact group Y. Let χ denote the Haar measure on Y. Then, (K , χ , O)
is an ergodic probability preserving F 2-odometer. If (K , χ , O) were of rank one, then F 2

would be amenable by Corollary 2.11(ii), which is a contradiction. This argument works
also for each non-amenable residually finite group in place of F 2.

We also provide two examples of non-rank-one odometer actions for amenable groups
G. In the first example, G is locally finite, and in the second one, G is non-locally finite
periodic.
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Example 4.5. Let Z = {0, 1}N. Endow Z with the infinite product η of the equidistribu-
tions on {0, 1}. Fix a sequence s = (sn)∞n=0 of mappings

sn : {0, 1}n→ Homeo({0, 1}), n ≥ 0.

Consider the following transformation Ts of Z:

Ts(z1, z2, . . .) := (s0z1, s1(z1)z2, s2(z1, z2)z3, s3(z1, z2, z3)z4, . . .).

Of course, Ts preserves η. Let

G := {Ts | s = (sn)∞n=0 with sn ≡ I eventually}.
Then, G is a locally finite (and hence amenable) countable group. We claim that the
dynamical system (Z, η, G) is a G-odometer. Indeed, for each n ∈ N, we denote by
πn : Z→ {0, 1}n the projection to the first n coordinates. Of course, there is a natural
transitive action of G on {0, 1}n:

Ts ∗ (z1, . . . , zn) := (s0z1, s1(z1)z2, . . . , sn−1(z1, . . . , zn−1)zn).

Then, πn is a G-equivariant mapping. Thus, {0, 1}n is a finite factor of (Z, η, G). Let

�n := {g ∈ G | g ∗ (0, . . . , 0) = (0, . . . , 0)}.
In other words, �n is the stabilizer of a point (0, . . . , 0) ∈ {0, 1}n. It is straightforward to
verify that

�n = {Ts | s = (sk)∞k=0 with s0 = s1(0) = s2(0, 0) = · · · = sn−1(0, . . . , 0) = I }.
Hence, �n is a cofinite subgroup in G for each n. Moreover, �1 � �2 � · · · . Thus, we
obtain, for each n, a G-equivariant bijection φn : {0, 1}n→ G/�n such that the following
diagram commutes:

G/�1 ←−−−− G/�2 ←−−−− G/�3 ←−−−− · · ·
φ1

�⏐⏐ φ2

�⏐⏐ φ3

�⏐⏐
{0, 1} τ1←−−−− {0, 1}2 τ2←−−−− {0, 1}3 τ3←−−−− · · ·

(4.5)

where τn(z1, . . . , zn+1) := (z1, . . . , zn) for each (z1, . . . , zn+1) ∈ {0, 1}n+1 and all
n ∈ N. It is routine to check that

�̃n :=
⋂
g∈G

g�ng
−1 = {Ts | s = (sk)∞k=0 with s0 = I , s1 ≡ I , s2 ≡ I , . . . , sn−1 ≡ I }

and
⋂∞
n=1 �̃n = {I }. Denote by (Y , O) the topological G-odometer associated with the

sequence (�n)∞n=1. Furnish it with the Haar measure ν. Then, equation (4.5) yields a
G-equivariant isomorphism φ : (Z, η)→ (Y , ν), as desired.

We now show that (Z, η, G) is not free. Take a point z = (zn)∞n=1 ∈ Z. Then, the
G-stabilizer Gz of z is the group

∞⋂
n=1

{Ts | s = (sk)∞k=0 with s0 = s1(z1) = s2(z1, z2) = · · · = sn(z1, . . . , zn) = I }.
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Let r1 : {0, 1} → Homeo({0, 1}) be the only mapping such that r1(z1) = I but r1 �≡ I . We
define a transformation R of (Z, η) by setting

R(z1, z2, z3, . . .) := (z1, r1(z1)z2, z3, z4, . . .).

Then, Gz � R �= I . Hence, O is not free. Therefore, O is not of rank one.

Example 4.6. Let (Z, η) and πn be as in Example 4.5. Denote by R the tail equivalence
relation on Z. We let

A := {Ts | for each z ∈ Z, there is N > 0 with sn(z1, . . . , zn) = I if n > N}.
Then, A is a subgroup of [R]. Of course, A generates R. Let θ denote the non-identity
bijection of {0, 1}. Define four transformations a, b, c, d ∈ A by the following formulae:

a(z1, z2, . . .) := (θ(z1), z2, . . .),

b(1n, 0, zn+2, . . .) :=
{
(1n, 0, θ(zn+2), zn+3, . . .) if n �∈ 3Z+,

(1n, 0, zn+2, zn+3, . . .) otherwise,

c(1n, 0, zn+2, . . .) :=
{
(1n, 0, θ(zn+2), zn+3, . . .) if n �∈ 1+ 3Z+,

(1n, 0, zn+2, zn+3, . . .) otherwise,

d(1n, 0, zn+2, . . .) :=
{
(1n, 0, θ(zn+2), zn+3, . . .) if n �∈ 2+ 3Z+,

(1n, 0, zn+2, zn+3, . . .) otherwise.

We remind that the group G generated by a, b, c, d is called the Grigorchuk group.
It was introduced in [Gri]. The group is residually finite, amenable, non-locally finite.
Every proper quotient subgroup of G is finite. Of course, G ⊂ A. It is routine to verify
R is the G-orbit equivalence relation. Hence, G is an ergodic transformation group
of (Z, η). Since πn is a G-equivariant mapping of Z onto {0, 1}n and the dynamical
system (Z, η, G) is ergodic, G acts transitively on {0, 1}n. Therefore, repeating our
reasoning in Example 4.5 almost literally, we obtain that (Z, η, G) is isomorphic to the
probability preserving G-odometer associated with the following sequence (�n)∞n=1 of
cofinite subgroups �n ⊂ G:

�n := {Ts ∈ G | s = (sk)∞k=0 with s0 = s1(0) = · · · = sn−1(0, . . . , 0) = I },
and

⋂
g∈G

⋂∞
n=1 g�ng

−1 = {I }. Furthermore, the stabilizerGz of this odometer at a point
z = (zn)∞n=1 ∈ Z is the group

{Ts ∈ G | s = (sk)∞k=0 with s0 = s1(z1) = s2(z1, z2) = · · · = sn(z) = I }.
Hence, G is not free. Therefore, G is not of rank one.

However, we will show that each probability preserving G-odometer is a factor of a
rank-one σ -finite measure preserving G-action.

THEOREM 4.7. Let (Y , O) be a topological G-odometer associated with a decreasing
sequence �1 � �2 � · · · of cofinite subgroups in G satisfying equation (4.1). Then there is
a topological (C, F)-action T of G on a locally compact Cantor space X and a continuous
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G-equivariant mapping τ : X→ Y . Moreover, τ maps the Haar measure (see Remark 2.5)
on X to a (non-σ -finite, in general) measure which is equivalent to the Haar measure on Y.
(This means that the two measures have the same class of subsets of zero measure.)

Proof. Construct inductively sequences (Cn)∞n=1 and (Fn)∞n=0 of finite subsets in G such
that equations (2.1) and (2.4) hold, Cn ⊂ �n and the projection

Cn � c �→ c�n+1 ∈ �n/�n+1 is one-to-one and onto (4.6)

for each n ∈ N. Let T be the topological (C, F)-action of G associated with
(Cn, Fn−1)

∞
n=1. By Proposition 2.9, T is defined on the entire locally compact space

X =⋃∞n=0 Xn, where Xn = Fn × Cn+1 × Cn+2 × · · · . We define τ : X→ Y by setting

τ(x) = (fn�1, fn�2, . . . , fn�n+1, fncn+1�n+2, , fncn+1cn+2�n+3, . . .) ∈ Y
if x = (fn, cn+1, cn+2, . . .) ∈ Xn for some n ∈ Xn. Of course, τ is well defined, continu-
ous and G-equivariant. Thus, the first claim of the proposition is proved.

Let μ denote the Haar measure on X and let χ be the Haar measure on Y. Then, μ is the
unique T-invariant (C, F)-measure such that μ(X0) = 1. It is determined by the sequence
(κn, νn−1)

∞
n=1, where κn is the equidistribution on Cn, and νn(f ) =∏n

k=1 κk(1G) for each
f ∈ Fn and n ∈ N. We now show that (μ � X0) ◦ τ−1 = χ . Let τn stand for the mapping

C1 × · · · × Cn � (c1, . . . , cn) �→ c1 · · · cn�n+1 ∈ G/�n+1.

We note that if

τn(c1, . . . , cn) = τn(c′1, . . . , c′n)

for some c1, c′1 ∈ C1, . . . , cn, c′n ∈ Cn, then cj = c′j for each j = 1, . . . , n. Indeed,

c1�2 = c1 · · · cn�n+1�2 = c′1 · · · c′n�n+1�2 = c′1�2.

Therefore, equation (4.6) yields that c1 = c′1 and hence c2 · · · cn�n+1 = c′2 · · · c′n�n+1.
Arguing in a similar way, we obtain that c2 = c′2, . . . , cn = c′n, as claimed. It follows that
τn is one-to-one. Moreover, τn is onto in view of equation (4.5). Then it is straightforward
to verify that the diagram

G/�2 ←−−−− G/�3 ←−−−− G/�4 ←−−−− · · ·
τ1

�⏐⏐ τ2

�⏐⏐ τ3

�⏐⏐
C1 ←−−−− C1 × C2 ←−−−− C1 × C2 × C3 ←−−−− · · ·

commutes. Passing to the projective limit, we obtain that τ is a homeomorphism of X0

onto Y. Since τn maps the equidistribution on C1 × · · · × Cn to the equidistribution on
G/�n+1 for each n, it follows that τ maps μ � X0 to χ . Take a probability measure μ′ on
X which is equivalent to μ. Then,

μ′ ◦ τ−1 � (μ′ � X0) ◦ τ−1 ∼ (μ � X0) ◦ τ−1 = χ . (4.7)

Since μ′ is quasi-invariant and ergodic under T, it follows that μ′ ◦ τ−1 is quasi-invariant
and ergodic under O. As the two probability Borel measures μ′ ◦ τ−1 and χ on Y are
quasi-invariant and ergodic under O, they are either equivalent or mutually singular.
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Therefore, equation (4.7) yields that μ′ ◦ τ−1 ∼ χ . Hence, μ ◦ τ−1 is equivalent to χ ,
as desired.

Remark 4.8. If we change the construction of T in the proof of Theorem 4.7 in such
a way that the mapping in equation (4.6) is one-to-one but #(Cn)/#(�n/�n+1) ≤ 0.5
for each n ∈ N, then the first claim of Theorem 4.7 still holds: there is a G-equivariant
continuous mapping τ : X→ Y . However, the second claim fails: the O-quasi-invariant
measure μ ◦ τ−1 on Y will be singular with χ .

We note that if G is Abelian, then each ergodic non-singular G-action T possesses
the following property. Let �1 � �2 � · · · be a sequence of cofinite subgroups in
G with

⋂
n∈N �n = {1G}. If, for each n ∈ N, T has a finite factor Fn isomorphic to

the homogeneous G-space G/�n, then F1 � F2 � · · · and T has an odometer factor∨
n>0 Fn. This is no longer true if G is non-Abelian (see Example 3.5). However, the

following version of the aforementioned property holds for an arbitrary G.

THEOREM 4.9. Let T = (Tg)g∈G be an ergodic non-singular G-action on a standard
non-atomic probability space (X, B, μ). Let �1 � �2 � · · · be a sequence of cofinite
subgroups in G such that equation (4.1) holds. Denote by (Y , O) the topological
G-odometer associated with this sequence. Suppose that for each n ∈ N, there exists
a T-factor which is isomorphic to the homogeneous G-space G/�n. Then there is an
O-quasi-invariant measure ν on Y such that the non-singular odometer (Y , ν, O) is a
factor of (X, μ, T ).

Proof. We first prove an auxiliary claim.

CLAIM A. Let H be a cofinite subgroup in G. There exist no more than #(G/H) different
factors of T that are isomorphic to the homogeneous G-space G/H .

Proof. Let J := #(G/H)+ 1. Suppose that there are J pairwise different T-invariant
σ -algebras Fj ⊂ B such that T � Fj is isomorphic to G/H for each j ∈ J . Denote by
τj : X→ G/H the corresponding G-equivariant mapping. Then the mapping

τ : X � x �→ (τj (x))j∈J ∈ (G/H)J
is also G-equivariant. Denote by E the support of the measure μ ◦ τ−1. Then:
• E is a single G-orbit;
• the projection of E onto each of the J coordinates is onto.
Take a point (gjH)j∈J ∈ E. Since J > #(G/H), there are i0, j0 ∈ J such that i0 �= j0

but gi0H = gj0H . Hence, the projection of E onto the ‘plane’ generated by the i0 and
j0 coordinates is the diagonal {(gH , gH) | g ∈ G} in (G/H)2. Hence, Fi0 = Fj0 . This
contradiction proves Claim A.

To prove the theorem, we define a graded graph G. The set V of vertices of G is the
union

⊔
n≥0 Vn, where Vn is the set of all Borel G-equivariant maps from X to G/�n. For

the consistency of notation, we let �0 := G. Given n ≥ 0, we denote by θn the projection

G/�n+1 � g�n+1 �→ g�n ∈ G/�n.
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The set E of edges of G is the union
⊔
n≥0 En, where an edge e ∈ En joins a vertex π ∈ Vn

with a vertex τ ∈ Vn+1 if π = θn ◦ τ . It follows from Claim A that Vn is finite for each n.
Of course, every vertex from Vn is adjacent (that is, connected by an edge) with a vertex
in Vn−1 for each n ∈ N. Hence, for each vertex of G, there is a path connecting this vertex
with the only vertex from V0. Thus, G is connected. Of course, G is locally finite and
infinite. Hence, by Kőnig’s infinity lemma, G contains a ray. It follows that there exists a
Borel G-equivariant mapping ι : X→ Y . We set ν := μ ◦ ι−1. Then, (Y , ν, O) is a factor
of (X, μ, T ), as desired.

4.2. Normal covers for non-singular odometers. Let (Y , O) be a topological
G-odometer associated with a decreasing sequence (�n)∞n=1 of cofinite subgroups in G
such that equation (4.1) holds. If each �n is normal in G, then (Y , O) is called normal. In
this case, we have thatG/�n is a finite group and hence Y is a compact totally disconnected
metric group. Moreover, there is a one-to-one group homomorphism φ : G→ Y such that
Ogy = φ(g)y for all g ∈ G and y ∈ Y . Of course, φ(g) = (g�1, g�2, . . .) ∈ Y for each
g ∈ G. This homomorphism embeds G densely into Y. Every normal odometer is free.

Given a cofinite subgroup � in G, the subgroup �̃ :=⋂g∈G g�g−1 is the maximal
normal (in G) subgroup of �. Of course, �̃ is of finite index in G. The natural
projection G/�̃ � g�̃ �→ g� ∈ G/� is G-equivariant. Hence, for a decreasing sequence
�1 ⊃ �2 ⊃ · · · of cofinite subgroups in G satisfying equation (4.1), we obtain a decreasing
sequence �̃1 ⊃ �̃2 ⊃ · · · of normal cofinite subgroups in G with

⋂∞
n=1 �̃n = {1G}. Let

(Ỹ , Õ) denote the normal topological G-odometer associated with (�̃n)∞n=1. It is called the
topological normal cover of (Y , O). The natural projections

G/�̃n � g�̃n �→ g�n ∈ G/�̃n, n ∈ N,

generate a continuous projection w : Ỹ → Y that intertwines Õ with O. Let

H := {(ỹn)∞n=1 ∈ Ỹ | ỹn ∈ �n/�̃n for all n ∈ N}.
Then, H is a closed subgroup of Ỹ . We claim that ω is the quotient mapping

Ỹ � ỹ �→ ỹH ∈ Ỹ /H .

Indeed, we first observe that ω(ỹ) = ω(ỹh) for all ỹ ∈ Ỹ and h ∈ H . Second, if
ω(ỹ) = ω(̃z) for some ỹ, z̃ ∈ Ỹ , then ỹz̃−1 ∈ H . Finally, the subset ω(Ỹ ) is G-invariant
and closed in Y. Hence, ω(Ỹ ) = Y .

It may seem that the coordinate projectionH � (ỹn)∞n=1 �→ ỹn ∈ �n/�̃n is onto for each
n ∈ N. That is not true. A counterexample (in which H is trivial but #(�n/�̃n) = 2 for
each n) is constructed in Example 6.7 below.

The concepts of the topological normal cover and the normal cover in the finite measure
preserving case can be found in [CorPe, DaLe]. We adapt it to the non-singular case in
the following way.

Definition 4.10. Let (Y , ν, O) be a non-singular G-odometer, (Ỹ , Õ) the topological
normal cover of (Y , O) and ν̃ an Õ-quasi-invariant probability on Ỹ . We call the
non-singular normal odometer (Ỹ , ν̃, Õ) the normal cover of (Y , ν, O) if:
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(i) ν̃ ◦ ω−1 = ν; and
(ii) dν̃ ◦ Õg/dν̃ = (dν ◦Og/dν) ◦ ω for each g ∈ G.

We note that property (ii) means that Õ is ω-relatively finite measure preserving.

PROPOSITION 4.11. Given a non-singular G-odometer (Y , ν, O), there is a G-quasi-
invariant probability ν̃ on Ỹ such that (Ỹ , ν̃, Õ) is a normal cover of (Y , ν, O).

Proof. Without loss of generality, we may assume that Ỹ = Y ×H (as a set, not as a
group) and there is a Borel map (1-cocycle) s : G× Y → H such that

Õg(y, h) = (Ogy, s(g, y)h) and ω(y, h) = y for each (y, h) ∈ Y ×H .

Denote by λH the Haar measure on H. Then the direct product ν̃ := ν ⊗ λH satisfies
properties (i) and (ii) from Definition 4.10.

Let �1 � �2 � · · · be as above. Suppose that there is a sequence (bn)
∞
n=1 of

G-elements such that

b1�1b
−1
1 � b2�2b

−1
2 � · · · .

Denote by (Y ′, O ′) the topological odometer associated with this sequence. Let ν and ν′
stand for the Haar measures on Y and Y ′, respectively.

PROPOSITION 4.12. The odometers (Y ′, O ′, ν′) and (Y , O, ν) are isomorphic.

Proof. It is easy to see that the normal covers of (Y ′, O ′, ν′) and (Y , O, ν) are the same.
Denote this common normal cover by (Ỹ , ν̃, Õ). Then there are closed subgroups H
and H ′ of Ỹ such that (Y , O, ν) is the right H-quotient of (Ỹ , ν̃, Õ) and (Y ′, O ′, ν′)
is the right H ′-quotient of (Ỹ , ν̃, Õ). It follows from Theorem 4.9 that (Y ′, O ′, ν′)
and (Y , O, ν) are weakly equivalent, that is, (Y ′, O ′, ν′) is a factor of (Y , O, ν) and
(Y , O, ν) is a factor of (Y ′, O ′, ν′). Hence, there are compact subgroups K and K ′ of
Ỹ and elements a, b ∈ Ỹ such that K ⊃ H , K ′ ⊃ H ′, K = aH ′a−1 and K ′ = bHb−1.
Hence, H ⊂ abHb−1a−1. We claim that this implies that H = abHb−1a−1. Indeed, let
V := {y ∈ Ỹ | H ⊂ yHy−1}. Then V is a closed subset of Ỹ . Of course, V � (ab)n for
each n ∈ N. Hence, V includes the closure of the semigroup {(ab)n | n ∈ N}. It follows
from [HeRo, Theorem 9.1] that the closure of {(ab)n | n ∈ N} equals the closure of
the group {(ab)n | n ∈ Z}. Hence, (ab)−1 ∈ V , that is, H ⊃ abHb−1a−1. Therefore,
H = abHb−1a−1, as claimed. This yields that K = H and K ′ = H ′. Thus, we obtain
that H and H ′ are conjugate. Hence, (Y ′, O ′, ν′) and (Y , O, ν) are isomorphic.

5. Odometer factors of non-singular (C, F)-actions
The following concept is an ‘infinite’ analogue of Definition 3.1.

Definition 5.1. Let a sequence T = (Cn, Fn−1, κn, νn−1)
∞
n=1 satisfy equations (2.1)–(2.3)

and Proposition 2.10(ii), and let a sequence (�n)∞n=1 satisfy equation (4.1). Denote by
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(Y , O) the topological odometer associated with (�n)∞n=1. Given y = (gn�n)∞n=1 ∈ Y , we
say that T is compatible with y if

∞∑
n=1

κn({c ∈ Cn | c �∈ gn�ng−1
n }) <∞.

Denote by T the (C, F)-action of G associated with T . Let X be the space of T and let
μ stand for the non-singular (C, F)-measure on X determined by (κn)∞n=1 and (νn)∞n=0. As

gn�ng
−1
n = gn+1�ng

−1
n+1 ⊃ gn+1�n+1g

−1
n+1 for each n ∈ N,

it follows that if T is compatible with y, then T is compatible with the coset gn�n ∈ G/�n
in the sense of Definition 3.1 for each n ∈ N. Hence, the (T , gn�n)-factor mapping
π(T ,gn�n) : X→ G/�n for T is well defined (mod 0) for each n ∈ N. Moreover, a
measurable mapping

π(T ,y) := X � x �→ (π(T ,gn�n)(x))
∞
n=1 ∈ Y

is well defined (mod 0) too. Of course, π(T ,y) ◦ Tg = Og ◦ π(T ,y) for each g ∈ G. Hence,
the non-singular odometer (Y , μ ◦ π−1

(T ,y), O) is a factor of (X, μ, T ).

Definition 5.2. We call π(T ,y) the (T , y)-factor mapping for T.

In the proposition below, we find necessary and sufficient conditions (in terms of the
parameters T ) under which π(T ,y) is one-to-one, that is, the dynamical systems (X, μ, T )
and (Y , μ ◦ π−1

(T ,y), O) are isomorphic via π(T ,y).

PROPOSITION 5.3. Let T be compatible with y. The following are equivalent:
(i) π(T ,y) is one-to-one (mod 0);

(ii) for each n > 0 and ε > 0, there are l > 0 and a subset Dl ⊂ G/�l such that
μ([1G]n�π−1

(T ,gl�l)
(Dl)) < ε; and

(iii) for each n > 0 and ε > 0, there are l > 0, a subset Dl ⊂ G/�l and M > 0 such
that νm(Cn+1 · · · Cm�{f ∈ Fm | fgl�l ∈ Dl}) < ε for each m > M .

Proof. (i)⇔(ii) Denote by B and Y the Borel σ -algebra on X and Y, respectively. Of
course, π(T ,y) is one-to-one (mod 0) if and only if B = π−1

(T ,y)(Y) (mod 0). Since:
• B is generated by the family of all cylinders in X; and
• B is invariant under T,
it follows that B = π−1

(T ,y)(Y) if and only if [1G]n ∈ π−1
(T ,y)(Y) for each n > 0. Let

Yl ⊂ Y denote the finite sub-σ -algebra of subsets that are measurable with respect to
the canonical projection G→ G/�l . Then, Y1 ⊂ Y2 ⊂ · · · and the union

⋃∞
l=1 Yl is

dense in Y. It follows that [1G]n ∈ π−1
(T ,y)(Y) if and only if

min
A∈Yl

μ([1G]n�π−1
(T ,y)(A))→ 0 as l→∞.

It remains to note that {π−1
(T ,y)(A) | A ∈ Yl} = {π−1

(T ,gl�l)
(D) | D ⊂ G/�l}.
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(ii)⇔(iii) We note that for all n > 0, l > 0 and a subset D ⊂ G/�l ,
μ([1G]n�π−1

(T ,gl�l)
(D)) = lim

m→∞ μ([1G]n�π−1
(T ,gl�l)

(D) ∩ [Fm]m) and

lim
m→∞

⊗
j≥m

κj ({x = (cj )j≥m ∈ Cm × Cm+1 × · · · | cj ∈ gl�lg−1
l for all j ≥ m}) = 1.

The latter follows from the fact that T is compatible with y. It implies that

lim
m→∞ μ({x = (fm, cn+1, . . .) ∈ [Fm]m | π(T ,gl�l)(x) = fmgl�l}) = μ([Fm]m).

Hence, for each D ⊂ �l ,
μ([1G]n�π−1

(T ,gl�l)
(D)) = lim

m→∞ μ([1G]n�
⊔

f∈Fm,fgl�l∈D
[f ]m)

= lim
m→∞ νm(Cn+1 · · · Cm�{f ∈ Fm | fgl�l ∈ D}).

This equality implies the equivalence of properties (ii) and (iii).

The following theorem is the main result of this section.

THEOREM 5.4. Let a sequence T = (Cn, Fn−1, κn, νn−1)
∞
n=1 satisfy equations (2.1)–(2.3)

and Proposition 2.10(ii). Let T be the non-singular (C, F)-action of G associated with
T and let (Y , O) be the topological G-odometer associated with a sequence (�n)∞n=1
satisfying equation (4.1). Then, for each G-equivariant measurable mapping τ : X→ Y ,
there exist an increasing sequence q of non-negative integers and an element y ∈ Y such
that the q-telescoping T̃ = (C̃n, F̃n−1, κ̃n, ν̃n−1)

∞
n=1 of T is compatible with y and

π(T̃ ,y) ◦ ιq = τ . (5.1)

Moreover, τ is one-to-one (mod 0) if and only if for each n > 0 and ε > 0, there are l > 0,
a subset Dl ⊂ G/�l and M > n such that for each m > M ,

ν̃m(C̃n+1 · · · C̃m�{f ∈ F̃m | fgl�l ∈ Dl}) < ε.

We preface the proof of Theorem 5.4 with auxiliary simple but useful facts about factor
mappings.

LEMMA 5.5. Let �, �1 be two cofinite subgroups in G and �1 ⊂ �. Then:
(i) if T is compatible with a coset g� ∈ G/�, then for each increasing sequence

a = (an)∞n=0 of non-negative integers with a0 = 0, the a-telescoping T̃ of T is also
compatible with g� and

π(T ,g�) = π(T̃ ,g�) ◦ ιa ; (5.2)

(ii) if T is compatible with two cosets g� ∈ G/� and g1�1 ∈ G/�1, then

r ◦ π(T ,g1�1) = π(T ,g�) if and only if g1g
−1 ∈ �,

where r : G/�1 → G/� denotes the natural projection.
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Proof. (i) For each n > 0, we let C̃n := Can−1+1 · · · Can and κ̃n := κan−1 ∗ · · · ∗ κan .
Then,

κ̃n({c ∈ C̃n | c �∈ g�g−1}) ≤
an∑

j=an−1+1

κj ({c ∈ Cj | c �∈ g�g−1}).

Hence,
∞∑
n=1

κ̃n({c ∈ C̃n | c �∈ g�g−1}) ≤
∞∑
j=1

κj ({c ∈ Cj | c �∈ g�g−1}) <∞.

Thus, T̃ is compatible with g�.
Equation (5.2) and claim (ii) are verified straightforwardly.

Proof of Theorem 5.4. We note that τ(x) = (τn(x))∞n=1 for each x ∈ X, where
τn : X→ G/�n is a G-equivariant mapping for every n.

From now on, we will argue inductively. At the first step we apply Remark 3.4 to T
and τ1: there exist a coset g1�1 ∈ G/�1 and an increasing sequence q1 of non-negative
integers such that the q1-telescoping T1 of T is g1�1-compatible and

π(T1,g1�1) ◦ ιq1 = τ1. (5.3)

At the second step, we apply Remark 3.4 to the (C, F)-action T̃ of G associated with
T1 and the factor mapping τ2 ◦ ιq1

−1 of T̃ : there exist a coset g2�2 ∈ G/�2 and an
increasing sequence q2 of non-negative integers such that the q2-telescoping T2 of T1

is g2�2-compatible and

π(T2,g2�2) ◦ ιq2 = τ2 ◦ ιq1
−1. (5.4)

Consider the natural projection ω2,1 : G/�2 → G/�1. Since ω2,1 ◦ τ2 = τ1, it follows
from equations (5.3) and (5.4) that

ω2,1 ◦ π(T2,g2�2) ◦ ιq2 = π(T1,g1�1).

Then, Lemma 5.5(i),(ii) imply that g2g
−1
1 ∈ �1. Continuing inductively, we obtain a

sequence (gn)∞n=1 of elements in G and a sequence (qn)∞n=1 of increasing sequences of
non-negative integers such that for each n > 0:
(α1) gng

−1
n−1 ∈ �n−1;

(α2) the qn-telescoping Tn = (C(n)k , F (n)k−1, κ(n)k , ν(n)k−1)
∞
k=1 of Tn−1 is compatible with

the coset gn�n; and
(α3) π(Tn,gn�n) ◦ ιq1◦···◦qn = τn.
We now choose an integer an > 0 large so that:
(α4)

∑
k≥an κ

(n)
k ({c ∈ C(n)k | c �∈ gn�ng−1

n }) < 1/n2

for each n > 0. It follows from (α1) that the sequence y := (gn�n)∞n=1 is a well-defined
element of Y. Of course:

q1 ◦ q2 is a subsequence of q1;
q1 ◦ q2 ◦ q3 is a subsequence of q1 ◦ q2
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and so on. Hence, using the diagonalization method, we can construct a sequence
q = (qn)∞n=1 of integers such that:
• 0 = q0 < q1 < · · · < qn;
• q is a subsequence of q1 ◦ · · · ◦ qn; and
• qn ≥ an
for every n > 0. Denote by T̃ the q-telescoping T̃ = (C̃n, F̃n−1, κ̃n, ν̃n−1)

∞
n=1 of T . We

are going to show that T̃ is compatible with y. By the construction of q, for each n > 0,
there are integers dn,2 ≥ dn,1 ≥ an such that

C̃n = C(n)dn,1
· · · C(n)dn,2

and κ̃n = κdn,1 ∗ · · · ∗ κdn,2 .

Therefore, we deduce from (α4) that

κ̃n({c ∈ C̃n | c �∈ gn�ng−1
n }) ≤

dn,2∑
k=dn,1

κ
(n)
k ({c ∈ C(n)k | c �∈ gn�ng−1

n }) <
1
n2 .

Hence,
∑∞
n=1 κ̃n({c ∈ C̃n | c �∈ gn�ng−1

n }) <∞, that is, T̃ is compatible with y, as
desired.

We now prove equation (5.1). Of course, T̃ is a telescoping of the q1 ◦ · · · ◦
qn-telescoping of T for each n. In view of (α2), the q1 ◦ · · · ◦ qn-telescoping of T equals
Tn. Thus, T̃ is a telescoping of Tn. Denote by θn the canonical isomorphism corresponding
to this telescoping. Then ιq = θn ◦ ιq1◦···◦qn . It follows from this and (α3) that

π(T̃ ,gn�n) ◦ ιq = π(T̃ ,gn�n) ◦ θn ◦ ιq1◦···◦qn = π(Tn,gn�n) ◦ ιq1◦···◦qn = τn
for each n ∈ N. Hence, π(T̃ ,y) = τ , as desired.

The second (the last) claim of the theorem follows from the first one and
Proposition 5.3.

As a corollary, we obtain a criterion for the existence (or non-existence) of odometer
factors for rank-one non-singular actions.

COROLLARY 5.6. Let T be the non-singular (C, F)-action of G associated with a
sequence T = (Cn, Fn−1, κn, νn−1)

∞
n=1 satisfying equations (2.1)–(2.3) and Proposition

2.10(ii). Then T has no non-singular odometer factors if and only if for each decreas-
ing sequence �1 � �2 � · · · of cofinite subgroups in G satisfying equation (4.1), no
telescoping of T is compatible with the sequence (�n)∞n=1, that is, for each sequence
0 = q1 < q2 < · · · ,

∞∑
n=0

κqn+1 ∗ · · · ∗ κqn+1({c ∈ Cqn+1 · · · Cqn+1 | c �∈ �n}) = ∞.

Proof. It is sufficient to use Theorem 5.4 and the following remark.
Let Y be a G-odometer associated with a decreasing sequence (�n)∞n=1 of cofinite

subgroups in G such that equation (4.1) holds. Let y ∈ Y . Then, y = (gn�n)∞n=1 with
gng
−1
n+1 ∈ �n for each n ∈ N. Of course, g1�1g

−1
1 ⊃ g2�2g

−1
2 ⊃ · · · and the sequence

(gn�ng
−1
n )∞n=1 satisfies equation (4.1). Denote by Yy the space of the G-odometer
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associated with (gn�ng−1
n )∞n=1. Then there is a canonical G-equivariant homeomorphism

ϕy : Y → Yy . It is well defined by the formula

ϕy((zn�n)
∞
n=1) := (zn�ng−1

n )∞n=1 = (zng−1
n (gn�ng

−1
n ))∞n=1.

It follows that there is a G-equivariant map from X to Y if and only if there is a
G-equivariant map from X to Yy .

In a similar way, we obtain a criterion when a non-singular (C, F)-action is not
isomorphic to any non-singular odometer.

COROLLARY 5.7. Let T be the non-singular (C, F)-action of G associated with a
sequence T satisfying equations (2.1)–(2.3) and Proposition 2.10(ii). Then T is not
isomorphic to any non-singular odometer if and only if for each decreasing sequence
�1 � �2 � · · · of cofinite subgroups in G satisfying equation (4.1) and each increasing
sequence q of non-negative integers such that the q-telescoping T̃ of T is compatible with
the point (�n)∞n=1 ∈ proj limn→∞ G/�n, there exist n > 0 and ε0 > 0 such that for each
l > 0, Dl ⊂ G/�l and M > n, there is m > M with

ν̃m(C̃n+1 · · · C̃m�{f ∈ F̃m | fgl�l ∈ Dl}) > ε0.

We state one more corollary from Theorems 5.4 and 2.19 on the existence of minimal
Radon uniquely ergodic topological models for rank-one non-singular extensions of
non-singular odometers.

COROLLARY 5.8. Let (X, μ, T ) be a rank-one non-singular action of G. Let T have a
non-singular odometer factor (Y , ν, O) and let π : X→ Y stand for the corresponding
G-equivariant factor mapping with ν = μ ◦ π−1. Then there exist a locally compact
Cantor space X̃, a minimal Radon uniquely ergodic free continuous action T̃ of G on X̃,
a continuous G-equivariant mapping π̃ : X̃→ Y and a Borel isomorphism R : X→ X̃

such that:
• μ̃ := μ ◦ R−1 is a Radon measure on X̃;
• RTg = T̃gR for each g ∈ G;
• the function dμ̃ ◦ T̃g/dμ̃ : X̃→ R∗ is continuous for each g ∈ G;
• T̃ is Radon (dμ̃ ◦ T̃g/dμ̃)g∈G-uniquely ergodic; and
• π̃R = π .

We can also characterize the class of quasi-invariant measures for odometers that appear
as factors of rank-one actions. Let (Y , O) be the topological G-odometer associated with a
decreasing sequence (�n)∞n=1 of cofinite subgroups �n of G satisfying equation (4.1). Let a
sequence T = (Cn, Fn−1, κn, νn−1)

∞
n=1 satisfy equation (2.1)–(2.4) and Cn ⊂ �n for each

n > 0. Denote by μF the (C, F)-measure determined by the sequence (κn, νn−1)
∞
n=1. Let

X stand for the space of μF . We define a mapping πF : X→ Y by setting

πF (x) = (fn�1, . . . , fn�n+1, fncn+1�n+2, fncn+1cn+2�n+3, . . .)
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if x = (fn, cn+1, cn+2, . . .) ∈ Xn ⊂ X for some n ≥ 0. Then πF is well defined and
continuous. Let

MY := {μF ◦ π−1
F | F satisfies equations (2.1)–(2.4) and Cn ⊂ �n for all n > 0}.

We deduce the following claim from Corollary 5.8.

COROLLARY 5.9. Each measure ν ∈MY is quasi-invariant under O. A Borel measure
ν on Y is equivalent to a measure belonging to MY if and only if there is a rank-one
non-singular G-action T such that (Y , O, ν) is a measurable factor of T.

6. Examples
6.1. Non-odometer rank-one Z-action with odometer factor. In [Fo–We], an example of
classical rank-one finite measure preserving Z-action T is constructed such that:
• T has the 2-adic odometer as a factor; but
• T is not isomorphic to any odometer.
We remind that given a prime p, the p-adic odometer is associated with the sequence

pZ ⊃ p2Z ⊃ p3Z ⊃ · · ·
of cofinite subgroups in Z. The argument in [Fo–We] is based on their description of the
odometer factors of rank-one transformations (that result is generalized in our Theorem
5.4). We now consider their example from another point of view, bypassing the use of any
version of Theorem 5.4. Our approach is more direct and leads to stronger results.

Example 6.1. LetG = Z. We construct a measure preserving (classical) rank-one Z-action
T on a probability space (X, μ) such that:
• (X, μ, T ) has a proper 2-adic odometer factor (Y , ν, O);
• (Y , ν, O) is the Kronecker factor of (X, μ, T ), that is, O is the maximal factor of T

with a pure discrete spectrum;
• the projection (X, μ)→ (Y , ν) is uncountable-to-one (mod 0), that is, the correspond-

ing conditional measures on fibres are non-atomic.
We set h0 := 0 and hn+1 := 4hn + 2n+1 for each n ∈ N. It follows that hn = 2n(2n+1 − 1)
for each n ≥ 0. We let

Fn := {0, . . . , hn − 1}, Cn+1 := {0, hn, 2hn + 2n+1, 3hn + 2n+1},
νn(f ) = 1

4n
for each f ∈ Fn and κn(c) = 1

4
for each c ∈ Cn+1

for every n ≥ 0. Then the sequence T := (Cn, Fn−1, κn, νn−1)
∞
n=1 satisfies equations

(2.1)–(2.3) and Proposition 2.10(ii). Denote by (X, μ, T ) the (C, F)-action of Z associated
with T . Then T is of classical rank one along (Fn)∞n=0. We note that T is the transformation
that was studied in [Fo–We]. Of course, T preserves μ and μ(X) <∞. We have that

μ(X) = μ(X0)+
∞∑
n=1

2nμ([0]n) = 1+
∞∑
n=1

2n

4n
= 2.
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Denote by (Y , O) the 2-adic Z-odometer. Then the transformation O1 acts on the
compact metric group Y := proj limn→∞ Z/2nZ by translation with the element (1+ 2Z,
1+ 22Z, 1+ 23Z, . . .) ∈ Y . Let ν stand for the Haar measure on Y. Since each element of
Cn is divisible by 2n−1 for every n > 0, it follows that O is a factor of T. The corresponding
(T , 0)-factor mapping π : X→ Y is well defined by the formula:

π(x) = (fn + 2nZ, fn + cn+1 + 2n+1Z, fn + cn+1 + cn+2 + 2n+2Z, . . .) ∈ Y ,

if x = (fn, cn+1, cn+1, . . .) ∈ Xn = Fn × Cn+1 × Cn+2 × · · · ⊂ X for some n ≥ 0 (see
Definition 3.2). Since the measure μ ◦ π−1 is invariant under O, it follows that μ ◦ π−1 is
proportional to ν. More precisely, μ ◦ π−1 = μ(X) · ν = 2ν.

We now show that if λ is an eigenvalue of T, then there is n > 0 such that λ2n = 1.
Since #Cm = 4 for each m, it follows from [DaVi, Corollary 3.8] that

lim
m→∞ max

c∈Cm
|1− λc| = 0.

As 4m = 2hm−1 + 2m ∈ Cm, we obtain that limm→∞ λ4m = 1. This is only possible if λ is
a dyadic root of 1, as desired. (Indeed, observe that λ4m+1 = (λ4m)4 and iterate.) However,
denote by Y the σ -algebra of all measurable subsets in Y. Let F := {π−1(B) | B ∈ Y}.
Then each eigenfunction of T whose eigenvalue is a 2-adic root of 1 is F-measurable. It
follows that the F is the Kronecker factor of T.

We now show that the Kronecker factor is proper, that is, that the spectrum of
T has a continuous component. Moreover, we prove that the extension T → O is
uncountable-to-one. For each n > 0, we let C(1)n := {0, hn−1} and C(2)n := {0, 2hn−1 +
2n} = {0, 4n}. Then, Cn = C(1)n + C(2)n . For j = 1, 2, let X(j)0 := C(j)1 × C(j)2 × · · ·.
Then, X

(j)

0 is a compact subset of X0. Given x = (c1, c2, . . .) ∈ X(1)0 and
z = (d1, d2, . . .) ∈ X(2)0 , the sum

x + z := (c1 + d1, c2 + d2, . . .) ∈ X0

is well defined. (Note that X(1)0 , X(2)0 and X0 are compact subsets of the Polish Abelian
group ZN.) Moreover, the mapping (x, z) �→ x + z is a homeomorphism of the Cartesian
product X(1)0 ×X(2)0 onto X0 and

π(x + z) = π(x)+ π(z) for all x, z ∈ X0. (6.1)

Endow X
(1)
0 and X(2)0 with the infinite products μ(1) and μ(2) of the equidistributions on

C
(1)
n and C(2)n , respectively, n ∈ N. We claim that the restriction of π to X(j)0 is one-to-one

for j = 1, 2. It is straightforward to verify that for each x = (cm)∞m=1 ∈ X0,

π(x) =
(( n∑

m=1

c1
m +

∑
1≤m<n/2

c2
m

)
+ 2nZ

)∞
n=1
∈ Y , (6.2)

where cjm ∈ C(j)m and cm = c1
m + c2

m for each m. Take two points x = (c1
1, c1

2, . . .) ∈ X(1)0
and y = (d1

1 , d1
2 , . . .) ∈ X(1)0 such that π(x) = π(y). It follows from equation (6.2) that

c1
1 = d1

1 (mod 2), c1
1 + c1

2 = d1
1 + d1

2 (mod 22), . . .. The first equality implies that d1
1 = c1

1.
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Therefore, the second equality is equivalent to c1
2 = d1

2 (mod 22), which, in turn, yields
that d1

2 = c1
2. By the induction, d1

n = c1
n for each n > 0, that is, x = y, as desired. It now

follows that the mapping

C
(1)
1 × · · · × C(1)n � (c1

1, . . . , c1
n) �→

( n∑
m=1

c1
m

)
+ 2nZ ∈ Z/2nZ

is bijective for each n > 0. Hence, π maps X(1)0 bijectively (and homeomorphically) onto
Y. Moreover, π maps μ(1) to ν. In a similar way, one can check that π mapsX(2)0 bijectively
(and homeomorphically) onto the closed subset π(X(2)0 ) ⊂ Y . Given y ∈ Y and z ∈ X(2)0 ,
we define an element Q(y, z) ∈ X(1)0 by the formula

π(Q(y, z)) = y − π(z).
Of course, Q(y, z) is well defined. Moreover, the mapping

Q : Y ×X(2)0 � (y, z) �→ Q(y, z) ∈ X(1)0

is continuous. If we fix y ∈ Y , then the mappingX(2)0 � z �→ Q(y, z) ∈ X(1)0 is one-to-one.
Of course, for each y ∈ Y ,

X0 ∩ π−1(y) = {Q(y, z)+ z | z ∈ X(2)0 }.
Hence, π−1(y) is uncountable. Moreover, the corresponding conditional measure on the
fibre X0 ∩ π−1(y) is the image of μ(2) under the mapping

X
(2)
0 � z �→ Q(y, z)+ z ∈ X0.

Hence, the conditional measure on X0 ∩ π−1(y) is non-atomic for each y ∈ Y . In
particular, π is uncountable-to-one.

Remark 6.2.
(i) The existence of the 2-adic odometer factor O of T in Example 6.1 was proved in

[Fo–We]. It was shown there that O is maximal in the family of odometer factors
of T. We refine this result by showing in Example 6.1 that O is the Kronecker factor
of T. The claims that T is an uncountable-to-one extension of O and that T has a
continuous part in the spectrum are new.

(ii) Perhaps the simplest example of non-odometer rank-one Z-action with the maximal
odometer factorO = (On)n∈Z is the following one. Let R be an irrational rotation on
the circle. Then the transformation S := O1 × R is an ergodic transformation with
pure discrete spectrum. Hence, it is of rank one [dJ1]. Of course, O1 is the maximal
odometer factor of S. Of course, S is not isomorphic to any odometer (as the discrete
spectrum of S has elements of infinite order). Obviously, S is rigid. However, in
contrast with T from Example 6.1, the spectrum of S is purely discrete.

6.2. Non-singular counterparts of Example 6.1. We first recall briefly the concepts
of the associated flow of an ergodic equivalence relation, Krieger’s type and AT-flow.
For details, we refer to the survey [DaSi] and references therein. Let R be a countable
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Borel equivalence relation on a standard σ -finite measure space (Z, γ ). Assume that R is
γ -non-singular and ergodic. This means that if a Borel subset A ⊂ Z is γ -null, then the
R-saturation of A is also γ -null, and each R-invariant (that is, R-saturated) Borel subset
of Z is either γ -null or γ -conull. Denote by ργ : R→ R∗+ the Radon–Nikodym cocycle
of R. Endow the product space Z × R with the product measure γ ⊗ Leb. We define an
equivalence relation R(log ργ ) on Z × R by setting

(z, t) ∼R(log ργ ) (z
′, t ′) if (z, z′) ∈ R and t ′ = t − log ργ (z, z′).

Then, R(log ργ ) is countable, (μ⊗ Leb)-non-singular but not necessarily ergodic. Denote
by I the σ -algebra of R(log ργ )-invariant subsets. Let V = (Vs)s∈R denote the action of
R on Z × R by translations along the second coordinate, that is, Vs(z, t) = (z, t + s). Of
course, I is invariant under V. The dynamical system (Z × R, I, μ⊗ Leb, V ) is called the
flow associated with R. The associated flow is non-singular and ergodic. We denote it by
WR. We will need the following two well-known properties of the associated flows.

(*) If A ⊂ Z is of positive measure γ , then the associated flow of R � A is isomorphic
to the associated flow of R.

(**) If (Z, γ ) = (Z1, γ1)⊗ (Z2, γ2), R = R1 ⊗R2 and WR1 is free and transitive,
then WR is isomorphic to WR2 .

An ergodic non-singular flow V is called an AT-flow if there is a sequence (An, αn)∞n=1 of
finite subsets An and non-degenerated probability measures αn on An such that the infinite
product measure

⊗∞
n=1 αn is non-atomic and V is isomorphic to the associated flow of the

tail equivalence relation on the probability space
⊗∞

n=1(An, αn). If, moreover, #An = 2
for each n, then we call the corresponding AT-flow finitary. (The class of finitary AT-flows
coincides with the class of flows of weights for the ITPFI2 factors (in the sense of the theory
of von Neumann algebras).) For instance, every ergodic flow with pure point spectrum is
a finitary AT-flow [BeVa]. If S is an ergodic non-singular G-action on a standard σ -finite
measure space, then the associated flow of the S-orbit equivalence relation is called the
associated flow of S. If the associated flow of S is transitive and aperiodic, then S is called
of Krieger type II. If the associated flow of S is transitive and periodic with the least positive
period − log λ for some λ ∈ (0, 1), then S is called of Krieger type IIIλ. If the associated
flow of S is the trivial flow on a singleton, then S is called of Krieger type III1. If S is
neither of type II nor of type IIIλ for any λ ∈ (0, 1], then S is called of Krieger type III0.

Let (X, T ), (Y , ν, O) and π : X→ Y be the same as in Example 6.1.

PROPOSITION 6.3. For each finitary AT-flow V, there exists a (C, F)-measure μ on X
such that:
(i) μ is quasi-invariant under T and hence the non-singular system (X, μ, T ) is of rank

one;
(ii) the associated flow of the system (X, μ, T ) is isomorphic to V;
(iii) μ ◦ π−1 ∼ ν, that is, the 2-adic probability preserving odometer (Y , ν, O) is a

factor of (X, μ, T );
(iv) (Y , ν, O) is the maximal odometer factor of (X, μ, T ); and
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(v) the factor mapping π is uncountable-to-one (mod 0). Hence, (X, μ, T ) is not an
odometer.

In particular, for each λ ∈ [0, 1], there is a (C, F)-measure μ on X such that (X, μ, T ) is
of Krieger type IIIλ satisfying properties (i), (iii)–(v).

Proof. We will use below the notation from §6.1.
Let κ1

n stand for the equidistribution on C(1)n and let κ1 :=⊗∞n=1 κ
1
n . As V is finitary

AT, there is a sequence (κ2
n)
∞
n=1 of non-degenerated probability measures κ2

n on C(2)n
such that the infinite product measure κ2 :=⊗∞n=1 κ

2
n is non-atomic and the associated

flow of the tail equivalence relation on (X(2)0 , κ2) is isomorphic to V. Denote by κn the
convolution κ1

n ∗ κ2
n . Then, κn is a non-degenerated probability measure on Cn for each

n ∈ N. We now select inductively a sequence (νn)∞n=1 of measures on G such that νn is
supported on Fn for each n ∈ N and equation (2.3) holds. Consider now the sequence
T := (Cn, Fn−1, κn, νn−1)

∞
n=1. Of course, equation (2.2) holds. It is straightforward to

verify that Proposition 2.10(iii) holds for T . Let μ denote the (C, F)-measure determined
by (κn)∞n=1 and (νn)∞n=0. It follows from Proposition 2.10 that μ is quasi-invariant under T.
Thus, property (i) holds.

According to (∗), the associated flow of T is isomorphic to the associated flow of the tail
equivalence relation on (X0, μ � X0). Then (∗∗) yields that the later flow is isomorphic
to the associated flow of the tail equivalence relation on (X(2)0 , κ2). Hence, the associated
flow of T is isomorphic to V, that is, property (ii) is proven.

We deduce from equation (6.1) that

(μ � X0) ◦ π−1 = (κ1 ◦ π−1) ∗ (κ2 ◦ π−1).

It was shown in §6.1 that κ1 ◦ π−1 = ν. As ν is the Haar measure on the compact
Abelian group Y, we obtain that ν ∗ (κ2 ◦ π−1) = ν. Thus, (μ � X0) ◦ π−1 = ν. Hence,
μ ◦ π−1 � ν. As the two measures, μ ◦ π−1 and ν on Y, are quasi-invariant and ergodic
under T, it follows that μ ◦ π−1 ∼ ν. Thus, property (iii) is proven.

If O is not the maximal odometer factor of T, then there is a prime number p > 2 such
that the homogeneous Z-space Z/pZ is a factor of T. Since #Cn = 4 for each n > 0, it can
be deduced from Theorem 3.3 that each element of Cn is divisible by p eventually in n.
However, 4n ∈ Cn for each n, which is a contradiction. Thus, property (iv) is proven.

As for property (v), it is proved almost literally in the same way as in Example 6.1.
The second claim of the proposition follows directly from the first one.

6.3. Rank-one Z2-action without odometer factors but whose generators have Z-odometer
factors. In this section, G = Z2. Only finite measure preserving actions of G are
considered in this section. In [JoMc, §6], a rank-one Z2-action T is constructed such that:
(a) each of the generators T(1,0) and T(0,1) of T has an odometer factor (as a Z-action);

but
(b) T has no Z2-odometer factors.
The corresponding construction is rather involved (see [JoMc, Theorem 6.1]). We provide
a different, elementary example of T possessing properties (a) and (b). To prove that, we
do not use any machinery developed in the previous sections.
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Example 6.4. Let R be an irrational rotation on the circle (T, λT) and let S be an ergodic
rotation on a compact totally disconnected Abelian infinite group Y endowed with the
Haar measure λY . Then the dynamical system O = (Sn)n∈Z is a classical odometer on
(Y , λY ). We now define a Z2-action T = (Tg)g∈Z2 on the product space (T× Y , λT ⊗ λY )
by setting T(n,m) := Rn × Sm. Of course, T is of rank-one along a Følner sequence of
rectangles (Fn)∞n=1 in Z2. Let θ := ( 1 0

1 1 ) ∈ SL2(Z). Then the action T̃ := (Tθ(g))g∈Z2 is
of rank-one along the sequence (θ(Fn))∞n=1. Of course, (θ(Fn))∞n=1 is also Følner. The
generators T̃(1,0) = R × S and T̃(0,1) = I × S of T̃ have S as a factor. Thus, property (a)
holds for T̃ .

It remains to show that T̃ satisfies property (b), that is, that T̃ has no Z2-odometer
factors. Suppose that T̃ has an odometer factor Õ. Let K be the space of Õ and let
π : T× Y → K denote the corresponding Z2-equivariant factor mapping. Then K is a
totally disconnected compact Abelian group. Since T̃ has pure discrete spectrum, there
is a compact subgroup H ⊂ T× Y such that K = (T× Y )/H and π(g) = gH for each
g ∈ T× Y . Since T is connected and K is totally disconnected, the closed subgroup
π(T× {0}) ⊂ K is trivial. This means that H contains the subgroup T× {0}. Hence, K is
a quotient group of Y = (T× Y )/(T× {0}) indeed and π is the corresponding projection
map. It follows that Õ is not faithful:

Õ(n,−n) = π ◦ T̃(n,−n) = π ◦ T(n,0) = π ◦ (Sn × I ) = I
for each n ∈ Z. Since each odometer action is faithful, Õ is not an odometer. Thus,
property (b) is proven.

According to the terminology of [JoMc] (which is different from ours), Z2-odometers
can be non-free. Hence, property (b) can be interpreted as ‘every rank-one factor of T is
non-free’.

Remark 6.5. We note that in the example [JoMc, §6], the generators T(0,1) and T(1,0) are
non-ergodic. In Example 6.4, T̃(1,0) is ergodic but T̃(0,1) is not. However, if we change
θ with the matrix θ ′ := ( 2 1

1 1 ), then we obtain a new example of rank-one Z2-action T̃
possessing properties (a), (b) and
(c) each of the generators T̃(1,0) and T̃(0,1) of T̃ is ergodic.

6.4. Heisenberg group actions of rank one. In this section, we consider the
three-dimensional discrete Heisenberg group H3(Z). We recall that

H3(Z) =
⎧⎨⎩
⎛⎝1 x z

0 1 y

0 0 1

⎞⎠ ∣∣∣∣ x, y, z ∈ Z

⎫⎬⎭ .

This group is non-Abelian, nilpotent and residually finite. For brevity, we will write

(x, y, z) for the matrix
( 1 x z

0 1 y
0 0 1

)
. It is straightforward to verify that

(x, y, z) · (x1, y1, z1) = (x + x1, y + y1, z+ z1 + xy1),

(x, y, z) · (x1, y1, z1) · (x, y, z)−1 = (x1, y1, z1 + xy1 − yx1).
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The centre of H3(Z) is {(0, 0, z) | z ∈ Z}. Given a, b, c ≥ 0, we let

�(a, b, c) := {(x, y, z) ∈ H3(Z) | 0 ≤ x < a, 0 ≤ y < b, 0 ≤ z < c}.
It is straightforward to verify that if an→+∞, bn→+∞, cn→+∞ and bn/cn→ 0
as n→∞, then (�(an, bn, cn))∞n=1 is a left Følner sequence in H3(Z). If, in addition,
an/cn→ 0, then (�(an, bn, cn))∞n=1 is a 2-sided Følner sequence in H3(Z).

Example 6.6. We construct a probability preserving (C, F)-action T of H3(Z) that has an
odometer factor, but T itself is not isomorphic to any odometer. For that, we first define
recurrently a sequence (hn)∞n=0 of positive integers by setting

h0 := 1 and hn+1 := 16hn + 9 · 4n+1.

It is easy to check that hn = 42n+1 − 3 · 4n for each n ≥ 0. We set

C
(1)
n+1 := {(a, b, 0) | a, b ∈ {0, 2n}} and

C
(2)
n+1 := {(0, 0, jhn) | j = 0, . . . , 7} · {(0, 0, 0), (0, 0, 8hn + 2 · 4n+1)}.

We now define a sequence (Cn, Fn−1)
∞
n=1 by setting

Fn := �(2n, 2n, hn) and Cn+1 := C(1)n+1C
(2)
n+1 for each n ≥ 0.

It is straightforward to check that equation (2.1) is satisfied. We define measures κn on Cn
and νn on Fn by setting ν0(1) = 1 and

κn(c) := 1
#Cn
= 1

64
, νn(f ) := 1

64n
for each c ∈ Cn, f ∈ Fn, n > 0.

Let T := (Cn, Fn−1, κn, νn−1). Then (2.2) and (2.3) hold for T . Since #Fn = 4n(42n+1 −
3 · 4n) and #Cn+1 = 64, we obtain that∏

n>0

#Fn+1

#Fn#Cn+1
=
∏
n>0

4n+2 − 3
4(4n+1 − 3)

=
∏
n>0

(
1+ 9

4(4n+1 − 3)

)
<∞. (6.3)

Of course, (Fn)∞n=1 is a 2-sided Følner sequence in H3(Z). Hence, Proposition 2.10(ii)
holds. Then the (C, F)-action T = (Tg)g∈H3(Z) associated with T is well defined on
a measure space (X, μ), where μ is the (C, F)-measure determined by (κn, νn−1)

∞
n=1.

Moreover, T preserves μ, that is, μ is the Haar measure for the (C, F)-equivalence relation
on X, and μ(X) <∞ in view of equation (6.3) (see Remark 2.5).

Next, we define a measure preserving odometer action of H3(Z). Given n > 0, we let

�n := {(i · 2n, j · 2n, k · 2n) ∈ H3(Z) | i, j , k ∈ Z}.
Then, �n is a normal cofinite subgroup of H3(Z), �1 � �2 � · · · and

⋂∞
n=1 �n = {1}.

Denote by O the H3(Z)-odometer associated with the sequence (�n)∞n=1. We call it the
2-adic odometer action of H3(Z). This odometer is normal. It is defined on the compact
metric group

Y := proj lim
n→∞

H3(Z)/�n.
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Denote by ν the Haar measure on Y. Since Cn+1 ⊂ �n for each n ∈ N, it follows that T
is compatible with (�n)∞n=1 ∈ Y . Hence, the (T , (�n)∞n=1)-factor mapping π(T ,(�n)∞n=1)

:
X→ Y intertwines T with O. For brevity, instead of π(T ,(�n)∞n=1)

, below we will write π .
The measure μ ◦ π−1 on Y is finite and invariant under O. Since O is uniquely ergodic,
it follows that μ ◦ π−1 = μ(X) · ν. Thus, the 2-adic H3(Z)-odometer is a finite measure
preserving factor of (X, μ, T ).

We claim that (Y , ν, O) is the maximal odometer factor of T, that is, every odometer
factor of T is a factor of O. Let �1 ⊃ �2 ⊃ · · · be a sequence of cofinite subgroups in
H3(Z)with

⋂∞
n=1

⋂
g∈G g�ng−1 = {1} and letQ = (Qg)g∈H3(Z) stand for the associated

H3(Z)-odometer which is defined on the space Z := proj limn→∞ H3(Z)/�n equipped
with Haar measure. If there is an H3(Z)-equivariant mapping τ : X→ Z then, by
Theorem 5.4, there exist a sequence q = (qn)∞n=0 and an element z = (gn�n)∞n=1 ∈ Z
such that 0 = q0 < q1 < q2 < · · · , the q-telescoping T̃ of T is compatible with z and
τ = π(T̃ ,z) ◦ ιq . Replacing �n with g−1

n �ngn for each n ∈ N, we pass to an isomorphic
(to Q) odometer as a factor of X (see the proof of Corollary 5.6). We denote it by the same
symbol Z. Therefore, without loss of generality, we may assume that T̃ is compatible with
z = (�n)∞n=1. It follows that there is N > 0 such that for each n > N ,

#{c ∈ Cqn+1 · · · Cqn+1 | c �∈ �n} < 64−1.

As #Cqn+1 = 64 and #(Cqn+1 · · · Cqn+1) = #(Cqn+1)#(Cqn+2 · · · Cqn+1), a version of
Fubini’s theorem yields that there exists at least one element d ∈ Cqn+2 · · · Cqn+1 such
that Cqn+1d ⊂ �n. Hence,

{(2qn , 0, 0), (0, 2qn , 0)} ⊂ {̃cc−1 | c̃, c ∈ Cqn+1} ⊂ �n.

Therefore, the subgroup

�n := {(i · 2qn , j · 2qn , k · 4qn) ∈ H3(Z) | i, j , k ∈ Z}
is contained in �n. This implies that �2qn ⊂ �n ⊂ �n for each n > 0. The natural
projection

H3(Z)/�2qn → H3(Z)/�n

is H3(Z)-equivariant for each n. Passing to the projective limit as n→∞, we obtain an
H3(Z)-equivariant projection η : Y → Z. It is straightforward to verify that τ = η ◦ π , as
desired.

It remains to show that π is not one-to-one (mod 0). For that, it suffices to show that the
restriction of π to X0 is not one-to-one. Let κ1

n and κ2
n be the equidistributions on C(1)n and

C
(2)
n , respectively, n ∈ N. We let

(X
(1)
0 , κ1) :=

(
C
(1)
1 × C(1)2 × · · · ,

∞⊗
n=1

κ1
n

)
and

(X
(2)
0 , κ2) :=

(
C
(2)
1 × C(2)2 × · · · ,

∞⊗
n=1

κ2
n

)
.
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Then, X0, X(1)0 and X(2)0 are compact subsets of the Polish group H3(Z)
N. The mapping

α : X(1)0 ×X(2)0 � (x1, x2) �→ x1x2 ∈ X0

is a homeomorphism that maps the product measure κ1 ⊗ κ2 to μ � X0. Moreover, for
each (x1, x2) ∈ X(1)0 ×X(2)0 ,

π(x1x2) = π(x1)π(x2). (6.4)

Let Z stand for the centre of H3(Z). Denote by Y0 the centre of Y. It is routine to verify
that

Y0 = proj lim
n→∞

Z�n/�n = proj lim
n→∞

Z/(Z ∩ �n).

Denote by Y2 the quotient group Y/Y0 and by ω the quotient homomorphism Y → Y2.
Then we obtain a short exact sequence of compact totally disconnected groups

1 −→ Y0 −→ Y
ω→−→ Y2 −→ 1.

Denote by λ0 and λ2 the Haar measures on Y0 and Y2, respectively. It is straightforward to
verify that

Y2 = proj lim
n→∞

H3(Z)/(Z�n) = proj lim
n→∞

Z2/2nZ2 and

ω ◦ π(x1) = ((a1, b1)+ 2Z2, (a2, b2)+ 22Z2, . . .)

for each x1 = ((a1, b1, 0), (a2, b2, 0), . . .) ∈ X(1)0 . Hence, ω ◦ π is a measure preserving
homeomorphism of (X(1)0 , κ1) onto (Y2, λ2). We now define a continuous mapping
s : Y2 → Y by setting

s(ω(π(x1))) := π(x1). (6.5)

Then, s is a cross-section of ω. Hence, the mapping

β : Y � y �→ (ys(ω(y))−1, ω(y)) ∈ Y0 × Y2

is a well-defined measure preserving homeomorphism of (Y , ν) onto the product measure
space (Y0 × Y2, λ0 ⊗ λ2). It follows from equations (6.4) and (6.5) that

β ◦ π ◦ α(x1, x2) = ω(π(x1)π(x2)) = (π(x2), ω ◦ π(x1))

for each (x1, x2) ∈ X(1)0 ×X(2)0 . Moreover,

(κ1 ⊗ κ2) ◦ (β ◦ π ◦ α)−1 = λ0 ⊗ λ2.

Therefore, π is not one-to-one (μ-mod 0) if and only if the mapping π � X(2)0 → Y0 is not
one-to-one (μ(2)-mod 0).

Our purpose now is to show that π � X(2)0 → Y0 is not one-to-one. Let

C
(3)
n+1 := {0, hn, 2hn, 3hn},
C
(4)
n+1 := {0, 4hn} + {0, 8hn + 2 · 4n+1},
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κ3
n and κ4

n are the equidistributions on C(3)n and C(4)n respectively for each n ≥ 0, and let

(X
(3)
0 , κ3) :=

(
C
(3)
1 × C(3)2 × · · · ,

∞⊗
n=1

κ3
n

)
and

(X
(4)
0 , κ4) :=

(
C
(4)
1 × C(4)2 × · · · ,

∞⊗
n=1

κ4
n

)
.

Then, X(3)0 and X(4)0 are compact subsets of H3(Z)
N. The mapping

X
(3)
0 ×X(4)0 � (x3, x4) �→ x3x4 ∈ X(2)0

is a well-defined homeomorphism that maps the product measure κ3 ⊗ κ4 to κ2. Moreover,
for each (x3, x4) ∈ X(3)0 ×X(4)0 ,

π(x3x4) = π(x3)π(x4).

In view of that, it suffices to show that the mapping π � X(3)→ Y0 is a bijection and
κ3 ◦ (π � X(3))−1 = λ0. We leave a routine verification of these facts to the reader.

With the example below, we illustrate that the common concept of normality for
odometers is not invariant under isomorphism. The normality depends on the choice of
the underlying sequence of (�n)∞n=1 of cofinite subgroups in G.

Example 6.7. Let �n := {(i2n−1, j2n, k2n) ∈ H3(Z) | i, j , k ∈ Z}. Of course, �n is a
non-normal cofinite subgroup of H3(Z) and �1 � �2 � · · · with

⋂∞
n=1 �n = {1}. It is

easy to see that the largest normal subgroup �̃n of �n is

�̃n := {(i2n, j2n, k2n) ∈ H3(Z) | i, j , k ∈ Z}.
Thus, �̃n is of index 2 in �n for each n > 0. Denote by (Y , O) and (Ỹ , Õ) the topological
odometers associated with (�n)∞n=1 and (�̃n)∞n=1, respectively. Then, (Ỹ , Õ) is a normal
odometer while (Y , O) is not. Moreover, (Ỹ , Õ) is the topological normal cover of (Y , O).
As was shown in §4.2, (Y , O) is a factor of (Ỹ , Õ) under the natural projection ω : Ỹ �
ỹ �→ ỹH ∈ Ỹ /H = Y , where

H := {(ỹn)∞n=1 ∈ Ỹ | ỹn ∈ �n/�̃n for all n ∈ N}
is a closed subgroup of Ỹ . Since �n+1 ⊂ �̃n ⊂ �n for each n, it follows that ω is
one-to-one. Hence, ω is an isomorphism of Õ with O, and H = {1}.

7. Comments on the paper [JoMc]
The article [JoMc] by Johnson and McClendon is also devoted to a generalization of
[Fo–We]. However, [JoMc] deals only with probability preserving actions of amenable
groups. Moreover, the odometers that appear in their paper are always normal. In this
section, we discuss the results from [JoMc] and compare them with ours.
(1) ‘Følner rank one’ is rank one according to Definition 2.1. By [JoMc], a measure

preserving G-action T on a probability space (X, μ) is called of Følner rank one if
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Definition 2.1(i) holds and (Fn)∞n=1 is a Følner sequence in G. We first claim that
then, T is free. Indeed, denote by Hx ⊂ G the stabilizer of T at x ∈ X, that is,

Hx := {g ∈ G | Tgx = x}.
Let (Bn, Fn)∞n=1 be the sequence of Rokhlin towers satisfying Definition 2.1(i). Fix
a finite subset K ⊂ G \ {1G}. Let FKn := {f ∈ Fn | Kf ⊂ Fn}. Then,

lim
n→∞ #FKn /#Fn = 1 and lim

n→∞ μ
( ⊔
f∈Fn

Tf Bn

)
= 1.

We letXn :=⊔f∈FKn Tf Bn. Then, μ(Xn)→ 1 as n→∞. Hence, μ-a.e. x belongs
to Xn for some n = n(x) > 0. It follows that the points Tkx, k ∈ K , belong to
different levels of the tower (Bn, Fn). Hence, Tkx �= x for each k ∈ K , that is,
K ∩Hx = ∅. Since K is arbitrary, we conclude that Hx ∩G = {1g} at a.e. x. Thus,
T is free. Since (Fn)∞n=1 is Følner, Definition 2.1(ii) is satisfied. Thus, T is of rank
one according to Definition 2.1. The converse follows from Corollary 2.11(ii) and
Theorem 2.13. Thus, we obtain that a probability preserving G-action T is of Følner
rank-one if and only if T is of rank one according to Definition 2.1. Therefore, the
main results of [JoMc]: their Theorems 3.1, 4.7 and 5.1 (which are stated for the
Følner rank-one Zd -actions) follow from our Theorems 3.3 and 5.4.

(2) An ergodic G-action is totally ergodic if and only if it has no non-trivial finite
factors. However, it is claimed in [JoMc, Theorem 3.3] that there exist non-totally
ergodic Følner rank-one Z2-actions without non-trivial finite factors. This seeming
contradiction is caused by the non-standard definition of total ergodicity in [JoMc].
As we understood from the proof of [JoMc, Theorem 3.3], by the total ergodicity of a
Zd -action T, they mean the individual ergodicity of T, that is, that the transformation
Tg is ergodic for each non-zero g ∈ Zd . The proof of [JoMc, Theorem 3.3] given
there is based on their analysis of finite factors for rank-one systems. However, an
easy alternative proof follows from the joining theory (see [dJRu, Ru]) and has
no direct relation to the rank one. Indeed, let S be a transformation with MSJ. Let
(X, B, μ) be the space of S. Denote by T the following Z2-action: T(n,m) = Sn × Sm,
n, m ∈ Z, on (X ×X, B⊗B, μ⊗ μ). Of course, each factor of T is a factor of
the transformation T(1,1) = S × S. However, S × S has only three non-trivial proper
factors: B⊗ {∅, X}, {∅, X} ⊗B and B�2 [dJRu]. The first two σ -algebras are also
factors of T, while the latter one is not. Thus, T has only two proper factors which
are weakly mixing. Hence, T is totally ergodic. Since T(1,0) is not ergodic, T is not
individually ergodic. It remains to note that the 3-cut Chacon transformation, used
in the proof of [JoMc, Theorem 3.3], has MSJ [dJRaSw].

(3) Theorem 4.1 of [JoMc] is a particular case of our Theorem 4.9: G is amenable and
the actions are probability preserving. Despite that, our proof of Theorem 4.9 is
shorter than the proof of [JoMc, Theorem 4.1] because we use the Kőnig infinity
lemma.

(4) Section 6 from [JoMc] is devoted entirely to construction of a Z2-action T that has no
Z2-odometer factors but whose generators T(0,1) and T(1,0) have Z-odometer factors.
We provide a simpler construction in Example 6.4.
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