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ON THE FUNDAMENTAL LEMMA 
FOR STANDARD ENDOSCOPY: 

REDUCTION TO UNIT ELEMENTS 

THOMAS C. HALES 

ABSTRACT. The fundamental lemma for standard endoscopy follows from the 
matching of unit elements in Hecke algebras. A simple form of the stable trace formula, 
based on the matching of unit elements, shows the fundamental lemma to be equiva­
lent to a collection of character identities. These character identities are established by 
comparing them to a compact-character expansion of orbital integrals. 

1. Introduction. L. Clozel has deduced the fundamental lemma for stable base 
change from the corresponding result for the unit elements of Hecke algebras [C12]. 
J.-P. Labesse has offered a second proof of this result [La]. This paper adapts Clozel's 
argument to standard endoscopy, thereby reducing this fundamental lemma for reductive 
groups to the unit elements of Hecke algebras. Unlike stable base change, the matching 
of units is not currently known. 

One of the main purposes of this paper is to clarify the set of local conditions that 
imply the fundamental lemma. These local conditions are formalized as local data in 
Section 4.1. Local arguments reduce the fundamental lemma to groups G with connected 
anisotropic centers. For such G, local data are a collection of finite character identities 
between a reductive group G and an endoscopic group H. If local data exist, and if the 
fundamental lemma is known for the Levi factors of G, then the fundamental lemma 
holds for G. 

Although the conditions we formulate are local, the only methods currently known to 
establish the existence of local data are global. In the final section we show how a simple 
stable trace formula may be used to prove the existence of local data. This argument 
assumes the matching of unit elements of Hecke algebras at almost all places of a global 
situation that we construct. 

2. Notation and terminology. Let F, F, and w denote a/?-adic field of characteristic 
zero, a fixed algebraic closure F, and a uniformizing element in the ring of integers OF of 
F. Background on the next few definitions can be found in the survey article by Borel [B]. 
If G is a reductive group, then G is the connected component of the complex dual group 
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LG. The group G^T is its derived group and is not to be confused with the connected 
complex dual of G^r. We write Z(G) for the center of G. For any torus S, let X*(S) 
andX*(S) be the character and cocharacter groups of S. In fact, X*(S) is defined for any 
diagonalizable group S. Let Tj be the split subtorus of a maximally split Cartan subgroup 
To of G. The complex dual to Td is conventionally denoted Y. Dual to the inclusion 
Td C TQ is the canonical projection 71 —> y. 

Let W' is the subgroup of the Weyl group of TQ that is invariant under the action of the 
Galois group. The group W is denoted kW in [B]. The Hecke algebras in this paper are 
understood to be the spherical Hecke algebras, composed of functions bi-invariant by a 
fixed hyperspecial maximal compact subgroup. Initially, we will use the Hecke algebra 
of functions of compact support, but we will also have occasion to use Hecke algebras 
of Z(G)° (F)-invariant functions that are compactly supported modulo the center. The 
Satake transform/A of a compactly supported Hecke function/ is a ^-invariant regular 
function on Y. Under the bijection between Yj W and rnt(LG°)-orbits on (LG° x Fr)ss, 
it is also viewed as a function on a component of LG. (See [M] and [B].) Let c(f, A), for 
A G X*(Y), be the coefficient: f\i) = £A c(f9 A)A(f). Associated with A G X*(Y), there 
is a compactly supported Hecke function <j>\, determined by the requirement that c(</>\, •) 
is the characteristic function of the JF'-orbit of A. The functions <f>\ form a linear basis 
of the Hecke algebra of compactly supported functions. When the group G is defined 
over Op and G(Op) is hyperspecial, the Hecke algebra is to be defined relative to the 
hyperspecial subgroup G(Op). 

Endoscopic data are attached to a triple (G, 0, u) consisting of a reductive group G 
defined over F, an automorphism 0 of G over F, and a quasicharacter u of G(F). For 
background material on twisted endoscopy, we refer the reader to the work of Kottwitz 
and Shelstad [KS1]. Standard endoscopy refers to data obtained when 6 and u are triv­
ial. This paper treats a slightly larger class, obtained by requiring only 0 to be trivial; call 
this enlarged class standard endoscopy with quasicharacter s. The fundamental lemma in 
this paper refers exclusively to the fundamental lemma for standard endoscopy with qua-
sicharacters. In fact, we also deal exclusively with the fundamental lemma for strongly 
G-regular semisimple elements. As explained in greater detail below, we assume that the 
endoscopic data is unramified. 

We let Fr denote the Frobenius element in the Galois group of the maximal unramified 
extension of F. When G splits over an unramified extension, the Frobenius element acts 
on the connected dual G, and various functorially related dual objects. 

A quasicharacter is unramified if its Langlands parameter in Hx ( WF, Z(GJ), the first 
continuous cohomology group of the Weil group Wp of F with coefficients in Z(G), is 
unramified (see [B]). An unramified cocycle in this group is determined by its value at 
the Frobenius element, and thus unramified quasicharacters correspond bijectively to the 
set Z(G) X] Fr modulo conjugation by Z(G). 

Two definitions of transfer factors have been given, one an extension of the other. 
The Langlands-Shelstad factor, defined for standard endoscopy [LSI], extends readily 
to the slightly larger class of standard endoscopy with quasicharacters, but not to the 
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fully twisted situation. The general twisted transfer factor of Kottwitz and Shelstad [KS1 ] 
agrees with the Langlands-Shelstad definition when it is restricted to standard endoscopy 
with quasicharacters. Thus, we may use results from either paper, depending on which 
better suits our purposes. 

The paper [H2] treats standard endoscopy, not twisted endoscopy. Nevertheless, just 
as the definition of Langlands and Shelstad extends readily to encompass quasicharacters, 
so also the results of [H2] extend. We will make use of the canonical normalization of 
transfer factors, descent for Levi factors, results on the unramified central character, and 
other minor results from that paper. 

The definition of unramified endoscopic group should be amended as follows to in­
clude standard endoscopy with quasicharacters. Let (//, 94,s, Q be endoscopic data for 
G in the sense of [KS1]. We say that (//, i# , s, £) are unramified endoscopic data for 
(G,o;)if 

(1) G is defined over OF, G(OF) is hyperspecial, and G is unramified, 
(2) H is defined over Of, H{OF) is hyperspecial, and H is unramified, 
(3) H is the L-group of H, 
(4) The embedding £ descends to an unramified field extension E/F, and 
(5) UJ is an unramified quasicharacter of G(F). 
The changes to the definition from the paper [H2] are minor. The reference to [LSI] 

has been changed to [KS 1], the quasicharacter a; has been added, along with Condition 5. 
An unnecessary hypothesis, the finiteness of the extension E/F, has been eliminated from 
Condition 4. Finally, a redundant condition [H2, 6-Condition 4] has been eliminated. 

The map of Hecke algebras (of compactly supported functions) associated with an 
embedding £ of L-groups will be denoted/ i—• b^(f), or simply/ \—» b(f) when the 
context is clear. Let 0 ( 7 G 5 / ) denote the orbital integral of/ on the conjugacy class of 7G 

for the quasicharacters;. If 7G is strongly regular with centralizer T, this orbital integral 
is defined as 

where dg is an invariant measure on T(F) \ G(F). Similarly, let Ost (7//, &(/)) be the stable 
orbital integral of b(f). It is defined as 

•̂w) = Lw-^)*. J(TH\H)(F) 

where TH is the centralizer of 7//, and dh is an invariant measure on (TH \ H){F) obtained 
from an invariant form on TH \ H. The distinction between (TH \ H)(F) and TH(F) \ H(F) 
is essential. We take the measures on G and H to be compatibly normalized. We let A = 0 
denote the identity of the fundamental lemma. Namely, set 

A ( W ) = E A ( 7 / / , 7 G ) 0 ( 7 G , / > - Ost(7//,6(/)), 

where A is the transfer factor of Kottwitz and Shelstad with the canonical normalization 
given in [H2, 7]. Let H(F)G-Teg denote the set of strongly G-regular elements in H(F) 
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(see [LSI]). The fundamental lemma conjecturally asserts that A(7//,/) = 0, for all 
1H G H{F)G- reg and all compactly supported Hecke functions/. 

Next, we elaborate on what it means for the fundamental lemma to hold for Z(G)°(F)-
invariant Hecke functions. For each basis function <j>\ of the Hecke algebra, we define a 
Z(G)°(F)-extension (f)'x by the the condition <^(7) = <t>\(tf) if there exists z G Z(G)°(F) 
such that z7 G supp(</>A), and </>f

x(l) — 0 otherwise. Lemma 3.2 will prove that each 
unramified character of G(F) is constant on the support of <j>\. Thus, the ambiguity of the 
expression z7 is by an element of Z(G)°(F) lying in the kernel of all unramified characters. 
Such an element belongs to G(Of) C\Z(G)°(F), so that <j>'x is well-defined. The functions 
(j)'x span the space of Z(G)°(F)-invariant Hecke functions that are compactly supported 
modulo the center. Equivalently, <j>'x is given by 

zeZ(G)0(F)/Z(G)°(OF) 

where Rz is defined by R/(g) — f(zg). Set (̂</> )̂ = J2b^(Rz(f)X), where the locally 
finite sum extends over z G Z(G)0(F)/Z(G)°(OF). Use b' to extend the notion of the 
fundamental lemma. Write A/(7//,/), when/ is a Z(G)°(F)-invariant Hecke function, for 
the expression obtained from A(7//, •) by replacing b with b'. 

3. Routine facts and routine reductions. 

LEMMA 3.1. Every quasicharacter on G is constant on each stable conjugacy class. 

PROOF. By a z-extension argument [Kol, 3.1.2], we may assume that the derived 
group of G is simply connected. If 7 and 7g are stably conjugate, then 7_17^ lies in both 
GfeT(F) and G(F), and hence also in GSC(F). Any quasicharacter vanishes on GSC(F), and 
from this the result follows. • 

LEMMA 3.2. Every unramified character is constant on the support of each Hecke 
function <f>\. 

PROOF. Fix an unramified character 0. The function 7 >—* <i>\(l)9 defined to be </>A(7) 

when 0(7) — 6(wx) and zero otherwise, belongs to the Hecke algebra and has the same 
orbital integrals on the maximally split torus as <j>\. If two functions in the Hecke algebra 
have equal orbital integrals on this torus, then the functions are equal. Hence </>\ = (j)\. 
Consequently, the unramified character 0 is constant on the support of <f>\. • 

The rest of the section carries out some routine reductions that simplify the exposition 
in later sections. For instance, nothing is lost by assuming that H is an elliptic endoscopic 
group, because the fundamental lemma for a nonelliptic endoscopic group is equivalent 
to a fundamental lemma for an elliptic endoscopic group obtained by descent (see [H2], 
[LS2]). 
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LEMMA 3.3. If the fundamental lemma holds for one choice of embedding £, then 
it holds for all choices ofembeddings. 

PROOF. Compare two embeddings of Z-groups £ and £'. Because of the standing 
assumption that the endoscopic data is unramified, both £ and £' are unramified. Write 
A^(7//, 1G) for the transfer factor associated with the embedding £. The ratio of the trans­
fer factors depends only on the term A///2, defined in [LSI]. The ratio has the form 

A^' (7 / / ,7G) /A^(7 / / ,7G) - (a^/a^l), 

where 7, inside a Cartan subgroup T = To, is an image of 7G in the quasisplit form of G, 
and a^ and a^> are cocycles, defined in [LSI], in the Weil cohomology group Hl(Wf9 7). 
According to Langlands' theory of abelian groups, this cohomology group pairs canon-
ically with T(F). 

The embeddings C ^ i ^ / Z ^ ^ G have the form £(lxFr) =xi/w0xiFrand£ /(lxFr) = 
x\mo x Fr, for some elements x\,x[, and mo G G. Bothx\mo x Fr and x[mo x Fr fix a 
splitting in H, and this is possible only if x̂  jx\ belongs to Z{H). It follows by consulting 
the definition of a^ and a^> in [LSI], discussed further in [H2], that (x[/x\)a^(w) = 
a^>(w), for all elements w in the Weil group Wp lying over the Frobenius element Fr. If 9 
is the unramified character on H(F) whose parameter in Z(H) x Fr is (x[ /x\) x Fr, then 
we conclude that the ratio of transfer factors (a^ / a^l) simplifies to 0(7). 

Now assume that the fundamental lemma holds for the embedding £. Then 

]TA^(7/ / ,7G)<I>(7G,/ ) = 0(7//) £ A ^ ( 7 / / , 7 G W 7 G , / ) = 0(7//)Ost(7//,^(/)). 

Lemma 3.3 will then follow from the identity 

(*) 0(7//)Ost(7//,btf)) = Os t(7//,6e(/)), 

for all 7// in H(F)G.reg. There are three separate cases to consider in the proof of this 
identity. 

CASE 1. Suppose that the endoscopic group H is an elliptic torus of G. We may 
identify H with the complex dual of TQ in G. An ordered pair (t,z) will represent the 
element tz of G according to the decomposition G = GderZ(G)°. With a slight shift in 
notation, the embedding £: LH —> LG takes the form (t,z) x Fr// i—> (£toWo,zx) x Frc, 
where mo lies in the normalizer of H and is independent of the embedding. The subscripts 
H and G have been added to the Frobenius element to distinguish the L-actions coming 
from H and G. Set 7der = Gder H 7G- Since 7der with its //-induced Frobenius action 
is dual to an unramified elliptic torus, txomo is FrG-conjugate to an element p 6 /der 

that is independent of t and *o- In other words, the map t^r —> /der given by / »—> 
t~lmo FrG(0^ô1 = t~l Fr//(0 *s surjective. We obtain the conjugate element (p,zx) x 
FrG G t x FrG. 

Recall that F is the complex dual to the split torus Tj. If A £ X*(Y), then it pulls 
back to a character, also denoted A, in X*{T) satisfying Frc(A) = A. By definition, the 
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Satake transform of &£(</> A), viewed as a function on H x Fr//, evaluated at (t,z) x Fr// 
is Ewer w • A(p,zx), where, as usual, W* is the subgroup of the Weyl group fixed by 
the Frobenius element Fr^. The group W acts trivially on Z(G)°, so that this expression 
simplifies to cAA(l,zx), where c\ = Ewer w • A(p, 1). The ambiguity by 7der H Z(G)° in 
the decomposition t = f^rZ(Gf may be used to show that c\ = 0, unless the restriction 
of À to f der ̂  Z(G)° is trivial. Hence, for nonvanishing terms, the character A descends to 
a character on Z(Gf / (Z(Gf D 7der), which is the complex dual to Z(G)°. The actions of 
Fr<7 and ¥rH coincide on Z(G)°. Thus, the invariance À (Frc(z)) = A(z)givesA(Fr//(z)) = 
A(z), for z G Z(Gf. The complex torus 7//, defined as the dual to the maximally split 
subtorus of H, is a quotient of the complex dual to Z(G)°, because H is elliptic in G. 
This shows that A descends to a character Â in X*(YH). The Satake transform of bç(<j)\) 
becomes z i—> c\\(z)\(x), where z andx are the images of (l,z) and (1,JC) in }//. The 
Satake transform on a torus His essentially trivial; we find that ^(</>A) is the characteristic 
function of the double coset H(OF)VDXH(OF) times the constant cxX(x). For 7 = vox, the 
identity (*) becomes 

cx0(zux)X(x) - cAÂ(A 

where x! corresponds to £'. Recall that 0 is the unramified character defined by comparing 
the embeddings £ and £'; they differ by an element (1,JC'/JC) E Z(Gf. Thus, 0(zuA) = 
X(xf /x). The identity (*) is now evident. 

CASE 2. Suppose that the element 7// lies in the maximally split Cartan subgroup 
TH ofH and that H ^ 7#. In this case 7// is not elliptic, and a routine descent argument 
(for instance, [H2, 9]) reduces this case to the previous case. 

CASE 3. Suppose that the element 7// does not lie in the maximally split Cartan sub­
group. Fix a function/ of the Hecke algebra, and write b^(f) as a finite linear combination 
EA ^ , A ^ » where </>% is the basis function on the group H corresponding to A G X*(YH\ 

analogous to the function <j>x on G. Do the same for b^(f). By Lemma 3.2 an unramified 
character 0 is constant on the support of </>x. 

Recall that 0 is also constant on each stable conjugacy class (Lemma 3.1). Thus, (*) 
may be rewritten, when 7// belongs to the maximally split torus (Case 2), as the collection 
of identities 0(wx)c^x = C£',A, for all A. Select A0 such that 0(1 H) = 0(vux°). Then (*) 
holds generally, because 

0(7„)<Dst(7„,6c(/)) = E ^ / / ) ^ , A O S , ( 7 H , ^ ) = £0(^ A o )c a 4> s , (7 / / ,<) 

= E CÇJWH, <t>") = ®st{lH, &?(/)). -

Let 0 be an unramified character of G(F) with parameter t x Fr in Z(G) X Fr. The 
canonical inclusion of Z(G) —> Z(H) leads to a character OH on H(F) with the same 
parameter, now in Z(H) x Fr. 
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LEMMA 3.4. With OH constructed as above, OH is constant on the support ofb{(j)\). 

Moreover, 0(supp(0A)) = 0//(supp(Z#A))j. 

PROOF. Certainly b(<j>\) is determined by its values on the elements wx>, for A' G 
X*{YH), and OH is constant on every double coset of H{QF). Thus, we consider 0H(^X), 
for vox' G SUPP(&(</>A)) . By a descent argument we reduce to the case that H is an elliptic 
torus of G. The argument of Lemma 3.3 (Case 1) shows that 6(</>A) is supported on the 
double coset of wx. The character À G X*(YH) gives a character on Z(G)° and hence a 
character A' on Z(G), by dualizing the inclusion T% C Z(Gf, where T% is the maximally 
split torus in the elliptic Cartan subgroup//. One then easily finds that 0H(vox) = (t, A') = 
0(wx). m 

LEMMA 3.5. The fundamental lemma is true for a reductive group if it is true for 
the Z(G)°(F)-invariant Hecke functions on the group. 

PROOF. By Lemma 3.3, we may pick whatever embedding is the most convenient. 
As the proof of Lemma 3.6 will explain in greater detail, there exists an embedding for 
which the transfer factor is invariant by the connected center: A(z7//, Z7G) = A(7//, 7G), 
for z G Z(G)°(F). We refer the reader to the definition ofbf(4>'x) in Section 2. We have 

(*) A'(7/,, 4>'x) = E A(^"> J W A ) = E A&H, <t>xl 
z z 

The second equality makes use of the compatibility of the fundamental lemma with trans­
lations by Z(G)°(F), as proved in [H2, 11]. (With a different choice of embedding, a 
character of Z(G)°(F) would appear in the right-hand term.) The hypothesis of the lemma 
means that A'(7//, <l>'x) — 0, for all A. By translating 7// by a central element of G, we may 
assume that 7G lies in the same coset of °G as the support of <j>\ (see Lemma 3.2), where 
°G is the intersection of the kernels of all unramified characters on G. Then the stable 
conjugacy class of Z7G does not meet the support of <f>\ unless z belongs to Z(G)0(OF). 

By Lemma 3.4, the stable conjugacy class of z7// does not meet the support of b{(j>\) 
unless z belongs to Z(G)°(OF). Consequently, (*) becomes A(7//, 4>\) = 0, and the fun­
damental lemma holds. • 

LEMMA 3.6. If the fundamental lemma holds whenever G is an adjoint group, then 
it holds in general 

PROOF. By Lemma 3.3, we may pick whatever embedding is the most convenient. 
For our purposes, it is best to pick an embedding for which the image in L G of the Frobe-
nius element Fr lies in Gder x Fr. Such embeddings exist (see for example [H2, 6.1]). 
By adjusting the choice of the element s, which is a given of the unramified endoscopic 
data, by a central element in G, we may assume that s lies in the derived group of G. With 
these choices the endoscopic data (//, 9f, s, £) easily lead to endoscopic data (H, LH, s, £) 
of the semisimple group G dual to Gder-

As an initial step toward the proof, let us deduce the fundamental lemma associ­
ated with the data (//, 9~C, s, £) from the fundamental lemma associated with the data 
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(//, LH, s, Q. There is nothing difficult here, but a number of small facts must be checked. 
The sequence 1 —-> G^T —> G —* G/Gder —> 1 is dual to the sequence 1 —» Z(G)° —> 
G -> G/Z(G)° -> 1. In fact, in the sequence 1 - • ,4 - • G -> G —• 1 dual to 1 —> Gder -> 
G —* G/Gder —> 1, we know that ,4 is central and connected, and G is semisimple, and 
these properties characterize the sequence 1 —> Z(G)° —» G —-> G/Z(G)° —> 1. Thus 
G is isomorphic to the quotient G/Z(G)°. Similarly, / / is isomorphic to ///Z(G)°, under 
the canonical embedding of Z(G)° into //. Thus, we may project a pair (7//, 7G) in if x G 
to a pair (7 / / ,7G) in # X G. Because of the choice of £ made above, the cocycle a^ re­
stricts to a character that is trivial on Z(G)°. (See [H2, 11]). It is then a mere formality to 
check that A^ G(7//, 7G) — A|> -(7//, 7G)- Subscripts to A have been added to distinguish 
transfer factors on different groups. 

The image of a stable conjugacy class in G is a stable conjugacy class in G, and 
likewise for H. This simple fact follows from the observation that the image of G(F) in 
G(F) is the kernel of a collection of quasicharacters, and that quasicharacters are constant 
on stable conjugacy classes (Lemma 3.1 ). By pulling Hecke functions on G and H back to 
G and H, the functions are only compactly supported modulo the center. But Lemma 3.5 
states that this does not matter. In this way the fundamental lemma is displaced to G and 
H. 

Now we assume that G is semisimple and reduce to the case where G is adjoint. The 
endoscopic data (//, LH, s, £) easily lift to data for the simply connected cover Gsc It 
is essential to allow the the quasicharacters UJ to be nontrivial at this point, otherwise 
the lift would not always exist. The character 6 on the center of G, defined by 0(z) = 
A(z7//, Z7G)/A(7//, 1G\ is trivial. (The existence of such a character 0 is proved in [LS2]). 
It is trivial because it is the restriction, of an unramified character on the maximally split 
torus, to the compact (finite) group of F-rational points in Z(G) (see [H2, 11]). There is a 
canonical injection from the Hecke algebra on G to that on Gadj, since the center of G is 
contained in G(Of). There is a corresponding injection on the Hecke algebra of//. The 
remaining details are similar to those already given for the reduction to the semisimple 
case. • 

Not only may we assume that G is adjoint, we may also assume that it is simple over 
the algebraic closure of F. Orbital integrals, endoscopy, transfer factors, Hecke algebras, 
and the map b of Hecke algebras are all compatible with products and are all compatible 
with the restriction of scalars. 

It is convenient to reduce to standard endoscopy, for which the unramified quasichar-
acter u is trivial. The next lemma describes the group to be used for this. The reductive 
groups G constructed in the next lemma will be called the basic cases. 

LEMMA 3.7. For any simple unramified adjoint group Gadj, there is an unramified 
reductive group G (whose adjoint group is Gadj>) with the following properties: 

(1) The center of G is connected and anisotropic; 

(2) The image ofG(F) in the adjoint group is equal to the kernel ofuo. 
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PROOF. If we construct an unramified group G\ whose center is connected, whose 
derived group is Gsc, and whose image in G^{F) is the kernel of u, then we may define 
G to be the quotient of G\ by the split component of the center. 

An embedding Gsc C G\ is determined by a homomorphism a from.Y*(Z(Gi)) onto 
Jf"(Z(Gsc)). The center of Gi is connected if A*(Z(Gi)) is torsion free. There is an exact 
sequence 

1 -> \m(Gx{F) - G^{F)) \ Gadj(F) - HX(F,Z(GX)) -> Hl(F,D), 

where D is the torus Gi/Gsc; see [Ko3, 1.5]. The group X*(D) may be identified with 
the lattice dual to the kernel of a. By Tate-Nakayama duality, the quotient of G^iF) by 

G\ (F) is identified with the subgroup of//-1 ( F,X* [Z{G\ )) ) of elements whose image in 

H-l(F9X*(DJ) is trivial. We list the homomorphisms a:X*(Z(G\j) —> X*(Z(GSC)) and 
the action of the Frobenius onJf*(Z(Gi)), and leave the verification of the properties of 
the lemma to the reader. 

When UJ is trivial, we take G\ to be any unramified z-extension of Gadj. Every un­
ramified quasicharacter is trivial on adjoint groups of types 2A2j(,

 3/^4, 2E^, Es, F4, and 
G2. 

CASE 1. (split, but not of type D2i) UJ has order t dividing «, Jf*(Z(Gsc)) = Z//1Z, 
and Fr acts trivially on Z/wZ. 

1 <- Z/wZ ^ - Z^+1 /(«, 1 , . . . , 1)Z. 

The homomorphism a is projection onto the first factor, and Fr(y,xi,... ,JQ) = 
(y,x2,... , ^ , x i ) onZ*(Z(Gi)). 

CASE2. (2^2A:-i,2^+i)^hasorder2,jr(Z(Gsc)) = Z/2£Z,andFractsbyFr(x) = 

- jcon^(Z(G s c ) ) . 

1 ^ Z / 2 £ Z ^ - Z . 

Let Fr act by Fr(x) = — x on Z. 

CASE 3. (£>2£,
 2A>£) ^ has order 2, ^r(Z(Gsc)) = Z/2Z 0 Z/2Z, and Fr acts 

by order 1 or 2. If Fr acts trivially, then we proceed as in Case 2 with k = 1. Now 
assume that Fr(x,>>) = (y,x) on .Y*(Z(GSC)). We induce the data from Case 1. Let 
X*(Z(Gij) = Z6/((2,1,1,0,0,0)Z + (0,0,0,2,1,1)Z), a0%x1,x2,y,x/

1,x2) = (y, /) , 
Fr(y,xi,X2,y,x/

1,x2) = (yf,x[9x
f
2,y,x2,x\), and so forth. 

Cases 1, 2, and 3 cover the only possibilities that arise when UJ is nontrivial. • 

LEMMA 3.8. If the fundamental lemma holds for the basic cases G, then it holds in 
general 

PROOF. The fundamental lemma holds for elementary reasons for functions on Gadj 
whose support does not meet the kernel of the quasicharacter UJ. To see this, consider 
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a strongly regular semisimple element 7 that is not in this kernel. By the ^-invariance 
of the transfer factor [KS1], making the change of variables g i—• lg in the integrand 
f(g~l1g)u(g) =/((7g)_17(7g))o;(g) of the orbital integral, we find that the orbital inte­
gral is o;(7) times itself and is hence zero. The transfer b(f) of a function/that does not 
meet the kernel of a; is zero. To see this using Lemma 3.4, we have the trivial character 
UJH on H(F), and, if the support of b(4>x) is nonempty, then 1 = u;//(supp(è((/>A))) = 

o;(supp((/>A)). Hence, the fundamental lemma is true of such functions. Since the kernel 
of UJ is bi-invariant by the hyperspecial maximal compact subgroup, we may assume now 
that the support of/ lies in the kernel of a;. 

Waldspurger has explained the rest of this reduction [W, 3.1.2]. He gives the argu­
ment for GL(«), but the argument is general. The orbital integral on the adjoint group is 
equal to a K;-orbital integral of a Hecke function on G. This lift to G is compatible with 
endoscopy. • 

4. Local data. We are now ready to undertake the nontrivial part of the local argu­
ment needed for the fundamental lemma. Local data, discussed in this section, are the 
local character identities, pertaining to the fundamental lemma, that can be obtained from 
the trace formula. Throughout this section, we assume that G is a basic case. Let R(G) 
denote the set of irreducible admissible representations of G{F) with an Iwahori fixed 
vector. Let R{H) denote the set of irreducible admissible representations of//(F) with an 
Iwahori fixed vector. 

4.1. Local data for (G, H) consist of the data (a), (b), and (c) subject to Conditions 1 
and 2 below. 

(a) An indexing set / (possibly infinite) 
(b) A collection of complex constants af(ir) for / G /and IT G R(G) 
(c) A collection of complex constants af (IT') for / G / and nf G R(H) 
(1) For / fixed, the constants af (IT) and of (IT*) are zero for all but finitely many IT and 

7Tf. 

(2) For every function/ in the Hecke algebra of G, the following are equivalent: 
(A) for all i G /, we have £„ af (TT) trace ?r(/) = ETT' af (*-') trace ir'(b(f)), and 
(B) for all 7// G H(F)G-TGg, we have A(7//,/) - 0. 

The essential part of the definition is Condition 2. Roughly, local data indicate how to 
translate the fundamental lemma into a collection of character identities. Nothing would 
change if R(G) and R(H) were taken to be spherical representations, since / and b(f) 
belong to Hecke algebras. 

The justification of local data comes from the following theorem, which will be proved 
in the rest of this section. Langlands and Shelstad have shown how to obtain an endo­
scopic group of a Levi factor by descent from an endoscopic group of G (see [LS2]). 

THEOREM 4.2. Let G be a basic case. Suppose that there exist local data for (G, //) . 
Suppose that the fundamental lemma holds for all proper Levi factors of G for the en­
doscopic groups obtained by descent from H. Then the fundamental lemma holds for the 
endoscopic group H of G. 
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Let local data be given. It consists of an indexing set /, and functions af and a1/, 
for / G /. In light of the equivalence expressed by Condition 2, the fundamental lemma 
holds if the identities Ex af(ir) trace TT(/) = ETT' a? (IT*) trace TT'(/?(/)) hold for all / G /. 
To show this, we fix our attention on a single identity, for some i G /, and drop / from 
the notation. By elementary properties of spherical functions, for each IT' G R(H), there 
exist 7T G R(G) and a parameter s G Y such that 

trace ir'(b(f)) = trace TT(/) =fA(s). 

This allows us to rewrite the desired identity as 0 = A(f), where A(f) is a finite sum of 
the form A(f) = Efl(syA(s), for appropriate functions a(s) on Y. If we show that ,4 is 
zero (Lemma 4.4), then the theorem is proved. 

The compact trace, denoted tracec7r(/), is defined in [Cll]; in brief, it is equal to 
trace n(l(f), where lc is the characteristic function of the compact elements in G(F). 
Similarly, we form tracec IT', for ir' G R(H). 

PROPOSITION 4.3. Under the hypotheses of Theorem 4.2, the linear functional f \—> 
A(f)on the Heche algebra is a finite linear combination of the linearfunctionals A(7//, ), 
for 7// G H(F)G- reg- There is also an expression for A(f) as a finite linear combination 
of linear functionals of the form 

f i—> tracec ?r(/) andf ^ tracec TT' (b(f)), for n G 7?(G) a«d IT' G /?(//). 

PROOF. By the hypothesis on Levi factors in Theorem 4.2, we may assume that 
A(7//,/) = 0, if 7// is not elliptic. Thus, the expansion to be produced in Proposition 4.3 
will involve functionals A(7//, •), for 7// elliptic. By the Howe conjecture, proved by 
Clozel, applied to both G and //, we find for any elliptic element 7// G H(F)G- reg that 
A(7//,/) has an expansion in terms of compact traces of the sort given in the proposition. 
(Details of this are given in [HI, 1].) 

Turn to the first statement of Proposition 4.3. Again, by the Howe conjecture, the space 
of distributions/1—> A(7//,/) on the Hecke algebra of G is finite dimensional. Thus, the 
Condition 2.B in the definition of local data may be replaced with the condition 

(BO A(7/,/) = 0, f o r / = l , . . . , * , 

for an appropriate finite collection {7/} of strongly G-regular semisimple elements in H. 
Condition 2 now implies that, if A(7/,/) = 0, for/ = l,...,k, then A(f) = 0. This means 
that the functional A is a linear combination of the functionals A(7y, •). • 

LEMMA 4.4. The functional A vanishes identically on the Hecke algebra. 

PROOF THE PARAMETERS S, FINITE IN NUMBER, FOR WHICH a(s) ^ 0 ARE TEMPERED. 

This temperedness argument is given by Clozel [C12, 5.5]. In the present context the ar­
gument is even easier because we avoid the complications of base change. The argument 
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relies on Proposition 4.3 expressing the functional^ as a finite linear combination of the 
distributions A(7/, •) and the temperedness of orbital integrals. 

In the compact-trace expansion of A(f) given in Proposition 4.3, we may assume that 
each of the representations 7r and IT' comes from a nonunitary point in the spectrum. To 
see this, we consider various cases. Begin with H. Since the orbital integrals on H are 
stable, we may assume that irf is obtained by pulling back a representation on the adjoint 
group. A tempered representation on the adjoint group with an Iwahori fixed vector is 
a full induced unitary principal series representation [Ke]. By examining the principal 
series character formula, we see that all principal series representations have the same 
compact trace; in particular, ir' has the same compact trace as a nonunitary point in the 
spectrum. 

Next, consider the representation n in the special case that Gacij = PGL(«) and u 
has order n. The fundamental lemma has been established in this case by Kazhdan [Ka]. 
Thus, A(7/,/) = 0, for all 7/, so that, by the definition of local data, A(f) is also zero. 

Finally, consider any representation 7r in any case not yet treated. Keys has analyzed 
the reducibility of unitary principal series representations. By analyzing the parameters 
of [Ke] case by case, we see that it is always possible to deform the inducing parameter 
away from a unitary point in the spectrum, except in the one case already treated above 
(Gadj = PGL(«), UJ of order n). Keys actually treats only the semisimple simply connected 
case, but the other cases are an easy consequence of this, the most reducible case. In fact, 
in other cases, reducibility is understood by looking at which constituents have vectors 
fixed by the various hyperspecial subgroups. 

To work one example in more detail, we consider the group Sp(2«) and review some 
of the results of Keys. We may think of the unitary parameter s as lying in the diagonal 
subgroup {(si,S2,... ,s„, l,s~l,... ,sY1)} of the complex dual group SO(2« +1, C). Even 
if there is reducibility, there will be at most two constituents. A unitary parameter s that 
gives reducibility satisfies, for instance, s„ = — 1. Unitarity implies that |.?/| = 1, for 
all /. But these representations remain reducible when the unitarity constraint |s/| = 1 
is dropped. A calculation with intertwining operators similar to that given in [HI, 2] 
shows that the compact trace of each constituent remains unchanged as s varies under the 
constraint sn = — 1. Therefore, there is a nonunitary parameter s satisfying the constraint 
except in the rank one situation, where s„ = — 1 determines s. But when the rank is one, 
we fall within the case previously considered (PGL(«), u of order n, n — 2). 

In every other case, we observe that the intertwining operators Jï(w, A) forming the 
commuting algebra are formed by .K-group elements w £ W that are realized in proper 
Levi subgroups. In particular, the constituents are not elliptic by the results of 
Arthur [A2]. Thus, there is a Levi subgroup to which we may apply the arguments of 
[HI, 2]. 

The final step follows the argument provided by a referee to Clozel's base change 
paper [C12, p. 257]. We will rewrite the identity 

A<t>\) = YJ
 ci trace* *(<l>x) + 1 ] c\ tracec TT^Z^A)), 
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produced by Proposition 4.3, in a more suggestive form. For À G X*(Y), we have 

A{<j>x) = E a(s)^(s) = E E a(s)X(w • s) = E a,Afo), 

for some finite collection of tempered parameters st and complex constants at. 
Next we consider a term tracec TT(</>A). By a theorem of Clozel and Waldspurger, the 

compact trace is a linear combination of forms (x^v^P))A(z). The superscript (P) indicates 
the function obtained from integration over the unipotent radical of a standard parabolic 
subgroup P = MN. The function \N factors as a product of three maps 

M ( F ) ^ a M - + a M o - * i i 

where a /̂ is the real Lie algebra of the split center of M, and Mo c M i s a Levi subgroup 
of a minimal parabolic subgroup Po C P. The first map is the Harish-Chandra map 
HM> M —> &M- The second map is a natural identification of &M with a subspace of aMo 

(defined by Arthur [Al]). The third map is the characteristic function fp of the obtuse 
Weyl chamber [Al, p. 936], [C12, 2.1]. In particular, for /z G X*(Y) and m G M(F), we 
have x^mw^m'1) = fp(/x), where we have identified X*(Y) with a lattice in aA/0. Then 

(xW>f)A(z)= E ^ r A ) w A ( z ) , 

where WA = w • A. There are finitely many hyperplanesX\,...,Xr through the origin 
ofX*(Y) <g> R such that f^(wX) = f j^A') for all P and all w G 0", whenever A and A7 

belong to the same component ofX*(Y) <g> R \ (X\ U • • • U Xr). (For example, take all 
singular hyperplanes and all hyperplanes in the W-orbit of the walls of the obtuse Weyl 
chambers.) Fix one such component C. Then 

(XN^P)\z)= £ A(wz) 
weW" 

for A in C, for some subset W" C W that depends on C, but not on A G C. 
The terms tracec ir

f(jb(ffj are treated similarly. The map £ sends nonunitary parame­
ters to nonunitary parameters, and through £ this compact trace is expressed as a linear 
combination of terms A(z), again for lattice points A in a suitable open cone of X*(Y). 
By passing to a smaller open cone C C C, if necessary, to accommodate the terms 
tracec TTf(b(f)), the identity then takes the form 

(*) E «••*(*) = E «>(*;)> 
i J 

for A G C. The sums are finite, the parameters st G Y are unitary, and the parameters 
zi G Y are nonunitary. The characters Sj, z/ of the lattice may be assumed to be linearly 
independent, so the only such identities (*) are with both sides zero. Integral combina­
tions of elements in C span^(T). Thus, if both sides vanish on the cone, then both sides 
vanish for all A G X*(Y). m 
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5. Local transfer. To stabilize the simple trace formula of Deligne and Kazhdan, 
as established in [He], we transfer the /c -orbital integrals of a suitable linear combination 
of matrix coefficients of supercuspidal representations to the endoscopic group. For this 
result, we work with fields of sufficiently large residual characteristic. We may assume 
that our groups are unramified, are defined over the ring of integers Of, and contain an 
anisotropic Cartan subgroup. (For the global groups we construct, these conditions will 
hold locally at infinitely many places.) 

The groups G and H give reductive groups Go and i/o over the residue field ¥q of F. 
Select an elliptic Cartan subgroup T0 in i/o and transfer it to Go. We may assume that 7o 
comes from an unramified Cartan subgroup T/ Op and that T(F) C H(Of). We identify 
T with a Cartan subgroup T{F) C G(Op) by an isomorphism ty'.T-^G defined over Of. 

LEMMA 5.1. In this context, there exists a linear combination of matrix coefficients 
of supercuspidal representations of G whose orbital integrals are supported on the G{F)-
orbit of the set of strongly regular semisimple elements ofT{F). The same conclusion 
holds on H, with the additional property that the orbital integrals ofl and Y G T(F) C 
H(F) are equal ifn G NG(T,F). (By Y we mean i^'1 (^(1)").) 

PROOF. Consider the Deligne-Lusztig characters Rj0ie of Go(¥q), where 0 is in gen­
eral position. (See [C] for a definition and the standard facts about these generalized char­
acters.) ±RT0,9 is an irreducible cuspidal character of Go(F^). The characters 0 that are in 
general position correspond to rational regular elements in a torus dual to 7o, and so the 
number of such characters has leading term qr, where r = dim To. The Deligne-Lusztig 
characters are supported on elements whose semisimple part is conjugate to To(¥q). The 
characters RTo,e andRTo,e> are linearly independent if 9 and 0' belong to different orbits un­
der the Weyl group. The number of singular elements in To(¥q) is bounded by a constant 
times qr~x. So for q sufficiently large, an obvious counting argument shows that there 
exists a nonzero linear combination/) of irreducible cuspidal Deligne-Lusztig characters 
that is supported on the set of strongly regular semisimple elements conjugate to 7o(F^). 

If G is an irreducible cuspidal representation of Go(¥q), then the representation of G(F) 
obtained by the inflation of a to G(OF) and compact induction to G(F) is supercuspidal. 
(See [G, 5.2].) Extend fo to G(Op) and then to a function/ G C^(G) that is supported 
on G(Of). It follows from the results of [G, 5.2] that/ is a finite linear combination of 
matrix coefficients of supercuspidal representations of G. 

The orbital integrals of/are supported on the set of elements 7 conjugate to elements 
g~llg of G{QF) that are congruent to regular semisimple element of T0(¥q). The powers 
(g~l7gym tend to g~xlsg, a regular semisimple element in the G(0/r)-orbit of T(F), 
where 7^ is the absolutely semisimple part of 7 (see, for example, [H2, 3]). As 75 and 
7 commute and ls is regular, we see that 7 itself lies in the G(F)-orbit of the set of 
regular semisimple elements of T(F). Thus, the orbital integrals of/ are zero except on 
conjugates of regular semisimple elements of T(F). 

The proof of the second claim of the lemma is similar. The irreducible cuspidal 
Deligne-Lusztig characters on i/o from To span a vector space whose dimension is asymp­
totic to qr/wo, where wo is the cardinality of W(To,Ho) = NHo(To,Fq)/To(Fq), whereas 
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the space of invariant functions on Ho(¥q) that are invariant by the Weyl group of (7b, Go) 
and are supported on regular semisimple elements in the orbit of To(¥q) has dimension 
~ qr/w\, where w\ is the cardinality of NG0(To,Fq)/To(Fq). Since these are both sub-
spaces of the space (of dimension ~ qr / WQ) of functions invariant under W(TO,HQ), they 
have nontrivial intersection for q sufficiently large. Thus, the desired linear combinations 
of Deligne-Lusztig characters exist, when q is sufficiently large. • 

We match functions with regular support on G and H by the following characterization 
of orbital integrals. 

LEMMA 5.2. Let Q°(77(7) be the set of locally constant compactly supported func­
tions on the G{F)-orbit of the strongly regular semisimple elements ofT(F). Set 0(7) = 
<&(J,f),forf G q°(fG). Then 0(7),/or 7 G T(F), satisfies 

(i) 0(7") - 0(7),/or n E NG(T,F), 
(ii) 0(7) is a locally constant compactly supported function on T(F), 

(in) 0(7) is supported on the strongly regular semisimple elements ofT(F). 
Conversely, a function 0 on T(F) satisfying (Ï), (ii), and (Hi) is realized as the orbital 

integrals of some function in C^°(7/G). 

PROOF. This is a special case of [Vi]. • 

To obtain the simple trace formula for a global group, at some place we take the linear 
combination of matrix coefficients/ on G{F) constructed by Lemma 5.1. Its K;-orbital in­
tegrals coincide with its ordinary orbital integrals. By the characterization of Lemma 5.2, 
there is a matching function fH on an endoscopic group H. Similarly, at another place, 
we may select the function fH constructed by the second part of Lemma 5.1 and find a 
function on G with matching orbital integrals by the characterization of Lemma 5.2. The 
hypotheses in [He] for a simple trace formula are then satisfied for G and H. 

6. Global arguments. This section uses the matching of the unit elements in the 
Hecke algebra, a global argument, and an inductive hypothesis to produce local data. We 
assume that G is a basic case and that H is an elliptic endoscopic group of G. We say 
that the matching of units holds if A(7//,/) = 0, for all strongly G-regular 7//, when/ is 
the unit element of the Hecke algebra. A reductive group, defined over a number field, 
will be associated with each G and endoscopic group H. We are now ready for the main 
theorem of the paper. 

THEOREM 6.1. Suppose that G is a basic case with elliptic endoscopic group H. 
Suppose that A(7//,/) is zero when 7// is not elliptic. Suppose that the matching of units 
holds at almost all unramified places of the global group and corresponding endoscopic 
group associated with G and H. Then the fundamental lemma holds for (G, H). 

PROOF. TO simplify notation in the proof, we now shift notation and add a subscript 
w to data over the local field F. Thus we have the local field Fw, functions fw, the group 
Gw, an endoscopic group HW9 and so forth. The terms without subscripts will be global 
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objects. Thus,/ will be a function on the adelic points of a global group G, a function 
soon to be defined as a product over its local components, and H will be an endoscopic 
group of G. 

For each reductive group Gw and corresponding elliptic endoscopic group Hw, we 
select quasisplit groups G and H over a global field F that specialize at a given place w 
to Gw and Hw. We may choose F in such a way that Fv is complex for every archimedean 
place v. The groups Hw and Gw are unramified and the embedding £w of L-groups may 
be chosen to factor through a finite unramified extension Ew of Fw of some degree k1 

(see [H2]). Adjusting F, G, and H if necessary, we may assume that there is a cyclic 
extension E/F of degree k1 that splits H and G, that Ew is a field, and that the natural map 
</>: Gal(Ew/Fw) —> Gal(E/F) is an isomorphism. The maps £w and 0 combine to give a 
global embedding of L-groups i'.LH —> LG that factors through Wf —» Gal(2s/F) ~ 
Gal(Ew/Fw). At every archimedean place v, this embedding of L-groups reduces to a 
product of the inclusion map LH° C LG° and the identity map £v: Wpv —• ^FV- This 
means that £v is of unitary type in the sense of Shelstad [Sh3]. 

By the Tchebotarev density theorem, there are then infinitely many places v at which 
Ev is a field and Gdl(Ev/Fv) is isomorphic to Gd\(E/F). This means that G and H have 
the weak approximation property: G(F) is dense in G(Fs) and H{F) is dense in H(Fs) for 
the completion Fs at any finite set of places S (see [KR]). 

Fix a regular elliptic element 7// in HW(FW). Select a strongly regular semisimple el­
ement 7 G H(F) approximating 7// at w. More specifically, we demand that A(7W,/) = 
A(7//,/), for all / in the Hecke algebra of Gw. Such elements exist by weak approxi­
mation and the Howe conjecture. We may also assume, by weak approximation, that 7 
belongs to an anisotropic unramified Cartan subgroup at some place w\ ^ w, and that 
7V, for v every archimedean place, lies in a given open set U (to be specified below). Let 
T be the centralizer of 7. The Cartan subgroup T is anisotropic and unramified at w\, 
and so by the Tchebotarev density theorem, it is anisotropic and unramified at infinitely 
many places. 

Following Kottwitz [Ko2], we say that a torus of H transfers to G if there is an admis­
sible embedding of the torus into G, defined over F. A Cartan subgroup in H transfers 
to G locally everywhere because G is quasisplit. This fact, combined with a criterion 
of Kottwitz [Ko2, 9.5] and the results of [S, 1.9], implies that a Cartan subgroup in H 
transfers to G if it is elliptic. In particular, T transfers to G. 

Identify T with a Cartan subgroup in G and take the preimage Tsc of T in Gsc- Consider 
a character K on the image of Hl(Fv, Tscv) in HX{FV, Tv) at some nonarchimedean place 
v. In general, the character K, and Tv do not uniquely determine an endoscopic group Hv. 
By Tate-Nakayama, the character K determines a characters on the elements of^(T^v) 
of norm zero, and a choice is involved in lifting s to a character of X*(TSCV). But when Tv 

is elliptic, all elements of X*(TSCV) have norm zero, and no choice is involved. Thus, the 
various K separate the endoscopic groups associated with an elliptic torus. This means 
that there exist functions supported on the regular elements in the stable orbit of an elliptic 
Cartan subgroup, whose K;-orbital integrals vanish except when K is associated with a 
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single prescribed elliptic endoscopic group Hv. Choose such a function at a place vo. 
Similarly, at another place v at which Tv is anisotropic and unramified, select matching 
functions/ and//7 wi th / supported on the G(F)-orbit of TV(F) and//7 supported on the 
stable orbit of Tv C Hv. We may select//7 in such a way that the unstable orbital integrals 
of/f7 vanish. Then the only endoscopic group that is relevant for the stabilization of H 
is H itself. 

Let S be a finite set of nonarchimedean places that includes w, all the special places 
mentioned above, and all the places at which G, H, or T is ramified. There are only 
finitely many endoscopic groups H = Ho,H\,... ,Hr of G that are quasisplit forms of 
H, that are equivalent to H at vo, and that are unramified outside S. For / > 0, pick a 
place v/ $ S at which H and Hi are inequivalent. Since endoscopic groups are quasisplit, 
the Tchebotarev density theorem gives infinitely many choices for v/. Select a function 
fVi supported on the orbit of the unramified torus TVi C GV/. Then the only endoscopic 
groups H that are relevant to the stabilization of G are associated with Tv. at v,-. Since 
Tv. is unramified at v/, every global endoscopic group associated with TVi at v/ is also 
unramified at v,-. The endoscopic group H = Ho is then the only one relevant to the 
stabilization of the trace formula, provided the functions/, are used at {v,-} and the unit 
element of the Hecke algebra is used at all nonarchimedean places except SU {v/} (see 
[Ko3, 7.5]). 

Now we consider the complex reductive group G^ at the archimedean places. Fix a 
maximal compact subgroup K of Goo- Let B be a Borel subgroup with Langlands decom­
position B = MAN. This is the only cuspidal parabolic subgroup of the complex group 
GQO. Let W be the Weyl group of MA in G. Let HQQ be a complex endoscopic group of 
Goo- Similarly, fix a maximal compact subgroup KH in Hœ. The global embedding con­
structed above allows us to assume that the embedding ^oo'^oo —> LGoo is of unitary 
type. 

We recall some facts from the work of Shelstad ([Shi], [Sh2], [Sh4], and especially 
[Sh3]). Fix a tempered parameter <// for HQQ. Since HQQ is quasisplit, $ is relevant in 
the sense of [B]. We may select <$> so that the L-packet is a singleton corresponding to 
an irreducible principal series representation. The lift of the character to Goo is a well-
defined invariant distribution on Goo [Sh3, 4.0.1]. The lift is, up to a sign, the character 
of a principal series representation of Goo-

Fix a regular character <5o G M of M and consider the principal series representation 
irfax — Ind(£(g)A), obtained by unitary induction, for À G a*,a0 = Lie(^f), and a = a0<g)C. 
We may select <50 in such a way that for all À G i&Q, the representation ir&0i\ comes from a 
parameter <// (depending on A) for HQQ in the manner described in the previous paragraph. 

Let C^(Goo,K) denote the space of compactly supported C°° functions that are right 
and left A -̂finite. Consider the subspace C£°(Goo, #o) of C^°(Goo, K) satisfying the condi­
tion 

(trace n,\,f) = 0, 

for all A G a* and all 8 G M\{W-So}. By the identities of [Vo, 6.6.7] and the irreducibility 
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of 7Ts0,\9 we find that 
(trace ir,f) = 0, 

for all irreducible admissible IT inequivalent to n^x, for w G W and À G a*. 
The invariant Paley-Wiener theorem theorem states that the vector space of functions 

Ff(X) = (trace TT^A,/), 

for/ G Q°(G,<§o), consists of all functions in the Paley-Wiener space (on the complex 
vector space a*) and that 

Ff(wX) = (trace nw-%,x,f) 

for w G W [CD], Fix a function/ for which Ff(\) is not identically zero. By the character 
formula for principal series representations [Kn, 10.18], there exists an open set {/con­
tained in the set of regular semisimple elements on which the orbital integrals/of 7 G U 
are nonzero. Fix a function/77 G Q°(//oo) that is ̂ //-finite whose orbital integrals match 
/ . The construction off11 in [CD, A.4] shows that the invariant distribution attached to a 
parameter <J>H for H^ vanishes on/77 except when the parameter £oo o <j>H for Goo gives 
the L-packet of it^x for some À G a* (not necessarily in ml). 

Suppose that we have an equality of absolutely convergent sums 

(6.2) X) «W tace *(/) = £ *(*')toce ̂ ty") 
of characters of irreducible unitary representations of Goo and H^ that holds whenever 
/ G Q°(Goo) and/77 G Ç£°(//oo) have matching orbital integrals. Inserting the functions 
/ and/77 of the previous paragraph, the sum for #oo reduces to a sum over irreducible 
tempered principal series representations. (Temperedness follows from the characteri­
zation of [Kn, 8.53, 16.6].) By the definition of the lift of a tempered distribution, each 
term trace 7r'(fH) may be replaced by a term trace ir(f) for some tempered representation 
7T of Goo- By our restriction on the function/, the character identity between Goo and HOQ 
takes the form of an absolutely convergent sum 

(6.3) ]>>(A)/y(A) = 0, 
AGa* 

for a l l /G C?°(G, So). 
When TTSOIX is unitary, we must have À G /aj, so a(X)Ff(X) vanishes off/aj (see [Kn, 

16.6]).Fix/G C?(G,60). We claim that a(A)F/(A) = 0, for all A. Otherwise, there exists 
a nonzero constant c = \a(Xo)Ff(Xo)\ for some Ao. The sum (6.3) may be broken into the 
term a(Xo)Ff(Xo), a sum over a finite set So C /aj, and a sum over the remaining terms. 
By choosing So large enough, we may assume that 

£ \a(X)Ff(\)\<c. 
Aea*\Sb 

Pick a Paley-Wiener function h on a* such that h(Xo) = 1, h(X) = 0, for A G 5b, 
and \h(X)\ < 1, for all A G /aj$. h(X)Ff(X) is a Paley-Wiener function, so there exists 
f\ GQ°(Goo,r)suchthat 

F7l(A) = h(X)Ff(X) = ( t r a c e r , , , / ) , 
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and whose trace vanishes on the other components of the admissible dual of Goo- Apply 
equation (6.3) t o / to conclude that E a(X)h(X)Ff(X) = 0, with absolute convergence. 
We then obtain the contradiction 

c = \a(Xo)h(Xo)Ff(X0)\ = £ a(X)h(X)Ff(X) 
'a*\{M 

<c. 

The simple form of the trace formula gives a formula for the trace of the opera­
tor R(f), when/ is supercuspidal and R is the right-regular representation of G(A) on 
L2{G(F) \ G(A)). (In our context, Z(G){F) \ Z(G)(&) is compact.) When/ is supercusp­
idal, the image of R(f) lies in the space of cusp forms and R(f) is of trace class. 

Kottwitz has stabilized the elliptic part of the trace formula. We will only use the 
elliptic regular part, stabilized by Langlands, obtained by requiring the support of the 
function/ on the adelic points of G to be supported on the regular elliptic set at some 
place. To compare the trace formulas on G and H we use the main identity from Kot­
twitz [Ko3], for both G and H. The stabilization in [Ko3] assumes that the derived group 
of G is simply connected. But, as Kottwitz points out, this assumption may be avoided; 
the treatments in [L] and [KS2] do not make this assumption. Kottwitz writes 7^*(/) for 
the elliptic term of the trace formula, for a function/. The superscript ** indicates that 
the sum extends only over the (G,//)-regular terms of the trace formula. By our support 
conditions on the functions/ and/77, the omitted terms do not belong to the support of 
/ anyway. Similarly, the expression ST^* stands for the stable elliptic term of the trace 
formula. The main identity of Kottwitz, applied to both G and H, becomes 

re*(f) = KG,H)Sre*(fH), and 

re*<fH) = i(H,H)sre*(fH), 

where /(•, •) are nonzero constants. We take/ and/77 to be products of compactly sup­
ported smooth functions at all the places. The functions/ and/77 must have matching 
orbital integrals locally everywhere for these identities to hold. Combining the identi­
ties, we find a nonzero constant c for which 7^*(/) = cT^*(fH). 

The existence of local data at the place w is now established by Clozel's arguments. 
We assume that / and/77 have matching orbital integrals everywhere, except possibly 
at w, and that the w-components of/ and/77 are/w and b(fw) in the Hecke algebra. Let 
fjf be the function obtained from/77 by replacing/J7 with the characteristic function of 
a compact set that meets all elliptic conjugacy classes in Hw. The support of/77 meets 
only finitely many //(A)-conjugacy classes in //(A) that come from global elements in 
H(F) [Ko3, 8.2]. Shrink the support of the function//7 at some place v so the only H(K)-
conjugacy classes in //(/V) meeting the support of/f7 come from 7. The transfer of T to 
G gives a corresponding global element 7 G T(F) C G(F). Every G(A)-conjugacy class 
in G(A) that comes from a global element other than 7 E G(F) and that is elliptic at w 
has vanishing K-orbital integrals at some place other than w. By the choices made above, 
we may arrange that the K -orbital integrals of/ on 7 are nonzero at all nonarchimedean 
places except possibly w. 

https://doi.org/10.4153/CJM-1995-051-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-051-5


FUNDAMENTAL LEMMA FOR STANDARD ENDOSCOPY 993 

Suppose first that the Hecke functions fw and b(fw) have matching orbital integrals at 
w. Viewed as an identity in /^ and/^, the spectral side of the identity T**{f) — cT^{fH) 
takes the form of Equation 6.2. Set F(X) — Ff^X). The argument of 6.3 shows that 
a(X)F(X) = 0 for all A. Each term a(X)F(X), viewed as a function a(X,fv)F(X) offv in the 
Hecke algebra of Gv, is linear. By Harish-Chandra's finiteness theorem, applied to both 
G and H, each identity a(X,fv)F(X) = 0 is a finite sum of the form of Condition 4.1.2.A 
[BJ]. This is the implication (Condition 2.B implies Condition 2.A) in the definition 
of local data. (It is necessary to vary the elliptic element 7//, to obtain a collection of 
character identities for each 7//.) 

Conversely, if the character identities a(X,fv)F(X) — 0 hold forfv and all A, then we 
have an equality on the spectral side of the trace formula. The identity T^*(f)—cT^*(fH) = 
0 then holds. The n-orbital integrals of 7 are nonzero away from w. Since, up to stable 
conjugacy, the support of/ contains only one global element 7 that is elliptic at w, and 
since the fundamental lemma is assumed on nonelliptic elements, this identity simply 
becomes A.(1,fv) = 0. This is the implication (Condition 2.A implies Condition 2.B) in 
the definition of local data. Note that the constant in the normalization of the transfer 
factor at v is fixed by the condition that A(7//,^) = 0 when 7// is not elliptic. • 
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